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WARPED PRODUCT RIGIDITY

CHENXU HE, PETER PETERSEN, AND WILLIAM WYLIE

In memory of Barrett O’Neill

Abstract. In this paper we study the space of solutions to an overdetermined
linear system involving the Hessian of functions. We show that if the solution
space has dimension greater than one, then the underlying manifold has a very
rigid warped product structure. This warped product structure will be used
to study warped product Einstein structures in [HPW3].

Introduction

Let q be a quadratic form on a Riemannian manifold (M, g) and Q be the cor-
responding symmetric linear operator on M . We shall study the space of solutions

W (M ; q) = {w ∈ C∞ (M,R) : Hessw = wq} .
Solving Hessw = wq for a fixed q is generally impossible, but it comes up in many
places. Perhaps the most well known example is is due to Obata [Ob] which we
will discuss in section 2. A more complicated example is warped product Einstein
structures which are of this type with

q =
1

m
(Ric− λg)

see [HPW2] and [HPW3].
Note that any positive function w has the property that

Hessw = wq

defines a quadratic form q. However, if a real valued function w satisfies such
an equation, then its zero set is a totally geodesic codimension one submanifold,
which is a rather special condition. We shall enhance this by showing that, if
such an equation has linearly independent solutions, then the underlying space is
a warped product.

Note that when dimM = 1 the equation

Hessw = wq

is a scalar equation
w′′ = Qw

with q = Qdx2. Clearly there is a two-dimensional space of solutions unlessM = S
1.

So this is not a case where we can say much about (M, g, q). When M = S
1 this

equation is also known as Hill’s equation. The issue of finding one or two solutions
to that equation has a long history (see [MW].) In either case the underlying space
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2 CHENXU HE, PETER PETERSEN, AND WILLIAM WYLIE

does have the desired underlying structure of a warped product, albeit in a very
trivial fashion with the base being a point and the fiber the space itself. This
example shows that one cannot expect q to be determined by the geometry unless
there are three or more linearly independent solutions.

The building blocks for all examples consist of base spaces and fiber spaces:

Definition. A base space (B, gB, u) consists of a Riemannian manifold and a
smooth function u : B → [0,∞) such that u−1 (0) = ∂B. We define

qB =
1

u
Hessu

and when ∂B 6= ∅ assume that this defines a smooth tensor on B, and that |∇u| = 1
on ∂B. Moreover, when the functions in the solution space W (B; qB), that vanish
on ∂B if it is not empty, are constant multiples of u we call it a base manifold (see
[HPW3]).

Definition. A fiber space (F, gF , τ) consists of a space form (F, gF ) and a charac-
teristic function τ : F → R such that dimW (F ;−τgF ) = dimF + 1. In case F is
a sphere we shall further assume that (F, gF ) is the unit sphere.

Remark. As we shall see τ will almost always be a constant. Only when dimF = 1
is it possible for τ to be a function. We shall also see that F must be simply
connected unless it is a circle.

Our main result is that if W (M ; q) has dimension larger than one then (M, g)
must be isometric to a warped product of a particular sort.

Theorem A. Let (M, g) be complete and simply connected. If q is a quadratic
form such that dimW (M ; q) = k+1 where k ≥ 1, then there is a simply connected
base space (B, gB, u) and a fiber space (F, gF , τ) such that

(M, g) =
(
B × F, gB + u2gF

)
.

Moreover when ∂B 6= ∅ or k > 1, then the characteristic function is constant.

Remark. In general the base space doesn’t have to be a base manifold, see Example
5.2. This is in sharp contrast to what happens when q is more directly related to
the geometry (see [HPW3]).

From the warped product structure M = B×u F constructed in Theorem A, we
obtain two natural projections π1 and π2 from M to B and F respectively. The
special structure of the manifold M yields the following decomposition of the vector
space W (M ; q).

Theorem B. Let (M, g) be complete and simply-connected with dimW (M ; q) ≥ 2.
Suppose M = B ×u F as in Theorem A. Then we have

W (M ; q) = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−τgF )} .

Remark. We actually show slightly more general results than Theorems A and B.
Namely any subspace W ⊂ W (M ; q) with dimW > 1, not necessarily the whole
solution space, induces a warped product structure on M as in Theorem A and
such W has the decomposition as in Theorem B, see Theorems 3.7, 5.3 and 5.4.
This generalization will be useful when we study the manifold which might not be
simply-connected. By lifting the quadratic form q to the universal cover we consider
the subspace of solutions which is also invariant under the deck transformation.
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Remark. The special type of warped products obtained in Theorem A with constant
curvature fiber is also referred as generalized Robertson-Walker space in general
relativity, see the recent survey [Ze] and references therein.

In Section 1 we show some basic properties about the solution space W (M ; q)
and what it looks like in some simple cases. In Section 2 we establish some properties
for W (M ; q) when we know that M is a warped product. Section 3 is devoted to
the proof of Theorem A. In Section 4 we use Theorem A to place restrictions on
what the quadratic form can look like. This in turn is used in Section 5 to prove
Theorem B. Knowing that M is a warped product then allows us to determine
what the quadratic form q looks like in terms of the geometry of M . In Section 6
we collect some miscellaneous results: more detailed description of the base space
that appears in the warped product structure and the case where M is not simply-
connected.

Acknowledgment: The authors would like to thank David Johnson for helpful
discussions.

1. Basic Properties and Examples

We start by establishing two simple but fundamental properties.

Proposition 1.1. The evaluation map

W (M ; q) → R× TpM,

w 7→ (w (p) ,∇w|p)
is injective.

Proof. We use a proof adapted from [Co] and which was also used in [HPW1]. Let
w ∈ W = W (M ; q) and let γ be a unit speed geodesic emanating from p ∈ M .
Define h(t) = w(γ(t)) and Θ(t) = q (γ′(t), γ′(t)). Then we have a linear second
order o.d.e. along γ for h given by

h′′(t) = Hessw(γ′(t), γ′(t))

=
Θ(t)

m
· h(t).

Thus h is uniquely determined by its initial values

h (0) = w (γ (0)) ,

h′ (0) = g (∇w, γ′ (0)) .

In particular h must vanish if w and its gradient vanish at p.
This shows that the set A = {p ∈ M : w (p) = 0,∇w|p = 0} is open. As it is

clearly also closed it follows that w must vanish everywhere if M is connected and
A is nonempty. �

Next we prove a basic fact about the zero set of a w ∈ W (M ; q).

Proposition 1.2. Let L = {p ∈ M : w(p) = 0} 6= ∅ for some w ∈ W (M ; q). Then
L is a totally geodesic hypersurface.

