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Abstract—In this paper, a new achievable rate region for gen- improves upon [1] and coincides with the capacity region in
eral interference channels with common information is presented. [2] under the condition of strong interference.
Our result improves upon [1] by applying simultaneous super- ‘s paper is organized as follows. In section II, we present

position coding over sequential superposition coding. A detailed . . .
computation and comparison of the achievable rate region for the channel model and review the previous achievable rate

the Gaussian case is conducted. The proposed achievable ratd€gion [1] and capacity region with strong interference [2].
region is shown to coincide with the capacity region of the strong In section Ill, we propose a new achievable region and show

interference case [2]. that it extends the achievable region in [1]. We also establish
Index terms— interference channels, achievable rate regiothat the proposed achievable region is consistent with the
capacity region, common information, superposition codingcapacity region for the strong interference case [2]. In section
IV, numerical examples are presented for the Gaussian case
|. INTRODUCTION and the comparison of the two achievable regions are shown.
Finally, concluding remarks are given in section V.
The capacity region of an interference channel (IC), where
the information sources at the two transmitters are statistically
independent, has been a long standing problem [3]-[7]. 4n Definitions
important milestone in IC is Carleial's work in 1978 [8] An interference channel with common informatida is
where the superposition code idea was used to obtain a mlachuintuple(Xl, Xo,p, V1,Vs), Where Xy, X, are two finite
improved inner bound for IC. This inner bound was latéhput alphabet sets arh, ), are two finite output alphabet
improved by Han and Kobayashi [9] who gave an achievablets is the channel transition probabilipfy: , y2|z1, z2), i.€.
rate region that remains to be the largest reported to this date.
A related problem less well investigated in the past

Il. EXISTING RESULTS

when the information sources at the two transmitters aL Encoter1 | Y1 ] pecoders — (m,,m,)
correlated, and in particular, they share a common messi
in addition to their private messages [1]. For example, instem, Channel
of having only one transmitter obtaining the other user R
DY2AN DAL,

message a priori, as in the so-called cognitive radio chan
[10], [11], the two transmitters can obtain part of the othe #, X, ¥: . A
user's source via conferencing [2]. We can also motiva Encoder2 Decoder? —— (111, 11ty )
this problem using sensor network applications, where tv
nodes need to relay the information of a third node while
transmitting their own observations at the same time. This Fig. 1. Interference channel with common information.
type of correlated information sources has previously been . )

considered in [12] and [13] for a multiple access channd[!® Probability of(y1,y2) € Y1 X% given(z1,22) € X1 x X,

where the capacity region and optimum conferencing wef¥e assume that the channels are memoryless, i.e.

determined. Interference channel with common message was N L ® .0 &)
first considered in [1], where an achievable rate region, an  P"(yi,¥elxi,x2) = [[p(m”,u’12t",257) (@)
outer bound and a limiting expression for the capacity region t=1

were obtained. Later, the capacity region of this channel undghere fora = 1, 2,

strong interference was found in [2], which also showed _ 1) () n o) () n

that the condition of strong interference for this channel S (e 2a) € AL Ya = (o va) € Y0 ()
equivalent to that of the classic interference channels. Let M; = {1,2,---, M;} and My = {1,2,---, M5} be sender

this work, we propose a new achievable rate region for dnand sender 2’s private message sets, respectively, which are
interference channel with common information. Our resuitnly decoded by intended receivers. ety = {1,2,---, My}



be the common message set, which is to be decoded by botR) Proposition  2:
receiversY; and Y. Since each sender has knowledge dft; x Ao, p(y1, yo|x1,x2), V1 X Vo)

his own message as well as the common message, thereii@mation satisfying

M, - My codewords forx; (i, k) and Ms - My codewords for
x2(4, k). Suppose the decoded message indices at receiver 1

are 7, and 7o while at receiver 2 aren, and 7. Then,

the average probability of decoding error of this channel |

defined as
(n) -
Pe 1 M1M2M0 Z P zk|x1(7’ k) Xz(], k)) ®)
(n) _ ' ’
P = Z P(Biefxa(i,h) %0 k) - (4)

where the eventsl;;, and B;;, are defined as

Aix = {rn #i} U {7770 # k} ©)
Bjk = {2 # j} U {mo # k} (6)

