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Abstract

We provide the first numerical evidence for the existence of a tubular phase,

predicted by Radzihovsky and Toner (RT), for anisotropic tethered mem-

branes without self-avoidance. Incorporating anisotropy into the bending

rigidity of a simple model of a tethered membrane with free boundary condi-

tions, we show that the model indeed has two phase transitions corresponding

to the flat-to-tubular and tubular-to-crumpled transitions. For the tubular

phase we measure the Flory exponent νF and the roughness exponent ζ. We

find νF = 0.305(14) and ζ = 0.895(60), which are in reasonable agreement

with the theoretical predictions of RT — νF = 1/4 and ζ = 1.

PACS numbers: 64.60.Fr, 05.40.+j, 82.65.Dp

Typeset using REVTEX

1

http://arXiv.org/abs/cond-mat/9705059v3


Tethered membranes are 2-dimensional regularly triangulated surfaces fluctuating in 3
dimensions. Their behavior at thermal equilibrium is governed by the elastic and bending
moduli, which correspond to the in-plane and out-of-plane rigidities respectively. Isotropic
tethered membranes have been studied extensively, and it is known that they have a crum-
pled high temperature phase and a flat low temperature phase separated by a continuous
phase transition, the crumpling transition [1–3].

In a recent paper Radzihovsky and Toner (RT) have shown that anisotropy can radically
change the nature of the phase diagram for tethered membranes [4,5]. In particular a
remarkable and completely unanticipated new phase of non-self-avoiding (phantom) tethered
membranes — the tubular phase — is predicted. The tubular phase is characterized by the
presence of long-range orientational order in one direction only — in the transverse directions
it is crumpled. Furthermore it is expected that any degree of anisotropy will eliminate
the direct crumpling transition from the flat to crumpled regimes and replace it by two
transitions — a low temperature flat-to-tubular transition and a higher temperature tubular-
to-crumpled transition. Since it is very likely that real anisotropic tethered membranes can
be observed experimentally, the rich structure of the phase diagram of these systems is
exciting. There are several experimental realizations of anisotropic membranes one could
imagine. Polymerized membranes with in-plane tilt order are good candidates [4]. It may
also be feasible to cross-link in an applied electric field DNA molecules trapped in a fluid
membrane [4]. Fluid membranes themselves also exhibit anisotropic “ripple” phases [6].

A tethered membrane in the tubular phase is quite different from real tubules, which are
well defined cylindrical structures, such as lipid tubules, protein microtubules and carbon
nanotubes [7–9]. Fluid membranes with chiral order exhibit tubular shapes [10]. In certain
experimental conditions these tubules display a wealth of interesting behavior such as the
pearling instability [11,12].

The existence of an almost one-dimensional ordered phase is quite remarkable and, at
least for phantom membranes, rather delicate. A tubular phase is possible because of the
inevitable transverse stretching energy cost of bending fluctuations in the extended direc-
tion. Its existence is not trivial, though, because for physical tethered membranes, with
internal dimension 2 and embedding dimension 3, the stability is marginal. The fluctuations
of the tubule away from a straight linear shape (height fluctuations) along the extended
direction are maximal with a corresponding roughness exponent of 1 [4]. For this reason it
is imperative to check the existence of stable tubules with careful numerical simulations.

In this paper we establish the existence of tubules by large-scale Monte Carlo simulations
of a discrete model of tethered membranes with the topology of a disk and free boundary
conditions. The isotropic version of this model has been extensively studied by us recently
[13] and so we are well-equipped to assess the effects of anisotropy.

We have chosen to implement the anisotropy in the bending rigidity rather than the
elastic moduli of the model. Hence the membrane responds isotropically to in-plane stresses,
but anisotropically to out-of-plane bending. This is conceptually clearer for us and, from
the arguments given in [4], is equally good. Thus we choose the bending rigidity on links
in the x-direction (κ1) of a triangular lattice to be larger than the bending rigidity along
links in the other two directions (κ2). We study a system with aspect ratio one (Lx = Ly),
so that any anisotropy that develops is inherent to the system rather than introduced ab

initio. Different critical exponents arise [4] if one takes thermodynamic limits with other
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FIG. 1. a) An example of a tubular membrane. This is for L = 65 and (κ1, κ2) = (2, 0). b) An

isotropic membrane (L = 46) in the crumpled phase (κ = 0.5) and c) in the flat phase (κ = 1.1).

aspect ratios (i.e. if one tunes Lx to diverge as some power of Ly).
By examining the specific heat along various paths in the (κ1, κ2) plane we find that

the model indeed exhibits two distinct transitions. The stronger transition is the one from
the tubular to the flat phase. The tubular phase is characterized by equilibrium configura-
tions which are extended in the y-direction and crumpled in the transverse direction (see
Fig. 1a). Given this evidence for the existence of the tubular phase we proceed to measure
the appropriate critical exponents and to compare them with the predictions of [4].