Proof. We already know that ∇w can’t vanish on L. This shows that 0 is a regular
value for w and hence that L is hypersurface. We know in addition from ∇X∇w =
wQ (X) that Hessw vanishes on L. This shows that L is totally geodesic. �
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We now turn our attention to an enhancement of a well-known result by [Ob].

Theorem 1.3. Let (M, g) be a complete simply connected Riemannian n-manifold
with n > 1. If there exists τ ∈ R such that

dimW (M ;−τg) = n+ 1,

then (M, g) is a simply connected space form of constant curvature τ .

Proof. Obata considered the case where τ > 0 and in that case it suffices to as-
sume that dimW (M ;−τg) ≥ 1. In case τ ≤ 0 we do however need the stronger
assumption.

When τ = 0 we see that constant functions are in W (M ; 0). But there will also
be an n-dimensional subspace of non-constant functions whose Hessians vanish.
This shows that (M, g) = R

n with the Euclidean flat metric.
When τ < 0 note that any w ∈ W (M ;−τg) has the property that µ̄ (w) = τw2+

|∇w|2 is constant and thus defines a nondegenerate quadratic form on W (M ;−τg).
By Proposition 1.1 it follows that some w will have µ̄ (w) < 0. By scaling we can

then assume that some w ∈ W (M ;−τg) will satisfy τw2 + |∇w|2 = τ or

−τ =
|∇w|2

−1 + w2
= |∇arccosh (w)|2 .

We can argue as in [Ob] that w = cosh
(√−τr

)
, where r : M → R is the distance

to a point in M . And that the metric has constant curvature τ as it is the warped
product metric

dr2 +
sinh

(√−τr
)

√−τ
gSn−1

where gSn−1 is the standard metric on the unit sphere. �

This result can be further extended as follows:

Lemma 1.4. Let (M, g) be a complete simply connected Riemannian n-manifold
with n ≥ 1. If there exists τ : M → R such that

dimW (M ;−τg) = n+ 1,

then either n = 1 or τ is constant and (M, g) is a simply connected space form of
constant curvature τ .

Proof. When n = 1 it is clear that dimW (M ;−τg) = 2 for any function τ . In
general having a solution to

Hessw = −τwg

shows that

d
(
|∇w|2

)
= −τd

(
w2

)

In particular, dτ ∧d
(
w2

)
= 0 for all w ∈ W (M ;−τg). Now use dimW (M ;−τg) =

n+1 together with Proposition 1.1 to find n functions wi ∈ W (M ;−τg) , i = 1, ..., n
such that d

(
w2

)
form a basis at x. Then dτ ∧ d

(
w2

i

)
= 0 implies that dτ vanishes

at x. �

In case M has constant curvature we also have the following converse.

Lemma 1.5. Let (M, g) be a complete simply connected space form and τ ∈ R.
Either dimW (M ;−τg) = dimM +1 or all functions in W (M ;−τg) are constant.
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Proof. When n = 1 this is obvious. Otherwise we have to show that if w is a non-
constant solution to the equation Hessw = −τwg when τ is the curvature of M .
However, the fact that Hessw = −τwg together with knowing that τw2 + |∇w|2 is
constant shows that sec (∇w,X) = τ . �

Remark 1.6. There is a related, local, rigidity characterization of spaces where
Hessw = φg for some φ ∈ C∞(M,R) as warped products over one dimensional
bases. This was first proven by Brinkmann in [Br], also see [CC] and [Be, 9.117].

In Theorem A, even though the manifolds M do not have boundary, manifolds
with boundary do arise as base spaces. The warped product structure of M yields a
decomposition of the spaceW (M ; q) involving functions in the spaceW (B; q|B), see
Proposition 2.3. When B has boundary, the boundary conditions satisfied by these
functions in W (B; q|B) also yields some further restrictions. We will encounter both
Dirichlet and Neumman boundary conditions, for which we will use the following
notation.

Defintion 1.7. Let M be a Riemannian manifold with boundary ∂M 6= ∅ and ν
is a normal vector to ∂M , then we define the spaces with Dirichlet and Neumman
boundary conditions as

W (M ; q) = {w ∈ C∞(M) : Hessw = wq} ,
W (M ; q)D = {w ∈ W (M ; q) : w|∂M = 0} ,

W (M ; q)N =

{
w ∈ W (M ; q) :

∂w

∂ν
|∂M = 0

}
.

We have the following general fact when ∂M 6= ∅.
Proposition 1.8. If ∂M 6= ∅, then dimW (M ; q)D ≤ 1. Moreover if dimW (M ; q) =
1, then

W (M ; q) = W (M ; q)D ⊕W (M ; q)N .

Proof. Let x ∈ ∂M . If ∇w(x) = 0, then Proposition 1.1 implies that w is the zero
function. Thus any non-zero element w ∈ W (M ; q)D satisfies

w(x) = 0 ∇w(x) 6= 0 ∇w(x) ⊥ ∂B

which, applying Proposition 1.1 again shows that dimW (M ; q)D ≤ 1.
In the case when dimW (M ; q)D = 1 Proposition 1.1 also shows that the inter-

section is zero,
W (M ; q)D ∩W (M ; q)N = {0} ,

i.e., the decomposition of W (M ; q) is a direct sum. �

Remark 1.9. Note that the condition dimW (M ; q)D = 1 implies that M has totally
geodesic boundary.

In the following we describe some simple examples, the manifold M is one di-
mension. We consider the quadratic form q which is defined by the warped product
Einstein equation, i.e.,

q = − λ

m
g.

Note that Ric = 0 in this case. In [HPW1, Example 1] we had the classification
when the solution w ∈ W (M ; q) is non-negative and only vanishes on the boundary.
Here we extend that classification to allow any sign of w.
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Example 1.10. Let (M, g) = (R, dr2) and then w ∈ W (M ; q) if and only if

w′′ = −κw with κ =
λ

m
.

So we have three different cases depending on the sign of λ.

(1) When λ > 0, we have w = C1 cos(
√
κr) + C2 sin(

√
κr).

(2) When λ = 0, we have w = C1r + C2.
(3) When λ < 0, we have w = C1 exp(

√−κr) + C2 exp(
√−κr).

In particular we have dimW (M ; q) = 2 for all three cases.

Example 1.11. Let (M, g) = (S1a, dr
2) be the circle with radius a. Then W (S1a; q)

corresponds to the elements in W (R; q) which have period 2πa. This gives us the
following

dimW (S1a; q) =





2 if λ > 0 and a
√
κ is an integer,

1 if λ = 0,
0 otherwise.

We now look at one dimensional examples with boundary.

Example 1.12. Let (M, g) = ([0,∞), dr2) and then again we have three different
cases.