The capacity region of this channél is the closure of all

the rate triples(R;, R2, Ry) such thatPe(ﬁ) — O,Pe(g) -0
as codeword lengthh — oo, where Ry = log M;/n, Ry =
10gM2/n andRo = logMo/n.
B. Existing Results

1) Proposition 1: Let Z = (Uy, Uy, Us, X1, X2,Y1,Y2)

and let P be the set of distribution orZ that can be

decomposed into the form

p(uo)p(u1luo)p(uz|uo)p(ziur)p(@2luz)p(yr, yo|z1, 22) (7)

For anyZ € P, let R(Z) be the set of all triple$R;, Ra, Ry)
satisfying:

Ry <I(X1;Y1|UU2) +a;  (8)
Ry < I(X9;Ya|U1Ua) +b;  (9)

b.
< I(UyX1; Y] 1

Ro+ R+ I(X27Y2|U1U2) s Ry (Ug 13 1) ( 0)
a;

R, R Ry < I(U1 X5 Y: 11

o+ 2+I(X1;Y1|U1U2)+ai 1 < I(U1 X2;Y2)  (11)

where

ar = min[I(Uy;Y1|Uy), I(Ur; Y2|Up)] (12)

bl = mm[I(U Y1|U1U()) I(UQ,}/Q‘UlUQ)] (13)

a9 = mm[I(U Y1|U2U0) (U17Y2‘U2U0)] (14)

as = mm[I(Ul,Y1|UO) (U1,YQ\U2U0)] (16)

b3 = mm[I(U Y1|U1U()) (UQ,}/Q‘U())] (17)

a4 = mm[I(U Y1|U2U0) (U17Y2‘UO):| (18)

by = min[I(Us; Y1|Uy), I(Us; Ya|U1Up)] (19)

Then RT = UZGP
C.
Proof: See [1].

R(Z) is an achievable region, i.eRy C

For an interference channel
with common
I(X1;Y1|X5,U) < I(X1;Y2|X5,U) (20)
I(Xo; Y2| X1, U) < I(Xo; Y1|X4,U) (21)

ﬁe capacity regioif, is given by

Co= {U(Ro, Ry, Ra) :
Ry < I(X1; V1] X2, U)
Ry < I(X2;Y2|X1,U)
Rl +R2 S min{I(Xl,Xg;Y1|U),I(X1,X2,Y2\U)}
Ro +R1 +R2 S min{I(Xl,XQ;Yl),I(Xl,Xg,Yz)}}

22)
where the union is over joint distributiongu, x1, s, yl,yg)
that factor as

p(u)p(z1|u)p(z2|u)p(yr, y2|21, 22). (23)

Proof: See [2].

I11. ANEW ACHIEVABLE REGION

A. Modified interference channel with common information
K

In this modified channel, we allow part of each transmitter’s
private message to be decoded by both receivers. For each
transmittera(a = 1, 2), the original private message is divided
into two parts: private messagg € M, = {1,2,-- -, M,}
and common messagg € N, = {1,2,---,N,}. Besides,
each transmitter also has the original common meséage
Mo ={1,2,---My}. So, there aré\f; - Ny - M, codewords
x1 (41, j1, k) and My- No- My codewordsxs (is, jo, k). Suppose
the decoded message indices at receiver hiarei,, n, and
7o, While at receiver 2 arés, nio, 1, andg. Define events

Ey = {1 # i1} U {fn # j1} U{he # j2} U {ho # k} (24)
Ey = {ma # i2} U{ne # jo} U {1 # ji} U {mo # k} (25)
Then, the average probability of decoding error is
Ziljlingk P(E1|x1(i17j1a k)v X2(i23j2a k))

(n) _
P = 26
el M1N1M2N2M0 ( )
P(n) - Eiljlizjzk P(E2|X1(i1,j1,]{J),Xg(ig,jg,k)) (27)
€2 M1N1M2N2M0
The corresponding achievable rate quintuples
(Rll,RlQ,RQQ,RQl,RO) are such thalPe(ﬁ) — O,Pég) — 0
as codeword length — oo, where Ry = log M;/n,
Ris = logNi/n, Res = logMs/n, Ry = logNa/n
and Ry = log My/n. The modified interference channel

with common information introduces four auxiliary random
variables Q,U;,Us, Uy (Q is the time sharing random
variable), defined on arbitrary finite set®,U;,Us, Uy
respectively. It is easy to see that if a rate quintuple
(R11, R12, Ra2, Ro1, Ry) is achievable for modified channel
K, then rate triple(Ry; + Ri2, Roa + Ro1, Ro) is also
achievable for the original channél.



