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ABSTRACT

LINEAR SIGMA MODELS IN QCD AND S3 SYMMETRY FOR NEUTRINOS

Muhammad Naeem Shahid

Department of Physics

Doctor of Philosophy

This thesis has two parts with different topics in particle physics. In part

I, we consider various linear sigma models and their applications to scalar

mesons. It is shown that the tree amplitude for ππ scattering in the minimal

linear sigma model has an exact expression which induces an infinite geometric

series in which the pattern for both the I = 0 and I = 2 s-wave scattering

lengths to orders p2, p4 and p6 seems to agree with chiral perturbation theory

predictions. The model is then gauged to study the mass differences between

the vector meson and the axial vector meson as a possibly useful “template”

for the role of a light scalar in QCD as well as for (at a different scale) an

effective Higgs sector for some recently proposed walking technicolor models.

The model is applied to the s-wave pion-pion scattering in QCD. Both the

near threshold region and (with an assumed unitarization) the “global” region

up to about 800 MeV are considered. It is noted that there is a little tension



between the choice of “bare” sigma mass parameter for describing these two

regions.

By including the parity reversed partner we study a simple two Higgs dou-

blet model which reflects, in a phenomenological way, the idea of compositeness

for the Higgs sector. It is relatively predictive. In one scenario, it allows for

a “hidden” usual Higgs particle in the 100 GeV region and a possible dark

matter candidate.

Poles in unitarized ππ scattering amplitude are studied in a generalized

linear sigma model which contains two scalar nonets (one of quark-antiquark

type and the other of diquark-antidiquark type) and two corresponding pseu-

doscalar nonets. It is shown that a reasonable agreement with experimental

data is obtained up to about 1 GeV. Some comparison is made to the situation

in the usual SU(3) linear sigma model with a single scalar nonet.

We show that the mixing of two “bare” nonets, one of which is of quark-

antiquark type and the other of two quark- two antiquark type is, before chiral

symmetry breaking terms are included, only possible for three flavors. Specif-

ically, our criterion would lead one to believe that scalar and pseudoscalar

states containing charm would not have ”four quark” admixtures. We also

discuss some aspects associated with the possibility of getting new experi-

mental information about scalars from semileptonic decays of heavy charged

mesons into an isosinglet scalar or pseudoscalar plus leptons.

In part II we explore a predictive model based on permutation symmetry

S3 for the masses and mixing matrix of three Majorana neutrinos. At zeroth

order the model yielded degenerate neutrinos and a generalized “tribimaximal”

mixing matrix. We first study the effects of the perturbation which violates

S3 but preserves the well known (23) interchange symmetry. This is done



iii

in the presence of an arbitrary Majorana phase ψ which serves to insure the

degeneracy of the three neutrinos at the unperturbed level. At this order the

mass splitting was incorporated and the tribimaximal mixing matrix emerged

with very small corrections but with a zero value for the parameter s13. Next

a different, assumed weaker, perturbation is included which gives a non zero

value for s13 and further corrections to other quantities. These corrections are

worked out and their consequences discussed under the simplifying assumption

that the conventional CP violation phase vanishes. It is shown that the existing

measurements of the parameter s23 provide strong bounds on s13 in this model.
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Linear Sigma Models

1





Chapter 1

Introduction to Linear Sigma

Model

1.1 Linear Sigma Moldel as an Effective Theory of

Mesons

The theory of quarks and gluons, Quantum Chromodynamics (QCD), is the accepted

theory of strong interactions. In order to satisfy Pauli exclusion principle for the

observed hadrons, quarks must come with three colors, a new quantum number. In

1973 Politzer, Gross and Wilczek [1] found that QCD can have negative β-function

i.e. the charge decreases with the distance or increases with energy, a phenomenon

confirmed by experiments and known as asymtotic freedom. It can be found that the

to lowest order the β-function is,

β = −
g2

48π2
(11Nc − 2Nf), (1.1)

3



4 Chapter 1 Introduction to Linear Sigma Model

for SU(N). Note that g is decreasing with energy until Nf < 5.5N indicating six

flavors of the quarks. From here the running coupling constant can be found as,

α =
g2

4π
=

12π

(11Nc − 2Nf )ln(Q2/Λ2
QCD)

, (1.2)

where Q corresponds to the energy at which the theory is applied and Λ is of the

order of 200 MeV, scale of QCD.

It is clear from Eq. (1.2) that at the energies much above ΛQCD (several GeV),

QCD is perturbative. On the other side when Q2 ∼ ΛQCD, perturbation is not

possible. In order to discuss this low energy region of QCD, one way is to work with

effective Lagrangian with light meson fields. This is a reasonable approach as mesons

are strongly bound states of quarks and thus interact weakly and so can be treated

perturbativly. But one has to respect the symmetries of QCD for these Lagrangians.

As an example, imposing the Wigners isotopic spin symmetry SU(2)V , proton and

neutron can be represented as a spinor and pions as a vector.

N =






p

n




 , φ =

1√
2
π · τ . (1.3)

Then the Yukawas theory [2] implies an effective Lagrangian with the SU(2)V invariant

interaction terms,

igY N̄φγ5N + λ[Tr(φ2)]2, (1.4)

where gY is Yukawa coupling constant and λQCD is the coupling constant for ππ

scattering.

It is evident from the first term of Eq. (1.4) that the πN scattering at the tree

level is propotional to g2
Y which happened to be an order of magnitude larger than the

experimental value near the threshold. The problem was solved by the use of linear

sigma model (LSM) [3] which is chiral (SU(2)L×SU(2)R) symmetric, for massless

4



1.2 Chiral Nonets 5

case. The chiral partner of the pion called sigma has the same coupling to neucleon

as pion and the diagram due to sigma exchange cancells the contribution due to the

neuclon exchange. The result agrees with the experiment within 15%.

The linear sigma model also helped to clarify the role of chiral symmetry and its

spontaneous breakdown [4] in strong interaction physics. The partial conservation

of the axial currents together with their algebraic structure resulted in calculations

for low energy pion physics which gave, for the first time, reasonable agreements

with experiment. While the original calculations [5] were roundabout, it was found

that they could be greatly simplified by straightforward perturbative calculations in

the non-linear version of the model obtained by assuming the sigma field to be very

heavy. Experimental evidence at that time did not clearly demand a light sigma

meson. Remarkably, the original linear version also turned out to be useful at a

higher energy scale as the Higgs potential [6] of the electroweak standard model, with

the sigma identified as the Higgs field.

1.2 Chiral Nonets

It has been realized for a long time that the nonet structure of mesons with respect

to SU(3) flavor transformations should, at a more fundamental level, be expanded

to SU(3) chiral symmetry transformations; this amounts to an SU(3) for massless

left-handed quarks and another SU(3) for massless right-handed quarks. This chiral

symmetry is that of the fundamental QCD Lagrangian itself, with neglect of quark

mass terms. The spontaneous breaking of this symmetry, which gives zero mass

pseudoscalars, is a basic part of the present understanding of low energy QCD. The

light quark mass terms play a relatively small role and are treated as perturbations. It

thus appears that chiral (rather than just the vector) symmetry should be considered

5



6 Chapter 1 Introduction to Linear Sigma Model

the first approximation for an understanding of the structure of hadrons.

Available evidence indicates that the predicted states arising from the addition

of the charm and beauty quarks would fit in with corresponding SU(4) and SU(5)

extensions (having respectively 16 and 25 members) of the SU(3) nonets. Of course

a possible extension to states made with top quarks is of less interest, owing to the

rapid weak decay of the top quark. Naturally the much heavier masses of the c and

b quarks make the SU(4) and SU(5) symmetries not as good as SU(3). Nevertheless

the observed particles still fit into the extended multiplets.

Although the exact nature of the low lying scalar mesons has been a topic of

intense debate, the fact that these states play important roles in our understanding

of low-energy QCD seems to be shared by all. Various models have been put forward

for the properties of the scalar mesons. A general discussion of the experimental

situation on light scalars is given in [7]. However, in the last few years there has been

a growing recognition that the lightest nine scalar states do not seem to fit well into

the above classification [8]. The scalars below 1GeV appear to fit into a nonet as:

I = 0 : m[f0(600)] ≈ 500MeV ss̄

I = 1/2 : m[κ] ≈ 800MeV ns̄

I = 0 : m[f0(980)] ≈ 980MeV nn̄

I = 1 : m[a0(980)] ≈ 980MeV nn̄, (1.5)

and for the vector meson nonet,

I = 1 : m[ρ(776)] ≈ 776MeV nn̄

I = 0 : m[ω(783)] ≈ 783MeV nn̄

I = 1/2 : m[K∗(892)] ≈ 892MeV ns̄

I = 0 : m[φ(1020)] ≈ 1020MeV ss̄. (1.6)

6



1.2 Chiral Nonets 7

It can be seen from above that there are two unexpected features. First the masses

of these states are significantly lower than the other “constituent quark model” p-wave

states (i.e. tensors and two axial vectors with different C properties). Secondly, the

order, with increasing mass - isosinglet, isodoublet and roughly degenerate isosinglet

with isotriplet - seems to be reversed compared to that of the “standard” vector

meson nonet.

Clearly such a light and reversed order nonet requires some rethinking of the

standard picture of the scalar mesons. Actually, a long time ago, it was observed [9]

that the reversed order could be explained if the light scalar nonet were actually

composed of two quarks and two antiquarks. In that case the number of strange

quarks (which determines the direction of increasing masses) rises with the reversed

order given. For example the lowest mass “isolated” isosinglet scalar σ(600) would

look like (uū + dd̄)2 while, for comparison, the highest mass isolated vector isosinglet

φ(1020) looks like ss̄. At that time the existence of a light σ and a light κ was

considered dubious. More recent work has now pretty much confirmed the existence

of such states as well as the plausibility that they fit into a three flavor nonet.

It has also been pointed out1 [10], [11], [12], [13], [14], [15] - [20], that four quark

components alone are not sufficient for understanding the physical parameters of

these states which seems to rquire a scenario based on an underlying mixing between

quark-antiquark nonets and nonets containing two quarks as well as two anti quarks.

In [10] it is proposed that the mixing between a qqq̄q̄ scalar nonet together with a

usual p-wave qq̄ nonet could produce this effect due to the ”level repulsion” expected

in quantum mechanics perturbation theory. A simple picture for scalar states below

2 GeV then seems to emerge. Amusingly, this mixing [20] automatically leads to light

scalars that are dominantly of two quark- two antiquark nature and light conventional

1Related models for thermodynamic properties of QCD are discussed in [14]

7



8 Chapter 1 Introduction to Linear Sigma Model

pseudoscalars that are, as expected from established phenomenology, dominantly of

quark-antiquark nature.

In the next two chapters we will explain our work on the different versions of

linear sigma model in detail. The second chapter has the applications of SU(2) linear

sigma model to ππ scattering at various energies [21], [22]. We will also discuss the

role of linear sigma model in the Higgs sector of the standard model [23]. In the third

chapter we will concentrate on the SU(3) version and its mixing with another four

quark nonet [24]. We will also extend to higher flavor cases in order to explore some

interesting features regarding semileptonic decays of the heavy mesons [25], [26].

8



Chapter 2

SU(2) Linear Sigma Models

2.1 ππ Scattering in SU(2) Linear Sigma Model

The chiral perturbation theory (χPT) [27] - [29]) approach provides a systematic

method for improving the ”current algebra” or tree level “non-linear chiral Lagrangian”

results for low energy QCD in powers of a characteristic squared momentum, p2 (or

number of derivatives). Intuitive understanding of the resulting physics in some cases

has been obtained by computing the amplitudes of interest based on pole-dominance.

For example vector meson dominance [30] is known to be good at low energies; a

typical well known immediate prediction gives the squared charge radius of the pion

simply as r2
π = 6/m2

ρ. This kind of approach may be theoretically justified to some

extent by invoking the 1/N expansion of QCD [31], [32] which yields tree level dom-

inance.

In the case of the pion s-wave scattering lengths, the long controversial, but now

apparently accepted, sigma particle would appear to play the role of the rho meson.

However, a simple sigma dominance approximation is not viable because it would not

guarantee the nearly spontaneous breakdown of chiral symmetry mechanism which

9



10 Chapter 2 SU(2) Linear Sigma Models

is crucial for QCD. Such a mechanism is guaranteed by the use of a linear sigma

model of some type. Here, we will just point out that the minimal SU(2) linear sigma

model1 [3] provides a useful approximation to the lightest sigma of a model which

may contain a number of them. A crucial effect is that the linear sigma model has an

important contact term. The actual low energy scattering is known to result from an

enormous cancellation between the sigma pole and the contact contributions. This

unpleasant feature is mitigated in the non-linear sigma model (which forms the basis

of the chiral perturbation scheme. Another way to mitigate this feature is at the

amplitude level. Then the amplitude is expanded2 [16], [18] in a Taylor series about

s = m2
π and the cancellation may be explicitly made. The result is proportional to a

simple geometric series in the variable (s−m2
π)/(m2

B−m2
π). Then in order to compare

it with something, it is natural to compare it with another power series in squared

momentum - χPT.

2.1.1 Numerical Comparison of Expanded Scattering Lengths

With the Mandelstam notation, the invariant pion scattering amplitude computed at

tree level in the minimal SU(2) linear sigma model reads:

A(s, t, u) =
2(m2

B − m2
π)

F 2
π

[
(1 −

s − m2
π

m2
B − m2

π

)−1 − 1

]
, (2.1)

where Fπ= 131 MeV and mB denotes the “bare” sigma mass which appears in the

Lagrangian.

This equation is seen to contain a contact term as well as a pole term which has

been rewritten for convenience. In this form it is apparent that there is a geometric

series expansion in powers of (s−m2
π)/(m2

B−m2
π), which should be rapidly convergent

for s close to the pion- pion threshold:

1By the minimal model we mean just the meson terms.
2 In this model there are four different scalars.

10



2.1 ππ Scattering in SU(2) Linear Sigma Model 11

A(s, t, u) =
2(s − m2

π)

F 2
π

[
1 +

s − m2
π

m2
B − m2

π

+
(s − m2

π)
2

(m2
B − m2

π)
2

+
(s − m2

π)
3

(m2
B − m2

π)
3

+ · · ·
]

. (2.2)

Actually, a similar expansion may be derived when a number of different scalar mesons

are present [?]. In that instance the lowest lying scalar meson is expected to dominate

near threshold.

The isospin 0 scattering length is proportional to 3A(s, t, u)+A(t, s, u)+A(u, t, s)

evaluated at s = 4m2
π, t = u = 0 while the isospin 2 scattering length is obtained by

evaluating A(t, s, u)+A(u, t, s) instead. Then we find for the “dimensionless” s-wave

scattering lengths:

mπa
0
0 =

m2
π

16πF 2
π

[
7 + 29

m2
π

m2
B − m2

π

+ 79
m4
π

(m2
B − m2

π)2
+ 245

m6
π

(m2
B − m2

π)3
+ · · ·

]
,

(2.3)

and,

mπa
2
0 = −

m2
π

8πF 2
π

[
1 −

m2
π

m2
B − m2

π

+
m4
π

(m2
B − m2

π)
2
−

m6
π

(m2
B − m2

π)
3

+ · · ·
]

. (2.4)

Evidently, these terms may be consecutively interpreted as p2, p4, p6, and p8 etc.

contributions.

The χPT results to the first three orders3 [33], [34], [35] as well as the comparison

with experiment may be conveniently read from Fig. 10 of [36]. We have subtracted

the values presented there to get the incremental corrections for comparison with

Eqs. (2.3) and (2.4). The order p2 entries [33] in Table 6.1 are of course the same

and we made the choice mπ = 140 MeV to enforce this feature. The only unfixed

parameter in the linear sigma model is the bare sigma mass, mB which we chose to

be 550 MeV to give a p4 contribution to the resonant partial wave scattering length

which approximately agrees with χPT at that order. (Alternatively, a similar value

3The order p4 and p6 calculation are from [34] and [35] respectively.

11



12 Chapter 2 SU(2) Linear Sigma Models

can be found on an a priori basis by fitting the near threshold I = 0, s-wave scattering

data).

Order: p2 p4 p6 p8

mπa0
0 in χPT: 0.16 0.04 0.02 ± 0.005 –

mπa0
0 in LSM: 0.159 0.046 0.009 0.0019

mπa2
0 in χPT: − 0.046 0.004 − 0.002 ± 0.001 –

mπa2
0 in LSM: − 0.0454 0.0031 − 0.0002 0.000015

Table 2.1 Comparison of scattering length increments

We notice that the increments to mπa2
0 are predicted to alternate in sign with

increasing order. This pattern manifestly agrees with what was found in the first

three orders of chiral perturbation theory.

If the p4 increment of mπa0
0 is taken as approximately a common input, the mag-

nitude of the p4 increment to mπa2
0 is predicted to be about 75% of the χPT one.

Also the magnitude of the p6 increment to mπa0
0 is predicted to be about 50% of the

χPT one. Finally, the magnitude of the p6 increment to mπa0
0 could be about 20%

of the χPT one (which contains a large uncertainty however). Thus it seems fair to

say that the tree level linear sigma model result exactly reproduces the signs of the

chiral perturbation amplitudes and tracks well the magnitudes. It will be interesting

to compare the predicted p8 increments given above when the χPT calculation is

carried to that order.

Differences between the chiral perturbation results for the s-wave scattering lengths

and the present ones may be evidently interpreted physically as due to contributions

from effects other than the existence of the sigma meson. It is likely that the next

most important effects should arise from including the rho meson and a higher mass

12
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scalar meson like the f0(980) in the formulation of the chiral invariant linear sigma

model. Work in this direction is under way.

2.2 ππ Scattering in SU(2) Gauged Linear Sigma

Model

Our initial motivation of this work is the further understanding of the properties

of light scalar mesons. This is essentially connected with the s-wave ππ scattering

problem. It seems instructive to formulate this in a chiral invariant way using a

generalized SU(3) linear sigma model. Now in these generalized sigma models there

are more than one scalar and the s-wave scattering is more complicated. At least

qualitatively, the s channel is dominated by these scalars. In the region near threshold,

the lowest mass sigma is most important. Thus, as a start to studying the effects of

the vector mesons in such models, it seems natural to go back to the original linear

sigma model and add the vector meson, ρ with its chiral partner. A review of older

work in this context is given in [37] and recent papers include those in [38].

Even though the plain linear sigma model is quite simple to deal with, the addition

of spin 1 fields increases the overall complexity by an order of magnitude. We will

add the vector and axial vector fields as (initially) Yang Mills gauge fields. The local

gauge symmetry is then manifestly broken by the addition of the three simplest chiral

invariant spin 1 field mass terms. The determination of all Lagrangian parameters

is carried out analytically with respect to the experimental inputs. The s-wave pion

scattering is studied both for the threshold region and for the region away from

threshold which is expected to be influenced by the presence of the lightest sigma.

The scattering is explicitly compared with that of the plain linear sigma model as

well as with experiment.

