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SOME REMARKS ON HEEGNER POINT COMPUTATIONS

by

Mark Watkins

Abstract. — We give an overview of the theory of Heegner points for elliptic curves,
and then describe various new ideas that can be used in the computation of ratio-
nal points on rank 1 elliptic curves. In particular, we discuss the idea of Cremona
(following Silverman) regarding recovery a rational point via knowledge of its height,
the idea of Delaunay regarding the use of Atkin-Lehner involutions in the selection of
auxiliary parameters, and the idea of Elkies regarding descent and lattice reduction
that can result in a large reduction in the needed amount of real-number precision
used in the computation.

1. Introduction

We make some remarks concerning Heegner point computations. One of our goals
shall be to give an algorithm (perhaps conditional on various conjectures) to find a
non-torsion rational point on a given rank 1 elliptic curve. Much of this is taken
from a section in Henri Cohen’s latest book [9], and owes a great debt to Christophe
Delaunay. The ideas in the section about lattice reduction are largely due to Noam
Elkies. We do not delve deeply into the theory of Heegner points, but simply give
references where appropriate; the recent MSRI book “Heegner points and Rankin
L-series” [11] contains many good articles which consider Heegner points and their
generalisations from the standpoint of representation theory.

The author thanks the Institut Henri Poincaré for its hospitality and the Centre
National de la Recherche Scientifique for financial support. The algorithms described
here have been implemented in the Magma computer algebra system [4]; the author
thanks the Magma computer algebra group at the University of Sydney for their
hospitality and financial support. The author was also partially funded by an NSF
VIGRE Postdoctoral Fellowship during part of this work.

2000 Mathematics Subject Classification. — 11G05, 11G40, 14G05.
Key words and phrases. — elliptic curves, Heegner points, descent, lattice reduction.
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2 MARK WATKINS

2. Definitions and Outline of Theory

Let τ be a quadratic surd in the upper-half-plane H. Let fτ = (A,B,C) be
the associated integral primitive positive-definite binary quadratic form, so that
Aτ2 +Bτ + C = 0 with A > 0 and gcd(A,B,C) = 1. The discriminant ∆(τ) is
∆(fτ ) = B2 − 4AC, which is negative. For simplicity we take ∆(τ) to be funda-
mental, though much of the theory can be made to work when it is not. However,
consideration of positive discriminant does not follow in the same manner.

Definition 2.1. — A Heegner point of level N and discriminant D is a quadratic
surd in the upper-half-plane with ∆(τ) = D = ∆(Nτ). We let HD

N be the set of
Heegner points of level N and discriminant D.

Proposition 2.2. — Let τ ∈ H be a quadratic surd with discriminant D and fτ =
(A,B,C). Then τ ∈ HD

N iff N |A and gcd(A/N,B,CN) = 1.

Proof. — Note that τ = −B+
√

D
2A and Nτ = −NB+N

√
D

2A . For ∆(τ) = ∆(Nτ) we

need Nτ = −B′+
√

D
2A′

and by equating imaginary and real parts we get A = NA′

and B = B′, so that N |A. Also note that (A/N)(Nτ)2 + B(Nτ) + (CN) = 0, from
which we get the rest of the lemma.

Note that HD
N will be empty unless D = B2 − 4N(A/N)C is a square modulo 4N .

Lemma 2.3. — The set HD
N is closed under Γ0(N)-action.

Proof. — If γ ∈ SL2(Z) ⊇ Γ0(N) then ∆
(

γ(τ)
)

= ∆(τ) since the discriminant is

fixed. A computation shows that γ ∈ Γ0(N) and τ ∈ HD
N imply γ(τ) ∈ HD

N .

Lemma 2.4. — The set HD
N is closed under the WN -action that sends τ → −1/Nτ .

Proof. — Follows from the above proposition since f(−1/Nτ) = (CN,−B,A/N).

Definition 2.5. — We let SS(D,N) be the set of square roots mod 2N of D
mod 4N .

Theorem 2.6. — The sets HD
N/Γ0(N) and SS(D,N)×Cl

(

Q(
√
D)

)

are in bijection.

Proof. — This can be shown by chasing definitions. Essentially, [τ ] ∈ HD
N/Γ0(N) gets

mapped to (B mod 2N)× [Z + τZ] where fτ = (A,B,C), and in the other direction,

when we are given β × l ∈ SS(D,N) × Cl
(

Q(
√
D)

)

we take (A,B,C) ∈ l with N |A
and B ≡ β (mod 2N), and then τ = −B+

√
D

2A .

From now on we let E be a global minimal model of a rational elliptic curve of
conductor N , and take D to be a negative fundamental discriminant such that D is
a square mod 4N . We let H⋆ be the union of H with the rationals and i∞. We let
P(z) be the function that sends z ∈ C/Λ to the point

(

℘(z), ℘′(z)
)

on E.

Theorem 2.7. — There is a surjective map φ̂ : X0(N) → E (the modular parametri-
sation) where X0(N) = H⋆/Γ0(N) and E can be viewed as C/Λ for some lattice Λ.
This map can be defined over the rationals.
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Proof. — This is due to Wiles and others [29, 28, 12, 10, 6]. We let φ be the
associated map from H⋆/Γ0(N) to C/Λ. Explicitly, we have that τ ∈ H⋆ gets mapped
to the complex point φ(τ) = 2πi

∫ τ

i∞ ψE =
∑

n(an/n)e2πinτ , where ψE is the modular
form of weight 2 and level N associated to E. The lattice Λ is generated by the real
and imaginary periods,(1) which we denote by Ωre and Ωim. We assume that the
Manin constant is 1, which is conjectured always to be the case for curves of positive
rank (see [27] and [25]).