B. A new achievable rate region

Theorem 1 SupposeZ = (Y1,Ys, X1, Xo, U1, Us, U, Q)
and let P* be the set of distribution orZ that can be
decomposed into the form

p(@)p(uolg)p(u1|uog)p(uzluog)

xp(x1|u1q)p(w2|u2q)p(y1y2|T172) (28)

For any Z € P*, let S(Z) be the set of all quintuples
(R11, R12, R21, Re2, Ry) of non-negative numbers satisfying:

Ry < I(Y1; X1|UW0U2Q)  (29)

Ry < I(Y1;Us|X1UeQ)  (30)

Rii+Rip < I(Y1; X1|U2UpQ)  (31)

Ri1+ Ry < I(Y1; X1Us|U1UWQ) (32)

Rii+ Ria+ Ran < I(Y1; XaUs2|Uo@)  (33)
Ro+ Rii+ Ri2+ Ray < I(Y1; X103|Q) (34)
Ry < I(Y2; Xo|UU2Q)  (35)

Ris < I(Ya; Uil X2UoQ)  (36)

Rog + Ryy < I(Yo; Xo|UiUpQ)  (37)

Ros + Rip < I(Yo; XoUp|U2UpQ) (38)

Ryy + Roy + Rip < I(Yo; XoUi|UpQ)  (39)
Ro+ Roo + Ro1 + Ria < 1(Y2; XoU4|Q) (40)

Let R,, be the closure of J, 5. S(Z), thenR,, is the
achievable rate region df,,
Proof of Theorem 1

Codebook GeneratiorLet q = (¢, - - -,¢™) be a ran-
dom sequence o™ distributed according to the probability
[T, p(¢'V). For the codewordy, generateM, i.i.d (inde-
pendent and identically distributed) codewordg(k), k

Receiver 2 determines the uniqu®, jo, j1, k) such that

{qa uo(k)a u2(j27 k)? ul(j17 k)’XQ(iQaj27 k)a)’?}

e AM(QUULU, X, Y5) (42)

whereAﬁ”)(~) denotes the jointly typical set.

Analysis of Error Probability By symmetry of the random
code construction, the error probability for a specific message
quintuple is independent of that quintuple. Therefore we can
assume without loss of generality thét,is,j1,j2,k) =
(1,1,1,1,1) was sent. We first consider the average error
probability Pe ,, for receiver 1 and suppose was received.

Let F; (zmgzk) denote the event (41). Then we have

P = Pr{Ef(1111)

or U El(lljljgk)} (43)
i1j1j2k#1111

< Pr{Ef(1111)} + > Pr{Ei(iijij2k)} (44)
k#1,i15172

+ Y Pr{Ei(ihji11)} + > Pr{Ei(i1111)} (45)
J1#£1ia i1#1

+ > Pr{Ei(iljp)} + Y Pr{Ei(11j,1)} (46)
1171, j27#1 Ja2#1

+ 2
J1#1,52#1,01
From the way the random sequencgsug,u;,us,x; are
generated and by the property of jointly typical set, it follows

that

Pr{Ey(i1j1j21)} (47)

Pr{E{(1111)} < ¢ (48)

Now, let us evaluatePr{F1 (i1j1j2k)} for k # 1. From the
way the random sequencqsug, u;, us, x; are generated, we
know ug, uy, us, x; are all independent from;, givenq due
to the factk # 1. So,

1,2,- - -,(J\;[o, with each element distributed according tQPr{E; (iyj;jok)}

17, p(uy?|¢™). For the codewordy and each ofug(k), _ W . X

generateN; i.i.d codewordsu, (ji,k),j; = 1,2,---,N; and Z o p(a)p(ug, ur, ugz,x1|q)p(yilq)

Ny ii.d codewordsus(jo, k), jo = 1,2, - o ar with each (lem)lmim(ﬁzg?—‘ Yo (H (UoU1Us X1|Q)—€) g —n(H(Y1|Q)—¢)
element distributed according t§]7"_, p(u” [ug(k)®q®) < JAM2T cmmEiFe AR meagmma R e
and [T, p(u” Juo (k)P q®)) respectively. For the codeword < 27" (@+H T XQ+HMQ)=H QU U2 X1Y3)~4e)

q and each ofu;(ji,k), generate M; i.i.d codewords
x1 (41, j1, k),41 = 1,2, - - -, M7, with each element distributed
according to[];_ lp(x(lt)\ul(jl,k‘)(t)q(t)). For q and each
of uy(jo, k), generateM, i.i.d codewordsxs(is, j2, k), i2 =

1 2 ..