13



14 Chapter 2 SU(2) Linear Sigma Models

2.2.1 The Model

As mentioned in the introduction the basic fields are the scalar, σ and pion, π, which

are contained in M = (σ + iπ · τ )/
√

2 and its Hermitian conjugate. The starting

piece is the kinetic term for M , which is invariant under the chiral transformation,

M ′ = ULMU−1
R . One can naturally introduce the left (lµ) and the right (rµ) vector

fields by gauging the chiral symmetry. The resulting gauge invariant Lagrangian

density is then,

L = −
1

2
Tr(F r

µνF
r
µν + F l

µνF
l
µν) −

1

2
Tr(DµM

†DµM), (2.5)

where the covariant derivatives of M and M † are,

DµM = ∂µM − iglµM + igMrµ,

DµM † = ∂µM
† − igrµM † + igM †lµ, (2.6)

and the field strength tensors take the form,

F l
µν = ∂µlν − ∂ν lµ − ig[lµ, lν ],

F r
µν = ∂µrν − ∂νrµ − ig[rµ, rν ]. (2.7)

The vector and axial vector mesons are defined as

Vµ = lµ + rµ =
1√
2
V µ · τ ,

Aµ = lµ − rµ =
1√
2
Aµ · τ . (2.8)

The terms which contribute to particle masses are:

14



2.2 ππ Scattering in SU(2) Gauged Linear Sigma Model 15

− m2
0Tr(lµlµ + rµrµ) + BTr(MrµM

†lµ) − CTr(l2µMM † + r2
µM

†M)

− V0(M, M †) − VSB. (2.9)

The first, m2
0 term, which breaks the gauge invariance (and also the formal scale

symmetry), gives the same mass to the vector and the axial vector mesons. The

C term also gives the same mass to both spin 1 mesons, but maintains the scale

symmetry. The B term breaks the mass degeneracy of the two spin 1 mesons. This

is important since, experimentally, the lightest isovector, axial vector meson with

negative G-parity (the a1(1260) is heavier than the ρ meson. Another contribution to

this mass splitting arises from spontaneous chiral symmetry breaking in the model,

but his effect by itself will be seen to be insufficient. The last two terms are the scalar

potential terms which respectively yield the spontaneous chiral symmetry breaking

and the explicit symmetry breaking due to the small quark mass; explicitly,

V0(M, M †) = a1(σ
2 + π · π) + a3(σ

2 + π · π))2, VSB = −2
√

2Aσ. (2.10)

Here, a3 is positive while a1 is chosen to be negative so that spontaneous chiral

symmetry breaking will give a nontrivial vacuum expectation value v for σ. The

explicit symmetry breaking term VSB mocks up the light quark mass terms. The

coefficients in this potential can be determined by the minimum condition in terms

of the sigma and pion mass parameters, with the definition V ≡ V0 +VSB, as follows:

<
∂V

∂σ
> = 0 = 2a1v + 4a3v

3 − 2
√

2A,

<
∂2V0

∂σ2
> = m2

σ = 2a1 + 12a3v
2,

<
∂2V0

∂π2
> = m2

π = 2a1 + 4a3v
2. (2.11)

15



16 Chapter 2 SU(2) Linear Sigma Models

From this, one can easily derive the coefficients,

m2
π =

2
√

2A

v
,

a1 =
1

2
(m2

σ −
3

2
(m2

σ − m2
π)),

a3 =
m2
σ − m2

π

8v2
. (2.12)

The potential terms can be expressed in terms of the fields as:

V0(M, M †) =
1

2
m2
ππ · π +

1

2
m2
σσ

2 +
1

2
gσππσπ · π +

1

4
g4(π · π)2 + ...,

gσππ =
m2
σ − m2

π

v
, g4 =

2gσππ
v

. (2.13)

Here, quadrilinear terms involving σ have not been written. Also note that the

quantities mπ, gσππ and g4 are not the physical ones, which will be defined later. It is

understood that σ = v + σ̃ where σ̃ is the physical σ field. The rest of the Lagrangian

in terms of the component fields is given in Appendix (A.1).

In this model, we have the five parameters g, v, m2
0, B and C to be determined

from experiment. g and v are intrinsic parameters of the model while m2
0, B and C

represent different ways to introduce vector and axial vector masses. Specifically the

vector and axial vector masses are given by:

m2
V = m2

0 −
Bv2

4
+ C

v2

2
,

m2
A = m2

0 +
Bv2

4
+ C

v2

2
+

g2v2

2
≡ m′2

0 +
g2v2

2
. (2.14)

The Lagrangian yields a pion-axial vector meson mixing term proportional to

v 0Aµ · ∂µ0π. The Lagrangian can be diagonalized by introducing the physical (tilde)

quantities as

16
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0Aµ = 0̃
µA + b∂µ0̃π,

0π = w0̃π. (2.15)

b is determined from the condition of zero mixing between the physical pion and

the physical axial vector meson, while w is determined from the condition of correct

normalization of the pion kinetic term. We find

b =
gv√

2wm′2
0

,

w =

√

1 +
g2v2

2m′2
0

. (2.16)

The following alternate forms also are useful:

b =
gvw√
2m2

A

w2 =
m2

A

m′2
0

=
1

1 − g2v2

2m2
A

(2.17)

Note that m′2
0 was defined in Eq. (2.14) above. The physical pion decay constant, F̃π

is obtained from the Noether’s theorem calculation of the single particle contributions

to the axial current in our Lagrangian:

(JA
µ )2

1 = −
√

2v
( ∂L

∂(∂µπ)

)2

1
= ∂µ(

0τ · 0π√
2

)2
1 −

gv√
2
(
0τ · 0Aµ√

2
)2
1

=

√
2v

w
∂µπ̃

+ − gv2Ã+
µ , (2.18)

where we used Eq. (2.15) and, for example, π̃+ is the physical positive pion field.

The coefficient in front of ∂µπ̃+ is identified as the physical pion decay constant:

F̃π =

√
2v

w
. (2.19)

The effective ρππ coupling constant for on-shell rho as:

geff
ρππ = g(1 −

Bv2

2m′2
0

−
b2

2
m2
ρ). (2.20)

17



18 Chapter 2 SU(2) Linear Sigma Models

The coupling constant geff
ρππ is related to the ρ meson width by

Γ(ρ) = (geff
ρππ)

2|qπ|3/(12πm2
ρ). (2.21)

For Γ(ρ) = 149.4 MeV, one finds |geff
ρππ| ≈ 8.66.

Now we will solve for the vacuum value, v by the following procedure. First

replace w in the second of Eqs. (2.16) by, from Eq. (2.19), the quantity
√

2v/F̃π.

Then replace 2m′2
0 by, using Eqs. (2.14), 2m2

A − g2v2. Squaring both sides gives the

quadratic equation for v2:

v4 −
2m2

A

g2
v2 +

2m2
AF̃ 2

π

2g2
= 0. (2.22)

This can be solved easily in terms of g2v2 to get:

g2v2 = m2
A

(
1 ±

√

1 −
g2F̃ 2

π

m2
A

)
. (2.23)

This is an equation which determines the product gv in terms of g and experimen-

tally known quantities. We can find another relation between g and v by substituting

Bv2/2 = m2
A − m2

ρ − g2v2/2 and b = gvw/(
√

2m2
A) into Eq. (2.20):

geff
ρππ = g

(
1 −

1

2m2
A − g2v2

(
2(m2

A − m2
ρ) − g2v2(1 −

m2
ρ

2m2
A

)
))

(2.24)

Substituting Eq. (2.23) into Eq. (2.24) gives an equation for the Yang-Mills coupling

constant, g by itself. Knowing this we can substitute back into Eq. (2.23) to determine

v. Then we can determine B from:

B =
2

v2
(m2

A − m2
ρ) − g2. (2.25)

Finally, we may determine the linear combination, m2
0 + Cv2/2 from:

m2
0 + Cv2/2 = (m2

ρ + m2
A)/2 − g2v2/4. (2.26)

From the given inputs it is only possible to obtain the given linear combination of m2
0

and C. Later we will consider two different “models” corresponding to either m0 =

18



2.2 ππ Scattering in SU(2) Gauged Linear Sigma Model 19

0 or m0 )= 0. Table 2.2 shows the results based on the best fit value of mA as well as

its maximum and minimum values. Note also that the solution requires the sign in

Eq. (2.23) to be positive. The solutions with zero value for the square root and with

the minus sign will be discussed in a later section.

mA in GeV g v in GeV w b in GeV −1 B m2
0 + Cv2/2 in GeV2

1.270 7.83 0.2 2.2 1.55 -12.9 0.456

1.230 7.78 0.197 2.13 1.53 -13.73 0.467

1.190 7.72 0.19 2.06 1.51 -14.65 0.468

Table 2.2 g, v, w, b, B, m2
0 + Cv2/2 as functions of the axial vector meson

mass. We used F̃π = 0.131 GeV, mρ = 0.775 GeV, geff
ρππ = 8.56 as inputs.

Note that g, w and B are dimensionless.

It can be seen that the predicted parameters are not much affected by the uncer-

tainty in the mass of the a1(1260) meson. Thus we will use the central value in what

follows.

2.2.2 ππ Scattering Near Threshold

Using the well known experimental results for the ρ mass and width as well as the

a1(1260) mass, we specified in Table 2.2 the Lagrangian parameters g, v, w, b, B and

the linear combination m2
0 + Cv2/2. The only remaining “unknowns” are the “bare”

mass of the sigma, mσ and the relative sizes of m2
0 and C. For definiteness we will

initially consider the case, m0 = 0; soon we will see that the case, m0 )= 0, gives a

poorer fit in the region away from threshold. Then the near threshold scattering will

depend just on the value, mσ. Of course one first considers the s-wave scattering

lengths (See Appendix (A.2)).

The scattering length mπa0
0 is plotted in Fig. 2.1 as a function of mσ. Also shown

19



20 Chapter 2 SU(2) Linear Sigma Models

are the predictions in the case of the “pure” linear sigma model, in which the vector

and axial vector mesons are absent. It is seen that any given value of mπa0
0 (above the

“current algebra” value of about 0.16 [33]) may be obtained for some mσ. However,

for a given value of the scattering length, mσ is seen to be substantially lower when

the vector and axial vector mesons are present. The experimental value of about 0.22

is obtained for mσ ≈ 550 MeV in the plain linear sigma model but for mσ ≈ 360 MeV

in the model containing the spin 1 mesons. Fig. 2.2 similarly shows the dependence

of the non-resonant scattering length, mπa2
0 on mσ.

Here we denote the angular momentum l partial wave elastic scattering amplitude

for isospin I as T I
l . Note also that, for example,

m̃πa
0
0 =

T 0
0

ρ
, ρ =

√
1 − 4m̃2

π/s, (2.27)

wherein T 0
0 /ρ is evaluated at threshold, remembering to first cancel the overall factor

of ρ in T 0
0 . The amplitude is purely real in the present tree approximation. It is

clearly convenient to compare with the real part of the partial wave amplitude. The

experimental real part, R0
0 is related to the experimental phase shift, δ0

0 as

R0
0 =

1

2
sin(2δ0

0). (2.28)

In Fig.2.3, for orientation, some values of R0
0 near threshold obtained from the phase

shifts found by the Na48/2 experiment [39] are shown. It can be seen that these data

points near threshold may be reasonably explained by a value of mσ ≈ 0.42 GeV in

the present model including spin 1 mesons but with the larger value mσ ≈ 0.62 GeV

in the model without spin 1 mesons. It is hard to distinguish the two fits at the lower

energies but above
√

s ≈ 0.35 MeV the two model curves begin to diverge from each

other and also to approach the unitarity bound, R0
0 = 1/2. Clearly, the accuracy of

the model must be improved to obtain a “global” description of the physics which

does not violate the unitarity bound.

20
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An easy way to cure this theoretical problem in the present model is to use the

well known K-matrix unitarization. As applied to l = 0, I = 0 amplitude, we identify

the “Born” term T 0
0 with K and write for the unitarized partial wave amplitude,

(T 0
0 )U :

(T 0
0 )U =

T 0
0

1 − iT 0
0

. (2.29)

Clearly, near threshold, where T 0
0 is small, the unitarized amplitude is essentially the

same as the non-unitarized one. This unitarization is actually familiar in ordinary

scattering since it converts a generic simple pole into a Breit Wigner form. Diagram-

matically, it has the structure of a “ bubble sum”. It is easy to verify4 [16] that the

scattering length is unchanged from the value obtained at tree level with this type

of unitarization. Although the amplitude is now exactly unitary, it is important to

recognize that this K-matrix procedure is, after all, a model.

2.2.3 Scattering Away from Threshold

Fig. 2.4 shows the unitarized amplitudes, just defined, calculated up to 1 GeV. Both

the linear model with mσ = 0.62 GeV and the present model with additional spin 1

fields and mσ = 0.42 GeV are again seen to start the same way. However afterwards,

the spin 1 model amplitude rises more sharply and has its first zero, as required [since

R0
0 ≡ T 0

0 /(1 + (T 0
0 )2) goes to zero when T 0

0 goes to infinity] at 0.42 GeV while the

plain linear model amplitude has its first zero at 0.62 GeV. The shapes of these two

curves do not fit the experimental data beyond the threshold region very well. A

more realistic fit would correspond, for example, to a plain linear sigma model which

has its first zero in the 0.85 GeV region; see Fig. 8 and Table II in the [11]. (It is also

seen there that the addition of the scalar f0(980) in that SU(3) linear sigma model

framework allows one to fit the peculiar looking amplitude from about 0.8 GeV to

4See the discussion around Eq. (47).
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Figure 2.1 The scattering length mπa0
0 as a function of the sigma mass in

GeV. The solid line: pure linear sigma model. The dotted line: the present
model including spin 1 mesons.

about 1.2 GeV.) As a check of the validity of this “global” fit up to about 0.8 GeV

we note that the sigma pole position came out to be in decent agreement with the

one recently obtained by a detailed analysis [40] of the experimental data. The sigma

pole position in the complex s plane is found by separating the tree amplitude into

pole and non-pole pieces as:

T 0
0 = α(s) +

β(s)

m2
σ − s

. (2.30)

Then the pole position, z in the complex s plane for the K-matrix unitarized ampli-

tude, (T 0
0 )U is the solution to the equation,

(m2
σ − z)(1 − iα(z)) − iβ(z) = 0. (2.31)

We find the numerical result in the simple K-matrix unitarized linear sigma model

without spin 1 particles, z1/2 = 0.51 − 0.23i. This may be compared with the recent
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Figure 2.2 The scattering length mπa0
2 as a function of the sigma mass in

GeV. The solid line: pure linear sigma model. The dotted line:present model
including spin 1 mesons.

value, z1/2 = 0.461 − 0.255i, with an uncertainty of about .015 in each term. In Fig.

2.5 the model amplitudes for both the plain linear sigma model and the one with

spin 1 particles are plotted up to 1.4 GeV using mσ = 0.85 GeV just mentioned. The

case including spin 1 particles was calculated with the choice m2
0 = 0 so that C )=

0. (Remember that only the combination m2
0 + Cv2/2 is known from our inputs.)

While, as we just mentioned, the curve for the plain linear sigma model essentially

fits the data, the curve representing the model with spin 1 particles is a rather rough

approximation to it. This can be verified by noting that the pole position comes out

to be, z1/2 = 0.38 − 0.52i. The fit is not improved by lowering the value of mσ.

It is also of some interest to look at the dependence of the predicted amplitude

on the parameter m2
0. for the case with spin 1 particles. The results for the non- zero

choice, m2
0 = 0.27 GeV2 are shown in Fig. 2.6. In this case the predictions for the

23
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Figure 2.3 Low energy data for real part of s-wave resonant amplitude
plotted against

√
s in MeV. The dotted curve is a fit to the present model

with mσ = 0.42 GeV while the solid curve is a fit to the plain linear sigma
model with mσ = 0.62 GeV

.

m2
0 )= 0 case seem to be further distorted, showing that m2

0 = 0 provides a better fit.

How much does the mσ = 0.85 GeV choice, which was used for the region up to

about 0.8 GeV change the fit to the data close to threshold obtained with smaller

values of mσ? This is shown in Fig. 2.7. Clearly, both plots lie below the low energy

data. Thus there is some tension between a reasonable fit close to threshold (which

requires a low value of mσ) and a fit over a larger range (which requires a larger value

of mσ).

It is clear that the direct channel f0(980) MeV state must be also included to

adequately treat the scalar I = 0 amplitude in the region from 800 to about 1200

MeV. We consider this region to be beyond the range of applicability of the model

with a single sigma state.
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Figure 2.4 Unitarized amplitudes plotted as a function of
√

s to 1 GeV. The
dashed curve corresponds to the present model with mσ = 0.42 GeV while
the solid curve corresponds to the plain linear sigma model with mσ = 0.62
GeV.

2.2.4 Connections with Other Work

In the historical treatment of chiral models containing vector and axial vector mesons

as well as the pion, two plausible relations among their parameters - the KSRF [41]

and Weinberg [42] formulas have been widely discussed. Eventually, it was accepted

that they are not forced to hold by chiral symmetry but in some limit can be correlated

with each other. These formulas are, respectively,

(geff
ρππ)

2 = 2m2
ρ/F̃

2
π ,

m2
A = 2m2

ρ. (2.32)

Numerically, the first relation holds to about 4% while the second only holds to

about 26%.
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Figure 2.5 Unitarized scattering amplitudes to 1.4 GeV with mσ chosen to
be 0.85 GeV for both the plain (solid curve) and spin 1 meson (dashed curve)
sigma models. Here m2

0 = 0 was assumed.

In the present work it was not necessary to use either of these formulas. Nev-

ertheless, it may be interesting to first briefly discuss the limit of our model which

correlates the two formulas. This limit corresponds to, first, approximating geff
ρππ by

g and, second, setting B = 0. We will show that the Weinberg relation then implies

the KSRF relation. From both of Eqs. (2.14) we then note that w2 in Eq. (2.17)

becomes simply,

w2 =
m2

A

m2
ρ

= 2. (2.33)

Eq. (2.19) then reads v2 = F̃ 2
π so that,

m2
A − m2

ρ = m2
ρ = g2v2/2 = g2F̃ 2

π/2, (2.34)

which is the KSRF relation. Note that approximating geff
ρππ by g amounts physically

to neglecting the B term in the Lagrangian as well as the induced three derivative
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Figure 2.6 Same as Fig. 2.5 but assuming m2
0 = 0.27 GeV2 instead

ρππ interaction term. It is also seen that the two equations in Eq. (2.32) hold at the

special point where the square root in Eq. (2.23) vanishes (with B = 0).

An interesting different possible application of the present chiral model containing

vector and axial vector mesons is to the effective Higgs sector of the minimal walking

technicolor theory [43]. That theory may provide the mechanism for constructing a

technicolor model which gives consistent values of the electroweak “oblique” param-

eters. A characteristic feature is the situation where the vector boson is heavier than

the axial vector boson. To investigate this possibility we now search for more general

parameter solutions, including those with the negative sign in Eq. (2.23).