Theorem 2.8. — Let τ = β × l ∈ HD
N . Then P

(

φ(τ)
)

has its coordinates in the

Hilbert class field of Q(
√
D). Also we have

1. φ(β × l) = φ
(

−β × l−1
)

, in C/Λ.

2. φ
(

WN (β × l)
)

= φ
(

−β × ln−1
)

in C/Λ where n =
[

NZ + β+
√

D
2 Z

]

,

3. P
(

φ(β × l)
)Artin(m)

= P
(

φ
(

β × lm−1
))

for all m ∈ Cl
(

Q(
√
D)

)

.

Proof. — This is the theorem of complex multiplication of Shimura [22, 21]. We out-
line the proof of the first statement, for which we work via the modular j-function.
We have that j(τ) is in the Hilbert class field H (see [23, II, 4.3]) and similarly
with j(Nτ). Thus we get that X0(N) overH contains the moduli point corresponding
to the isogeny between curves with these j-invariants. Since the modular parametri-

sation map φ̂ can be defined over the rationals, the image of the moduli point under

φ̂ has its coordinates in the Hilbert class field.

Note that P
(

φ(τ)
)

= P
(

φ(τ)
)

, so that there is no danger of confusing complex
conjugation in C/Λ with complex conjugation of the coordinates of the point on E.
Using the third fact of Theorem 2.8, we can take the trace of P

(

φ(τ)
)

and get a point

that has coordinates in Q(
√
D). Indeed, writing H for the Hilbert class field and K

for the imaginary quadratic field Q(
√
D) we get that

P = TraceH/K

(

P
(

φ(τ)
))

=
∑

σ∈Gal(H/K)

P
(

φ(τ)
)σ

=
∑

m∈Cl(K)

P
(

φ(β × l)
)Artin(m)

=
∑

m∈Cl(K)

P
(

φ
(

β × lm−1
))

=
∑

m∈Cl(K)

P
(

φ(β ×m)
)

has coordinates in Q(
√
D). When E has odd functional equation, we can use the first

two facts of Theorem 2.8 to show that P = P , so that P has coordinates in Q. In
this case we have ψE = ψE ◦WN which implies φ = φ ◦WN , so that in C/Λ we have

φ(β ×m) = φ
(

WN (β ×m)
)

= φ
(

−β ×mn−1
)

= φ
(

β ×m−1n
)

,

which gives us that

P =
∑

m∈Cl(K)

P
(

φ(β ×m)
)

=
∑

m∈Cl(K)

P
(

φ
(

β ×m−1n
))

=
∑

m∈Cl(K)

P
(

φ(β ×m)
)

= P.

(1)Our convention is that the imaginary period is purely imaginary when the discriminant of E is
positive, and in the negative discriminant case the real part of the imaginary period is Ωre/2. The
fundamental volume Ωvol is the area of the period parallelogram.
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We can rewrite some of this by introducing some new notation.

Definition 2.9. — We write HD
N (β) for subset of τ ∈ HD

N such that the associated

form fτ = (A,B,C) has B ≡ β (mod 2N). We write ĤD
N = HD

N/Γ0(N), and noting

that Γ0(N) acts on HD
N (β), we write ĤD

N (β) = HD
N (β)/Γ0(N).

Since ĤD
N (β) is in 1-1 correspondence with Cl

(

Q(
√
D)

)

, we get that

P =
∑

m∈Cl(Q(
√

D))

P
(

φ(β ×m)
)

=
∑

τ∈ĤD

N
(β)

P
(

φ(τ)
)

.

3. The Gross-Zagier theorem and an algorithm

We now have a plan of how to find a non-torsion point on a curve of analytic
rank 1. We select an auxiliary negative fundamental discriminant D such that D is a
square modulo 4N , choose β ∈ SS(D,N), find τ -representatives for ĤD

N (β), compute
φ(τ) for each, sum these in C/Λ, map the resulting point to E via the Weierstrass
parametrization, and try to recognize the result as a rational point. One problem
is that we might get a torsion point. Another problem is that we won’t necessarily
get a generator, and thus the point might have inflated height, which would increase
our requirements on real-number precision. The Gross-Zagier Theorem tells us what
height to expect, and combined with the Birch–Swinnerton-Dyer Conjecture, we get
a prediction of what height a generator should have. Our heights will be the “larger”
ones, and are thus twice those chosen by some authors.

Theorem 3.1. — Suppose D < −3 is a fundamental discriminant with D a square
modulo 4N and gcd(D, 2N) = 1. Then

h(P ) =

√

|D|
4Ωvol

L′(E, 1)L(ED, 1) × 2ω(gcd(D,N))

(

w(D)

2

)2

.

Proof. — This is due to Gross and Zagier [15]. Here ED is the quadratic twist of E

by D, while w(D) is the number of units in Q(
√
D) and ω(n) is the number of distinct

prime factors of n.

Calculations of Gross and Hayashi [16] indicate that this height formula is likely
to be true for all negative fundamental discriminants D that are square mod 4N .