Ht 1 p(x2 )|U2(J2a k)(f)q(t))

Encoding Rule For encoder 1, given a message triple

(i1,71,k), send the corresponding codeword (i1, j1, k).
Similarly, for encoder 2, sencks(is,j2, k) for the triple
(i2, jo, k).

Decoding Rule
Receiver 1 determines the uniqyg, ji, j2, k) such that

{qv llo(k), ul(jlv k)a u2(j27 k)axl(ilajlv k)ayl}

e AM(QU UL U, X, Y1) (41)

2—n(I(Y1;U0U1 Uz X1|Q)—4e)

—n(I(Y1;X1U2|Q)—

4e)

Using similar techniques to evaluate the probabilities of other

Mg, with each element distributed according t@fror events, we have

P <e 4+ 27nUI0XUQ)= (Rt Faat RartRo) —dgy g)
+ 2 U (YV1X1|UoU2Q) = (Rar+Raz) —4e) (50)
+ 2 (13X |U1U2Q)—Rui—4e) (51)
+ 9 nI(Y1:U2X1|UoU1Q)—(Ri1+Ra1)—4e) (52)
+ 9 nUI(V15U2|Up X1 Q) Ra1—4e) (53)
n Q—n(I(Yl;UQXl|U0Q)—(R11+R12+R21)—46)(54)

e can be arbitrarily small by letting — oco. The conditions
(29)-(34) will make sure thap."}’ — 0 whenn — oc.



For receiver 2, we consider the evdii{(isj2j1k) specified Although we have the mathematical formula for the achiev-
by (42). With the similar techniques, the decoding error prolable region, the computation of it seems formidable because
ability Pe(f;) will vanish on the basis of conditions (35)-(40)we need to exhaust all kinds of distributions. In order to see
and lettingn — ooc. Q.E.D. the shape of the region and compdgg and Rr, we have

From the relation of the modified chann&l,, and the to make some constraints to the model. First, we constrain
original channellC, we give the following theorem without all the input signals to be Gaussian distributed. Second, we
proof. set the time sharing variabl® = ¢, i.e., the region we

Theorem 2LetR(Z), Z € P* be the setof allRy, Rs, Ry) compute is actuallyR; instead ofR}. Consider, for certain
such thatR;, = Riy; + Ri2, Ry = Rayo + Roy for some M\ A\, 7,7, u,04,0,0 € [0,1], with A\ + X = 1,y +7 =
(Ri1, Ria, Roz, Ro1, Ro) € S(Z), thenR; = Uyep- R(Z) 1,p+p = 1,0+6 = 1, and additional auxiliary variables
is achievable for the original channkl. Wy, Vi, Wa, Vo, Uy, the following hold:

Now, let us define a subset &;. Denote byP the set of all

distribution Z — (Y1, Y, X1, X», Us, Us, Up, Q) € P* such Up ~ N(O.F)  (76)
that@Q = ¢, whereg is a constant. Defin®; = ;. R(2). Wi~ N(0,A0P1) (77)
It is easy to see thakR; C Rj. Vi ~ N(0,\0P;) (78)
Corollary 1: The achievable region proposed by Tan [1] is a K =Wt Vit VIR /Rl ~ N(()’Pi) (79)
subset ofR;, thus a subset oRj, i.e., Rr C R; C Rj. Wa ~ N(0,7F) (80)
Proof: We can always express arfyo, R, Ry) € Rr(Z) Vo~ N(0,yuP) (81)
as Ri = Ri1 + Ria, R = Ry + Ro; for some Xo = WQ+%+\/MP2/POUO ~ N(O,PQ) (82)
(Ru, Ri5, Ros, Ro1, Ro) such that: .
where Wy, W, are the private message$;, = Vi +
Ry < I(Y1; X41|ULU2) (55) /0P, /PyUy, Uy = Va++/ P2/ PyU, are common messages.
Roz < I(Y2; X2|U1U2) (56) After computing those mutual information formula in (29)-
Ris < a;, Roy < byi = 1,2,3.4 (57) (40) and taking the convex hull qf aII_ the power al_loc_at|0n,
we have the achievable regidR; in Fig.2. Since this is a
Ry + Ri1 + Ri2 + Ryy < I(U2X1;Y7) (58)
Ro + Raa + Ro1 + Ria < I(U1 X2;Y2) (59)

It can be easily seen that conditions(55)-(59) imply conditions
(29)-(40) with@ = ¢. SORr C R C R}.