It is convenient to define

χ =
g2v2

2m2
A

. (2.35)

Then the pion wave function renormalization is given by,

w2 =
1

1 − χ
. (2.36)
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Figure 2.7 Predictions for the choice mσ = 0.85 GeV in the region near
threshold. Same conventions as in Fig. 2.3

Eq. (2.23) then reads:

χ =
1

2

(
1 ±

√

1 −
g2F̃ 2

π

m2
A

)
, (2.37)

Notice that to have a consistent solution for the parameters we must require:

g2 ≤ m2
A/F̃ 2

π . (2.38)

Finally, Eq. (2.24) can be rewritten as,

geff
ρππ =

gτ

2
(
2 − χ

1 − χ
), (2.39)

where we defined, for convenience,

τ =
m2
ρ

m2
A

. (2.40)

Note especially that when Eq. (2.37) is inserted into Eq. (2.39), we can use it to find

geff
ρππ as a function of g for given values of the physical quantities, F̃π and mA. This

determines g and then v etc.
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In Fig. 2.8, in which the plus sign in Eq. (2.37) has been chosen, the lower curve

displays geff
ρππ as a function of g for the physical choice,

τQCD = (
mρ

mA
)2 ≈ 0.4. (2.41)

We see that the physical value, geff
ρππ ≈ 8.56 corresponds to the value g = 7.78, which

is safely below the bound at,
mA

F̃π
= 9.46. (2.42)

The upper curve in Fig. 2.8 corresponds, for illustration of the mρ > mA case, to

a choice, τ = 1.2. In this case we have no experimentally a priori way of specifying

the physical parameters and the bound. Nevertheless, we observe that geff
ρππ would be

exceptionally large for a reasonable solution.

In Fig. 2.9, which corresponds to the choice of the minus sign in Eq. (2.37), it is

seen that the QCD case (lower curve) has no consistent parameter solution since geff
ρππ

= 8.56 can not be achieved for g < 9.46. On the other hand, the upper curve, which

corresponds again to τ = 1.2, gives reasonable values of geff
ρππ.

To summarize: the QCD case corresponds to the plus sign choice in Eq. (2.37)

while a possible consistent parameter solution in a non-QCD setting with mρ > mA

is likely to correspond to the minus sign choice.

It is amusing to observe that the relation between the vacuum value v and F̃π

differs for the two sign choices:

F̃π < v (+sign),

F̃π > v (−sign). (2.43)

To see this note that for the plus sign case, Eq. (2.37) gives 1/2 < χ < 1 which, using

Eq. (2.36) translates to w >
√

2 and the desired result when Eq. (2.19) is noted. The

minus sign case is obtained similarly after first noting 1 < w <
√

2 in that situation.
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Figure 2.8 geff
ρππ vs g with the plus sign in Eq. (2.37). The lower curve is

the QCD case while the upper curve corresponds to a hypothetical “walking
technicolor” case with mρ > mA.

We have seen that the choice of sign in Eq. (2.37) distinguishes the two cases where

mρ is less than or greater than mA. This choice occurs in fitting the parameters to

experiment. It may be of some interest to ask how this distinction is related to the

parameters of the effective Lagrangian directly. To investigate this, we just subtract

the second of Eqs. (2.14) from the first:

m2
ρ − m2

A = −
v2

2
(B + g2). (2.44)

In the QCD case, Table 2.2 shows that B is negative and that the right hand side

above is negative because g2 > |B|. In the case which should correspond to a walk-

ing technicolor theory we evidently must require, if B is also negative, the opposite

condition g2 < |B|. That condition seems intuitively plausible. Since B is the coeffi-

cient of a scale invariant term in the effective Lagrangian, we might expect it not to

change sign in going from one theory to the other. Furthermore, we would expect the
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2.3 Two Higgs Doublet Model 31

Figure 2.9 geff
ρππ vs g with the minus sign in Eq. (2.37). The lower curve is

the QCD case while the upper curve corresponds to a hypothetical “walking
technicolor” case with mρ > mA.

phenomenological coupling constant g to behave something like the underlying gauge

theory coupling constant and hence to decrease in strength for a “walking” theory 5

2.3 Two Higgs Doublet Model

It is well known that the ordinary Higgs potential is formally identical to the Gell-

Mann Levy SU(2) linear sigma model [3] potential:

V = α1I1 + α3(I1)
2, (2.45)

where the SU(2)L × SU(2)R invariant I1 is simply expressed in terms of the scalar

singlet σ and the pseudoscalar triplet π as I1 = σ2 + π2. The sigma is identified

with the Higgs and the π with the particles eaten by the W and Z bosons. The

5See for example Fig. 5 in the second to the last paper in [43] above.
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analogs of these two particles are the lowest lying ones in ordinary QCD. Clearly a

technicolor model which is a straightforward copy of ordinary QCD would be expected

to give such a potential as a first approximation. However, it is not easy to rigorously

explore the low lying spectrum of an arbitrary strongly interacting gauge theory [44].

Furthermore it is now known that a so-called “walking” technicolor model [43] may

be a more reasonable candidate than straightforwardly extended QCD. Thus we will

not insist that a technicolor induced Higgs potential be identical to the above and

shall not try to estimate the particle masses. Rather we will just ask the effective

Higgs potential to satisfy the general properties:

1. SU(2)L × SU(2)R flavor invariance.

2. Parity invariance and charge conjugation invariance.

These are clearly very reasonable for a strong interaction gauge theory with two

massless flavors.

In the present note we introduce a second Higgs doublet based on the fact that the

fundamental representation of SU(2) is equivalent to its complex conjugate. This has

the consequence that the (π, σ) multiplet used above is irreducible under the chiral

SU(2)L × SU(2)R group without including the parity reversed partners, denoted as

(a, η). It seems natural to investigate what happens when these parity reversed

partners are included in a second Higgs doublet. Then, the three basic invariants are,

I1 = σ2 + π
2,

I2 = η2 + a2,

I3 = ση − π · a. (2.46)

These forms are readily understandable since the two quartet fields may be regarded

as 4-vectors in the O(4) ∼ SU(2)L × SU(2)R space [45] and these are the three basic
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2.3 Two Higgs Doublet Model 33

invariants which can be made from them. Then the Higgs potential becomes,

V = α1I1 + α2I2 + α3I
2
1 + α4I

2
2 + α5I

2
3 + α6I1I2 (2.47)

The lack of terms linear in I3 is due to the assumption of parity invariance. This

implies that the fields a and η each only occur in the potential paired off with either

itself or the other. This feature may be expressed as the invariance of the potential

under the transformation:

η → −η, a → −a, (2.48)

while the fields in the multiplet, (π, σ) are unchanged. Altogether there are six real

constants. The present potential is supposed to be an effective one, arising from some

underlying renormalizable gauge theory.

Interactions violating the invariances in 1. and 2. above are introduced as pertur-

bations in the model when the chiral fields are coupled to the SU(2) × U(1) gauge

fields in the usual way. The two quartets of the chiral group are conveniently written

for this purpose as two spinors,

Φ =






iπ+

σ−iπ0
√

2




 , Ψ =






−ia+

η+ia0
√

2




 , (2.49)

and their conjugates. Furthermore,

π+ =
π1 − iπ2√

2
a+ =

a1 − ia2√
2

. (2.50)

The gauged kinetic terms for these fields give the usual Lagrangian contribution:

L = −DµΦ
†DµΦ− DµΨ

†DµΨ (2.51)

where

DµΦ = ∂µΦ− igWµΦ +
ig′

2
BµΦ,

DµΦ
† = ∂µΦ + igΦ†Wµ −

ig′

2
BµΦ

†, (2.52)
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with similar forms containing Ψ. Here Bµ is the U(1) gauge boson and the SU(2)

gauge bosons are expanded as:

Wµ =
1

2
τ

a ·Wa
µ =

1

2






W 0
µ

√
2W+

µ

√
2W−

µ −W 0
µ .






The presence of the pure SU(2) × U(1) gauge field kinetic terms in L is to be un-

derstood. Finally consider the Yukawa terms containing the coupling of the quarks

and leptons to the Higgs field. For this purpose, it seems natural to demand the

symmetry in Eq. (2.48), which can be rewritten as,

Φ → Φ, Ψ → −Ψ. (2.53)

We also assume here that the quarks and leptons do not change under this symmetry

transformation. Then only the original Higgs multiplet Φ can couple to the fermions

and the Yukawa couplings are just the usual ones.

2.3.1 Discussion

There has been a very extensive discussion of various two Higgs doublet models in the

literature. Recent related work includes that of Randall [46], who considers a model

with a heavy extra doublet in which the mixing between singlet states is very small

(i.e., large tanβ), Ma6 [47] who stresses the connection with the dark matter problem,

Gerard and Herquet [48] who consider connections with the custodial symmetry and

Lopez Honorez, Nezri, Oliver and Tytgat [49] who discuss the dark matter application

extensively.

In the present work we emphasize that the idea of compositeness for the Higgs

bosons motivates both the SU(2)L x SU(2)R as well as the P and C invariance of the

6In this paper, a model similar to the present one is mentioned as a special case of a more general

two Higgs scheme.
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2.3 Two Higgs Doublet Model 35

Higgs potential. This contains the usual custodial SU(2)V symmetry together with a

discrete Z2 symmetry. If it is true that the model arises from some underlying tech-

nicolor theory, it is reasonable to think that the Higgs potential is an approximation

to the underlying theory describing the interactions of its lowest lying scalar states.

From this point of view the electroweak interactions represent a perturbation to this

“strong” interaction. Then it seems natural to classify the symmetries of the Higgs

potential according to the larger “strong” interaction symmetry. This stands in con-

trast to discussing the symmetry from the point of view of the spinors Φ and Ψ in Eq.

(2.49). In that language, our invariant I1 is identified as 2Φ†Φ while I2 is identified

as 2Ψ†Ψ. Also our I3 corresponds to the combination [Φ†Ψ + Ψ†Φ]. On the other

hand, the combination i[Φ†Ψ−Ψ†Φ] is easily seen to violate the proposed SU(2)L x

SU(2)R invariance and will not be included. This gives an additional simplification

of the potential.

It is interesting to remark that the “minimal walking technicolor theory” auto-

matically respects the symmetries 1. and 2. which we are advocating. That theory

contains the Higgs bosons we are studying but also contains other effective fields

associated with the technicolor interactions.
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2.3.2 Higgs Potential Terms

Recent discussions of general two Higgs doublet potentials are given in7 [50]. The

present case, in which the field variables comprise two O(4) vectors, is simpler than

the general case. First, we note the constraints which follow from the requirement

that the Higgs potential be positive for large field configurations. This implies that

the quartic terms of the potential,

V = · · ·+ α3(I1)
2 + α4(I2)

2 + [α5 cos2 θ + α6]I1I2, (2.54)

where we used the O(4) property that I2
3 = I1I2 cos2 θ for some angle θ, be positive

for large field configurations. Then taking either I1 or I2 to be dominant for large

fields we get the requirements:

α3 > 0, α4 > 0. (2.55)

There is a possibility that α5 and/or α6 may be negative. In such cases there is an

additional discriminant condition which is obtained by forbidding real roots of the

7It seems worthwhile to remark, as briefly noted in section II above, that our potential is sig-

nificantly simpler than the general ones discussed in these references.This follows because of the

imposition of the technicolor inspired requirements of “strong” SU(2)L x SU(2)R symmetry as well

as P and C conservation on the Higgs potential. To compare with these references we note that

our α3, α4, α6 correspond to their λ1, λ2, λ3 respectively. On the other hand they have two more

quartic invariants while we have just one more. Our final SU(2)L x SU(2)R quartic invariant has

the coefficient α5. Note that the square of i[Φ†Ψ−Ψ†Φ] has the electroweak SU(2)L invariance but

does not satisfy the larger “technicolor” invariance we are requiring. If we take linear combinations

of our α5 term with this disallowed piece we could recover both the usual λ4 and λ5 terms. This also

demonstrates that the conventional λ4 and λ5 terms do not obey the O(4) invariance being imposed

in the present model. Our simplified potential results in the very much simplified mass formulas

given in Eqs.(2.61) for the masses of the additional Higgs particles.
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quadratic form obtained by dividing through by (I1)2. It has the form:

(α5cos
2θ + α6)

2 < 4α3α4, (2.56)

for any θ. As examples,

(α5 + α6)
2 < 4α3α4, α2

6 < 4α3α4. (2.57)

Stronger information on the α coefficients arises, as to be discussed next, from

calculating the particle masses and interactions by expanding the potential around

the physical minimum < σ >)= 0, < η >= 0. The latter corresponds to our assumed

underlying parity invariance. A simple calculation verifies that < ∂V/∂σ > = <

∂V/∂η > = 0 for this minimum.

The α1 and α3 terms in Eq. (2.47) correspond to the usual single Higgs model. In

the present case, parity invariance prevents the σ from mixing with the η so α1 and

α3 are determined just as in the standard model. Then α1 is negative and related to

α3 by the minimization equation:

α1 + 2α3v
2 = 0, (2.58)

where the vacuum value, v is given as

v =< σ >≈ 246GeV. (2.59)

The Higgs squared mass is obtained as

m2
σ = 8α3v

2. (2.60)

The potential also yields m2
π = 0 for all three “pions”, which, in the unitary gauge

get absorbed into massive gauge bosons. For the particles in the Ψ multiplet, the

squared masses are obtained as,

m2
η = 2

[
α2 + (α5 + α6)v

2
]
,

m2(a0) = m2(a±) ≡ m2
a = 2

[
α2 + α6v

2
]
. (2.61)
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Notice that the three “a” particles are degenerate in mass. Furthermore there is no

mixing between the two Higgs multiplets.

Defining a shifted Higgs field σ = v + σ̃, the interaction terms in the Lagrangian

resulting from the Higgs potential are:

−α3(σ̃
4 + 4vσ̃3) − α4(a

2 + η2)2

−α5η
2(2vσ̃ + σ̃2) − α6(a

2 + η2)(2vσ̃ + σ̃2). (2.62)

The interaction vertices for Feynman rules can be read off from this equation. For

later convenience we identify the coupling constants for the σηη and σa0a0 vertices,

gσηη = 4v(α5 + α6), gσa0a0 = 4vα6. (2.63)

It may be noted from Eqs. (2.58) and (2.60) that specifying the Higgs mass, mσ

will fix the coefficients α1 and α3. Furthermore specifying mη, ma and gσηη will fix

α2, α5 and α6. Information about α4 is related to the a-η scattering amplitude. We

will not need α4 in the present paper.

The allowed ranges of the α parameters are constrained by the requirement that

the squared masses m2
σ, m2

η and m2
a be positive definite. This agrees with the require-

ment that V (σ, η) have a minimum, rather than a maximum or saddle point at the

point (σ, η) = (v, 0). Specifically, we have:

A ≡
∂2V

∂σ2
(v, 0) = 2α1 + 12v2α3 = m2

σ,

B ≡
∂2V

∂σ∂η
(v, 0) = 0,

C ≡
∂2V

∂η2
(v, 0) = 2α2 + 2v2(α5 + α6) = m2

η. (2.64)

The condition for no saddle point, B2 −AC < 0 as well the condition for a minimum

rather than a maximum, A + C > 0 are both clearly satisfied for positive definite

squared masses.
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No undetermined parameters are introduced here. It is necessary to first give

conventions for the W 0
µ - Bµ mixing matrix:






Zµ

Aµ




 =






c s

−s c











W 0
µ

Bµ




 ,

where s and c are respectively the sine and cosine of the mixing angle. They are

connected to the proton charge, e and the coupling constants in Eq. (2.52) by g =

−e/s and g′ = −e/c.

2.3.3 First Model for a Hidden Higgs Scenario

Stimulated by precision calculations in the standard model giving the Higgs mass

prediction, See page 128 of [7],

mσ = 89+38
−28GeV, (2.65)

a number of groups have revived [52] an older idea [53] that the Higgs might be light

and not yet detected because of a competitive decay mode to some hard to observe

new particles. It would seem that a decay mode in the present model, σ → ηη is a

reasonable candidate for such a competing channel. As we observe above, the η occurs

only in quadratic form in the Higgs potential and only together with a conceivably

much heavier a particle in the gauge-Higgs part of the Lagrangian. Thus it could

have escaped detection.

For the present purpose we need the formula for the predicted Higgs width for its

decay into ηη:

Γ(σ → ηη) =
g2
σηη

32πmσ

√

1 −
4m2

η

m2
σ

, (2.66)

wherein gσηη and mη are given in Eqs. (2.63) and (2.61) respectively. It can be seen

that these two quantities are determined by the parameters α2 and α5 + α6. The
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typical Higgs search involves the reaction:

Z → Z∗ + σ, (2.67)

wherein the virtual Z∗ decays into µ+µ− and the Higgs decays primarily into bb̄ jets.

The formula for Γ(σ → bb̄) is:

Γ(σ → bb̄) =
3mσm2

b

8πv2

(
1 −

4m2
b

m2
σ

)3/2

, (2.68)

where mb ≈ 4.2 GeV is a conventional estimate for the b quark mass. We need the

ratio,

R =
Γ(σ → ηη)

Γ(σ → bb̄)
. (2.69)

Now if Pstandard gives the strength of the Higgs signal in the standard model scenario,

the reduced strength due to the existence of the competitive ηη decay mode in the

present scenario would be,

Pnew =
Γ(σ → bb̄)

Γ(σ → bb̄) + Γ(σ → ηη)
Pstandard

=
1

1 + R
Pstandard. (2.70)

It was noted [52] that a value, R = 0.8 would decrease the presently expected Higgs

signal below the detection threshold. Using the numbers just given we have,

R = 2184y
√

1 − x, (2.71)

where x=(2mη/mσ)2 and y = (gσηη/v)2. A plot of y vs x for the value R = 0.8 is

shown in Fig. 2.10. Any point on that curve is a solution for suppression of the bb̄

Higgs signal.

Three typical points, together with the corresponding values of the Higgs potential

parameters α2 and α5 + α6 are given in Table 6.1.
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Figure 2.10 y vs.x.

mη (GeV) gσηη (GeV) α5 + α6 α2 (GeV2)

14.1 4.8 4.91 × 10−3 −198

31.5 5.6 5.69 × 10−3 +151

42.2 8.4 8.51 × 10−3 +376

Table 2.3 Values of mη, gσηη and Higgs potential parameters which give
suitable suppression of the Higgs signal.
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In the present scenario, with ma > mη, the η boson has “annihilation” modes but

not decay modes. On the other hand the a particles have leading decay modes of the

forms,

a0 → Z + η, a+ → W+ + η, (2.72)

wherein it has been assumed that the a’s are sufficiently heavier than the massive

gauge bosons. If the a’s are lighter than the massive gauge bosons but still heavier

than the η, one would expect important decays like,

a0 → η + µ+ + µ−, a+ → η + π+(139). (2.73)

These two decays are mediated by virtual Z and W bosons respectively. The formula

for the decay width of a heavy a+ by the reaction in Eq. (2.72) is readily found to

be:

Γ(a+ → W+ + η) =
k

8πm2
a

F(a+ → W+ + η), (2.74)

where the momentum, k of each of the two daughter particles in the a+ rest frame is:

k =
1

2ma

√
[m2

a − (mη + mW )2][m2
a − (mη − mW )2], (2.75)

and the squared amplitude summed over the final W+ polarization states is:

F(a+ → W+ + η) = (
e

2s
)2[

(m2
η − m2

a)
2

m2
W

− m2
a − m2

η − 2ma

√
k2 + m2

η]. (2.76)

We may use the same formula for Γ(a0 → Z + η) if we replace mW by mZ and the

overall factor (e/(2s))2 by (e/(2sc))2. These a widths are listed in Table 2.4 for a

characteristic range of a masses in cases where they are heavy enough to decay into

the gauge boson modes. The η mass is taken to be 31.5 GeV, the central value in

Table 6.1. It is seen that the widths are in the range 0.2 to 2 MeV for the a masses

shown. This may be compared to the width, 2.5 MeV, for the Higgs (sigma) to decay

into two η’s according to Eq. (2.66) taking mη = 31.5 GeV.
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Also listed in Table 2.4 are the associated dimensionless coupling constants α5

and α6 in the Higgs potential. These are all less than unity, indicating that for the

mass range under discussion, the new part of the Higgs sector is not very “strongly

coupled”.

ma (GeV) Γ(a+ → W+η) (GeV) Γ(a0 → Zη) (GeV) α5 α6

150 2.14 × 10−4 1.52 × 10−4 −0.178 0.235

200 8.70 × 10−4 7.69 × 10−4 −0.322 0.379

250 2.07 × 10−3 1.94 × 10−3 −0.508 0.565

Table 2.4 Widths of the a bosons for various mass values and associated
Higgs potential parameters.