We now write P = lG+T where G is a generator(2) and T is a torsion point, so that
h(P ) = l2h(G). Then we replace L′(E, 1) through use of the Birch–Swinnerton-Dyer
conjecture [5] to get the following:(3)

(2)Note that we will actually get
√

#X times a generator from our method, since we cannot disas-
sociate X from the regulator in the Birch–Swinnerton-Dyer formula.
(3)We use the convention that the Tamagawa number at infinity is equal to the number of connected
components of E over R — thus it is 1 for curves with negative discriminant and 2 for curves with
positive discriminant.
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Conjecture 3.2. — With notations as above we have that

l2 =
Ωre

4Ωvol

(

∏

p|N∞
cp · #X

)

√

|D|
#E(Q)2tors

L(ED, 1) ·
(

w(D)

2

)2

2ω(gcd(D,N)).

In particular, we note that we should use a quadratic twist ED that has rank zero,
so that L(ED, 1) does not vanish. The existence of such a twist is proven in [7]. Thus
we have the following algorithm, which we shall work on improving.

Algorithm 3.3. — Given a rational elliptic curve E of conductor N of analytic
rank 1, find a non-torsion rational point.

1. Compute L′(E, 1) and find a fundamental discriminant D < 0 with D a square
modulo 4N and L(ED, 1) 6= 0, so that the index l is nonzero.

2. Choose β ∈ SS(D,N) and compute (to sufficient precision) the complex number

z =
∑

τ∈ĤD

N
(β)

φ(τ) =
∑

τ∈ĤD

N

∞
∑

n=1

an

n
e2πinτ .

3. Let m be the gcd of l and the exponent of the torsion group of E. If the dis-
criminant of E is positive, check if P(ż) is close to a rational point on E for
u = 1, . . . , lm for both

ż = (mRe(z) + uΩre)/ml and ż = (mRe(z) + uΩre)/ml + Ωim/2.

If the discriminant of E is negative, let o = Im(z)/Im(Ωim) and check P(ż) for
ż = (mRe(z) + uΩre)/ml + oΩre/2 over the same u-range.

One can compute the index l in parallel with the φ(τ), since both involve computing
the an of the elliptic curve E. However, this can cause problems if the index turns
out to be zero (that is, if ED has positive rank).

3.1. Step 2 of the Algorithm. — We now discuss how to do the second step
efficiently. First note that we can sometimes pair φ(τ) with its complex conjugate;
recalling that φ = φ ◦WN , by Theorem 2.8 in C/Λ we have

(1) φ(β × l) = φ(−β × l−1) = φ
(

WN (−β × l−1)
)

= φ
(

β × (ln)−1
)

.

For f = (A,B,C) ∈ ĤD
N we write f = (A/N,−B,CN), so that when g ∼ f in the

class group we have φ(f) = φ(g) and thus φ(f) + φ(g) = 2 Reφ(f) in C/Λ. We refer
to this as pairing the forms.

For
∑

n(an/n)e2πinτ to converge rapidly, we wish for the imaginary parts of our
representative τ ’s to be large. It turns out the best we can do is essentially have
the smallest imaginary part be about 1/N in size. We can achieve this via a trick of
Delaunay, which introduces more Atkin-Lehner involutions.

Definition 3.4. — Let Q|N with gcd(Q,N/Q) = 1, and let u, v ∈ Z be such that

uQ2 − vN = Q. The Atkin-Lehner involution WQ sends τ to uQτ+v
Nτ+Q .
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This defines WQ up to transformations by elements in Γ0(N). One can check that
WQ(WQ(τ)) is in the Γ0(N)-orbit of τ , and that the WQ form an elementary abelian

2-group W of order 2ω(N). The important fact about the WQ’s that we shall use is
that ψE = ±ψE ◦WQ, so that φ(τ) = ±φ(WQ(τ)) + φ

(

WQ(i∞)
)

. The sign can be
computed as ǫQ =

∏

p|Q ǫp where ǫp is the local root number of E at p. Delaunay’s

idea is to maximise the imaginary part of τ over Γ0(N) andW rather than just Γ0(N);
the difficulty is that the action of WQ need not preserve β. However, we still have
that

P =
∑

τ∈ĤD

N
(β)

φ(τ) =
∑

τ∈ĤD

N
(β)

ǫQφ
(

WQ(τ)
)

+ (torsion point).

For the analogue of the second part of Theorem 2.8, we need to consider what happens
with to β. We define βQ as follows. We make βQ and β have opposite signs mod pk

for prime powers pk with pk‖Q and gcd(p,D) = 1, and else β = βQ. In particular, we
have that Q = gcd(β − βQ, N) when N is odd. The desired analogue is now that

φ
(

WQ(β × l)
)

= ǫQφ(βQ × lq−1) + φ
(

WQ(i∞)
)

with q =

[

QZ +
−βQ +

√
D

2
Z

]

.

The primes p which divide D are different since there is only one square root of D
mod p; thus β is preserved upon application of WQ for Q that are products of such
primes. For such Q, we can note the following with respect to complex conjugation.
Suppose we have that m ∼ (ln)−1 so that by (1) we have φ(β × l) = φ(β×m). Then,
using the fact that q−1 = q in this case, in C/Λ we have, up to torsion, that

φ
(

WQ(β × l)
)

⊜ ǫQφ(βQ × lq−1) = ǫQφ
(

βQ × (lq−1n)−1
)

= ǫQφ
(

βQ × (lqn)−1
)

⊜

⊜ φ
(

WQ(β × (ln)−1)
)

= φ
(

WQ(β ×m)
)

.

