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Abstract— In this paper, a new achievable rate region for gen-
eral interference channels with common information is presented.
Our result improves upon [1] by applying simultaneous super-
position coding over sequential superposition coding. A detailed
computation and comparison of the achievable rate region for
the Gaussian case is conducted. The proposed achievable rate
region is shown to coincide with the capacity region of the strong
interference case [2].

Index terms— interference channels, achievable rate region,
capacity region, common information, superposition coding.

I. I NTRODUCTION

The capacity region of an interference channel (IC), where
the information sources at the two transmitters are statistically
independent, has been a long standing problem [3]–[7]. An
important milestone in IC is Carleial’s work in 1978 [8]
where the superposition code idea was used to obtain a much
improved inner bound for IC. This inner bound was later
improved by Han and Kobayashi [9] who gave an achievable
rate region that remains to be the largest reported to this date.

A related problem less well investigated in the past is
when the information sources at the two transmitters are
correlated, and in particular, they share a common message
in addition to their private messages [1]. For example, instead
of having only one transmitter obtaining the other user’s
message a priori, as in the so-called cognitive radio channel
[10], [11], the two transmitters can obtain part of the other
user’s source via conferencing [2]. We can also motivate
this problem using sensor network applications, where two
nodes need to relay the information of a third node while
transmitting their own observations at the same time. This
type of correlated information sources has previously been
considered in [12] and [13] for a multiple access channel,
where the capacity region and optimum conferencing were
determined. Interference channel with common message was
first considered in [1], where an achievable rate region, an
outer bound and a limiting expression for the capacity region
were obtained. Later, the capacity region of this channel under
strong interference was found in [2], which also showed
that the condition of strong interference for this channel is
equivalent to that of the classic interference channels. In
this work, we propose a new achievable rate region for an
interference channel with common information. Our result

improves upon [1] and coincides with the capacity region in
[2] under the condition of strong interference.

This paper is organized as follows. In section II, we present
the channel model and review the previous achievable rate
region [1] and capacity region with strong interference [2].
In section III, we propose a new achievable region and show
that it extends the achievable region in [1]. We also establish
that the proposed achievable region is consistent with the
capacity region for the strong interference case [2]. In section
IV, numerical examples are presented for the Gaussian case
and the comparison of the two achievable regions are shown.
Finally, concluding remarks are given in section V.

II. EXISTING RESULTS

A. Definitions

An interference channel with common informationK is
a quintuple(X1,X2, p,Y1,Y2), whereX1,X2 are two finite
input alphabet sets andY1,Y2 are two finite output alphabet
sets,p is the channel transition probabilityp(y1, y2|x1, x2), i.e.

Fig. 1. Interference channel with common information.

the probability of(y1, y2) ∈ Y1×Y2 given(x1, x2) ∈ X1×X2.
We assume that the channels are memoryless, i.e.

pn(y1,y2|x1,x2) =
n∏

t=1

p(y(t)
1 , y

(t)
2 |x(t)

1 , x
(t)
2 ) (1)

where fora = 1, 2,

xa = (x(1)
a , · · ·, x(n)

a ) ∈ Xn
a ,ya = (y(1)

a , · · ·, y(n)
a ) ∈ Yn

a (2)

LetM1 = {1, 2, · · ·,M1} andM2 = {1, 2, · · ·, M2} be sender
1 and sender 2’s private message sets, respectively, which are
only decoded by intended receivers. LetM0 = {1, 2, · · ·,M0}



be the common message set, which is to be decoded by both
receiversY1 and Y2. Since each sender has knowledge of
his own message as well as the common message, there are
M1 ·M0 codewords forx1(i, k) andM2 ·M0 codewords for
x2(j, k). Suppose the decoded message indices at receiver 1
are m̂1 and m̂0 while at receiver 2 arêm2 and ˆ̂m0. Then,
the average probability of decoding error of this channel is
defined as

P
(n)
e,1 ≡ 1

M1M2M0

∑

i,j,k

P (Aik|x1(i, k),x2(j, k)) (3)

P
(n)
e,2 ≡ 1

M1M2M0

∑

i,j,k

P (Bjk|x1(i, k),x2(j, k)) (4)

where the eventsAik andBjk are defined as

Aik
.= {m̂1 6= i} ∪ {m̂0 6= k} (5)

Bjk
.= {m̂2 6= j} ∪ { ˆ̂m0 6= k} (6)

The capacity region of this channelC is the closure of all
the rate triples(R1, R2, R0) such thatP (n)

e,1 → 0, P
(n)
e,2 → 0

as codeword lengthn → ∞, whereR1 = log M1/n, R2 =
log M2/n andR0 = log M0/n.