(1) When λ > 0, we have

W (M ; q)D =
{
C sin(

√
κr) : C ∈ R

}

W (M ; q)N =
{
C cos(

√
κr) : C ∈ R

}
.

(2) When λ = 0, we have

W (M ; q)D = {Cr : C ∈ R}
W (M ; q)N = {C : C ∈ R} .

(3) When λ < 0, we have

W (M ; q)D =
{
C sinh(

√
−κr) : C ∈ R

}

W (M ; q)N =
{
C cosh(

√
−κr) : C ∈ R

}
.

Finally we consider the closed interval which is similar to the circle case.

Example 1.13. Let (M, g) = ([0, 2πa], dr2). We have

(1) If λ > 0 and a
√
κ is an integer, then

W (M ; q)D =
{
C sin(

√
κr) : C ∈ R

}

W (M ; q)N =
{
C cos(

√
κr) : C ∈ R

}
.

(2) If λ = 0, then

W (M ; q)D = {0}
W (M ; q)N = {C : C ∈ R} .

(3) Otherwise

W (M ; q) = W (M ; q)D = W (M ; q)N = {0} .



WARPED PRODUCT RIGIDITY 7

2. Warped Product Extensions

In this section we create a fairly general class of examples using warped product
extensions. The goal is to start with a base space (B, gB, u) and then construct
(M, g) as a warped product over (B, gB) with fiber (F, gF ) and metric given by

g = gB + u2gF .

When ∂B 6= ∅ there are further conditions in order to obtain a smooth metric on
M . The fiber has to be a round sphere which we can assume to be the unit sphere
and ∇u a unit normal field to ∂B ⊂ B. There are further conditions on the higher
derivatives of u and we also need ∂B ⊂ B to be totally geodesic. These conditions,
however, are automatically satisfied as we assume that

uqB = HessBu

for some smooth symmetric tensor qB on B.
The warped product structure defines two distributions on M , the horizontal

one given by TB and the vertical one by TF . We denote these two distributions
by B and F respectively. The projection onto B is denoted by π1 : M → B and
the projection onto F by π2 : M → F . We use X,Y, . . . and U, V, . . . to denote the
horizontal and vertical vector fields respectively.

Next we need to define q on M as an extension of qB on B. We assume that
q preserves the horizontal and vertical distributions and that on the horizontal
distribution q (X,Y ) = qB (X,Y ).

As q preserves the horizontal and vertical distributions it follows that any w ∈
W (M ; q) has the property that its Hessian also preserves these distributions. It
follows from that the function w has a special form.

Lemma 2.1. If M = B ×u F and w : M → R satisfies

(HessMw)(X,U) = 0

for all X ∈ TB and U ∈ TF , then

w = π∗

1(z) + π∗

1(u) · π∗

2(v)

where z : B → R and v : F → R.
Moreover, if

π∗

1(z) + π∗

1(u) · π∗

2(v) = 0

then v must be constant and z a multiple of u.

Proof. The second fundamental form for a warped product is particularly simple:
if X is a vector field on B and U a vector field on F , then

∇M
X U = ∇M

U X =
DXu

u
U.

With that in mind we have

DX

1

u
DUw = −DXu

u2
DUw +

1

u
DXDUw

=
1

u

(
−D∇M

X
Uw +DXDUw

)

=
1

u
(HessMw)(X,U)

= 0.



8 CHENXU HE, PETER PETERSEN, AND WILLIAM WYLIE

Thus DU
w
u

is constant on B. This shows that if we restrict w
u

to the fibers Fi =
{bi} × F over points b1, b2 ∈ B then the difference

w

u
|F1

− w

u
|F2

is constant. This shows the claim.
For the uniqueness statement just note that if

π∗

1(z) = −π∗

1(u) · π∗

2(v)

then the right hand side defines a function on B and thus v must be constant. �

Remark 2.2. When B has boundary and we insist that both π∗
1(z) and π∗

1(u) ·π∗
2(v)

be smooth on M , then there are extra conditions. The function π∗
1(u) · π∗

2(v) is
smooth at the singular set only if v is odd −v (y) = v (−y) , y ∈ S

k. On the other
hand π∗

1(z) can only be smooth if ∇z is tangent to the boundary of B, i.e., it
satisfies the Neumman boundary condition on B.

Next we study how W (M ; q) relates to u and the fiber F .

Proposition 2.3. Let M = B ×u F and assume that uqB = HessBu. Then w ∈
W (M ; q) if and only if there exist z ∈ C∞(B) and v ∈ C∞(F ) such that

(1) w = π∗
1(z) + π∗

1(u) · π∗
2(v),

(2) z ∈ W (B; qB), and

(3) HessF v + v
(
−q|F + |∇u|2B gF

)
= −

(
− z

u
q|F + gB(∇u,∇z)gF

)
.

Proof. From Lemma 2.1 we know that any function w ∈ W (M ; q) has the form

w = π∗

1(z) + π∗

1(u) · π∗

2(v).

On the horizontal distribution we have

wq|B = zqB + uvqB,

(HessMw) |B = HessBz + vHessBu.

Since u ∈ W (B; qB) we see that (HessMw) |B = wq|B if and only if z ∈ W (B; qB).
On the vertical distribution we have

wq|F = zq|F + uvq|F
(HessMw) |F = uHessF v + uv|∇u|2BgF + ugB(∇u,∇z)gF .

Thus wq|F = (HessMw) |F is equivalent to condition 3. �

Note that if dimW (B; qB) = 1 then all w ∈ W (M ; q) are of the form w =
π∗
1(u) · π∗

2(v). This motivates the following

Corollary 2.4. Let M = B ×u F and assume that uqB = HessBu, W (M ; q) 6= 0,
and that some nontrivial w ∈ W (M ; q) is of the form w = π∗

1(u) ·π∗
2(v), then there

is a symmetric tensor qF on F such that

qF = q|F − |∇u|2B gF .

Proof. As we can write w ∈ W (M ; q) in the form w = π∗
1(u) · π∗

2(v) it follows from
condition 3. in Proposition 2.3 that

HessF v = v
(
q|F − |∇u|2B gF

)
.
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This implies that q|F − |∇u|2B gF can only depend on F at points where v 6= 0.
Now w and hence also v can only vanish on a totally geodesic hypersurface so by
continuity qF defines a symmetric tensor on F . �

Remark 2.5. As we shall see the most important examples of such constructions
always have the property that q|F = −κu2gF for some function κ : M → R. The

previous corollary then shows that κu2 + |∇u|2 is constant on the horizontal leaves
and thus defines a function on F . Combining this with Proposition 2.3 and Lemma
1.5 establishes the next result.