So we see that (β × l) can be paired iff WQ(β × l) can be paired.
We now give the algorithm for finding good τ -representatives. The idea to run over

all forms (aN, b, c) of discriminant D with a small, mapping these via the appropriate
Atkin-Lehner involution(s) to forms with fixed square root β, and doing this until the
images cover the class group. Of course, the conjugation action is also considered.

Subalgorithm 3.5. — Given D,N , find good τ-representatives.

1. Choose β ∈ SS(D,N). Set U = ∅ and R = ∅.
2. While #R 6= #Cl(

(

Q
√
D)

)

do:
3. Loop over a from 1 to infinity and b ∈ SS(D,N) [lift b from Z/2N to Z]:
4. Loop over all solutions s of Ns2 + bs+ (b2 −D)/4N ≡ 0 modulo a:
5. Let f =

(

aN, b+ 2Ns, ((b+ 2Ns)2 −D)/4aN
)

.
6. Loop over all positive divisors d of gcd(D,N) [which is squarefree]:
7. Let g = WQ(f)/Q where Q is d times the product of the pk‖N

with b 6≡ β mod pk, so that g ∈ HD
N (β).

8. If the reductions of g and g are both not in R then append them
to R, and append f to U with weight ǫQ when g ∼ g and with
weight 2ǫQ when g 6∼ g.
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With this subalgorithm, we get that z =
∑

f∈U weight(f)φ(τf ) in Step 2 of the

main algorithm. We expect the maximal a to be of size #Cl(Q(
√
D))/2#W . This sub-

algorithm makes “parameter selection” fast compared to the computation of the φ(τ).

3.2. Step 3 of the Algorithm. — We now turn to the last step of our main algo-
rithm, reconstructing a rational point on an elliptic curve from a real approximation.
The most näıve method for this is simply to try to recognise the x-coordinate as a ra-
tional number. If our height calculation tells us to expect a point whose x-coordinate
has a numerator and denominator of about H digits, the use of continued fractions
will recognise it if we do all computations to about twice the precision, or 2H digits.
We can note that by using a degree-n map to Pn−1 and n-dimensional lattice reduc-
tion, this can be reduced to nH/(n − 1) digits for every n ≥ 3 — we will discuss a
similar idea later when we consider combining descent with our Heegner point com-
putations. But in this case we can do better; we are able to recognise our rational
point with only H digits of precision due to a trick of Cremona, coming from an idea
in a paper of Silverman [24]. The idea is that we know the canonical height of our
desired point, and this height decomposes into local heights; we have

h(P ) = h∞(P ) +
∑

p|N
hp(P ) + log denominator(x(P )).

The height at infinity h∞(P ) can be approximated from a real-number approximation
to P , and there are finitely many possibilities for each local height hp(P ) depending
the reduction type of E at p. We compute the various local heights to H digits
of precision, and then can determine the denominator of x(P ) from this, our task
being eased from the fact that it is square. Then from our real-approximation(4)

of P we can recover the x-coordinate, and from this we get P . Note that we need to
compute L′(E, 1) to a precision of H digits, but this takes only about

√
N(logH)O(1)

time. In practise, there can be many choices for the sums of local heights, and if
additionally the index is large, then this step can be quite time-consuming. This can
be curtailed a bit by doing the calculations for the square root of the denominator of
the x-coordinate to only about H/2 digits, and then not bothering with the elliptic
exponential step unless the result is sufficiently close to an integer.

3.3. Example. — We now give a complete example. Other explicit descriptions of
computations with Heegner points appear in [3, 26, 17]. We take the curve given
by [1,−1, 0,−751055859,−7922219731979] for which the Heegner point has height
139.1747+. We select D = −932, for which the class number is 12 and the index
l is 4. We have N = 11682 and choose β = 214. Our first form is (11682, 214, 1)
to which we apply W1 = id. The reduction of this is (1, 0, 233), and it pairs with

(4)Elkies tells us that, given the height to precision H, the techniques of [14] (see Theorem 4 in
particular) can reduce the needed precision of the real Heegner approximation to o(H) as H → ∞.
The idea is that for a fixed C the equation h∞

(

(x, y, z)
)

+ 2 log z = C defines a transcendental arc,
and thus the use of a sufficiently high degree Veronese embedding will reduce the needed precision
substantially. This method in its entirety might not be that practical, though the use of height
information in conjunction with the geometry of the curve should allow a useful reduction in precision.
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itself under complex conjugation. Since we have gcd(D,N) = 2, we can use W2