It is amusing to remark that the quartic coupling constant α5 is negative. The

discussion at the end of section III implies that this is of no concern, since the squared

masses of all the Higgs particles are positive. Note that the positive α6 is larger than

the magnitude of α5.

Since the η under study in the present scenario does not have any decay modes, it

would appear to be another candidate for the “dark matter” required to understand

galactic structures. Work in this direction will be presented elsewhere.

2.3.4 Second Hidden Higgs Model

It was stressed in [52] that Higgs search experiments8 which look for an appropriate

Z (say by tagging µ+µ−pairs) together with the absence of any other particle signals

could eliminate the possibility of a light Higgs. They point out that the Higgs can

therefore be shielded only if there is a “cascade” decay of the decay products (η’s in

8A detailed discussion of the relevant experiments is given in [52].
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the first model) to final states containing a recognizable particle. The η’s have no

decays in our model, however.

We can shield a light Higgs in such an experiment if we assume that the three

a particles are lighter than half the Higgs mass and that the η is lighter still. For

example, with a Higgs mass of 115 GeV, a masses of 50 GeV could do the job.

The a’s would be heavy enough that they would not alter the well known Z width.

(This mechanism is clearly suitable for shielding Higgs bosons which are roughly more

massive than the Z). Then the decaymodes

σ → a+ + a−, σ → a0 + a0, (2.77)

are possible. Furthermore, the Eqs. (2.73) show that the a’s decay into the inert η as

well as the recognizable particles π± or µ+µ−. It is still possible of course for there

to be some σ → η + η in addition to these modes. To illustrate the present scenario

we will assume for simplicity that the coupling constant, gσηη has been tuned to be

negligible. Then the relevant decay width is:

Γ(σ → a+a−) + Γ(σ → a0a0) =

3Γ(σ → a0a0) =
3g2
σa0a0

32πmσ

√

1 −
4m2

a

m2
σ

. (2.78)

Proceeding as before we define,

R′ =
3Γ(σ → a0a0)

Γ(σ → bb̄)
= 1319y′

√
1 − x′2, (2.79)

where x′=(2ma/mσ)2 and y′ = 3(gσa0a0/v)2. A plot of y′ vs x′ for the value R′ = 0.8

is shown in Fig. 2.11. Any point on that curve is a solution for suppression of the bb̄

Higgs signal. In contrast to Fig. 2.10, the x′ variable is not displayed down to zero,

indicating that the shielding is only operative for roughly ma > mZ/2.

Three typical points, together with the corresponding values of the Higgs potential

parameters α2 and α6 are given in Table 2.5.
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Figure 2.11 y′ vs.x′.

ma (GeV) gσa0a0 (GeV) α6 α2 (GeV2)

48.1 4.7 4.82 × 10−3 576

51.4 5.2 5.32 × 10−3 674

54.5 6.2 6.32 × 10−3 723

Table 2.5 Values of ma, gσa0a0 and Higgs potential parameters which give
suitable suppression of the Higgs signal. Here we take mσ = 115 GeV.
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One notices, as in the previous shielding model, that the dimensionless coupling

constant α6 is much less than one, so the Higgs bosons are not strongly coupled. If

we want to tune the σ → ηη contribution to be small, Eq. (2.63) indicates that α5

should be taken negative and slightly less in magnitude than α6.

Effectively, the present “cascade” type shielding mechanism would have charac-

teristic signals of a π+π− pair together with two unobservable η’s or two µ+µ− pairs

together with two unobservable η’s.
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SU(3) Linear Sigma Models and

Chiral Nonets

3.1 Brief Review of the Model

Historically, the nonet structure of elementary particle multiplets has suggested the

spin 1/2 quark substructure and, with the help of the “slightly” broken flavor sym-

metry SU(3), has provided an enormous amount of information about the properties

of the observed low lying hadronic states. For example, the lightest meson multiplets

appear to be those of the pseudoscalars and vectors, consistent with s-wave quark-

antiquark bound states. The next heaviest set of meson multiplets seems to be gener-

ally consistent with p-wave bound states, yielding a scalar nonet, a tensor nonet and

two axial vector nonets.

This chiral point of view may be especially relevant for studying the light scalars

since they are the “chiral partners” of the zero mass pseudoscalars. To implement

this picture systematically one may introduce a qq̄ chiral nonet containing 9 scalar

and 9 pseudoscalar fields as well as a qqq̄q̄ nonet also containing 9 scalars and 9
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pseudoscalars. Furthermore, the light quark mass terms should be added as well as

suitable terms to mock up the U(1)A anomaly of QCD.

The model employs the 3 × 3 matrix chiral nonet fields,

M = S + iφ, M ′ = S ′ + iφ′. (3.1)

The matrices M and M ′ transform in the same way under chiral SU(3) transforma-

tions but may be distinguished by their different U(1)A transformation properties. M

describes the “bare” quark antiquark scalar and pseudoscalar nonet fields while M ′

describes “bare” scalar and pseudoscalar fields containing two quarks and two anti-

quarks. At the symmetry level in which we are working, it is unnecessary to further

specify the four quark field configuration. The four quark field may, most generally,

be imagined as some linear combination of a diquark-antidiquark and a “molecule”

made of two quark-antiquark “atoms”.

The general Lagrangian density which defines our model is,

L = −
1

2
Tr

(
∂µM∂µM †)−

1

2
Tr

(
∂µM

′∂µM ′†)− V0 (M, M ′) − VSB, (3.2)

where V0(M, M ′) stands for a function made from SU(3)L × SU(3)R (but not neces-

sarily U(1)A) invariants formed out of M and M ′.

As discussed [17], the leading choice of terms corresponding to eight or fewer

underlying quark plus antiquark lines at each effective vertex reads,

V0 = − c2 Tr(MM †) + ca
4 Tr(MM †MM †)

+ d2 Tr(M ′M ′†) + ea
3(εabcε

defMa
d M b

eM
′c
f + h.c.)

+ c3

[
γ1ln(

detM

detM † ) + (1 − γ1)ln
Tr(MM ′†)

Tr(M ′M †)

]2

. (3.3)

All the terms except the last two (which mock up the axial anomaly) have been chosen

to also possess the U(1)A invariance. The symmetry breaking term which models the
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QCD mass term takes the form,

VSB = −2 Tr(A S), (3.4)

where A = diag(A1, A2, A3) are proportional to the three light quark masses. The

model allows for two-quark condensates, αa = 〈Sa
a〉 as well as four-quark condensates

βa = 〈S ′a
a〉. Here we assume1 [54] isotopic spin symmetry so A1 = A2 and,

α1 = α2 )= α3, β1 = β2 )= β3. (3.5)

We also need the “minimum” conditions,

〈
∂V0

∂S

〉
+

〈
∂VSB

∂S

〉
= 0,

〈
∂V0

∂S ′

〉
= 0. (3.6)

There are twelve parameters describing the Lagrangian and the vacuum. These

include the six coupling constants given in Eq. (3.3), the two quark mass parameters,

(A1 = A2, A3) and the four vacuum parameters (α1 = α2,α3, β1 = β2, β3). The four

minimum equations reduce the number of needed input parameters to eight.

Five of these eight are supplied by the following masses together with the pion

decay constant,

m[a0(980)] = 984.7 ± 1.2 MeV,

m[a0(1450)] = 1474 ± 19 MeV,

m[π(1300)] = 1300 ± 100 MeV,

mπ = 137 MeV,

Fπ = 131 MeV. (3.7)

Because m[π(1300)] has such a large uncertainty, we will examine predictions depend-

ing on the choice of this mass within its experimental range. The sixth input will be

1The isospin violation case for the single M linear sigma model was treated here.
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taken as the light “quark mass ratio” A3/A1, which will be varied over an appropriate

range. The remaining two inputs will be taken from the masses of the four (mixing)

isoscalar, pseudoscalar mesons. This mixing is characterized by a 4 × 4 matrix M2
η .

A practically convenient choice is to consider TrM2
η and detM2

η as the inputs.

Given these inputs there are a very large number of predictions. At the level

of the quadratic terms in the Lagrangian, we predict all the remaining masses and

decay constants as well as the angles describing the mixing between each of (π, π′),

(K, K ′), (a0, a′
0), (κ, κ′) multiplets and each of the 4 × 4 isosinglet mixing matrices

(each formally described by six angles).

In the case of the I = 0 scalars there are four particles which mix with each other;

the squared mass matrix then takes the form,

(
X2

0

)
=






4 ea
3 β3 − 2 c2 + 12 ca

4 α
2
1 4

√
2 ea

3 β1 4 ea
3 α3 4

√
2 ea

3 α1

4
√

2 ea
3 β1 −2 c2 + 12 ca

4 α
2
3 4

√
2 ea

3 α1 0

4 ea
3 α3 4

√
2 ea

3 α1 2 d2 0

4
√

2 ea
3 α1 0 0 2 d2






.

(3.8)

For this matrix the basis states are consecutively,

fa =
S1

1 + S2
2√

2
nn̄,

fb = S3
3 ss̄,

fc =
S ′1

1 + S ′2
2√

2
nsn̄s̄,

fd = S ′3
3 nnn̄n̄. (3.9)

The non-strange (n) and strange (s) quark content for each basis state has been listed

at the end of each line above.
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3.1.1 Chiral Nonet Mixing in ππ Scattering

We will work with the above Lagrangian (i.e. without introducing any new pa-

rameters) and investigate the effect of unitarization on the isosinglet, zero angular

momentum partial wave ππ scattering amplitude computed at tree order.

We will treat the pion scattering amplitude unitarization by using the K-matrix

method. As the model involves two nonets of scalars, there are altogether four isosin-

glet scalar mesons (two from each nonet) that contribute as poles in the pion scattering

amplitude. Therefore the K-matrix unitarization has to deal with all four poles at

the same time resulting in a more involved version of the conventional single-pole

K-matrix unitarization.

The advantages of the K-matrix approach to unitarization are that it does not

introduce any new parameters and that it forces exact unitarity. It is plausible since

if one starts from a pure pole in the partial wave amplitude, one ends up with a pure

Breit Wigner shape. A disadvantage is that it neglects, in the simple version we use,

the effects of the opening of thresholds like the KK̄ on the ππ amplitude. This is not

expected to be too serious for our initial appraisal here.

The tree level ππ scattering amplitude is,

A(s, t, u) = −
g

2
+
∑

i

g2
i

m2
i − s

, (3.10)

where the four point coupling constant is related to the “bare” four-point couplings

as,

g =

〈
∂4V

∂π+ ∂π− ∂π+ ∂π−

〉
,

=
∑

A,B,C,D

〈
∂4V

∂(φ2
1)A ∂(φ1

2)B ∂(φ2
1)C ∂(φ1

2)D

〉

× (Rπ)A1 (Rπ)B1 (Rπ)C1 (Rπ)D1, (3.11)

where the sum is over “bare” pions and A, B, · · · = 1, 2 with 1 denoting nonet M and
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2 denoting nonet M ′. Rπ is the pion rotation matrix (given, for typical parameters

in [20].

The physical scalar-psedudoscalar-pseudoscalar couplings are related to the bare

couplings,

gi =

〈
∂3V

∂fi ∂π+ ∂π−

〉
=

∑

M,A,B

〈
∂3V

∂fM∂(φ2
1)A ∂(φ1

2)B

〉
(L0)Mi (Rπ)A1 (Rπ)B1, (3.12)

where A and B = 1,2 and M = 1,2,3 and 4 and respectively represent the four bases

in Eq. (3.43). L0 is the isosinglet scalar rotation matrix.

The only non-vanishing “bare” four-point and three-point couplings are,

〈
∂4V

∂(φ2
1)1 ∂(φ1

2)1 ∂(φ2
1)1 ∂(φ1

2)1

〉
= 8 ca

4, (3.13)

〈
∂3V

∂fa ∂(φ2
1)1 ∂(φ1

2)1

〉
= 4

√
2 ca

4 α1,

〈
∂3V

∂fb ∂(φ2
1)1 ∂(φ1

2)2

〉
=

〈
∂3V

∂fb ∂(φ2
1)2 ∂(φ1

2)1

〉
,

=

〈
∂3V

∂fc ∂(φ2
1)1 ∂(φ1

2)1

〉
= 4 ea

3. (3.14)

Now we project Eq. (3.10) to the I = J = 0 partial wave amplitude. The

K-matrix unitarization of this “Born” scattering amplitude T 0
0

B defines the unitary

partial wave amplitude,

T 0
0 =

T 0
0

B

1 − i T 0
0

B , (3.15)

wherein,

T 0
0

B
= Tα +

∑

i

T i
β

m2
i − s

, (3.16)

with,

Tα =
1

64π

√

1 −
4m2

π

s

[

−5g4 +
1

p2
π

∑

i

g2
i ln

(
1 +

4p2
π

m2
i

)]

, (3.17)

T i
β =

3

32π

√

1 −
4m2

π

s
g2

i , (3.18)
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pπ =
1

2

√
s − 4m2

π. (3.19)

3.1.2 Comparison with Experiment

For comparison with experiment it is convenient to focus on the real part of the

partial wave scattering amplitude in Eq. (3.15). For typical values of parameters we

find the behavior illustrated in Fig. (3.1). The zeros which occur can be understood

as follows. First, they can result from a zero of T 0B
0 . Such a zero occurs at threshold,

for example. Secondly, a zero can also result from the poles in T 0B
0 at s = m2

i in Eq.

(3.16) corresponding to the “bare” masses.

We compare the predictions of our model for the scattering amplitude with the

corresponding experimental data up to about 1.2 GeV in Fig 3.2 for two values of

the SU(3) symmetry breaking parameter A3/A1 and three choices of the only roughly

known “heavy pion” mass m[Π(1300)]. One sees that, without using any new param-

eters, the mixing mechanism of [20] predicts the scattering amplitude in reasonable

qualitative agreement with the experimental data up to around 1 GeV. This provides

some support for the validity of this mixing mechanism.

For interpretation of the physical resonances it is conventional to look at the

pole positions in the complex plane of the analytically continued expression for T 0
0 .

We examine these physical pole positions by solving for the complex roots of the

denominator of the K-matrix unitarized amplitude Eq. (3.15),

D(s) = 1 − i T 0B
0 = 0, (3.20)

with T 0B
0 given by Eq. (3.16). We search for solutions, s(j) = s(j)

r + is(j)
i = m2

j − imjΓj

of this equation, where mj and Γj are interpreted as the mass and decay width of the

jth physical resonance (which would hold for small Γ). A first natural attempt would
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Figure 3.1 The real part of the unitarized ππ scattering amplitude for a
typical choice of parameters. The four squares correspond to the poles in
T 0B

0 .The circles correspond to locations where T 0B
0 = 0.

be to simultaneously solve the two equations,

ReD (sr, si) = 0,

ImD (sr, si) = 0. (3.21)

However, this approach turns out to be rather complicated to be implement. A more

efficient numerical approach is to consider the single equation involving only positive

quantities,

F (sr, si) = |Re (D(sr, si))| + |Im (D(sr, si))| = 0. (3.22)

A search of parameter space leads to four solutions for the pole positions2. As an

example, for the choice of A3/A1 = 30 and m[Π(1300)] = 1.215 GeV, the function F

is plotted over the complex plane around the first pole. We see a clear local minimum

at which the function is zero, hence pointing to a solution of Eq. (3.20). Similarly,

other areas of the complex plane are searched and altogether four poles are found.

2We have double checked the results by developing an approximate analytical approach in which

the amplitude is unitarized locally in the neighbourhood of each resonance.
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Figure 3.2 Real part of unitarized scattering amplitude for two values of
A3/A1 and three choices of m[Π(1300)].
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The results are given in Table 3.1 for m[Π(1300)] = 1.215 GeV and two choices of

A3/A1 = 20 and 30. For each choice we see that this model predicts a light and broad

scalar meson below 1 GeV which is a clear indication of f0(600) or σ. We see that the

characteristics of the second predicted state around 1 GeV are close to those expected

for f0(980). The third and the fourth predicted states should correspond to two of

f0(1370), f0(1500) and f0(1710).

We have performed the same analysis over the range of the parameter m[Π(1300)]

= 1.2 - 1.4 GeV, and for two choices of A3/A1 = 20 and 30. The physical masses

and the decay widths are given in Figs. 3.4 and 3.5, respectively. The effect of the

unitarization can be seen in Fig. 3.4 where the physical masses are compared with

the “bare” masses; the unitarization reduces the mass, particularly for the first and

the third predicted states.

Pole Mass (MeV) Width (MeV) Mass (MeV) Width (MeV)

1 483 455 477 504

2 1012 154 1037 84

3 1082 35 1127 64

4 1663 2.1 1735 3.5

Table 3.1 The physical mass and decay width of the isosinglet scalar states,
with m[Π(1300)] = 1.215 GeV and with A3/A1 = 20 (the first two columns)
and with A3/A1 = 30 (the last two columns).
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Figure 3.3 The local minimum of function F(sR, sI) defined in Eq. (3.22)
at the position of the lightest isosinglet scalar pole in the complex s plane for
m[Π(1300)] = 1.215 GeV and A3/A1 = 30. Top left is the plot of function
F(sR, sI) vs sR and sI , followed by projection of this function onto F -sR and
onto F -sI planes.
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Figure 3.4 Predicted physical masses are compared with the “bare” masses
for two values of A3/A1 over the experimental range of m[Π(1300)].
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Figure 3.5 Predicted decay widths for two values of A3/A1 over the experi-
mental range of m[Π(1300)].
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3.2 More on Two Chiral Nonets – Three Flavors

are Special

Even though one can not write down the exact QCD wave functions of the low

lying mesons it is easy to write down schematic descriptions of how quark fields may

combine to give particles with specified transformation properties. The usual chiral

nonet M(x) realizing the qq̄ structure is then written as:

M ḃ
a = (qbA)†γ4

1 + γ5

2
qaA, (3.23)

where a and A are respectively flavor and color indices. For clarity, on the left

hand side the undotted index transforms under the SU(3)L while the dotted index

transforms under the SU(3)R.

One possibility for the qqq̄q̄ states is to make them as “molecules” from two quark-

antiquark nonets. This leads to the following schematic form:

M (2)ḃ
a = εacdε

ḃėḟ
(
M †)c

ė

(
M †)d

ḟ
. (3.24)

Note that the fields M and M (2) transform in the same way under chiral SU(3)

as well as under the discrete P and C symmetries, as required if they are to mix with

each other according to the scheme shown above. As noted in the Appendix (A.3),

the axial U(1) transformation properties of M and M (2) differ from each other and

provide a measure of whether the state is of one quark-antiquark type, two quark-

antiquark type etc. In the chiral Lagrangian there are terms which break the axial

U(1) in a manner dictated by the QCD axial anomaly. In A.3 it is also pointed out

that schematic fields M (3) and M (4) which have “diquark-antidiquark” forms instead

of the “molecular” form can also be constructed. There has been some discussion

in the literature about which type is favored [55]. In the present approach either is
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allowable. In fact it was shown in [19] that the molecular form can be transformed

using Fierz identities to a linear combination of the “diquark-antidiquark” forms.