Corollary 2.6. Let M = B ×u F and assume that there is a function κ : M → R

such that q|F = −κu2gF and that (F, gF ) is a simply connected space form. If some
nontrivial w ∈ W (M ; q) is of the form w = π∗

1(u) · π∗
2(v1), then{

v ∈ C∞ (F ) : HessF v = −v
(
κu2 + |∇u|2

)
gF

}

has dimension dimF + 1 and{
π∗

1(u) · π∗

2(v) : HessF v = −v
(
κu2 + |∇u|2

)
gF

}
⊂ W (M ; q) .

3. The Warped Product Structure

In this section we prove Theorem A, i.e., manifolds with dimW (M ; q) > 1 are
warped products, see Theorem 3.7.

We start with a simple lemma that shows how we construct Killing fields.

Lemma 3.1. Let v, w ∈ C∞ (M) then v∇w −w∇v is a Killing field if and only if
vHessw = wHessv.

Proof. We prove this by a simple direct calculation:

∇X (v∇w − w∇v) = (DXv)∇w − (DXw)∇v + v∇X∇w − w∇X∇v

= g (∇v,X)∇w − g (∇w,X)∇v + v∇X∇w − w∇X∇v

= (∇w ∧ ∇v) (X) + v∇X∇w − w∇X∇v.

This shows that v∇w − w∇v is a Killing field precisely when

v∇X∇w = w∇X∇v

which finishes the proof. �

In particular, we see that if a manifold has dimW (M ; q) > 1, then we get Killing
fields.

For the remainder of this section we fix a Riemannian manifold (M, g) and a
quadratic form q on M . Furthermore, we select a subspace W ⊂ W (M ; q). For
each such subspace we define

Wp = {w ∈ W : w (p) = 0}
A point p is said to be regular if the codimension of Wp ⊂ W is one. Otherwise a
point is called singular. The set of singular points is denoted S.

Proposition 3.2. The singular set S is a totally geodesic submanifold of codimen-
sion dimW .

Proof. It follows by induction from Proposition 1.2 that S has the stated properties.
�



10 CHENXU HE, PETER PETERSEN, AND WILLIAM WYLIE

At regular points p ∈ M − S we define

Fp = {∇w : w ∈ Wp}
and let B be the orthogonal distribution on M − S. At a regular point there is a
unique up ∈ W with

up (p) = 1

∇up|p ⊥ Fp.

This orthogonal distribution has the following properties.

Proposition 3.3. Suppose dimW ≥ 1 and let k = dimW − 1. Then the foliation
B on the regular set M−S is totally geodesic of dimension n−k. Let Bp be the leaf
of the foliation B through p ∈ M −S, then up is positive on Bp. Finally q preserves
the two distributions.

Proof. Recall that B is the orthogonal distribution to F and

Fp = {∇w : w ∈ Wp} .
If two vector fields are perpendicular to the gradient of a function, then their Lie
bracket is clearly also perpendicular to the gradient. This shows that B is integrable.
Moreover the leaf through p ∈ M − S is the connected component Bp in

{x ∈ M − S : w (x) = 0 for all w ∈ Wp}
that contains p. This is clearly a totally geodesic submanifold. If up vanishes at
x ∈ Bp, then up ∈ Wq and consequently also lies in Wp, a contradiction.

Note that on TpM we have

q (X,V ) = g (∇X∇up, V )

as ∇up is tangent to Bp and Bp is totally geodesic it follows that q (X,V ) = 0 if
X ∈ TpBp and V ∈ Fp. �

Remark 3.4. Note that when W = {0} we have S = M. In the next case where
dimW = 1 the regular set M − S has two components. Each of these components
is a leaf in the totally geodesic foliation B.

Remark 3.5. Note that Bp need not be complete even if M is. It can however be

completed by adding components of S as boundary pieces. Thus the closure Bp is
naturally a manifold with boundary when S 6= ∅.

Next we investigate the (dimW − 1)-dimensional distribution F as well as its
extension

F̂p = {∇w|p : w ∈ W} .

Proposition 3.6. Suppose dimW = k + 1 ≥ 2. The distribution F on M − S is
integrable and is generated by a set of Killing fields on M of dimension 1

2k(k + 1).
Moreover, for any vector fields Z ∈ F and X ∈ TM , we have

∇XZ ∈ F̂ .
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Proof. For a fixed point p ∈ M − S, the space Wp is spanned by the following
functions

v(p)w − w(p)v, for v, w ∈ W.

It follows that the following vectors form a spanning set of the subspace Fp ⊂ TpM :

v(p)∇w|p − w(p)∇v|p, for v, w ∈ W.

So we can write the distribution F as

F = {v∇w − w∇v : v, w ∈ W} .

Note that F̂ might not be a distribution on M − S as the dimension of F̂p can
be either k + 1 or k. It agrees with Fp for those p where its dimension is k. At

the points where its dimension is k + 1 the complementary subspace of Fp ⊂ F̂p is
one-dimensional and spanned by ∇up|p.

Using F = {v∇w − w∇v : v, w ∈ W} we see that when X ∈ B Proposition 3.3
implies

g ([∇v,∇w] , X) = −q (v∇w − w∇v,X) = 0

In particular, both F̂ and F are integrable where they are distributions. Moreover,
we know from Lemma 3.1 that F is spanned by Killing fields.

Finally we calculate the dimension of this set of Killing fields on M . First
note that it can’t exceed 1

2k (k + 1) as the fields are all tangent to a k-dimensional
distribution. Next note that at p ∈ M − S we have two types of Killing fields

v∇w − w∇v, v, w ∈ Wp

and

up∇w − w∇up, w ∈ Wp.

The first type of Killing field vanishes at p and has covariant derivative ∇w|p∧∇v|p
which defines a skew symmetric transformation that leaves Fp invariant. Moreover,
as the skew symmetric transformations on Fp are generated by such transformations
these Killing fields generate a subspace of dimension at least

1

2
k (k − 1) .

The second type of Killing field has value ∇w|p at p. Thus these Killing fields
will generate a complementary subspace of dimension at least k. This shows that
the Killing fields {v∇w − w∇v : v, w ∈ W} generate a space of Killing fields of
dimension at least 1

2k (k + 1). �

We can now prove our Theorem A from the introduction.

Theorem 3.7. Let (Mn, g) be a complete simply connected Riemannian manifold
with a symmetric tensor q and W be a subspace of W (M ; q). If dimW = k+1 ≥ 2,
then

M = B ×u F

where u vanishes on the boundary of B and F is either the k-dimensional unit sphere
S
k (1) ⊂ R

k+1, k-dimensional Euclidean space R
k, or the k-dimensional hyperbolic

space H
k. In the first two cases k ≥ 1 while in the last k > 1.
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Proof. Proposition 3.6 shows that the set of Killing fields on M that are tangent to
the foliation F is a subalgebra of the space of all Killing fields on M of dimension
1
2k(k+1). As M is complete this means that there’ll be a corresponding connected
subgroup G ⊂ Iso (M, g). First observe that as the Killing fields v∇w−w∇v vanish
on S, the group G fixes S. Next note that G forces the leaves of the foliation F to
be maximally symmetric. In particular, they are complete connected space forms,
which are either simply connected or possibly circles or real projective spaces see
e.g., [Pe, page 190]. From what we show below it’ll be clear that the case of real
projective spaces will not occur here as M is simply connected.