without changing β; we get the form (206717861394, 70769770, 6057) which reduces
to the self-paired form (2, 2, 117). Our next form is (11682, 2338, 117) to which we
apply W11 to get (122225810454, 230158978, 108351) which reduces to (11, 6, 22) and
pairs with (11,−6, 22). ApplyingW22 gives a form which reduces to (11,−6, 22), so we
ignore it. Next we have (11682, 2810, 169) to which we apply W9, getting a form that
reduces to (9, 2, 26) and pairs with (9,−2, 26). ApplyingW18 gives a form that reduces
to (13,−2, 18) and pairs with (13, 2, 18). Then we have (11682, 4934, 521) to which we
apply W99, getting a form that reduces to (3,−2, 78) and pairs with (3, 2, 78). And
finally applyingW198 we get a form that reduces to (6,−2, 39) and pairs with (6, 2, 39),
and so we have all of our τ -representatives. We note that W11, W9, and W18 switch
the sign of the modular form, and thus the obtained forms get a weighting of −2.
The self-paired forms get a weighting of +1, and the other two forms get a weighting
of +2. For the non-self-paired forms we must remember to take the real part of
the computed φ(τ) when we double it.(5) The pairing turns is rather simple in this
example, but need not be so perspicacious with respect to the class group. Note that
we use only four distinct forms for our computations.

We need about 60 digits of precision if we use the Cremona-Silverman method to
reconstruct the rational point, which means we must compute about 20000 terms of
the L-series. The curve E has negative discriminant and no rational torsion points.
We compute a real-approximation to the Heegner point in C/Λ to be

z = 0.00680702983101357730368201485198918786991251635619740952608094.

We have o = Im(z)/Im(Ωim) = 0, and with l = 4 and u = 2 we get that

ż = 0.00891152819280235244790996808333469812474933020620405901507952,

to which we apply the Cremona-Silverman method of recovery. The curve E is an-
noying for this method, in that we have many possibilities for hp(P ). The height of
the Heegner point is given by

h(P ) = 139.174739524758127811521877478222781093487974225206369462318,

and the height at infinity(6) is given by

h∞(P ) = 2.10306651755149369196435189022120441716979687181328497567075.

The reduction type at 2 is I25, at 3 it is I⋆
13, at 11 it is I1, and at 59 it is I3. Thus

we have 13 × 3 × 1 × 2 choices for the local heights. It turns out that we have(7)

hp(P ) = 1
6vp(∆) log p for p = 2, 11, 59, while h3(P ) = (13/6) log 3. The denominator

of the x-coordinate is 123370889469009976146949472832, and the numerator is

5908330434812036124963415912002702659341205917464938175508715.

(5)The self-paired forms f have φ(f) = φ(f) in C/Λ but not necessarily in C — the imaginary part
cannot be ignored when the discriminant of E is negative and lm is odd.
(6)Note that Silverman [24] uses a different normalisation of height, and his choice of the parameter z
when he computes the height at infinity corresponds to ż/Ωre for us. Also, his method is only linearly
convergent, while that given in [8, §7.5.7] is quadratically convergent.
(7)This follows a posterori since P is nonsingular modulo these primes of multiplicative reduction.
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3.4. Variants. — Next we mention a variant which, for the congruent number
curve, has been investigated in depth by Elkies [13]. Here we fix a rank zero curve,
say the curve E : y2 = x3 − x of conductor 32, and try to find points on rank 1
quadratic twists ED with D < 0. It can be shown that ED will have odd functional
equation for |D| ≡ 5, 6, 7 (mod 8). There is not necessarily a Gross-Zagier theorem in
all these cases, and some involve mock Heegner points instead of Heegner points. How-
ever, we still have the prediction that h(P ) = αDL(E, 1)L′(ED, 1) for some αD > 0.
Elkies computes a point P in C/Λ via a method similar to the above — however, he
generally(8) only attempts to determine if it is non-torsion, and thus need not worry
as much about precision. There are about #Cl

(

Q(
√
D)

)

≈
√

|D| conjugates of τ
for which φ(τ) needs to be computed; since we have an action of Γ0(32), computing
each φ(τ) takes essentially constant time, so we get an algorithm that takes about
time |D|1/2 to determine whether the computed point is non-torsion. Note that we
don’t obtain L′(ED, 1), which takes about |D| time to compute, but only whether
it is nonzero. MacLeod [18] investigated a similar family of quadratic twists, those
of a curve of conductor 128. The relevant curves are y2 = (x + p)(x2 + p2) with
p ≡ 7 (mod 8); with p = 3167 the height is 1022.64+. Some additional papers that
deal with the theory and constructions in this case are those of Birch and Monsky
[1, 2, 19, 20].

4. Combination with descent

To find Heegner points of large height, say 500 or more, it is usually best first to
do a descent on the elliptic curve, as this will tend to reduce the size of the rational
point by a significant factor.(9) Upon doing a 2-descent, we need only H/3 digits
of precision if we represent the covering curve as an intersection of quadrics in P3

and use 4-dimensional lattice reduction, and if we do a 4-descent we need only H/12
digits. We first explain how these lattice reduction methods work, and then show
how to use them in our application. It might also be prudent to point out that if E
has nontrivial rational isogenies, then one should work with the isogenous curve for
which the height of the generator will be the smallest.(10)

4.1. Lattice Reduction. — Most of the theory here is due to Elkies [14]. We
first describe a p-adic method — this is not immediately relevant to us as we do
not know how to approximate the Heegner point in such a manner, but it helps to
understand the idea. Let F (W,X, Y ) = 0 be a curve in P2. We wish to find rational
points on F . Let (1 : xs : ys) be a (nonsingular) point modulo some prime p, and
lift this to a solution (1 : x0 : y0) modulo p2. Then determine d such that any linear
combination of (1 : x0 : y0) and (0 : p : dp) will be a solution mod p2 (computing d

(8)Elkies also computes a generator of height 239.6+ for y2 = x3 − 10632x in this manner.
(9)During the mid 1990s, Cremona and Siksek worked out a few examples using 2-descent.
(10)Because X might have different size for the various isogenous curves, we cannot always tell
beforehand which curve(s) will have a generator of smallest height.
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essentially involves taking a derivative). Then perform lattice reduction on the rows
of the matrix





1 x0 y0
0 p dp
0 0 p2



 .