We thus assume that some unspecified linear combination of M (2), M (3) and M (4),

denoted by M ′, represents the qqq̄q̄ chiral nonet which mixes with M . As in the

previous section, the decomposition into pseudoscalar and scalar fields is given by,

M = S + iφ, M ′ = S ′ + iφ′. (3.25)

There is no problem finding a chiral formulation for a qq̄ 16-plet M ḃ
a. However we

can not find a suitable schematic meson wave function with the same chiral trans-

formation property constructed, for example, as a “molecule” out of two such states.

The closest we can come for a two-part “molecule” is:

M (2)ḃḣ
ag = εagcdε

ḃḣėḟ
(
M †)c

ė

(
M †)d

ḟ
. (3.26)

However, instead of transforming under SU(4)L × SU(4)R as (L, R) = (4, 4̄) as de-

sired, this object transforms as (L, R) = (6, 6̄), owing to the two sets of antisymmetric

indices (ag and ḃḣ) which appear. Hence, it should not mix in the chiral symmetry

limit with the initial four flavor qq̄ state (See Eq. (3.31)). Of course it would be

possible to multiply the right hand side of Eq. (3.26) by a third field
(
M †

)g

ḣ
. That

does give the correct transformation property to mix with the four flavor version of

Eq. (3.31). However it corresponds to a three quark- three antiquark molecule. We

assume that, especially after quark mass terms are added, an “elementary particle”

state of such a form is unlikely to be bound.

The same problem emerges in the four flavor case when we alternatively construct

composites of the diquark-antidiquark states given in Eqs. (A.20) and (A.22) of A.3.

As above, this yields a composite state transforming like (6, 6̄) (rather than the desired

(4, 4̄)):
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M (3)ḟ q̇
gp =

(
LgpE

)†
Rḟ q̇E, (3.27)

where,

LgpE = εgpabεEABqT
aAC−11 + γ5

2
qbB,

Rḟ q̇E = εḟ q̇ċḋεEABqT
ċAC−11 − γ5

2
qḋB. (3.28)

We could contract LgpE with a left handed quark field and Rḟ q̇E with a right

handed quark field to obtain the desired overall transformation property at the ex-

pense of having a three quark- three antiquark state (which we are assuming to be

unbound).

It is clear that essentially the same argument would hold for five or more quark

flavors.

Going in the direction of fewer flavors, we now note that there is also no suitable

schematic ”molecular” wavefunction available in the 2-flavor case for mixing with the

quark-antiquark state. The closest we can come here for a “molecule” has the form:

M (2) = εcdε
ėḟ
(
M †)c

ė

(
M †)d

ḟ
. (3.29)

This is clearly unsatisfactory since it transforms like (1,1) under SU(2)L × SU(2)R

rather than the (2,2) required for mixing according to our assumed model. Actually

one must be a little more careful because it is well known that the object M ḃ
a is not

irreducible under chiral transformations in the 2-flavor case. It may be interesting to

show that the same result is obtained when this fact is taken into account. The irre-

ducible representations are formed by making use of the fact that τ2M∗τ2 transforms

in the same way as M . Then we may consider the irreducible linear combinations:
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1√
2
(M + τ2M

∗τ2) ≡ σI + iπ · τ

1√
2
(M − τ2M

∗τ2) ≡ iηI + a · τ, (3.30)

where the usual SU(2) chiral multiplet containing π and σ is recognized as well as

the parity reversed one containing η and the isovector scalar particle a. Since SU(2)L

× SU(2)R is equivalent to the group SO(4) we may consider the fields π and σ as

making up an isotopic four vector, pµ and the fields a and η as comprising another four

vector qµ. A “molecule” state which could mix with, say pµ would have to be another

four vector made as a product of pµ and qµ. The combination pµqµ is a singlet, the

combination εµναβpαqβ has six components and the symmetric traceless combination

has nine components. This confirms that there is no allowed mixing with a possible

molecule at the chiral level in the two flavor case.

One might wonder why, if mixing is possible in the three flavor case, it is not

possible in the two flavor case, which is just a subset of the former. The answer is

already contained in Eq. (3.24). If we want to find something that mixes with the

quark-antiquark π+ particle we should look at the (12) matrix element. On the right

hand side, one sees that the “molecule” field which mixes contains an extra ss̄ pair,

which is simply not present in the two flavor model.

Thus we see that flavor SU(3) has some interesting special features for schemati-

cally constructing bound states with well defined chiral transformation properties.

A possibility for the mixing of a quark antiquark state with a different state not of

“molecular” (or more generally, two quark-two antiquark) type, would be to consider

a so called radial excitation. For mixing with M ḃ
a, such a state could be schematically

written as f(!)M ḃ
a, where f is a function of the d’Alembertian. In this case, one

would not expect the inverted multiplets which appear in the “molecular” picture.
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3.3 Semi-Leptonic Decay Modes of the D+
s (1968)

On the experimental side of the subject, information on the light scalars has often

been extracted from study of ππ and other scattering processes. Another way is

to search for scalar resonances explicitly in particle decay processes. Recently, the

CLEO collaboration has reported [56] good evidence for the scalar f0(980) in the semi-

leptonic decay of the D+
s (1968) meson. Since there is more phase space available, it

may be possible to find other scalar iso-singlet states in this and similar semi-leptonic

decays of heavy mesons. There are also isosinglet pseudoscalar states like the η and

η′(980) which can be studied and in fact have been already reported in the decays of

the D+
s (1968).

As a possibly helpful adjunct to future work in this direction we will also make

some theoretical estimates of the semi-leptonic decay widths of the D+
s (1968) into

the four scalar isosinglet states and the four pseudoscalar isosinglet states which are

predicted in the chiral model mentioned above.

First, we will discuss the hadronic “weak currents” which are needed for the cal-

culation. These are mathematically given by the so-called Noether currents of the

sigma model Lagrangian being employed. We work in the approximation where renor-

malization of these currents from the symmetry limit are neglected. This means that

there are no arbitrary parameters available to us. Nevertheless there are some sub-

tleties. To explain these we build up the model in three stages rather than just writing

the final result immediately. These models give the usual ”current algebra” results

near the threshold of pion-pion scattering but also yield some additional interesting

features away from threshold.
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3.3.1 Chiral SU(3) Model – K#3 Decay as a Simple Example

Starting from Eq. (3.31), the usual qq̄ chiral nonet (M = S + iφ) is schematically

written with chiral SU(3) indices displayed as:

M ḃ
a = (qbA)†γ4

1 + γ5

2
qaA, (3.31)

where a and A are respectively flavor and color indices.

Using matrix notation (e.g. M ḃ
a → Maḃ) the Noether vector and axial currents

read,

Vµ = iφ
↔
∂µ φ + iS

↔
∂µ S,

Aµ = S
↔
∂µ φ− φ

↔
∂µ S, (3.32)

The axial symmetry breaking is measured by the vacuum value of S:

S = S̃+ < S >, < Sb
a >= αaδ

b
a, (3.33)

where the normalization is α1 + α2 = Fπ ≈ 130.4 MeV and α1 + α3 = FK ≈ 156.1

MeV. Note that the overall normalization constant for Vµ gives the correct value

for the ordinary electromagnetic current. This determines the normalization for the

weak currents in the SU(3)L × SU(3)R symmetry limit. For the vector currents this

amounts to an implementation of the “conserved vector current hypothesis” intro-

duced for beta decay many years ago [57]. Such an approximation is well known

not to be as good for the axial current case, but may at least furnish an order of

magnitude estimate. In detail, with the usual SU(3) tensor indices, the currents read:

V b
µa = iφc

a

↔
∂µ φb

c + iS̃c
a

↔
∂µ S̃b

c + i(αa − αb)∂µS̃
b
a,

Ab
µa = S̃c

a

↔
∂µ φb

c − φc
a

↔
∂µ S̃b

c + (αa + αb)∂µφ
b
a, (3.34)
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For example, the relevant hadronic current needed to describe the semi-leptonic

decay K+ → π0 + e+ + νe is

V 3
µ1 = φc

1

↔
∂µ φ3

c + i(α1 − α3)∂µS̃3
1 . (3.35)

We consider the matrix element, between an initial K+ state with 4-momentum

k and a final π0 state with four momentum p, of the strangeness changing vector

current V 3
µ1,

< π0(p)|V 3
µ1|K+(k) >∼ f+(t)(k + p)µ + f−(t)(k − p)µ, (3.36)

where t = −(k − p)2.

The first term of Eq. (3.35) contributes at tree level to the f+ form factor while

the second term contributes to the f− form factor. These two contributions are

illustrated in Figs. 3.6a and 3.6b in which the W boson which is connected to the

leptonic current acts at the points ×. Here we are evaluating this matrix element

in the framework of the plain SU(3) linear sigma model in which, furthermore, the

vector and axial vector mesons have not been included.

K+(k) π
0(p)

κ
+(k - p)

K+(k) π
0(p)

(a) (b)

Figure 3.6 K#3 decay hadronic current.

According to the usual Feynman rules,

f+ = −
1√
2
,

f− = −
1√
2
[
α3 − α1

α3 + α1
][
m2
κ − m2

π

m2
κ − t

], (3.37)
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wherein mκ denotes the mass of the strange scalar particle contained in this model.

Furthermore, the explicit form of the Kκπ coupling constant in the model was used

in the expression for f− [11]. Notice that the first bracket in the equation for f−

evaluates to about 0.16 and that the physical κ mass is about 800 MeV in the plain

SU(3) linear sigma model.

It is interesting that this decay allows one to learn something about the properties

of the κ meson. For this purpose it is necessary to use the process where a final µ+ is

observed rather than a final e+. That is because the contribution of f−(t) to the decay

width is proportional to the final lepton mass. Of course the effect of the K∗(892),

which contributes importantly to the f+(t) form factor should also be included to get

increased accuracy.

3.3.2 SU(3) MM ′ Model

For this model we start from another chiral field (M (2) = S ′ + iφ′), introduced in Eq.

(3.24), constructed out of two quarks and two anti-quarks as:

M (2)ḃ
a = εacdε

ḃėḟ
(
M †)c

ė

(
M †)d

ḟ
. (3.38)

Then the Noether currents involve the sum of pieces constructed from the un-

primed fields and from the primed fields. The latter take the form,

V ′b
µa = iφ′c

a

↔
∂µ φ′b

c + iS̃ ′c
a

↔
∂µ S̃ ′b

c + i(βa − βb)∂µS̃ ′b
a ,

A′b
µa = S ′c

a

↔
∂µ φ′b

c − φ′c
a

↔
∂µ S̃ ′b

c + (βa + βb)∂µφ
′b
a , (3.39)

wherein,

S ′ = S̃ ′+ < S ′ >, < S ′b
a >= βaδ

b
a. (3.40)

The total currents are denoted as:
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V b
µa(total) = V b

µa + V ′b
µa,

Ab
µa(total) = Ab

µa + A′b
µa. (3.41)

In contrast to the chiral SU(3) model above, all the primed and corresponding

unprimed fields mix to give physical fields of definite mass. As a simple example, the

transformation between the physical π+ and π′+ fields and the original fields (say φ+

and φ′+) is [15]:





π+

π′+




 = R−1

π






φ2
1

φ′2
1




 =






cos θπ − sin θπ

sin θπ cos θπ











φ2
1

φ′2
1




 ,

which also defines the transformation matrix, Rπ.

The pion decay constant as well as (formally) the decay constant for the much

heavier π(1300) particle are defined by the part of the axial current linear in the fields:

A2
µ1(total) = Fπ∂µπ

+ + Fπ′∂µπ
′+ + · · · ,

Fπ = (α1 + α2) cos θπ − (β1 + β2) sin θπ,

Fπ′ = (α1 + α2) sin θπ + (β1 + β2) cos θπ. (3.42)

The angle θπ depends on the detailed dynamics. [15]

In what follows it will be useful for us to specify the mixing matrix for the four

isoscalar scalar mesons in this model. A basis for these states is given in terms of the

four component vector f = (fa, fb, fc, fd) where,

fa =
S1

1 + S2
2√

2
nn̄,

fb = S3
3 ss̄,

fc =
S ′1

1 + S ′2
2√

2
nsn̄s̄,

fd = S ′3
3 nnn̄n̄. (3.43)
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In the above, the quark content is indicated on the right for convenience. Note

that s stands for a strange quark while n stands for a non-strange quark. However

these basis states are not mass eigenstates. Again, the detailed dynamics of the

model is required to specify this. For typical values of the model’s input parameters

(see [20]) the mass eigenstates make up a four vector, F = L−1
0 f with,

(L−1
o ) =






0.601 0.199 0.600 0.489

−0.107 0.189 0.643 −0.735

0.790 −0.050 −0.391 −0.470

0.062 −0.960 0.272 −0.019






(3.44)

The physical states are identified, with nominal mass values, as

F =






f0(600)

f0(980)

f0(1370)

f0(1800)






(3.45)

It will also be interesting for us to give the typical result of the model for the

mixing of the four isoscalar pseudoscalars. The analogous basis states are:

ηa =
φ1

1 + φ2
2√

2
nn̄,

ηb = φ3
3 ss̄,

ηc =
φ′1

1 + φ′2
2√

2
nsn̄s̄,

ηd = φ′3
3 nnn̄n̄. (3.46)

For typical values of the model’s input parameters (see [20]) the mass eigenstates

make up a four component vector, P = R−1
0 η with,
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P =






η(547)

η(958)

η(1295)

η(1760)






(3.47)

(These identifications correspond to the favored scenario discussed in section V

of [20]). The dynamically determined mixing matrix is then:

(R−1
o ) =






−0.675 0.661 −0.205 0.255

0.722 0.512 −0.363 0.291

−0.134 −0.546 −0.519 0.644

0.073 0.051 0.746 0.660






(3.48)

3.3.3 Hybrid MM ′ Model with a Heavy Flavor

As discussed in Sec. 3.2, the case of three flavors is special in the sense that it is the

only one in which a two quark-two antiquark field has the correct chiral transformation

property to mix (in the chiral limit) with M . In order to respect this property when

a heavy meson is included in the Lagrangian, we should demand that“heavy” spin

zero mesons be made of just one quark and one antiquark. In a linear sigma model

the kinetic term would then be written as:

L = −
1

2
Tr4(∂µM∂µM †) −

1

2
Tr3(∂µM ′∂µM

′†), (3.49)

where the meaning of the superscript on the trace symbol is that the first term

should be summed over the heavy quark index as well as the three light indices.

This stands in contrast to the second term which is just summed over the three light

quark indices pertaining to the two quark-two antiquark field M ′. Since the Noether

currents are sensitive only to these kinetic terms in the model, the vector and axial
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vector currents with flavor indices 1 through 3 in this model are just the same as

in Eq. (3.41) above. However if either or both flavor indices take on the value 4

(referring to the heavy flavor) the current will only have contributions from the field

M . This should be clarified by the following example,

V a
µ4(total) = V a

µ4 = iφc
4

↔
∂µ φa

c + iSc
4

↔
∂µ Sa

c ,

Aa
µ4(total) = Aa

µ4 = Sc
4

↔
∂µ φa

c − φc
4

↔
∂µ Sa

c . (3.50)

Here the unspecified indices can run from 1 to 4. This equation is correct by con-

struction but does not tell the whole story since the connection between the fields

above and the physical states involves, as in the preceding cases, the details of the

non-derivative (“potential”) terms of the effective Lagrangian.

3.3.4 D+
s (1968) → f0(980)e+νe

The initial motivation for this work was the recent experimental discovery [56] of the

semileptonic decay mode,

D+
s (1968) → f0(980)e+νe, (3.51)

in which the f0(980) was identified from its two pion decay mode.

A relevant generalization is to consider other scalar isosinglet candidates than

the f0(980). For example the SU(3) M − M ′ model contains four different isoscalar

scalars, Fi. In addition, there are four different isoscalar pseudoscalars in that model,

Pi. Here we shall calculate the predictions of that model for all eight of these decays

in the simplest approximation. This should provide some useful orientation. In fact

there are no parameters which have not already been determined in the previous

treatment [20] of the model.
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The usual weak interaction Lagrangian is,

L =
g

2
√

2
(J−

µ W+
µ + J+

µ W−
µ ), (3.52)

wherein,

J−
µ = iŪγµ(1 + γ5)V D + iν̄eγµ(1 + γ5)e,

J+
µ = iD̄γµ(1 + γ5)V

†U + iēγµ(1 + γ5)νe. (3.53)

Here the column vectors of the quark fields take the form:

U =






u

c

t






, D =






d

s

b






, (3.54)

and the CKM matrix, V is explicitly,

V =






Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






. (3.55)

A picture describing the relevant Ds decays is given in Fig. (3.7).

D+(p)s

s
_

c

s
_

s

e+(k)

νe(l)

W+

P (q) or F (q)
i i

Figure 3.7 Ds decay.

The corresponding semi-leptonic decay amplitudes are thus,
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amp(D+
s (p)) →






Pi(q)

Fi(q)





+ e+(k) + νe(l)) = −i

GF√
2
Vcs






< Pi(q)|V 3
µ4(total)|D+

s (p) >

< Fi(q)|A3
µ4(total)|D+

s (p) >






×ū(l)γµ(1 + γ5)v(k), (3.56)

where the spinor v(k) represents the outgoing e+ and ū(l) represents the outgoing

νe. The relevant hadronic operators can be rewritten in terms of the mass eigenstate

scalar isosinglets and the pseudoscalar isosinglets using Eqs. (3.45) and (3.47) as:

V 3
µ4(total) = iD+

s

↔
∂µ φ3

3 + · · ·

= iD+
s

∑

j

(R0)2j

↔
∂µ Pj + · · · (3.57)

A3
µ4(total) = −D+

s

↔
∂µ S3

3 + · · ·

= −D+
s

∑

j

(L0)2j

↔
∂µ Fj + · · · (3.58)

The transposed matrices L0 and R0 are given in Eqs. (3.44) and (3.48) respec-

tively, based on a typical numerical solution for the model parameters [20]. Next the

amplitudes are given by,

amp(D+
s (p) →






Pi(q)

Fi(q)





+e+(k)+νe(l)) =

GF√
2
Vcs






(R0)2i

−i(L0)2i





(pµ+qµ)ū(l)γµ(1+γ5)v(k),

(3.59)

The squared amplitudes, summed over the emitted lepton’s spins, are then,

G2
F |Vcs|2

1

m2
e






((R0)2i)2

((L0)2i)2





[2k · (p + q)l · (p + q) − l · k(p + q)2], (3.60)
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wherein me has been set to zero except for the overall 1/m2
e factor.