The exponents we focus on are the Flory exponent νF and the roughness exponent ζ . The
first gives the scaling of the transverse radius of gyration RG

⊥ (the tubule radius) with system
size L, RG

⊥ ∼ LνF , and is predicted to be 1/4. The second relates the height fluctuations
in the extended (y) direction to the system size 〈h2〉 = 〈(h(x⊥, L) − h(x⊥, 0))2〉 ∼ L2ζ .
The theoretical predictions of RT for these exponents for square phantom membranes are
unambiguous. They find νF = 1/4 and ζ = 1. The maximal value for ζ corresponds to the
previously mentioned marginal stability of the tubular phase.

Let us now give the details of our simulation. We analyze the partition function

Z =
∫

[dr] δ(rcm) e−H[r] (1)

where r ∈ R3 are the embedding coordinates and the delta function ensures that the center of
mass motion is eliminated. The discrete Hamiltonian H is composed of a tethering potential,
in the form of a Gaussian spring with vanishing equilibrium spring length, and (two) bending
energy terms in the form of “ferromagnetic” interactions between nearest-neighbor normals
na to the surface faces:

H[r] =
∑
〈σσ′〉

|rσ − rσ′ |2 (2)

− κ1

∑
〈ab〉

(x)
na · nb − κ2

∑
〈ab〉

(y)
na · nb .
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FIG. 2. The phase diagram of an anisotropic tethered membrane. The circles correspond

to observed peaks in the specific heats Cx
V and Cy

V (the filled ones are from larger lattices). We

performed simulations along the dotted lines with the cross indicating where we studied the tubular

phase.

The second sum is over links in the x-direction and the third sum over the other two link
directions. Note that no elastic constant are explicitly introduced; they are dynamically
generated. We refer to [13] for an extensive treatment of the properties of this model for
the flat phase of tethered membranes.

The Hamiltonian above was simulated using Monte Carlo methods for triangular lattices
of up to 652 nodes. The global shape of the lattice is chosen to be square with free boundary
conditions. The field configurations {r} were updated using a unigrid algorithm, which
substantially reduces the auto-correlation times compared to a simple Metropolis algorithm.
We performed typically 10−20×106 sweeps per lattice volume and coupling — this resulted
in about 5− 10× 103 independent measurements. The simulations required ≈ 50, 000 CPU
hours on an IBM RS/6000 computer.

To explore the phase diagram predicted by RT we performed extensive simulations along
the line (κ1, κ2) = (3κ, κ) (see Fig. 2). In addition we looked at the lines (κ, 0) and (2, κ)
on smaller lattices. To look for evidence of a phase transition we measured the two bending
energy terms in the action Ex and Ey, for a range of couplings κ, and looked at their
fluctuations or, more specifically, the two respective specific heats:

Ci
V (κ) =

κ2

L2

∂

∂κ
〈Ei〉. (3)

4



0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.25 0.3 0.35 0.4 0.45

9
17
25

κ
1+κ

33
49

FIG. 3. The measured values of the specific heats Cx
V (open symbols) and Cy

V (filled symbols).

The interpolating lines are obtained using multi-histogramming methods.

In Fig. 3 we show the measured values of Cx
V and Cy

V along the line κ1 = 3κ2. This is
for lattice sizes up to 492. Both quantities show a divergent specific heat, characteristic of
a phase transition. But what is remarkable is that the peaks occur at different values of
the bending rigidity, signaling the existence of two distinct phase transitions. As the peak
locations, which define the pseudo-critical couplings, shift as the volume is increased, one
may naturally ask if they merge in the infinite volume limit. To check that, we have fitted the
pseudo-critical couplings to the expected finite size behavior [14]: κc

L = κc
∞+c/L1/ν . For the

two peaks we get κc
∞ = 0.36(2) and κc

∞ = 0.62(2), respectively, convincingly excluding the
possibility of them merging. The corresponding values of the exponent ν are 0.75(10) and
0.65(10), although we must caution that, for a reliable estimate, bigger lattices are needed.
This in turn yields the critical exponent α governing the divergence of the specific heat.
Assuming the validity of hyper-scaling, α = 2 − νd, we find α ≈ 0.5 and 0.67, consistent
with a continuous phase transition.

One can also try to estimate α directly from the scaling of the peak heights, although
that is more difficult. Preliminary estimates yield a small positive number, again somewhat
smaller for Cy

V .
Taken at face value, this might indicate that the tubular-to-crumpled transition is some-

what weaker (slower divergence of the specific heat), although simulations on larger lattices
are needed to confirm that the critical behavior of the two transitions really is different. This
work is in progress. A detailed scaling theory of these two transitions has been developed
in [5] and we plan to test this theory once we have the very high statistics required for such
a comparison.