Finally search for global solutions to F by taking small linear combinations of the rows
of the lattice-reduced matrix. If we choose p to be around B for some height bound B,
upon looping through all local solutions modulo p we should find all global points
whose coordinates are of size B; in general we take p of size B2/n in projective n-space.
This can be used, for instance, to search for points on a cubic model of an elliptic
curve.(11)

Over the real numbers the description is more complicated. Here we deal with
the transformation matrix of the lattice reduction. If we wanted to do 2-dimensional
reduction, that is, continued fractions, on a real number x0, we would perform lattice
reduction on the rows of the matrix

M2 =

(

1 −x0B
0 B

)

to get good rational approximations to x0. We can note that
−−−−→
(1, x0)M2 =

−−−→
(1, 0) and

that the transformation matrix T for which TM2 is lattice-reduced has the property

that
−−→
(1, 0)T is approximately proportional to

−−−−→
(1, x0). In four dimensions we take a

point (1 : x0 : y0 : z0) on some curve, assuming that derivatives of y and z with
respect to x are defined at this point. The matrix we use here is(12)

M4 =









1 −x0B (y′x0 − y0)B
2

(

−e(y′x0 − y0) + z′x0 − z0
)

B3

0 B y′B2 (ey′ − z′)B3

0 0 B2 −eB3

0 0 0 B3









.

Here e = z′′/y′′ and all the derivatives are with respect to x and are to be evaluated
at (1 : x0 : y0 : z0). Note that if we have computed (1 : x0 : y0 : z0) to H digits of pre-
cision, we must “lift” it to precision 3H to use this. Similar to the 2-dimensional case

of above we have that
−−−−−−−−−→
(1, x0, y0, z0)M4 =

−−−−−−→
(1, 0, 0, 0), and

−−−−−−→
(1, 0, 0, 0)T is approximately

proportional to
−−−−−−−−−→
(1, x0, y0, z0).

4.2. Results. — We now combine descent with the Heegner point method. We
assume that we have a cover C → E, and for each point P(ż) given by the above algo-
rithm we compute its real pre-images on C. For a 2-covering quartic, the x-coordinate
has sizeH/4, but the y-coordinate on the quartic will be of sizeH/2. Either continued
fractions on the x-coordinate or 3-dimensional lattice reduction on both coordinates
and the curve requires a precision of H/2 digits — however, if our 2-cover is given
as an intersection of quadrics in P3, then we only need a precision of (H/2)(2/3)
since the Elkies method does better in higher dimension. For a 4-cover represented

(11)This description is due to Elkies and is noted by Womack ([30, Section 2.9]).
(12)The 3-dimensional version is just the upper-left corner.
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as an intersection of quadrics in P3, the coordinates are of size H/8, and so we need
a precision of (H/8)(2/3) to recover our point.

We now give two examples of Heegner points of large height.(13) First we consider
E given by [0, 1, 1,−4912150272,−132513750628709], for which N = 421859. Here
the Heegner point is of height 3239.048+. We refer the reader to [30] for how to
do a 4-descent. The intersection of quadrics that gives the 4-cover is given by the
symmetric matrices









1 3 14 4
3 7 9 8
14 9 −8 19
4 8 19 13









and









16 −10 5 −5
−10 29 −3 −5
5 −3 −1 8
−5 −5 8 13









.

We used D = −795 for which the index is 4. The class group has size 4; upon
using the pairing from complex conjugation we need only 2 forms, which we can
take to be (421859, 234525, 32595) and (421859, 384997, 87839). We need to use
about 3239/12 log(10) ≈ 120 digits of precision and take around 1.3 million terms
of the L-series. For our approximation to a generator on C/Λ we get

ż = 0.00825831518406814312450985646222558391095207954623175715662897127635126006560626891914983130574212343000780426018430276055.

We find the real pre-images of this on the 4-cover (this can be done via a resultant
computation) and then via 4-dimensional lattice reduction we obtain the point

(90585849222350621011339302424932326542192474474854331313031216338204053880670077944701302491852572823731202634266219944146702509489824532529044887987947859472355124939471295729,
58207848469468567249250100904745604517491584621654101065649337689496036041318068019646159331652386264579879746727095434743171075008134671399964513924870607157340785327661071757,
-52660183473004831875084410642918250532458007522956523515279464248174730240287018424148701587123000269221530600465998289112443045957965377530412500941202059568743656911281766881,
120566343955994724443268162651063750286159426913472902595469949397024821835521392662156637479278825638673289873881696613629128450397637909394604102581491799075589326751709650806),

which can then be mapped back to E. Even though we only used 120 digits of precision
in our computation of a real approximation to the Heegner point, we can recover a
point with approximately 3/2 as many digits. Note that if we did not use descent,
but recovered the point on the original curve using the Cremona-Silverman method,
we would need 12 times the precision and 12 times as many terms in the L-series —
this could be a total time factor of as much as 123, depending upon the efficiency of
our high-precision arithmetic. This computation (including 2-descent and 4-descent
which each take a second) takes less than a minute.