This yields the unintegrated decay width,

dΓ

d|q|
=

G2
F |Vcs|2

12π3






((R0)2i)2

((L0)2i)2





m(Ds)

|q|4

q0
. (3.61)

For integrating this expression we need,

|qmax| =
m2(Ds) − m2

i

2m(Ds)
, (3.62)

where mi is the mass of the isosinglet meson Fi or Pi and also the indefinite integral

formula, where x = |q|,

∫
x4dx

√
x2 + m2

i

=
x3

4

√
x2 + m2

i −
3

8
m2

i x
√

x2 + m2
i +

3

8
m4

i ln(x +
√

x2 + m2
i ). (3.63)

Table 3.2 summarizes the calculations of the predicted widths, for D+
s decays

into the four pseudoscalar singlet mesons (η1 = η(547), η2 = η(982), η3 = η(1225),

η4 = η(1794). Notice that the listed masses, mi are the “predicted” ones in the

present model) and leptons.

mi (MeV) (R0)2i (qmax)i (MeV) Γi (MeV)

553 0.661 906.20 4.14 × 10−11

982 0.512 739.00 7.16 × 10−12

1225 -0.546 602.74 2.57 × 10−12

1794 0.051 166.31 2.65 × 10−17

Table 3.2 pseudoscalars.

Table 3.3, with the same conventions, summarizes the calculations of the predicted
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widths for D+
s decays into the four scalar singlet mesons ((f1, f2 · · · ) = (σ, f0(980), · · · ))

and leptons.

mi (MeV) (L0)2i (qmax)i (MeV) Γi (MeV)

477 0.199 933.23 4.56 × 10−12

1037 0.189 710.79 7.80 × 10−13

1127 -0.050 661.30 3.62 × 10−14

1735 -0.960 219.21 3.85 × 10−14

Table 3.3 scalars.

Experimental data exist for only three of these eight decay modes.

Γ(D+
s → ηe+νe) = (3.5 ± 0.6) × 10−11 MeV

Γ(D+
s → η′e+νe) = (1.29 ± 0.30) × 10−11 MeV

Γ(D+
s → f0e

+νe) = (2.6 ± 0.4) × 10−12 MeV (3.64)

It is encouraging that even though our calculation utilized the simplest model for the

current and no arbitrary parameters were introduced, the prediction for the lightest

hadronic mode, Γ(D+
s → ηe+νe) agrees with the measured value. In the case of the

decay D+
s → ηe+νe the predicted width is about 30% less than the measured value.

For the mode D+
s → f0(980)e+νe our predicted value is about one third the measured

value. Conceivably, considering the large predicted width into the very broad sigma

state centered at 477 MeV, some of the higher mass sigma events might have been

counted as f0(980) events, which would improve the agreement. It would be very

interesting to obtain experimental information about the energy regions relevant to

the other five predicted isosinglet modes.
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Furthermore, these width predictions are based on Eqs. (3.44) and (3.48) corre-

sponding to particular choices for the quark mass ratio A3/A1 and the precise mass

of the very broad Π(1300) resonance. Varying these within the allowable ranges gives

rise to the allowed range of predictions displayed in Figs. (3.8) and (3.9). One can

see that raising m[Π(1300)] and/or lowering A3/A1 yields better agreement for the

predicted semi-leptonic decay width of the f0(980). Clearly, the simple model here

provides reasonable estimates for the semileptonic decay widths of the D+
s (1968).
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Figure 3.8 Starting from the upper left and proceeding clockwise: The
dependences of the pseudoscalar partial widths on the current quark mass
ratio A3/A1 and on the value of the Π(1300) mass.
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Figure 3.9 Starting from the upper left and proceeding clockwise: The
dependences of the scalar partial widths on the current quark mass ratio
A3/A1 and on the value of the Π(1300) mass.
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Chapter 4

Conclusions for Linear Sigma

Models

We studied different aspects of linear sigma model in this part of the thesis. We

realized that the use of the simplest linear sigma model at tree level does not give

just one number (a scattering length) but gives an infinite series of numbers which

can be conveniently compared with the series resulting from chiral perturbation the-

ory. Another amusing feature is that this approach provides a specific model for the

expansion parameter of this series; namely m2
π/(m2

B − m2
π). Of course, in compari-

son with chiral perturbation theory, there is an obvious difference in that the latter

approach includes the effect of loop integrals. The loop integrals enforce that chiral

perturbation theory carried to all orders should result in fully unitarized scattering

amplitudes. In the present approach it is possible to obtain exactly unitary partial

wave amplitudes without introducing any new parameters by means of the K-matrix

technique.

It is well known that to accurately model low energy pion physics it is necessary to

take the ρ meson into account in addition to the σ. So the next step is to investigate
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the pion scattering amplitude computed from a linear sigma model in which the vector

meson as well as an axial vector meson (for chiral symmetry) are included. To begin

the study of the scattering amplitude in the resonant s-wave channel we fit the near

threshold NA48/2 data [39] up to about 370 MeV using the tree amplitude. A good fit

was obtained by choosing the bare sigma mass, mσ to be about 420 MeV. A similarly

good fit in the sigma model without spin 1 fields needed mσ to be about 620 MeV

instead (See Fig. 2.3). Once a value of mσ is chosen, the amplitude is also predicted

at higher energies. It was pointed out (see Fig. 2.4 that those values of mσ resulted

in “global” pictures of the s-wave scattering which was considerably distorted. Much

better “global” pictures emerge from choices of bare sigma mass, mσ about 850 MeV.

However such a value for mσ results in, as seen in Fig. 2.7, some loss of precision for

the region just near threshold. From the standpoint of learning about the sigma, the

higher bare sigma mass is evidently the more suitable one.

It seems that the light sigma and the f0(980) are, not surprisingly, the main

features of the I = 0, s-wave pion-pion scattering amplitude in this energy range.

Adding the rho meson changes somewhat the parameters of the sigma needed for

fitting. Comparing the “global” fits to the resonant s-wave pion pion scattering

amplitude up to about 800 MeV, it is seen that the linear sigma model without the

spin 1 particles actually gives a better fit than the one with the spin 1 particles

included. This seems to be due to the higher polynomial terms induced by the Yang

Mills interaction.

The key equation obtained is Eq. (2.23) or equivalently, Eq. (2.37). If the minus

sign in this equation is chosen, it was shown that there is no consistent solution of

parameters when inputs are taken from the possible application to QCD of this model.

On the other hand, the minus sign choice allows a solution with mρ > mA, which

is plausibly related to a “minimal walking technicolor” application of the effective
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Lagrangian. If the plus sign choice is made in this equation, it was shown that the

QCD application of the model is allowed though a “walking technicolor” application,

while possible, seems to correspond to an extremely large rho boson width. There is

also a special case in this equation when the square root vanishes so the sign choice

is irrelevant. In that situation, the Weinberg and KSRF relations are both satisfied

in the unphysical limit where B = 0.

Of course, in the application to the minimal walking technicolor model [43], the

present piece would have to be embedded in a larger framework with an initial SU(4)

symmetry. One might similarly expect that the behaviors of the sigma (=Higgs) and

the technicolor spin 1 bosons would be similar to those seen here [58].

We also noted that a technicolor theory underlying the standard electroweak model

is likely to result in a Higgs potential which posseses standard “strong” interaction

symmetries like chiral SU(2), parity and charge conjugation. This is obvious for the

single Higgs doublet model. Imposing the same requirement for a two doublet model

results in an interesting picture, which is rather constrained compared to a general

two doublet model. In particular the second doublet doesn’t mix with the first one

although it interacts with it. This leads to at least one possible dark matter candidate.

A number of very interesting Higgs scenarios can be constructed. The most con-

servative one would make the second doublet heavier than the first. We considered

an opposite picture with lighter second doublet members. This provides extra decay

modes for the usual Higgs boson and enables us to construct models which might hide

the usual Higgs from being observed in certain experiments. These models involve all,

but one, of the parameters in our Higgs potential. Information about the remaining

one, α4 might be found by considering the connection with dark matter observations.

We used a chiral SU(3) model [20] containing not only the usual pseudoscalar

and scalar nonets describing quark-antiquark bound states but also pseudoscalar and
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scalar nonets describing states with the same quantum numbers but constructed

out of two quarks and two antiquarks in a general way. In this model the physical

particles correspond to mixtures of these two types. We studied the predictions of

the real (mass) and imaginary (width) parts of the pion scattering amplitude poles

representing the isoscalar scalar singlets. The model has four scalars so the process

is technically complicated. No new parameters were introduced here, either for the

model itself or to treat the scattering.

The fact that the comparison with the experimental scalar candidates is reasonable

is in itself a non trivial conclusion. Also the fact that the simple single channel K-

matrix unitarization (using no new parameters) seems to work may be useful to point

out. Presumably the results would be improved if the effect of the KK̄ channel were

to be included. Mixing with a possible glueball state is another relevant effect. The

worst prediction seems to be the too low mass value for pole 3. We note from Fig. 3.4

that there is a relatively large difference between the “bare” mass and the pole mass

in this case. The inclusion of the KK̄ threshold effects may improve this feature.

It may also be interesting to compare the predictions of pole 1 and pole 2 with

those calculated in a similar manner using the single M SU(3) sigma model [11]. The

agreement is quite good. However, in that model, the result was calculated using

the most general form of the interaction potential involving the field matrix M ; an

attempt to just use the “renormalizable” terms did not give as good a result. In the

present case it was not necessary to introduce any additional terms in the Lagrangian

to get good results for the ππ scattering.

The above model was supplemented by invariant terms which model the axial

U(1) anomaly as well as the usual terms which model the quark masses. Before it

was broken, the U(1)A quantum number distinguished the “two quark-two antiquark”

mesons from the “quark-antiquark” mesons. The starting point for the mixing was
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that a schematic two quark-two antiquark product state could be constructed with

the same SU(3)L × SU(3)R transformation property as the original ”quark-antiquark”

state. Of course this is just a “kinematic” statement and does not presume to say that

the dynamical binding has been established or that large quark masses do not change

this picture. We have shown that this kinematical feature in the chiral limit does not

hold for SU(n)L × SU(n)R when n is different from three. In the case of n = 4, it

was seen that three quark- three antiquark states could have the same transformation

property but we assumed that the 6-object bound state and other higher ones ( needed

for still larger n) would be unlikely to be bound as an “elementary particle”.

We constructed a kind of hybrid model with 4 flavors to for studying semi-leptonic

decays of charmed mesons into scalar plus leptons. There we have also noted a

possible experimental test of the kinematical criterion for the doubling of scalar and

pseudoscalar states in the charm sector. We saw that the partial widths for semi-

leptonic decays of the D+
s (1968) into isoscalar scalar singlets and pseudoscalar singlets

plus leptons could be well estimated in a simple model where the hadronic current

was taken to be the Noether current associated with a minimal linear sigma model.

The agreement between experiment and theory was better for the decays into the

η and η′ than for the decay into the f0(980). The former involve the hadronic vector

current, which is “protected” according to the conserved vector current hypothesis,

while the latter involves the “unprotected” axial vector current. Clearly it would be

interesting to try this technique for other semi-leptonic decays of charmed mesons

and also for bottom mesons. We considered the case when the charged lepton was e+

rather than the cases of µ+ or τ+. In those two cases an additional form factor as in

the calculation of the K#3 decay should be taken into account.

Information about the scalars, involving however more work for disentangling the

effects of the strong interaction, can also be obtained from the non-leptonic decay
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modes of the charm and bottom mesons. The study of the decay like B+
c → scalar +

e+ + νe might be useful for learning about mixing between a cc̄ scalar and the lighter

three flavor scalars. A straightforward, but not necessarily short, improvement of this

calculation would be to include both vector and axial vector mesons in the starting

Lagrangian from which the currents are calculated.
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Chapter 5

Introduction to S3 Symmetry

5.1 S3 Symmetry

At present, the particle physics community is planning, as a follow-up to the enor-

mously important experiments of the last decade [59] - [66], an extensive program with

the goal of more accurately understanding the neutrino masses and mixings. There

is really no accepted theory for an a priori prediction of these quantities. Hence it

seems worthwhile to investigate in detail various theoretical models to develop plau-

sible scenarios which might be tested.

The standard model interaction term for β decay or π− → e−νe includes the

leptonic piece:

L =
ig√
2
W−

µ eLγµνe + h.c, (5.1)

The object νe is now known to be a linear combination of neutrino mass eigen-

states, ρ̂i:

νe =
∑

Keiρ̂i (5.2)

where, in a basis with the charged leptons diagonal, the full lepton mixing matrix
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is written as:

K =






Ke1 Ke2 Ke3

Kµ1 Kµ2 Kµ3

Kτ1 Kτ2 Kτ3






(5.3)

As has been discussed by many authors [67] - [81] the results of neutrino oscillation

experiments are (neglecting possible phases to be discussed later) roughly consistent

with the “tribimaximal mixing” matrix:

KTBM =






−2√
6

1√
3

0

1√
6

1√
3

1√
2

1√
6

1√
3

−1√
2






≡ R. (5.4)

Many different approaches have been used to explain the form of K. A “natural”,and

often investigated one uses the parallel three generation structure of the fundamental

fermion families as a starting point. An underlying discrete symmetry S3, the permu-

tation group on three objects, is then assumed. [82]- [89] The permutation matrices

S are,

S(1) =






1 0 0

0 1 0

0 0 1






, S(12) =






0 1 0

1 0 0

0 0 1






, S(13) =






0 0 1

0 1 0

1 0 0






,

S(23) =






1 0 0

0 0 1

0 1 0






, S(123) =






0 0 1

1 0 0

0 1 0






, S(132) =






0 1 0

0 0 1

1 0 0






,(5.5)

This defining representation is not irreducible. The 3-dimensional space breaks up

into irreducible 2-dimensonal and 1-dimensional spaces. One may note that the tribi-

maximal matrix, KTBM is an example of the transformation which relates the given

basis to the irreducible one. This fact provides our motivation for investigating the
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S3 symmetry, even though many other interesting approaches exist. The symmetry

requirement reads,

[S, Mν ] = 0, (5.6)

where S stands for any of the six matrices in Eq. (5.5) and Mν is the neutrino mass

matrix.

By explicitly evaluating the commutators one obtains the solution:

Mν = α






1 0 0

0 1 0

0 0 1






+ β






1 1 1

1 1 1

1 1 1





≡ α1 + βd. (5.7)

α and β are, in general, complex numbers for the case of Majorana neutrinos while d

is usually called the “democratic” matrix.

5.2 Need for Perturbation

It is easy to verify that this Mν may be brought to diagonal (but not necessarily real)

form by the real orthogonal matrix, R = KTBM defined above:

RT (α1 + βd)R =






α 0 0

0 α + 3β 0

0 0 α






. (5.8)

R may be written in terms of the eigenvectors of Mν as:

R =

[

0r1 0r2 0r3

]
, (5.9)

For example, 0r1 is the first column of the tribimaximal matrix, Eq. (5.4). Physically

one can assign different masses to the mass eigenstate 0r2 in the 1-dimensional basis

and to the (doubly degenerate) eigenstates 0r1 and 0r3 in the 2-dimensional basis. At
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first glance this sounds ideal since it is well known that the three neutrino masses are

grouped into two almost degenerate ones (“solar neutrinos”) and one singlet, with

different values. However, since we are demanding that R be taken as the tribimax-

imal form, the physical identification requires 0r1 and 0r2 to be the“solar” neutrino

eigenstates rather than the degenerate ones 0r1 and 0r3. This had been considered a

serious objection to the present approach since often a scenario is pictured in which

the mass eigenvalue for 0r3 is considerably larger than the roughly degenerate masses

associated with 0r1 and 0r2. A way out was suggested in [67] where it was noted that,

for values of m1 + m2 + m3 larger than around 0.3 eV, the neutrino spectrum would

actually be approximately degenerate. This may be seen in detail by consulting the

chart in Table 1 of [67] wherein the neutrino masses are tabulated as a function of an

assumed value of the third neutrino mass, m3. Actually it is seen that there is also a

region around m3 ≈ 0.04 eV and m1 + m2 + m3 ≈ 0.18eV where an assumed initial

degeneracy may be reasonable. To make physical sense out of such a scenario, it was

suggested that the neutrino mass matrix be written as,

Mν = M (0)
ν + M (1)

ν + M (2)
ν , (5.10)

where M (0)
ν has the full S3 invariance and has degenerate (at least approximately)

eigenvalues. Furthermore, the smaller M (1)
ν is invariant under a particular S2 subgroup

of S3 and breaks the degeneracy. Finally, M (2)
ν is invariant under a different S2

subgroup of S3 and is assumed to be smaller still. The strengths are summarized as:

M (0)
ν > M (1)

ν > M (2)
ν . (5.11)

This is inspired by the pre-QCD flavor perturbation theory of the strong interac-

tion which works quite well. In that case the initially unknown strong interaction

Hamiltonian is expanded as

H = H(0) + H(1) + H(2). (5.12)
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Here H(0) is the dominant SU(3) flavor invariant piece, H(1) is the smaller Gell-Mann

Okubo perturbation [90] which transforms as the eighth component of a flavor octet

representation and breaks the symmetry to SU(2) and H(2), which transforms as a

different component of the octet representation and breaks the symmetry further to

the hypercharge U(1), is smaller still.

There is a possible immediate objection to the assumption that the neutrino mass

eigenvalues be degenerate in the initial S3 invariant approximation; after all Eq. (5.8)

shows that there are two different eigenvalues α and α + 3β. This was overcome

by recognizing that these are both complex numbers and that they could both have

the same magnitude but different directions. Having the same magnitude guarantees

that all three physical masses will be the same. This introduces a physical phase ψ

corresponding to the angle between α and α + 3β.

In the strong interaction case, the initial SU(3) invariance was found to be reason-

ably well obeyed. It is thus natural to ask what predictions may exist in the initial

S3 invariant approximation in our neutrino model. It was found [67] that the leptonic

factor for neutrinoless double beta decay, mee could be predicted in this limit to be,

|mee| =
m

3

√
5 + 4cosψ, (5.13)

where m is the degenerate neutrino mass and ψ is the Majorana type phase mentioned

above. This led to the inequality

m > |mee| ≥ m/3. (5.14)

The next chapter is based on our work where we will consider the effect of the per-

turbations M (1)
ν [91] and M (2)

ν [92]. Many authors [93] - [95] have suggested that a µ-τ

symmetry ((23) symmetry in the present language) is associated with tribimaximal

mixing in the neutrino sector. Thus it is a natural S2 symmetry choice for M (1)
ν nad

M (2)
ν . Recently, Chen and Wolfenstein [68] applied this type of perturbation to our
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present model with the additional assumption that the Majorana phase ψ takes the

value π. This corresponds to CP conservation. Their result for |mee| is in agreement

with the lower limit in Eq. (5.14). Here we will investigate the first perturbed case

without assuming that special value of ψ.

Before going on to this we will present an amusing argument to show that the

(23) perturbation is naturally associated with the tribimaximal form (modulo the

majorana type phase ψ) rather than a tribimaximal form multiplied by a rotation

in the two dimensional degenerate subspace (which is physically irrelevant at the

S3 invariant level). This is based on the fact that degenerate perturbation theory

must be employed, which leads to a stability condition. Further we will show that

other S2 perturbations are mathematically consistent but do not lead to the desired

tribimaximal form.
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Perturbation Analysis

6.1 Effects of Different Perturbations

In the present framework there are three different possible perturbations, each charac-

terized by the S2 subgroup which remains invariant. Let us first consider the favored

perturbation which leaves invariant the S2 subgroup, consisting of S(1) and S(23).

Apart from a piece which may be reabsorbed in Eq. (5.7), such a perturbation has

the form,

∆ =






0 0 0

0 t u

0 u t






(6.1)

where t and u are parameters. It is convenient to adopt the language of ordinary

quantum mechanics perturbation theory. We should then work in a basis like Eq.