Corollary 2 Under the condition of strong interference
in (20)-(21), we haveR; = R; = Cs. “
Proof: When we apply Fourier-Motzkin Elimination on
the inequalities (29)-(40) and then remove those redundant
inequalities, we get (60)-(72). Under the condition of strong
interference (20)-(21), the original channel becomes a |,
compound MAC channel with common information, i.e., the
messages of both senders can be all decoded by each receiver
[2]. In this situation, there is no “private message” any more, 1

S0 o

X, =Us, X5 =Us. (73)
o . . Fig. 2. Achievable rate region fo€. P = 6, P, = 1.5, P = 1,a12 =
Substituting allUy, U; with X5, X5 in (60)-(72) and then 4,, =0.74

remove those newly generated redundant inequalities, we get

exact (22). Q.E.D. 3-dimensional region, it is hard to illustrate the comparison

IV. NUMERICAL EXAMPLES IN GAUSSIAN CHANNEL of the propos_ed achievable _reglm anc_i the previous result
Rr. So, we slice the 3D achievable region with planes parallel

The standard form of a Gaussian interference channel istgSr,  R,) plane (i.e., planes with constaft) and compare

follows: the two regions. The comparison is shown in Fig.3.
nom Ataedd s (74) ?)er?ﬁrksa dimensional region in Fig.2 ith
_ e 3-dimensional region in Fig.2 agrees with our
o = axXitXot2, (75) intuition that it is a convex region.
where 7, Z, are arbitrarily correlated zero mean, unit vari- 2) The intersection of the proposed achievable region and
ance Gaussian random variables. Suppose the power die- plane withRy, = 0 is actuallyG in Han and Kobayashi's
straints of X; and X, are P, and P, respectively. paper [9].




Ry < I(Y1; X1|U2U00Q) (60)

Ry < I(Y1; X1|U1U2Q) + I(Ya; Ur| X2UpQ) (61)

Ry < I(Ya; Xo|U1UoQ) (62)

Ry < I(Y2; Xo|UUiQ) + 1(Y1; U | X1UpQ) (63)

Ri+ Ry < I(Ye; Xo|UhU2Q) + 1(Y1; X1U2|UsQ) (64)

Ri+ Ry < I(Y1;X1;U102Q) + 1(Ya; XoUp|UpQ) (65)

Ri+ Ry < I(Y1; X1U2|U1U0Q) + I(Ya; XoUr|UxUnQ) (66)

2R+ Ry < I(Y1; X0 |UhU2Q) + I(Ye; XoUp |U2UoQ) + 1(Y1; X1U2|UpQ) (67)

Ri+2Ry < I(Yo; Xo|UhUaQ) + I(Y1; X1U2|U1UpQ) + 1(Yo; X2Ui|UpQ) (68)

Ro+ Ri+ Ry < I(Ya; Xo|UU2Q) + I(Y1; X1U2Q) (69)

Ry+Ri+ Ry < I(Y1;X1|U0U2Q)+ I(Ye; XoU1Q) (70)

Ro+2R1+ Ry < I(Y1; X1|U1U2Q) + 1(Yo; XoUr|U2UpQ) + I(Y1; X1U2Q) (71)

Ro+ R +2Ry < I(Y2; Xo|U1U2Q) + 1(Y1; XaUs2|Uh UpQ) + 1(Y2; X2Uh|Q) (72)
or extend Rr. It is also shown that our proposed achievable

region coincides with the capacity region under the condition
of strong interference.

For future work, one can combine FDMA/TDMA with
Han and Kobayashi's simultaneous superposition code, i.e.,
A consider the case when the time-sharing varidbleZ ¢. It
is conjectured that this combination will yield an even larger
achievable region.
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