Finally we give a more extreme example — this is the largest example which we
have computed. The curve is from the database of Stein and Watkins [25]. Let E be
given by [0, 0, 1,−5115523309,−140826120488927], for which N = 66157667 and the
Heegner point is of height 12557+. The intersection of quadrics that gives the 4-cover
is given by the two symmetric matrices









0 1 3 3
1 5 −1 −6
3 −1 8 −2
3 −6 −2 16









and









12 −21 −10 −68
−21 −13 −7 −27
−10 −7 3 −7
−68 −27 −7 15









.

We select D = −1435 for which our 2 forms are (66157667, 2599591, 25537) and
(66157667, 37610323, 5345323) and the index is 2. We need 460 digits of precision and

(13)These examples exemplify the experimental and heuristic correlation between large heights and
large cancellation in c34 − c26 = 1728∆, since Ωre can then be unusually small for a given |∆|.
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600 million terms of the L-series. This takes less than a day. We list the x-coordinate
of the point on the original elliptic curve. It has numerator
36777053718667750661400564234182717008793226949228558472621877006165354634927101580536513437032674306114130646450005288670465199839976647884079191530786174150
72739338026281573250924797082687602171017553858718167805487654785022844156276828471927526818990949626599378706300367603592935770218062374839710749312284163465
07852381696883227650072039964481597215995993299744934117106289850389364006552497835877740257534533113775202882210048356163645919345794812074571029660897173224
37033770105616573500859064029709029870912150626669726646199320182539736999955086814229431275632217741073053282806475960497536924235099356803072693704991160726
41097827468479512837941192989412144907943309029865829912295694015235199387427463761071907702040105138183490127866378892547110594555551738109049119276198990318
55149292325338589831979737026402711049742594116000380601480839982975557506035851728035645241044229165029649347049289119188596869401159325131363345962579503132
33984727542244009455382470518922565367745951286311791172183855293430912450813449336643740809392436203974991190741697350414232211175705858420072502263211616472
01649986417295226774605259994990779421258204288795260637356926859910185168629387960475973239865371541712483169437963732171919939969937146546295368843960579247
90938647656663281596178145722116098216500930333824321806726937018190136190556573208807048355335567078793126656928657859036779350593274598717379730880724034301
86773944374984180945671588419372032890146155265988262840584220975675716781666213994508186464210853359598997571625925924015283405094065447961714768592250085694
44498220453860921224090969785448172188478976405134778065983291776042463808123777390491844755507773416209859765703930378802827649670195524084007307548226764414
81715385344001979832232652414888335865567377214360456003296961668177481944809066257442596772347829664126972931904101685281128944780074646796760942430959617022
25747987408940356496503888537981786692004892981452026849367750705907376590267163808736648849670283632626857459312324510742034887810176312389334765702027559124
88242478005942708620520821859733932900091898676772594580806760650987034535395255769756395437005076256407298723407894063143944684005844559206833619762001218344
30751233901473228497490561998078486251074993528871318797403348087370426900997556442577081254910572185107856605139877331015042842121106080690743578173268489400
49905689831262195394796701235841454775289708109709179574420369768404606625566320124229276012675987126600451637743296191727204021714708356339998761242059527579
20338556769918233682548621595584500438080514815332972700352873822470382792932239463850701180823069589872686033969240544031038574440588486055874154005176700326
31121206127732481340391088277796488544415738156553014768406246154666005139690428085145098272500791416214774673484501826722500527091164944262537169595848931680
75409677471286049057274622409403118704320452610723920107960346829752289510659856743701508334879787536416279769396881980413954888575128268715223707826035870523
02844262030644936842506142828799181077337962070672500038239594129356776240932360470386373655773263995890088045077860119731559277310730347065365574614438066227
07622411087809371872157210456836892493613836792026761820382217165481998924123604782787923229739171920575447007099501678380795077013113325989801385729993920818
30165442425133956460687682012192837224621339985921328279251116804395344383979390113997419447930029756609766453919938465190843618873242881837330238304638885942
79378938418880142666851776166056447837041357949318307502656863359340665652409440494482130055919971289855607602603992142786359126343515867623548693540215307461
89992899582554597632108309638569296964800046983072736238483149014714600896056552029642747991419063454749142059564274298254654925893866404955146903330024475746
16354371499624965242017117105423172633649354158697143177894405148105963373839941141857432381177094972972684361267292500063135565983416420055444131545100343345
24662047071238116636236628372968629480617587599286317636619851856158018862057707210320063041448677873470583163922956715800916558720872094859132869301288586404
42589125454268580397484571921012318872311624898317615607628176460097441336323549031828235965636277950827328087547939511112374216436584203379248450122647406094
03517113074066372354767593988595936388113589303510201838944421274614625032834824261067352402237899497839202009881472197450206269281573668922975906582209394279
53187053452755989894263352359355056053114113015603211922694308617337435444029085864973053536009094312149332025225287171092144929593300160658102876231441792884
66664888540622702346704213752456372574449563979215782406566937885352945871994541770838871930542220307771671498466518108722622109421676741544945695403509866953
16727762828023246483921500347404889696803754466002975574006558127013908324990321257223041794224979546710070039394431032500967717918210997094334680733501444683
96122825088243240736795841228512083604591663154848919522994493400258965092989359393577217235439331087432419973874470183959253201676376403284079570698454395013
81234605867495003402016724626400855369636521155009147176245904149069225438646928549072337653348704931901764847439772432025275648964681387210234070849306330191
79038041239611544624083258348136637213230084906083526213683231531105290336750385743792050893130528314337942393060136915457253067727886206663888425022179164712
3563828956462530983567929499493346622977494903591722345188975062941907415400740881