Note that we have the group G, we would like to show that the quotient map
π1 : M → M/G is a Riemannian submersion on M − S. When there is no singular
set, this follows from [BH, Theorem A]. In fact, due to the group action G the
proof of [BH, Theorem A] is somewhat simpler in our case and can be adapted to
work in case S 6= ∅ and k > 1. That is, the case where M − S is connected and
simply connected (see also [O’N, p. 203] for a similar construction in the context
of covering spaces).

First note that, when at least one fiber Fp is compact, G itself is compact and
so the action is proper. In particular, if S 6= ∅, then the fibers Fp for p near x ∈ S
can be identified with the space of unit normal vectors to x ∈ S and so the fibers
are compact.

For each p ∈ M−S there is a neighborhood Up and a uniquely defined Riemann-
ian submersion Up → Bp which projects along the leaves of F . Next note that any
two vertical leaves can be connected by a horizontal geodesic in M −S. This shows
that G acts transitively on the leaves Bp, p ∈ M − S. Now fix a specific horizontal
leaf B. By using elements in G we can then construct Riemannian submersions
fp : Up → B with the properties that: If Up1

∩ Up2
6= ∅, then there exits h ∈ G

such that h (B) = B and h ◦ fp1
= fp2

. Since M − S is connected and simply
connected a standard monodromy argument then shows that we obtain a global
Riemannian submersion f : M − S → B. Moreover, B̄ = M/G so the natural
projection π1 : M → M/G is a Riemannian submersion when restricted to M − S.

This leaves us with the situation where k = 1 and S 6= ∅. In particular, all fibers
are circles. In this case G is Abelian. We start by observing in general that if some
h ∈ G fixes all points in a fiber Fp and S 6= ∅, then h acts trivially. Let x ∈ S be
the closest point to p. Then h must fix the unique shortest geodesic from x to p in
Bp. Note that it is unique as it is normal to S in B̄p. Next observe that we can
move this geodesic by isometries from G to get minimal connections from x to all
other points in the orbit Fp. Since h fixes all of Fp we see that h not only fixes S
but also all normal directions νxS. Thus h acts trivially. In case G is Abelian this
implies that all principal isotropy groups are trivial. In particular, π1 : M → M/G
is a Riemannian submersion when restricted to M − S.

In all cases we now have that the quotient map π1 : M → M/G is a Riemannian
submersion on M − S. Since G ⊂ Iso (M, g) the leaves of F have the property
that their second fundamental forms are also invariant under G. This implies that
the leaves are totally umbilic with a mean curvature vector that is invariant under
the group action. As the orthogonal foliation is totally geodesic it follows that the
mean curvature vector is basic. It then follows from [Be, Chapter 9.J] that these
two foliations yield a local warped product structure on M − S.
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Since G fixes S, to obtain a global warped product structure we need only show
that Bp ∩ Fp = {p} on M − S. When there is no singular set we can again appeal
to [BH, Theorem A]which says that in this case M is diffeomorphic to Bp × Fp.

When S 6= ∅ note that the quotient map π1 : M → M/G forces M/G to be
a Riemannian manifold with totally geodesic boundary S. In particular, M/G is
homotopy equivalent to its interior. In this situation we know initially only that π1

is a Riemannian covering map when restricted to horizontal leaves. However, let
γ : [0, 1] → int (M/G) be a loop and consider a horizontal lift γ̄ : [0, 1] → M − S.
As M is simply connected γ̄ is homotopic to a path in the fiber

π−1
1 (γ (0)) = π−1

1 (γ (1))

through a homotopy that keeps the endpoints fixed. This in turn shows that γ is
homotopic to a point in M/G. Thus int (M/G) is simply connected and we see
that π1 is an isometry when restricted to horizontal leaves. In particular, for all
p ∈ M − S we have Bp ∩ Fp = {p}. �

Corollary 3.8. When F = F̂ , i.e., the foliation F is totally geodesic, the manifold
M is isometric to a product.

4. Properties of the Quadratic Form

Assume below that we have a complete simply connected Riemannian n-manifold
with dimW (M ; q) ≥ 2 and a fixed subspaceW ⊂ dimW (M ; q) with dimW = k+1
and k ≥ 1. Theorem 3.7 then tells us that

(M, g) =
(
B × F, gB + u2gF

)

for some function u : B → [0,∞) that vanishes only on ∂B. In this section we give
the details of how to show that the base is a base space and the fiber a fiber space.

Note that we shall not distinguish between fields on B and their correspond-
ing horizontal lifts to M . However, we will be careful with notation in regards to
derivatives of such fields. We’ll use A1, A2 as vector fields on TM , X,Y as hori-
zontal fields and U, V as vertical fields. Also we shall for convenience use u for its
pullback to M .

The vertical isometries from G act as isometries on M and so there is a function
ρ : B → R such that

RicM (V ) = ρV, V ∈ F .

From [Be, Chapter 9] we obtain the following facts for warped products: the vertical
Ricci curvature ρ is related to the Einstein constant ρF for F by

ρu2 + u∆Bu+ (k − 1)|∇u|2 = ρF .

The horizontal Ricci curvatures satisfy

RicM (X,Y ) = RicB(X,Y )− k

u
(HessBu)(X,Y ).

The extrinsic geometry of the leaves of F are governed by

g (∇V V,X) = − 1

u
g (X,∇u) g (V, V ) .

In particular,

∇V ∇u =
|∇u|2
u

V.
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The goal here is to show that q depends only on trQ, where q (A1, A2) =
g (Q(A1), A2), and the Ricci curvatures of B and M .

We start by relating the elements in W to the warping function u.

Lemma 4.1. For any w ∈ W we have

g (∇w,∇u) =
|∇u|2
u

w.

Moreover on Bp, the horizontal leaf through p, we have up = u
u(p) .

Proof. First note that ∇u is basic and invariant under the group action G, and
thus commutes with the Killing fields v∇w − w∇v. This shows

∇∇u (v∇w − w∇v) = ∇v∇w−w∇v∇u

=
|∇u|2
u

(v∇w − w∇v)

but the left hand side is also

∇∇u (v∇w − w∇v) = g (∇v,∇u)∇w − g (∇w,∇u)∇v.