Performing a similar analysis along the other two lines in the (κ1, κ2) plane, although on
smaller lattices, yields the phase diagram shown in Fig. 2 [15]. This implies a three phase
structure, the usual high-temperature crumpled and low temperature flat phases, together
with the intermediate tubular phase predicted in [4].

To investigate the nature of this phase we have performed extensive simulations at the
coupling (κ1 = 2, κ2 = 0.4) on lattices ranging up to 652 in extent. Direct evidence for the
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RG

hrms

FIG. 4. The definition of the fluctuations of the zero-mode hrms and the width of the tubule

RG
⊥. The dotted line indicates the one-dimensional shape of the tubule, whereas the dashed one is

the optimal straight line.

tubular nature of the membrane is obtained by visual examination of equilibrium configu-
rations (Fig. 1) and by measuring the scaling of the three eigenvalues of the shape tensor

[13], defined as the off-diagonal part of the moment of inertia tensor. In a body-fixed frame
these eigenvalues measure the extent of the membrane along the associated principal axes.
We find that the largest eigenvalue scales as L2νF , with νF ≈ 0.988(11), while the other two
have much smaller νF . This indicates one extended direction and one crumpled direction —
i.e. a tubule.

A more detailed understanding of this tubular phase is obtained by looking at the fluc-
tuations of the zero-mode of the tubule height hrms, analogous to the height fluctuations of
a flat membrane, and the scaling of the width of the tubule RG

⊥.
The fluctuations of the zero mode are defined as the deviations of the linear shape of the

tubule from a straight line, whereas its width is the average distance of points from this one-
dimensional structure (Fig. 4). We have measured this width in two different ways. First,
we fit both a polynomial, of sufficiently high degree, and a straight line to the membrane.
Usually a polynomial of degree ≈ 15 produces stable results. We then calculate the average
distance of the polynomial from the straight line and the average distance of all points from
the polynomial. This was done for about 10,000 independent configurations of the membrane
for each of the lattice volumes L = 17, 25, 33, 49 and 65 (slightly fewer for the two largest
volumes). The results were fit to the scaling predictions

hrms ∼ Lζ and RG
⊥ ∼ LνF . (4)

Discarding the smallest lattice size we find ζ = 0.895(60) and νF = 0.305(14). These
values compare quite favorably with the analytic continuum predictions of RT: ζ = 1 and
νF = 1/4. Thus the combined analytic and numerical investigations of tubules provide
strong support for their existence and yield consistent values for critical exponents.

The second method we use is to slice the tubule up as a salami, defining a slice as the
set of nodes having the same internal y-coordinate. Then the center of mass of the slice
defines the linear shape of the tubule. If we consider the shape tensor of the ensemble of
{xcm}, the two larger eigenvalues scale as the width of the tubule (squared). We found
that the two largest eigenvalues scale with Flory exponents νF = 0.297(8) and 0.241(12),
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respectively. The smallest eigenvalue scales logarithmically with the volume (λmin ∼ log(L)),
which implies that the salami slices have vanishing thickness in the infinite volume limit,
thereby justifying the use of the method. The scaling of the average distance of the c.m. of
the salami slices from a straight line fit of the whole tubule yields the roughness exponent
ζ = 0.94(4), in reasonable agreement with the previously obtained value. It should be noted
that the errors quoted are from the quality of the fit; the actual uncertainty is dominated
by finite size effects.

In this paper we have established numerically for the first time the existence of the
remarkable tubular phase of anisotropic tethered membranes predicted in [4]. Furthermore
we measure the Flory exponent and the roughness exponent and find values not very far from
those expected analytically. This should stimulate further work on the rich phase diagram
of anisotropic tethered membranes.

There are two important directions to extend the simulations described in this letter.
First one should investigate the anisotropic, rather than square membrane, scaling limits
studied in [4,5]. For these systems the critical exponents are different. Even more exciting,
perhaps, would be an investigation of self-avoiding anisotropic membranes. Self-avoidance
causes extensive swelling of the membrane in the transverse direction and also lowers the
roughness exponent ζ in the extended direction, as described by RT [4]. Since self-avoidance
is irrelevant in the extended direction, in the tubular phase, it need only be implemented in
the transverse direction. Such simulations should therefore be less demanding than analo-
gous simulations for isotropic membranes. Precise predictions exist for all relevant exponents
for self-avoiding anisotropic membranes in the tubular phase [4,5,16].

We would like to thank Leo Radzihovsky, Emmanuel Guitter and David Nelson for
helpful discussions. We are grateful to NPAC (North-East Parallel Architecture Center)
and the Cornell Theory Center for use of their computational facilities. The research of
MB and MF was supported by the Department of Energy U.S.A. under contract No. DE-
FG02-85ER40237 and that of MF by a Syracuse University Graduate Fellowship. The
research of GT was supported by the Alexander von Humboldt Stiftung and the Deutsche
Forschungsgemeinschaft.
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