and denominator (which is square)
42550442729747398883181472438884631491027966762628698441290370019390690825369783206694892509489159845392479060050865239326960543711865223880415469150998005445
00632766713011953565768977996873028383821265775526344346357123541112589188755147040471997532333827695072210398747506143870850088480631610375575105629402969923
37990669688363242672664077782923842468765734764552501489904789995181590663825882826884437614702086601072912460205046718987111919759741772924082107906614768188
25928778559738389606781437786937703940490529701550198752240522047885413980183556155907460046868073063343753429797282371426595980125377117083031923094847501187
81539765280348857873798901748823243463804440411715478920014959236515352089221657498291013202443206177483221913021678256235579893414436481218449503035888524081
15740619547664383566612706438064220965934420574805698187965300040168887347070624862281490478227347630906482652560940554823360522517964582349779334663133777009
32389603015388462267191386514299244523629967196928070338170422172904291954458588735665717672690912582485100989972418433868929605913487922691271558721181323613
70012052090648575376001600422257728323075912369868818631162455043825487235531941123620115037512323584244014680824673299882453235229917216799756372612183353210
23686195578854195273414555800682053521914530044820400116481027789228810525723047625080568425427769667815771926774952742389468234144023574739674218399717724794
64490794909903308233044977729321377913661153832551845135705059041770761773002335204714530513728518042273513609336859761902134080074259874956489916483283558415
18790233089971640826391421865446416159176533305374315501526687536310287865258225341831409297024404559487986223470061428509852910119956281813557240650373612303
80612421682647619158275971206216911075102110620022250292103973758280786545321293000346117555930108145915118154377991059233962745297863017035414522428825832481
10185696903019214515170137956322244850592956107013529355675348962971488951184208519602258834025155300581173742601529286315229193789791848640470464974617150056
62259748200507982418704000034189585130679648460399502892795419432308411176961777683169393789440445404586765622160449971094877274592261820143359041089932670055
51298147417813688141747600315791793741837036656460760259084286414504016916928653373373749351673138873697355678073568445462500597124999569428768348290694470131
39695758671845345053150692524956190311186650121760981782607840168999098928254294766906595754090551526543788821211073870016226804688310128261364457467501381181
99895452299627549452761944871112397182275542812517516928333071853473496479471177474588594469094399278566301150327219929702835948186371102871019478295556041049
94569790530090215161267032801442076978425884340578290684944705663842203873434946895313693410268205549042641332729214043530781277783400932521461065846050516266
06369309829333522153142406896441472229879201250507247335030253750414919268086142811991181135615102063450273874178955396056033628717223631646597545299321971795
72083803798469762841343018748973041067954703588990548236248494723651739045289521882710298950201026345472967707812057733059495444795253020394607206147343184720
12891382027947113716845979329657679391121796342422193808825527319590678236462421470515380610223708802325911166125101655807805544810736511736112015725788207983
04346277884275334856562425654767711062664505338976464447359505881649914260980555651233453080870411547161166201727321046199497573313805291689786242134493722493
65401328137208190879603847948651527305255792412098085899417962189727321732456666040832323196614881188508752637063922635721727888588861006697067295082662856621
42789555098127098307594733822740958886080483268977873098575694622813361281769384832759774254005221673936338256702877699726892622342424638164907882484814569895
78820841326437902307074825587297298227228464352952356348415245051280414970934534815003363838566586486090914244124413024752619262170944161605020754084937204942
16372326712489077723971624589353187301664632745253191939259669507578605710768387023661969449344902879751178806889386035847044662250758843856626244205371560027
87345086683247957409590801131490445553949472979089821198999392392205812011786324196553409374966862790769096287105922007091926687147181741236537543028535996580
45947455276513698860733871942939615110361783065380776837197220049720205456646520373809780940384932684877526623946791294274354580233914301360048309031821084423
72425264218315757261837807638185861100198403815128178367563386992036547922694358498639362771798041618046013662235878191246173024597377861825966407677879013966
44826035500413324947183241852334621567713018309711089099896390758911615128829646468875441800478905861321031022715201049054765075321382013759982613256651365903
08677310205945594774669134858545209082084155986593443637589125910770359979110742764732875552438147802286623083638506353523937829379144982925749510228726599819
64923226850485187083410037527178126285256712196330538305579411947408618370648081044119314858092966789985880558618838749736465935723939056195292855739824197002
85747166387929856818643218648078765165327952717275940366217333921605018810173490426678520993395921957402807842113084883601771499771585515616148588419257652541
10965702365800067847782401155042150831554731143366545320353097125730540763006480842903826240579636224118544527127667643337427417482571764186299386690494751101
45831487629518887622732479751575475237265720522099995921350373526902203987716.
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