As long as ∇v and ∇w are linearly independent this shows

g (∇w,∇u) =
|∇u|2
u

w.

As v, w ∈ W are arbitrary we have shown that this holds for all w ∈ W .
Next we claim that ∇up stays tangent to Bp. Let w ∈ Wp then w vanishes on

Bp. So for X ∈ TBp we have

DXg (∇up,∇w) = Hessup (X,∇w) + Hessw (X,∇up)

= upq (X,∇w) + wq (∇up, X)

= 0.

As g (∇up,∇w) = 0 at p, this shows that g (∇up,∇w) = 0 on all of Bp. Next recall
from Proposition 3.6 that

∇V V ∈ F̂ .

In particular, it follows that ∇u ∈ F̂ ∩ B. We clearly also have ∇up ∈ F̂ ∩ B so it
follows that

∇up = g (∇u,∇up)
∇u

|∇u|2

=
1

u
up∇u.

From which we get the last claim. �

This lemma allows us to completely determine the horizontal structure of q.

Theorem 4.2. On B we have

q|B =
1

k
(RicB − RicM ) =

1

u
HessBu.

On the base space B, the quadratic form is given by

qB =
1

u
HessBu.
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Proof. We calculate on Bp and use the linear operator Q corresponding to q

Q (X) =
1

up

∇X∇up

=
1

u
∇X∇u

=
1

k
(RicB − RicM ) (X) .

The second statement follows as (B, gB) is totally geodesic in M . �

Next we turn our attention to the vertical structure of q.

Theorem 4.3. Restricting q to the vertical fibers we have

q|F = (ρ+ trQ) g|F = (ρ+ trQ)u2gF .

Remark 4.4. Note that we cannot expect any more information given what happens
when dimM = 1 as F = M in that case.

Proof. Start with w ∈ W , i.e.,

∇∇w = wQ.

The Weitzenböck formula for a gradient field ∇w states

div∇∇w = ∇∆w +Ric (∇w)

which for our specific field reduces to

div (wQ) = ∇ (wtrQ) + Ric (∇w) .

This implies

Q (∇w) + wdiv (Q) = trQ∇w + w∇ (trQ) + Ric (∇w) .

So

Q (∇w) = Ric (∇w) + trQ∇w + w (−div (Q) +∇ (trQ)) .

This tells us that Q is essentially determined by Ric, trQ and div (Q) on F̂ . On F
we can be more specific. Let p ∈ M and w ∈ Wp then

Q ((∇w) |p) = Ric ((∇w) |p) + (trQ) (∇w) |p
showing that

Q|F = (ρ+ trQ) I|F .
�

Finally we note that when k > 1 then q is completely determined by the vertical
Ricci curvatures and the warping function.

Corollary 4.5. When k = 1 we have

tr (QB) =
∆Bu

u
= −ρ,

while if k > 1

trQ = − 1

k − 1
(kρ+ tr (QB)) .

In particular, q is invariant under the action of G if k > 1.
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Proof. Our formulas for q|B and q|F imply that

trQ = k (ρ+ trQ) + tr (QB)

and by definition

tr (QB) =
∆Bu

u
.

Both statements follow immediately from this.

For the last statement note that both ρ and
∆Bu

u
are invariant under G. �

5. The Structure of W

For a given warped product structure coming from a specific subspace W ⊂
W (M ; q) define

κ = −ρ− trQ

and

µ̄ (u) = κu2 + |∇u|2 ,(5.1)

µ̄ (u, z) = κuz + g (∇u,∇z) .

In this section we prove Theorem B for the subspace W . The argument is split
into two cases. In Theorem 5.3 we prove the result when the singular set S is
nonempty and in Theorem 5.4 we address S = ∅ case . In both cases we will see
that the characteristic function τ of the fiber space F is equal to µ̄(u).

We first simplify Proposition 2.3 by using Theorem 4.3.

Proposition 5.1. Let M = B ×u F and assume that uqB = HessBu. Then w ∈
W (M ; q) if and only if there exist z ∈ C∞(B) and v ∈ C∞(F ) such that

(1) w = π∗
1(z) + π∗

1(u) · π∗
2(v),

(2) z ∈ W (B; qB), and
(3) HessF v + vµ̄ (u) gF = −µ̄ (u, z) gF .

From just the first two conditions we can see that, if W (B, qB) is spanned by u,
then the conclusion to Theorem B holds. However, this is not always the case as
the following example shows.

Example 5.2. Let B = (R, dx2) be the real line. Select u : R → (0,∞) and

define qB = u′′

u
dx2 where we use ′ for derivatives on the base. In this case we have

dimW
(
B; u′′

u
dx2

)
= 2. Next choose a simply connected k-dimensional fiber space

(F, gF ,−τgF ), where τ is a constant when k > 1 or a merely a function on F = R.
The warped product

(M, g, q) =

(
R× F, dx2 + u2gF ,

u′′

u
dx2 +

(
(u′)

2 − τ
)
gF

)

has the property that

W (M ; q) ⊃ {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−τgF )}
and therefore has dimension k+1 or k+2. In the latter case the metric dx2+u2gF
is forced to have constant curvature. So, as long as u, (F, gF ), and τ are selected
in such a way that the total space M doesn’t have constant curvature we obtain
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examples where dimW (M ; q) = dimM = k + 1. In this case the precise condition
for dimW (M ; q) = k + 2 is

τ − (u′)
2

u2
= κ = κB = −u′′

u
or

τ

u2
= −

(
u′

u

)′

.

Note, in particular, that this can never happen if τ is a non-constant function on
F = R.

Now we prove Theorem B in the case where there is a singular set.

Theorem 5.3. Let (M, g) be complete and simply connected and W ⊂ W (M ; q) a
subspace of dimension k + 1 ≥ 2. When S 6= ∅, then we have

W = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )}
and µ̄ (u) is constant on M .

Proof. We start by showing that any w ∈ W is of the form w = π∗
1(u) · π∗

2(v). We
know from Lemma 2.1 that

w = π∗

1(z) + π∗

1(u) · π∗

2(v).

So the goal is simply to show that z must be a multiple of u. Recall from Proposition
2.3 that z ∈ W (B; qB).

When S 6= ∅ we know that w|S = 0 so it immediately follows that z|∂B = 0.
Then Proposition 1.1 shows that z = Cu for some constant C. We can now use
Theorem 4.3 and argue as in Corollary 2.4 that

qF = q|F − |∇u|2B gF

= −
(
κu2 + |∇u|2

)
gF

= −µ̄ (u) gF

defines a quadratic form on F . In particular µ̄ (u) is a function on F . This gives
us the desired structure

W = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )} .
Finally we show that µ̄(u) is constant on M . We can think of p ∈ M − S as a pair
of points p = (x, y) ∈ intB × F . Thus µ̄ (u) (x, y) is constant in x for a fixed y.
Letting x → x0 ∈ ∂B = S and using that κ = −ρ− trQ is continuous on M then
show that

µ̄ (u) (x, y) = κ (x0)u
2 (x0) + |∇u|2 |x0

= |∇u|2 |x0
.