(5.8) where Mν in Eq. (5.7) is diagonal. However, because of the double degeneracy

between the eigenvectors 0r1 and 0r3 in Eq. (5.4), the matrix R is not the unique one

which diagonalizes Mν . We should really use the more general matrix RX(ξ) where
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X(ξ) is given by:

X(ξ) =






cosξ 0 −sinξ

0 1 0

sinξ 0 cos ξ






. (6.2)

In this basis ∆ has the form:

XT RT∆RX =






c2(t+u)
3 + s2(t − u)

√
2

3 c(t + u) 2sc
3 (t − 2u)

√
2

3 c(t + u) 2
3(t + u) −

√
2

3 s(t + u)

2sc
3 (t − 2u) −

√
2

3 s(t + u) s2(t+u)
3 + c2(t − u)






. (6.3)

Here, c = cos ξ and s = sin ξ. Note that, before adding a perturbation, the S3

symmetry predicts the lepton mixing matrix to be RX(ξ) rather than the desired

tribimaximal form, R.

In perturbation theory, the first correction to the mth eigenvector involves the

ratio <n|H(1)|m>
Em−En

. For degenerate perturbation theory it is of course necessary that the

numerator vanishes for those states with En = Em. Here we simply require for the

(13) matrix element:

(X(ξ)TKT
TBM∆KTBMX(ξ))13 = 0. (6.4)

This yields in general, sin(2ξ) = 0. The solution with ξ = 0 is the desired tribi-

maximal form. The solution with ξ = π just changes the signs of the first and third

columns. However, the solutions with ξ = π/2 and ξ = 3π/2 interchange the first and

third columns, which does not agree with experiment. Thus, apart from a discrete

ambiguity, the tribimaximal form is uniquely chosen when a smooth connection with

the (23)-type perturbation is required. Of course, the smooth connection corresponds

to choosing the correct initial states for the perturbation treatment.

It is easy to see that perturbations which leave the other two S2 subgroups invari-

ant, do not lead to mixing matrices of the desired tribimaximal form. The perturba-
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tion which commutes with S(12) is:

∆′ =






t′ u′ 0

u′ t′ 0

0 0 0






. (6.5)

Similarly, the perturbation which commutes with S(13) has the form:

∆′′ =






t′′ 0 u′′

0 0 0

u′′ 0 t′′






. (6.6)

The stability condition for obtaining the tribimaximal mixing for the ∆′ pertuba-

tion would require the matrix element (KT
TBM∆′KTBM)13 to vanish; instead it takes

the value
√

3
6 (t′ − 2u′). Similarly, the stability condition for the ∆′′ pertubation does

not work since the matrix element (KT
TBM∆′′KTBM)13 takes the generally non-zero

value
√

3
6 (−t′′ + 2u′′).

While we have seen that the stability condition for (23) invariant perturbations

enforces the experimentally plausible tribimaximal mixing, the underlying S3 sym-

metry should allow characteristic stable mixing matrices to emerge for either the (12)

invariant or (13) invariant perturbations. What are their forms? In the case of a (12)

perturbation, the stability condition associated with degenerate perturbation theory

reads:

(KT∆′K)13 = 0. (6.7)

Here the characteristic mixing matrix emerges as K = KTBMX(ξ) for a suitable value

of ξ. The solution is easily seen to have the form:

KTBMX(
π

6
) =






1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6






. (6.8)
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In the case of a (13) invariant perturbation, the stability condition associated with

degenerate perturbation theory reads:

(KT∆′′K)13 = 0. (6.9)

Here the characteristic stable mixing matrix turns out to be:

KTBMX(
π

3
) =






−1√
6

1√
3

1√
2

2√
6

1√
3

0

−1√
6

1√
3

−1√
2






. (6.10)

The situation is summarized in Table 6.1. Mathematically, any of the three per-

turbations will result in a stable mixing matrix. However, only the (23) perturbation

gives the experimentally allowed tribimaximal form. For example, we see that the

zero value of K13, in good present agreement with experiment, only holds for the ∆

[(23)-type] perturbation.

Perturbation Mixing matrix

∆ KTBM

∆′ KTBMX(π6 )

∆′′ KTBMX(π3 )

Table 6.1 Characteristic, stable mixing matrices for each S2 invariant per-
turbation.

6.2 Zeroth Order Setup

In order to go further we adopt convenient conventions for the, in general, complex

parameters α and β defined in Eq. (5.7). The goal is to adjust a phase, ψ in order

that the zeroth order spectrum has three exactly degenerate neutrinos. As shown in
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Fig. 6.1, we take the 2-vector 3β to be real positive. Then the 2-vector α lies in the

third quadrant as:

α = −i|α|e−iψ/2, (6.11)

where the physical phase ψ lies in the range:

o < ψ ≤ π. (6.12)

Finally |α| is related to β by,

|α| =
3β

2sin(ψ/2)
. (6.13)

In the limiting case ψ = π, α takes the real value,

α = −
3β

2
(ψ = π). (6.14)

Figure 6.1 Isosceles triangle with angle ψ between the equal length 2-vectors
α and α + 3β.
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6.3 Analysis of the First Perturbation

For simplicity we will consider the parameters t and u in Eq. (6.1) to be real rather

than complex. The entire neutrino mass matrix to first order is Mν = α1 + βd + ∆.

Since we are working in a basis where the zeroth order piece is diagonalized by the

tribimaximal matrix, R, we must diagonalize the matrix:

RT (α1 + βd + ∆)R =

α1 +






t+u
3

√
2

3 (t + u) 0
√

2
3 (t + u) 3β + 2

3(t + u) 0

0 0 t − u






. (6.15)

Diagonalizing the upper left 2 × 2 sub-matrix yields the three, in general, complex

eigenvalues:

α +
3

2
(β + T )(1 −

√

1 −
4βT

3(β + T )2
) ≈ α + T,

α +
3

2
(β + T )(1 −

√

1 +
4βT

3(β + T )2
) ≈ α + 3β + 2T,

α + t − u, (6.16)

where we introduced the abbreviation, T = (t + u)/3. The indicated approximations

to the exact eigenvalues correspond to working to first order in the parameters t and

u. Remember that according to our original setup, t and u are supposed to be small

compared to |α| and β. Since Fig. 6.1 shows that generally |α| > 3β/2, it is sufficient

that |t| and |u| be small compared to β.

In this approximation the corresponding eigenvectors are the columns of,

R1 ≈






1
√

2
9β (t + u) 0

−
√

2
9β (t + u) 1 0

0 0 1






. (6.17)
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The entire diagonalization may be presented as,

KT (α1 + βd + ∆)K =






m1 0 0

0 m2 0

0 0 m3






. (6.18)

Here m1, m2 and m3 are the three (positive) neutrino masses and

K = RR1P (6.19)

is the full neutrino mixing matrix (in a basis where the charged leptons are diagonal).

The neutrino masses, to order (t, u)/β, are seen to be:

m1 ≈
3β

2
csc(

ψ

2
)

[
1 −

2

9β
(t + u)sin2(

ψ

2
)

]
,

m2 ≈
3β

2
csc(

ψ

2
)

[
1 +

4

9β
(t + u)sin2(

ψ

2
)

]
,

m3 ≈
3β

2
csc(

ψ

2
)

[
1 −

6

9β
(t − u)sin2(

ψ

2
)

]
. (6.20)

These mass parameters were made real, positive by the introduction of the phase

matrix:

P =






e−iτ 0 0

0 e−iσ 0

0 0 e−iρ






, (6.21)

where,

τ ≈
π

2
+

1

2
tan−1[

cot(ψ/2)

1 − 2(t+u)
9β

]

σ ≈ π −
1

2
tan−1[

cot(ψ/2)

1 + 4(t+u)
9β

]

ρ ≈
π

2
+

1

2
tan−1[

cot(ψ/2)

1 − 2(t−u)
3β

]. (6.22)
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To compare with experiment, we have important information from neutrino oscil-

lation experiments [59]- [66]. It is known that [96]

A ≡ m2
2 − m2

1 = (8 ± 0.3) × 10−5eV2,

B ≡ |m2
3 − m2

2| = (2.5 ± 0.5) × 10−3eV2. (6.23)

Also, constraints on cosmological structure formation yield [97] a rough bound,

m1 + m2 + m3 < 0.7eV. (6.24)

The two allowed spectrum types are:

Type1 : m3 > m2 > m1,

T ype2 : m2 > m1 > m3. (6.25)

.

Now, from Eq. (6.20) we see to leading order:

m2
2 − m2

1 = 3β(t + u),

m2
3 − m2

2 = β(−5t + u). (6.26)

The quantities βt and βu may thus be obtained for a type 1 spectrum as:

βt = A/18 − B/6 ≈ −4.13 × 10−4eV2,

βu = 5A/18 + B/6 ≈ 4.39 × 10−4eV2, (6.27)

where the central experimental values were used. In the type 2 spectrum case, we

should change B → −B in the above to find,

βt = A/18 + B/6 ≈ 4.21 × 10−4eV2,

βu = 5A/18 − B/6 ≈ −3.94 × 10−4eV2 (6.28)
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Thus the, assumed real, S3 violation parameters βt and βu are now known for

each spectrum type. Information about the quantity β may in principle be obtained

from the perturbed lepton mixing matrix given in Eq. (6.19):

K ≈






−2√
6
−

√
2(t+u)

9β
√

3
1√
3
− 2(t+u)

9β
√

3
0

1√
6
−

√
2(t+u)

9β
√

3
1√
3

+ (t+u)

9β
√

3
1√
2

1√
6
−

√
2(t+u)

9β
√

3
1√
3

+ (t+u)

9β
√

3
−1√

2






P. (6.29)

With a usual parameterization (See, for example, Eq. (10) of [98])1 the matrix

with zero (13) element takes the form,

K =






c12 s12 0

−s12c23 c12c23 s23

s12s23 −c12s23 c23






P, (6.30)

where c12 is short for cosθ12 for example. This amounts to the predictions,

c12 = −
2√
6
−

√
2(βt + βu)

9
√

3β2
,

c23 = −
1√
2
,

s13 = 0. (6.31)

Notice that, when the perturbation is absent, this agrees with the tribimaximal form

used here if both θ12 and θ23 lie in the second quadrant. The results of a recent study

( [99], [100]) of neutrino oscillation experiments are:

(s23)
2 = 0.50+0.07

−0.06,

(s12)
2 = 0.304+0.022

−0.016. (6.32)

One immediately notices that the prediction, (s23)2 = 1/2 is unchanged from its

tribimaximal value by the perturbation and agrees with the new analysis. On the

1This reference also discusses a more symmetrical parameterization which may be convenient for

treating neutrinoless double beta decay in general
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other hand the tribimaximal prediction, (s12)2 = 1/3 is slightly changed from its

tribimaximal value and actually lies slightly above the upper experimental error bar.

This is probably not a serious disagreement but it might be instructive to try to fix

it using the predicted perturbation in the present model:

(s12)
2 =

1

3
−

4

27

βt + βu

β2
. (6.33)

For either the type 1 or type 2 assumed spectrum, the perturbation is seen to be in

the correct direction to lower the value of s2
12, as desired. However, because of the

large cancellation between βt and βu, this effect is extremely small for a reasonable

value of β2; even with β as small as 0.05 eV, (s12)2 is only lowered to 0.332.

It is also interesting to discuss the absolute masses of the neutrinos rather than

just the differences of their squares. Since the differences are known, let us focus on

one of them, say m3:

m3 ≈
3β

2
csc(

ψ

2
) −

βt − βu

β
sin(

ψ

2
). (6.34)

Notice that the first term on the right hand side is, using Eq. (6.13), simply the

zeroth order degenerate mass, |α| while the second term represents the correction.

Also note that (see Fig. 6.1) the point ψ = 0 is not allowed. Considering ψ as a

parameter (related to the strength of neutrinoless double beta decay), this equation

represents a quadratic formula giving β in terms of the absolute mass m3 for any

assumed ψ. In Fig. 6.2, adopting the criterion that |t|/β and |u|/β be less than 1/5

for perturbative behavior, we display the perturbative region in the m3 −ψ plane. In

contrast to the case of m3, m1 and m2 are seen to have small corrections since they

of course depend on β(t + u) rather than β(t − u).
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Figure 6.2 Sketch of perturbative region in the m3-ψ plane. It is about the
same for both type 1 and type 2 neutrino spectra. Note that ψ is measured
in radians and m3 is measured in eV.

6.3.1 Neutrinoless Double Beta Decay

The characteristic physical novelty of of a theory with Majorana type neutrinos is

the prediction of a small, but non-zero, rate for the neutrinoless double beta decay

of a nucleus: (A, Z) → (A, Z + 2) + 2e−. The appropriate leptonic factor describing

the amplitude for this process is,

|mee| = |m1(K11)
2 + m2(K12)

2 + m3(K13)
2|. (6.35)

Substituting in the neutrino masses to order (t, u)/β from Eq. (6.20 as well as Eq.

(6.21) yields:

|mee| ≈
3β

2sin(ψ2 )
|
2

3
+

4(t + u)

27β
cos2(

ψ

2
) + [

1

3
−

4(t + u)

27β
cos2(

ψ

2
)]e2i(τ−σ)|. (6.36)
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The needed intermediate quantity cos[2(τ − σ)] may be easily obtained from Eqs.

(6.22) by construction of a suitable right triangles to be:

cos[2(τ − σ)] ≈ cosψ −
(t + u)sinψ

9β
.

We then find, correct to first order in (t, u)/β,

|mee| =
β

2sin(ψ/2)

√
5 + 4cosψ, (6.37)

which is just the zeroth order result. The experimental bound on |mee| is given [101]

as,

|mee| < (0.35 − 1.30)eV, (6.38)

which is small enough so that there is hope the possibility of a Majorana neutrino

might be settled in the near future. Since the correction to |mee| has been seen to be

zero in this model we can take over the zeroth order inequality in Eq. (5.14). This

means that the existence of the Majorana phase, ψ can alter the amplitude for neu-

trinoless double beta decay by a factor of three for given (approximately degenerate)

neutrino masses.

6.4 Adding the Second Perturbation and s13 Mix-

ing Parameter

Here we will choose for the second order perturbation, the matrix:

∆′ =






t′ u′ 0

u′ t′ 0

0 0 0






. (6.39)
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For simplicity we again consider the parameters, t′ and u′ to be real.

Note that this second order perturbation preserves the S2 subgroup which involves

the 1-2 interchange. One might wonder about also including a perturbation, ∆′′ which

preserves the 1-3 S2 subgroup. However, that is not expected to give anything new

since this combination already has the same number of parameters as the most general

symmetric matrix, Mν .

In the present case the zeroth order term has the discrete group S3 invariance and

two different S2 subgroups are left invariant by the two perturbations.

To include the 2nd-order perturbation, Eq. (6.39), we must diagonalize,

H = RT
1 RT (αI + βd + ∆ + ∆′)RR1

≡ H0 + H ′ (6.40)

where, after some computation and neglect of still higher order terms, we obtain:

H ′ = RT
1 RT∆′RR1 ≈






5
6 t

′ − 2
3u

′ − 1
3
√

2
(t′ + u′) 1

2
√

3
(t′ − 2u′)

− 1
3
√

2
(t′ + u′) 2

3(t
′ + u′) 1√

6
(t′ + u′)

1
2
√

3
(t′ − 2u′) 1√

6
(t′ + u′) 1

2t
′






. (6.41)

We introduced the notation H0 (Everything in Eq. (6.40) except for ∆′) and

H ′ to indicate that, rather than making an explicit diagonalization we will regard,

the result to first order as a “zeroth order Hamiltonian”, the given second order

term, Eq. (6.39) as a “first order perturbation” and use ordinary quantum mechanics

perturbation theory to proceed. In that approach one has of course the corrections

to the energies as:

E ′
n =< ψn|H ′|ψn >, (6.42)

105



106 Chapter 6 Perturbation Analysis

while the corrections to the eigenvectors are,

ψ(1)
m =

∑

n &=m

< ψn|H ′|ψm >

Em − En
ψn. (6.43)

A more general perturbation approach, which gives the same results, is discussed in

the Appendix (B.1). The lepton mixing matrix up to and including second order then

reads:

K = RR1R2P = (ψ1,ψ2,ψ3)P, (6.44)

where the ψi are the columns of RR1R2 and furthermore P is the phase matrix

needed for the neutrino masses to be real positive; explicitly,

ψ1 =
1√
6






−2 − 2 t+u
9β + 2 t′+u′

β

1 − 2 t+u
9β − 3 t′−2u′

t−2u + t′+u′

9β

1 − 2 t+u
9β + 3 t′−2u′

t−2u + t′+u′

9β






,

ψ2 =
1√
3






1 − 2 t+u
9β + t′+u′

9β

1 + t+u
9β − t′+u′

18β + t′+u′

6

1 + t+u
9β − t′+u′

18β − t′+u′

6






,

ψ3 =
1√
2






−1
2

t′−2u′

t−2u − t′+u′

9β

1 + 1
4

t′−2u′

t−2u − t′+u′

9β

−1 + 1
4

t′−2u′

t−2u − t′+u′

9β






, (6.45)

and the phase matrix has the form,

P =






e−iτ 0 0

0 e−iσ 0

0 0 e−iρ






, (6.46)
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wherein,

τ ≈
π

2
+

1

2
tan−1[

cot(ψ/2)

1 − 2(t+u)
9β − 5t′

9β − 4u′

9β

]

σ ≈ π −
1

2
tan−1[

cot(ψ/2)

1 + 4(t+u)
9β + 4(t′+u′)

9β

]

ρ ≈
π

2
+

1

2
tan−1[

cot(ψ/2)

1 − 2(t+u)
3β − t′

3β

]. (6.47)

Note that we are free to subtract (τ +σ+ρ)/3 from each of these three entries. Then

the sum of the modified three entries will vanish in accordance with the requirement

that there be only two independent Majorana phases. The real positive neutrino

masses to second order are then:

m1 ≈
3

2
βcsc

ψ

2
[1 −

2

9β
(t + u +

5

2
t′ − 2u′)sin2ψ

2
],

m2 ≈
3

2
βcsc

ψ

2
[1 +

4

9β
(t + u + t′ + u′)sin2ψ

2
],

m3 ≈
3

2
βcsc

ψ

2
[1 −

2

3β
(t − u +

1

2
t′)sin2ψ

2
]. (6.48)

Notice that the zeroth order masses have the characteristic strength, β while

the first order masses are suppressed by (t, u)/β and the second order masses are

suppressed by (t′, u′)/β.

Also notice that the absolute values of the neutrino masses depend on the Ma-

jorana phase, ψ. However, the lepton number conserving neutrino oscillations can

not depend on a Majorana phase2 [102]. As a check of this we see that the phase ψ

cancels out when one considers the mass differences,

2One needs the presently unobserved neutrino antineutrino oscillations or other lepton number

violating processes to see the Majorana phases,
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A ≡ m2
2 − m2

1 ≈ 3β(t + u) +
9

2
βt′,

B ≡ m2
3 − m2

2 ≈ β(−5t + u) − β(
7

2
t′ + 2u′),

C ≡ m2
3 − m2

1 ≈ 2β(−t + 2u) + β(t′ − 2u′). (6.49)

Of course, A, B and C are not independent. There are two, presently unresolved,

experimental possibilites:

Type1 : m3 > m2 > m1,

T ype2 : m2 > m1 > m3. (6.50)

.

The corresponding relations are:

Type1 : |C| = |B| + A,

Type2 : |C| = |B|− A. (6.51)

.