Here the right hand side is clearly independent of y and so the left hand side must
be as well. This shows that µ̄ (u) is constant on M . �

When there is no singular set we have to work a little harder to prove the same
result.

Theorem 5.4. Let (M, g) be complete and simply connected. If W ⊂ W (M ; q)
has dimension k + 1 ≥ 2 and S = ∅, then µ̄ (u) is a function on F and a constant
when k > 1. Moreover,

W = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )} .
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Proof. We start by showing that µ̄ (u) is constant when k > 1. The vertical part
of the Ricci curvatures for a warped product implies in our case that

u2ρ = ρF −
(
u∆Bu+ (k − 1)|∇u|2

)

which can be reduced to

(ρ+ tr (QB))u
2 + (k − 1) |∇u|2 = ρF .

When k > 1 the relationship developed in Corollary 4.5 implies

κ = −ρ− trQ =
ρ+ tr (QB)

k − 1
.

Thus

µ̄ (u) = κu2 + |∇u|2 =
ρF

k − 1
is constant.

We know from Lemma 2.1 that

(5.2) w = π∗

1(z) + π∗

1(u) · π∗

2(v) = z + u · v
If we take the gradient of this equation at some point p = (x, y) ∈ B × F then

∇w = (∇z) |x + v (y) (∇u) |x + u (x) (∇v) |y.
In this decomposition

(∇v) |y ∈ F
and

(∇z) |x + v (y) (∇u) |x ∈ B ∩ F̂ .

Thus it follows that

(∇z) |x ∈ B ∩ F̂
which in turn implies that (∇z) |x and (∇u) |x are linearly dependent for all b ∈ B.

Let WB ⊂ W (B; qB) be the subspace spanned by u and all z that appear in

equation (5.2). As these functions all have proportional gradients the foliation F̂B

on B defined by WB has dimension at most 1 and consequently dimWB ≤ 2.
If dimWB = 1, then WB = span {u} and so we always have:

w = π∗

1(u) · π∗

2(v).

We can then use Proposition 5.1 and Corollary 2.4 to see that

qF = q|F − |∇u|2B gF

= −
(
κu2 + |∇u|2

)
gF

= −µ̄ (u) gF

defines a quadratic form on F . In particular, µ̄ (u) is constant on the horizontal
leaves and v ∈ W (F ;−µ̄ (u) gF ). Moreover, when k = 1 we clearly have that
dimW (F ;−µ̄ (u) gF ) = k + 1 as F = R, while if k > 1 µ̄ (u) is constant so Lemma
1.5 implies that dimW (F ;−µ̄ (u) gF ) = k + 1. Thus

W = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )} .
If dimWB = 2, then Corollary 3.8 applied to the space WB ⊂ W (B; qB) shows

that

(B, gB) =
(
H × R, gH + dt2

)
.
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Moreover the functions in WB are constant on H × {t0} for all t0 ∈ R. This shows
that u = u (t) and

WB =

{
z ∈ C∞ (R) : z′′ = z

u′′

u

}
.

The functions without a z component

WF = {w ∈ W : w = π∗

1(u) · π∗

2(v)}
will then form a subspace of dimension k. In particular, it is nonempty and thus
Proposition 5.1 shows that

HessF v = −vµ̄ (u) gF

for some v. This shows via Corollary 2.4 that µ̄ (u) defines a function on F and
that

qF = q|F − |∇u|2B gF

= −
(
κu2 + |∇u|2

)
gF

= −µ̄ (u) gF

defines a quadratic form on F . We can then argue as before that dimW (F ;−µ̄ (u) gF ) =
k + 1.

To reach a contradiction in this case select w1 = z + uv1 ∈ W and w2 = uv2 ∈
WF − {0}. Then

TF ∋ w1∇w2 − w2∇w1

= (z + uv1) (u∇v2 + v2∇u)− uv2 (∇z + u∇v1 + v1∇u)

= v2 (z∇u− u∇z) + u2 (v1∇v2 − v2∇v1) + zu∇v2.

Since ∇v1,∇v2 ∈ TF it follows that z∇u− u∇z = 0 as v2 is non-trivial. But this
shows that z is a multiple of u contradicting that dimWB = 2. �

Finally we show that we cannot expect µ̄ (u) to be constant unless we are in the
situations covered by Theorems 5.3 and 5.4.

Example 5.5. Since M is assumed to be simply connected, Theorems 5.3 and 5.4
show that the only case where µ̄ (u) might not be constant is when F = R. We
can construct examples of this type as follows. Fix a base manifold (B, gB) with a
positive function u : B → (0,∞) such that dimW

(
B; 1

u
Hessu

)
= 1. Let

M = B ×u R, g = gB + u2dt2

and define

q =
1

u
HessBu+

(
|∇u|2 − τ

)
dt2

where τ : R → R is any smooth function. This gives us a complete collection of
examples where F = R and dimW (M ; q) = 2.

6. Miscellaneous results

In this section we present some related results. In subsection 6.1 we study the
base space in more detail. In subsection 6.2 we consider the situation where there
is a group of isometries that leaves the quadratic form invariant. This allows us to
extend our results to the case where M might not be simply-connected.
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6.1. Base Space Structure. We start by extending the definition of µ̄ in (5.1) to
all of W :

µ̄(w) = κw2 + |∇w|2 .
Proposition 6.1. If w = π∗

1(u) · π∗
2(v) ∈ W , then

∇
(
κw2 + |∇w|2

)
=

w2

u2
∇
(
κu2 + |∇u|2

)

and
κw2 + |∇w|2 = µ̄ (u) v2 + |∇v|2F

is a constant on M when k > 1 or S 6= ∅.
Proof. The first equality follows from the calculation

∇
(
κw2 + |∇w|2

)
= w2∇κ+ 2κw∇w + 2wQ (∇w)

= w2∇κ+ 2wκg (∇w,∇u)
∇u

|∇u|2
+ 2w

g (∇w,∇u)

|∇u|2
Q (∇u)

=
w2

u2

(
u2∇κ+ 2κu∇u+ 2uQB (∇u)

)

=
w2

u2
∇
(
κu2 + |∇u|2

)
.