These relations were obtained by using the known positive sign of A and that only

the two possibilities m2
3 > m2

2 > m2
1 and m2

2 > m2
1 > m2

3 are allowed. In the literature

some works specify A and |B| while others specify A and |C|.

The following best fit values for the perturbation parameters βt and βu were given

in the first order treatment:

βt ≈ −4.13 × 10−4eV2,

βu ≈ 4.39 × 10−4eV2, T ype1 (6.52)
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βt ≈ 4.21 × 10−4eV2,

βu ≈ −3.94 × 10−4eV2 Type2. (6.53)

6.4.1 Elements of the Mixing Matrix

We employ the following parameterization [98] of the leptonic mixing matrix, K:

K =






c12c13 s12c13 s13e−iγ

−s12c23 − c12s13s23eiγ c12c23 − s12s13s23eiγ c13s23

s12s23 − c12s13c23eiγ −c12s23 − s12s13c23eiγ c13c23






P, (6.54)

where c12 is short for cosθ12 for example. P is the diagonal matrix of Majorana type

phases given in Eqs. (6.46) and (6.47) for the present model. For simplicity we are

presently neglecting the conventional CP violation and thus setting γ = 0. To specify

s12, s13 and s23, it is clearly sufficient to compare the (1-2), (1-3) and (2-3) matrix

elements of K in Eq. (6.54) with those calculated in Eq. (6.45). This yields:

s12c13 =
1√
3
−

2√
3

t + u

9β
+

1√
3

t′ + u′

9β
,

s13 = −
1

2
√

2

t′ − 2u′

t − 2u
−

1√
2

t′ + u′

9β
,

s23c13 =
1√
2

+
1

4
√

2

t′ − 2u′

t − 2u
−

1√
2

t′ + u′

9β
. (6.55)

For an initial orientation we see that at zeroth order, s13 vanishes and also K has

the tribimaximal form. When the first order perturbation characterized by t and u

is added, neither s13 nor s23 change. However s12 is somewhat modified as discussed

previously. When the second order perturbation characterized by t′ and u′ is added,

s13 finally becomes non-zero while both s12 and s23 suffer further corrections.
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But something unusual is happening; there are terms for s13 and s23 which behave

like t′/t and are manifestly of first order in strength. These arise from the energy

difference denominator in Eq. (6.43). Since we had to use degenerate perturbation

theory at first order this denominator is proportional to the first order “energy”

corrections rather than the zeroth order energies. Keeping terms of actual first order

in strength we find the interesting relation:

s13 ≈ −2δs23, (6.56)

where δs23 denotes the deviation of s23 from its tribimaximal value. Also the good

approximation c13 = 1 was made.

Already, Fogli et. al. [99] and Schwetz et. al. [100] have pointed out that detailed

analysis of existing neutrino oscillation experiments gives some hint for non zero s13.

Thus it seems interesting to see what predictions emerge from Eq. (6.56).

Expanding s23 around its “tribimaximal value” as s23 = [s23]TBM + δs23, one gets:

(s23)
2 ≈

1

2
+
√

2δs23. (6.57)

Comparing with the results of a global analysis of the oscillation data given in Table

A1 of [100] one then identifies, for respectively 1σ, 2σ and 3σ errors:

|δs23| = 0.05, 0.08, 0.11. (6.58)

Note that the three cases are associated with the experimental data relating to the

2-3 type neutrino oscillations. Using Eq. (6.56) then leads to the corresponding

predictions,

|s13| < 0.025, 0.040, 0.055. (6.59)

It is amusing to note that these values range from about 1/4 to 1/2 of the “best fit”

value |s13| = 0.11, which is also presented in the first column of Table A1 in [100].
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Of course, our estimates provide a test of the present theoretical model for neutrino

parameters and have no connection with experimental data on |s13|.

As discussed above, the theoretical estimate for |s13|, is of characteristic first

order strength, appearing as a ratio of a second order quantity divided by a first

order quantity. Using Eq. (6.55) for s13 and neglecting the term of second order

strength we can get an estimate of the relative second to first order effects:

|
t′ − 2u′

t − 2u
| ≈ 2

√
2|s13| ≈ 0.071, 0.11, 0.16, (6.60)

wherein Eq. (6.59) was used. Evidently the second order effects seem to be suppressed

by about 1/10 compared to the first order effects. On the other hand, as seen in Eq.

(6.49), the quantities t′ and u′ enter in the true second order corrections for the

neutrino mass differences. Thus those corrections are likely to be small – on the

order of 10% of the first order mass splittings.
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Chapter 7

Conclusions for S3 Symmetry for

Neutrino Masses and Mixing

In some ways the problem of “flavor” in the Standard Model is reminiscent of that in

Strong Interaction physics before the quark model. At that time it was realized that,

as a precursor to detailed dynamics, group theory might give important clues. Then

the strong interactions were postulated to be SU(3) flavor invariant with a weaker

piece having just the the SU(2) isospin (times hypercharge) invariance. In addition

it was known that there was a still weaker isospin breaking (possibly QED) which by

itself preserved a different SU(2) invariance (so-called U-spin).

In the second part of the thesis, an analogy for neutrinos of this kind is stud-

ied in a perturbative framework using discrete group S3. At the S3 invariant level

the neutrino mixing matrix is actually arbitrary up to a rotation in a 2-dimensional

subspace. This problem can be settled (since degenerate perturbation theory is in-

volved) by specifying the transformation property of the perturbation to be added.

Although there is widespread agreement that the first perturbation should preserve

the S2 subgroup which interchanges the second and third neutrinos, we presented for
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completeness and interest, the mixing matrices for the other two possibilities also.

We carried out the perturbation analysis for any choice of a Majorana-type phase,

ψ which plays an important role in this model. If ψ is considered fixed there are

three parameters in the model (In [68] ψ was considered fixed at the value π). These

three parameters can be taken as βt, βu and β defined above. The quantities βt and

βu were found in terms of the neutrino squared mass differences for each choice of

neutrino spectrum type, i.e. normal or inverted hierarchy. The value of β depends

on the presently unknown absolute value of any neutrino mass. The magnitudes

of βt and βu are similar (though not exactly equal) but differ in sign. Thus the

perturbation corrections which involve (βt + βu) are very small. Clearly (see the

first of Eqs. (6.26)) this is due to the small solar neutrino mass difference. This

situation occurs for the correction to the mixing parameter sin2θ12 in addition to m1

and m2, the masses of the first two neutrinos. The perturbation dependence on (βt

-βu) is not suppressed however. This occurs for the mass, m3 of the third neutrino.

This result was used to make a sketch of the region in the ψ-m3 plane for which the

perturbation approach given seems numerically reasonable.

The explicit role of the Higgs sector, which is believed to be at the heart of the

matter, was not discussed. However, this as well as some further technical details

were discussed in [67]. For further treatment of this aspect is to investigate the

weakest perturbation, the analog of the U-spin preserving perturbation in the strong

interaction to get non-zero θ13. For this purpose we designated the second order

parameters as t′ and u′. The first order corrections to the neutrino masses were

suppressed by (t, u)/β compared to zeroth order. For the mixing angles, the first

order corrections had a previously obtained piece proportional to (t, u)/β as well as

a new piece proportional to (t′, u′)/(t, u). The latter term arose because we used

degenerate perturbation theory and is clearly important for s13 to be non-zero and
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correlated to corrections of s23.

We have numerically neglected, for both masses and mixing angles terms propor-

tional to (t′, u′)/β. At first order, we considered (t, u)/β to be about 1/5. We found a

characteristic strength of s13 to correspond to (t′, u′)/(t, u) about 1/10. Both of these

magnitudes are roughly similar.

Note that Eqs. (6.49) for the neutrino mass differences and Eqs. (6.55) for the

mixing angles do contain pieces of actual second order strength. These should be

interesting to study in the future when more precise data becomes available.

The first order corrected formula for the neutrinoless double beta decay formula

does not get any corrections at second order and hence still holds.
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Appendix A

Part I Appendix

A.1 Lagrangian in Terms of Component Fields

The spin zero meson kinetic terms are:

−
1

2
Tr(DµMDµM †) = −

1

2
∂µπ · ∂µπ −

1

2
∂µσ∂µσ +

g√
2
Aµ · (σ

↔
∂µ π)

−
g

2
√

2
εabcVµa(πb

↔
∂µ πc) + g2[−

σ2

4
Aµ · Aµ

+
1

2
εabcσπaVµbAµc +

1

4
(π · V µ)

2 −
1

4
(π · π)(V µ · V µ)

−
1

4
(π · Aµ)

2]. (A.1)
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The Yang-Mills terms are:

−
1

2
Tr(F r

µνF
r
µν + F l

µνF
l
µν) = −

1

4
[(∂µVνa − ∂νVµa)

2 + (∂µAνa − ∂νAµa)
2]

−
g

2
√

2
εabc[(∂µVνc − ∂νVµc)(VµaVνb + AµaAνb)

− (∂µAνc − ∂νAµc)(VµaAνb + AµaVνb)]

−
g2

8
[(V µ · V µ)

2 − (V µ · V ν)
2 + (Aµ · Aµ)2

− (Aµ · Aν)
2 + 2(V µ · V µ)(Aν · Aν)

− 2(V µ · V ν)(Aµ · Aν) + 4(V µ · Aµ)(V ν · Aν)

− 2(V µ · Aν)(V µ · Aν)]. (A.2)

Finally, the spin one meson mass terms are:

− m2
0Tr(lµlµ + rµrµ) = −

1

2
m2

0(V µ · V µ + Aµ · Aµ),

−CTr(l2µMM † + r2
µM

†M) = −
C

4
(V µ · V µ + Aµ · Aµ)(σ

2 + π · π),

BTr(MrµM †lµ) = B[
1

8
σ2(V µ · V µ − Aµ · Aµ) −

1

2
εabcσπaVµbAµc

+
1

4
(π · V µ)

2 −
1

8
(π · π)(V µ · V µ) −

1

4
(π · Aµ)

2

+
1

8
(π · π)(Aµ · Aµ)]. (A.3)

A.2 Pion-pion Scattering Amplitude

At tree level, the conventional Mandelstam scattering amplitude, A(s, t, u) has the

following contributions:

1) Zero derivative contact term:

−g̃σππw
2/v,

g̃σππ ≡
w2

v
(m2

σ −
m̃2
π

w2
). (A.4)

Note that Eqs. (2.13) and (2.15) were used in obtaining this result.
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2) Two derivative contact term:

(
g2

2
+ B − C)b2w2s − Bb2m̃2

πw
2 + 2b2Cm̃2

πw
2. (A.5)

Note that the factor b2 is due to the presence of a physical pion field in the original

axial vector meson field, Aµ, as described in the first of Eqs. (2.15). Thus, b2 labels

the two derivative interaction terms.

3) Four derivative contact term:

−
g2

2
b4(2s2 − t2 − u2 − 12m̃2

πs + 16m̃4
π) (A.6)

Note, as above, that the b4 factor indicates these terms arise from the quartic Yang-

Mills interaction of the axial vector gauge field.

4) Sigma pole in the s-channel:

1

m2
σ − s

[−g̃σππ +
√

2m̃2
πgbw − 2G(m̃2

π −
s

2
)]2, (A.7)

where,

G = −
vg2b2

2
−

vBb2

4
+

2gbw√
2

−
C

2
b2v. (A.8)

5) Rho poles in the t and u channels:

s − u

m2
ρ − t

[−G1 +
gb2

2
√

2
t]2 +

s − t

m2
ρ − u

[−G1 +
gb2

2
√

2
u]2, (A.9)

where,

G1 =
g√
2
(1 −

Bv2

2m′2
0

). (A.10)

The full amplitude A(s, t, u) is, of course, the sum of all five pieces just written.

Here, we will be interested in the I = 0, 2 projections:

T 0 = 3A(s, t, u) + A(t, u, s) + A(u, s, t),

T 2 = A(t, u, s) + A(u, s, t), (A.11)
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where the Mandelstam variables are s = 4(p2
π + m̃2

π), t = −2p2
π(1 − cosθ), u =

−2p2
π(1 + cosθ), pπ being the spatial momentum of the pion in the center of mass

frame.

The angular momentum l partial wave elastic scattering amplitude for isospin I

is then defined as,

T I
l =

1

64π

√

1 −
4m̃2

π

s

∫ 1

−1

dcosθPl(cosθ)T
I(s, t, u). (A.12)

Using the above formula, we get:

T 0
0 =

1

64π

√

1 −
4m̃2

π

s

[
10(

m2
σ − m̃2

π/w
2

v2
w4 + (2C − B)b2w2m̃2

π) +
6

m2
σ − s

[−g̃σππ

+
√

2m̃2
πgbw − 2G(m̃2

π −
s

2
)]2 + 4(G2

1R1 + G1
gb2

√
2
R2 +

g2b4

8
R3) −

3g2b4

8
(4s2 −

64p4
π

3

− 24m̃2
πs + 32m̃4

π) −
g2b4

4
(−2s2 +

32p4
π

3
+ 48m̃2

πs + 32m̃4
π) + 6b2w2(

g2

2
+ B − C)s

+ 2b2w2(
g2

2
+ B − C)(−4p2

π)
]

(A.13)

where

C1 = −g̃σππ +
√

2m̃2
πgbw − 2Gm̃2

π,

S1 =
1

2p2
π

ln(
m2
σ + 4p2

π

m2
σ

), S2 = m2
σS1 − 2, S3 = 4p2

π + m2
σS2,

R1 =
1

2p2
π

ln(
m2
ρ + 4p2

π

m2
ρ

)(s + m2
ρ + 4p2

π) − 2, R2 = m2
ρR1 − 4p2

π − 2s,

R3 = m2
ρR2 +

16p4
π

3
+ 4p2

πs. (A.14)

Similarly for the I = 2 case:

T 2
0 =

1

64π

√

1 −
4m̃2

π

s

[
4(

m2
σ − m̃2

π/w
2

v2
w4 + (2C − B)b2w2m̃2

π)

− 4(C2
1S1 + 2C1GS2 + G2S3) + 4(G2

1R1 + 2G1gbR2 + gb2R3)

−
g2b4

4
(−2s2 +

32p4
π

3
+ 48m̃2

πs + 32m4
π)

+ 2b2w2(
g2

2
+ B − C)(−4p2

π)
]

(A.15)
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A.3 Notation and Further Details

Here we briefly discuss some notational and technical details. The γ matrices and the

charge conjugation matrix have the form:

γi =






0 −iσi

iσi 0




 , γ4 =






0 1

1 0




 , γ5 =






1 0

0 −1




 , C =






−σ2 0

0 σ2




 .(A.16)

Our convention for matrix notation is M b
a → Mab. Then M transforms under

chiral SU(3)L × SU(3)R, charge conjugation C and parity P as

M → ULMU †
R

C : M → MT , P : M(x) → M †(−x). (A.17)

Here UL and UR are unitary, unimodular matrices associated with the transformations

on the left handed (qL = 1
2 (1 + γ5) q) and right handed (qR = 1

2 (1 − γ5) q) quark

projections. For the U(1)A transformation one has:

M → e2iνM. (A.18)

Next consider nonets with “ four quark”, qqq̄q̄ structures. An alternate possibility

to the one given in Eq. (3.24) is that such states may be bound states of a diquark

and an anti-diquark. There are two choices if the diquark is required to belong to a

3̄ representation of flavor SU(3). In the first case it belongs to a 3̄ of color and is a

spin singlet with the structure,

LgE = εgabεEABqT
aAC−11 + γ5

2
qbB,

RġE = εġȧḃεEABqT
ȧAC−11 − γ5

2
qḃB. (A.19)

Then the matrix M has the form:

M (3)ḟ
g =

(
LgA

)†
RfA. (A.20)
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In a second alternate possibility, the diquark belongs to a 6 representation of color

and has spin 1. It has the schematic chiral realization:

Lg
µν,AB = Lg

µν,BA = εgabqT
aAC−1σµν

1 + γ5

2
qbB,

Rġ
µν,AB = Rġ

µν,BA = εġȧḃqT
ȧAC−1σµν

1 − γ5

2
qḃB, (A.21)

where σµν = 1
2i [γµ, γν ]. The corresponding M matrix has the form

M (4)ḟ
g =

(
Lg

µν,AB

)†
Rf

µν,AB, (A.22)

where the dagger operation includes a factor (−1)δµ4+δν4 .The nonets M (2), M (3) and

M (4) transform like M under all of SU(3)L × SU(3)R, C, P . Under U(1)A all three

transform with the phase e−4iν , e.g.:

M (2) → e−4iνM (2). (A.23)

It is seen that the U(1)A transformation distinguishes the “four quark” from the “two

quark” states. In the full chiral Lagrangian treatment of the model under discussion

there are explicit terms which model the breaking of this symmetry and hence cause

the mixing.
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Part II Appendix

B.1 Alternative perturbation method

We present here an alternative approach which leads to results in perturbation theory

order by order. This can be applied to the case at hand or more generally when the

mass matrix is invariant at zeroth order under a finite group G0 and then we add

perturbations of decreasing importance in the small parameter x such that for example

the nth perturbation is of order xn and is invariant under a smaller group Gn. The

mass matrix can then be written as an expansion in x,

M(x) = M0 + xM1 + x2M2 + ... (B.1)

where M0 is invariant under G0, M1 under G1 and so on.

The eigenvalues (diagonal) and eigenvector matrices can also be expanded as,

Md(x) = Md0 + xMd1 + x2Md2 + ...

R(x) = R0 + xR1 + x2R2 + ... (B.2)

where,

RT (x)M(x)R(x) = Md(x) (B.3)
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is the eigenvalue equation.

If we differentiate Eq. (B.3) once we obtain:

RT ′MR + RT M ′R + RT MR′ = M ′
d (B.4)

which can be written as:

[Md, R
TR′] + RT M ′R = M ′

d (B.5)

Here we used the orthonormality condition for the eigenvector matrix:

RT ′R + RT R′ = 0 (B.6)

Note that the matrix RT ′R which appears in what follows is antisymmetric (in

each order of perturbation theory) and in consequence all of its derivatives will be

antisymmetric.

The second derivative and third derivative equations will read:

[M ′
d, R

T R′] + [Md, (R
T R′)′] + [RT M ′R, RT R′] + RT M ′′R = M ′′

d ,

[M ′
d, R

T R′] + 2[M ′
d, (R

T R′)′] + [Md, (R
T R′)′′] + [[RT M ′R, RTR′], RT R′]

+2[RT M ′′R, RT R′] + [RT M ′R, (RT R′)′] + RT M ′′′R = M ′′′
d (B.7)

All commutators of diagonal matrices give zero on diagonal and in consequence

the mass eigenvalues are obtained from the rest of the terms.

It is clear that by setting x = 0 one can associate the first derivative with the first

order perturbation theory, second with second order and so on. The mass eigenvalues

and the matrix RT R′ can be extracted in each order from equations like Eq. (B.5)

and Eq. (B.7).

Then one should use the orthonormality condition to obtain the eigenvector matrix

according to:

RT (x)R′(x) = RT
0 R1 + x(RT

1 R1 + 2RT
0 R2) + .... (B.8)

124



B.1 Alternative perturbation method 125

.

Using this method and G0 = S3, G1 = S23 and G2 = S12 one retrieves the

eigenvalues and eigenvectors in each order of perturbation theory. The results agree

with those presented in the main text.
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