For the second note that if w = π∗
1(u) · π∗

2(v) for v ∈ W (F ;−µ̄ (u) gF ) then

κw2 + |∇w|2 = µ̄ (u) v2 + |∇v|2F
defines a function on F . In the case when µ̄(u) is constant on M , i.e., k > 1 or
S 6= ∅, we have

∇ |∇v|2F = 2∇∇v∇v = −2vµ̄ (u)∇v

which shows that κw2 + |∇w|2 is constant on F and thus on M . �

We saw in Proposition 5.1 that it is also necessary to compute µ̄ (z) even though
z is not an element in W .

Proposition 6.2. If dimW (M ; q) = k + 1 ≥ 2 and dimW (B; qB) ≥ 2, then

∇µ̄ (z, z) =
z2

u2
∇µ̄ (u) + 2

z

u
(κ− κB) (u∇z − z∇u)

and
∇µ̄ (u, z) =

z

u
∇µ̄ (u) + (κ− κB) (u∇z − z∇u)

where κB is the κ defined on B using W (B; qB).

Proof. Let z ∈ W (B; qB) and K = u∇z − z∇u be the corresponding Killing field.
Then we have

∇µ̄ (u, z) = (∇κ)uz + κ (∇u) z + κu∇z +∇∇z∇u+∇∇u∇z

= (∇κ)uz + 2κ (∇u) z + κK + 2
z

u
∇∇u∇u +

1

u
∇K∇u

=
z

u
∇ (µ̄ (u)) + κK +QB (K)

=
z

u
∇ (µ̄ (u)) + κK − κBK

=
z

u
∇ (µ̄ (u)) + (κ− κB) (u∇z − z∇u) .
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Similarly we have

∇
(
κz2 + |∇z|2

)
=

z2

u2
∇
(
κu2 + |∇u|2

)
+ 2

z

u
(κ− κB) (u∇z − z∇u)

which shows the desired identities. �

Corollary 6.3. Assume that M is simply connected such that dimW (M ; q) =
k + 1 ≥ 2 and S = ∅. If µ̄ (u) is constant and dimW (B; qB) ≥ 2, then κ 6= κB.

Proof. In case µ̄ (u) is constant and κ = κB the above Proposition 6.2 implies that
µ̄ = µ̄B defines a quadratic form on W (B; qB). If dimW (B; qB) ≥ 2 it is then
possible to find z ∈ W (B; qB) − span {u} such that µ̄ (u, z) = 0. Proposition 5.1
then implies that w = z+uv ∈ W when v ∈ W (F ;−µ̄ (u) gF ). But that contradicts
Theorem 5.4. �

6.2. Invariant Groups. We start by checking how such isometries interact with
elements of W (M ; q).

Proposition 6.4. If h ∈ Iso (M) and h∗q = q, then h∗ : W (M ; q) → W (M ; q)
preserves the characteristic constant/function µ̄.

Proof. Let w ∈ W (M ; q). Since h is an isometry we have

Hess (w ◦ h) = h∗ (Hessw)

= (w ◦ h) (h∗q)

= (w ◦ h) q.
This shows that h∗ : W (M ; q) → W (M ; q). Next we note that

µ̄ (w ◦ h) = (κ ◦ w) (w ◦ h)2 + |∇ (w ◦ h)|2

= (κ ◦ w) (w ◦ h)2 +
∣∣Dh−1 ((∇w) ◦ h)

∣∣2

= (κ ◦ w) (w ◦ h)2 + |(∇w) ◦ h|2

= µ̄ (w) ◦ h
which shows that µ̄ is preserved by h. �

Let Γ ⊂ Iso (M, g) be a subgroup that preserves the quadratic form q. Define

W (M ; q,Γ) = {w ∈ W (M ; q) : w ◦ h = w, for all h ∈ Γ} ⊂ W (M ; q)

as the fixed point set of the action of Γ on W (M ; q). In this case Γ will preserve

the foliations F and F̂ defined by the subspace W (M ; q,Γ) since

Dh−1 ((∇w) |h) = ∇ (w ◦ h) = ∇w.

Thus Γ preserves the distributions and fixes up. In particular, it induces an action
on B that leaves u as well as qB invariant.

The next result follows almost directly from Theorems 5.3 and 5.4.

Proposition 6.5. Let (M, g) be complete and simply connected and assume that
dimW (M ; q,Γ) = k + 1 ≥ 2. If k > 1 or S 6= ∅, then µ̄ (u) is constant on M , and

W (M ; q,Γ) = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )} .
Furthermore, Γ acts trivially on F .
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Moreover, if Γ acts properly and only has principal isotropy, then

(M/Γ, g) = (B/Γ)×u F

and

π∗ (W (M/Γ; q)) = W (M ; q,Γ)

where π : M → M/Γ is the quotient map.

Proof. When S 6= ∅ we can immediately apply Theorem 5.3 with W = W (M ; q,Γ)
and so the only item left to check is that Γ acts trivially on F . We note that Γ must
leave all elements in W (F ;−µ̄ (u) gF ) invariant. However, a close inspection of all
cases shows that the only situation where a nontrivial subgroup of Iso (F, gF ) fixes
all elements in W (F ;−µ̄ (u) gF ) is when F = R and µ̄ (u) > 0 so that all solutions
are periodic. However, that case has been eliminated by our assumptions.

When S = ∅ we are in the case of Theorem 5.4 and the same proof we just gave
works since

W (M ; q,Γ) = {π∗

1(u) · π∗

2(v) : v ∈ W (F ;−µ̄ (u) gF )} .
The last statement when there is only principal isotropy follows easily from

previous ones. �

From this we can extract information about the case where M isn’t simply

connected. In that case we obtain a covering map π : M̃ → M and can think of

Γ = π1 (M) as acting by isometries on the universal covering M̃ . Moreover this
action will clearly preserve the pull back of any quadratic form on M .

Corollary 6.6. Assume that (M, g) is complete and that q is a quadratic form on
M . If dimW (M ; q) = k + 1 ≥ 2, then

(M, g) = (B/Γ)×u F

where the universal covering has a warped product splitting M̃ = B ×u F coming
from W (M ; q,Γ) with Γ = π1 (M), provided F 6= R. Moreover,

π∗ (W (M ; q)) = W
(
M̃ ; q,Γ

)
.

Remark 6.7. We now discuss the special case when F = R. Note that this case is
nontrivial even when the characteristic function is constant. The case where it isn’t
constant does happen and is related to the problem of finding coexisting solutions
to Hill’s equation. Specifically, it is possible to choose τ (t) as in Example 5.5 to be
periodic with period 2π and such that the solutions space W

(
R;−τdt2

)
consists of

2π periodic functions (see [MW, Chapter 7].) This gives us non-simply connected
examples of the form M = B ×u S

1 with dimW (M ; q) = 2.
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