B. Existing Results

1) Proposition 1: Let Z = (U0, U1, U2, X1, X2, Y1, Y2)
and let P be the set of distribution onZ that can be
decomposed into the form

p(u0)p(u1|u0)p(u2|u0)p(x1|u1)p(x2|u2)p(y1, y2|x1, x2) (7)

For anyZ ∈ P, let R(Z) be the set of all triples(R1, R2, R0)
satisfying:

R1 ≤ I(X1; Y1|U1U2) + ai (8)

R2 ≤ I(X2; Y2|U1U2) + bi (9)

R0 + R1 +
bi

I(X2;Y2|U1U2) + bi
R2 ≤ I(U2X1; Y1) (10)

R0 + R2 +
ai

I(X1;Y1|U1U2) + ai
R1 ≤ I(U1X2; Y2) (11)

where

a1 = min[I(U1; Y1|U0), I(U1; Y2|U0)] (12)

b1 = min[I(U2; Y1|U1U0), I(U2; Y2|U1U0)] (13)

a2 = min[I(U1; Y1|U2U0), I(U1; Y2|U2U0)] (14)

b2 = min[I(U2; Y1|U0), I(U2; Y2|U0)] (15)

a3 = min[I(U1; Y1|U0), I(U1; Y2|U2U0)] (16)

b3 = min[I(U2; Y1|U1U0), I(U2; Y2|U0)] (17)

a4 = min[I(U1; Y1|U2U0), I(U1; Y2|U0)] (18)

b4 = min[I(U2; Y1|U0), I(U2; Y2|U1U0)] (19)

ThenRT =
⋃

Z∈P R(Z) is an achievable region, i.e.,RT ⊆
C.
Proof: See [1].

2) Proposition 2: For an interference channel
(X1 ×X2, p(y1, y2|x1, x2),Y1 × Y2) with common
information satisfying

I(X1; Y1|X2, U) ≤ I(X1; Y2|X2, U) (20)

I(X2; Y2|X1, U) ≤ I(X2; Y1|X1, U) (21)

the capacity regionCs is given by

Cs= {⋃(R0, R1, R2) :
R1 ≤ I(X1; Y1|X2, U)
R2 ≤ I(X2; Y2|X1, U)
R1 + R2 ≤ min{I(X1, X2; Y1|U), I(X1, X2; Y2|U)}
R0 + R1 + R2 ≤ min{I(X1, X2; Y1), I(X1, X2; Y2)}}

(22)
where the union is over joint distributionsp(u, x1, x2, y1, y2)
that factor as

p(u)p(x1|u)p(x2|u)p(y1, y2|x1, x2). (23)

Proof: See [2].

III. A N EW ACHIEVABLE REGION

A. Modified interference channel with common information
Km

In this modified channel, we allow part of each transmitter’s
private message to be decoded by both receivers. For each
transmittera(a = 1, 2), the original private message is divided
into two parts: private messageia ∈ Ma = {1, 2, · · ·,Ma}
and common messageja ∈ Na = {1, 2, · · ·, Na}. Besides,
each transmitter also has the original common messagek ∈
M0 = {1, 2, · · ·M0}. So, there areM1 ·N1 ·M0 codewords
x1(i1, j1, k) andM2·N2·M0 codewordsx2(i2, j2, k). Suppose
the decoded message indices at receiver 1 arem̂1, n̂1, n̂2 and
m̂0, while at receiver 2 arêm2, ˆ̂n2, ˆ̂n1 and ˆ̂m0. Define events

E1
.= {m̂1 6= i1} ∪ {n̂1 6= j1} ∪ {n̂2 6= j2} ∪ {m̂0 6= k} (24)

E2
.= {m̂2 6= i2} ∪ {ˆ̂n2 6= j2} ∪ {ˆ̂n1 6= j1} ∪ { ˆ̂m0 6= k} (25)

Then, the average probability of decoding error is

P
(n)
e,1 ≡

∑
i1j1i2j2k P (E1|x1(i1, j1, k),x2(i2, j2, k))

M1N1M2N2M0
(26)

P
(n)
e,2 ≡

∑
i1j1i2j2k P (E2|x1(i1, j1, k),x2(i2, j2, k))

M1N1M2N2M0
(27)

The corresponding achievable rate quintuples
(R11, R12, R22, R21, R0) are such thatP (n)

e,1 → 0, P
(n)
e,2 → 0

as codeword lengthn → ∞, where R11 = log M1/n,
R12 = log N1/n, R22 = log M2/n, R21 = log N2/n
and R0 = log M0/n. The modified interference channel
with common information introduces four auxiliary random
variables Q, U1, U2, U0 (Q is the time sharing random
variable), defined on arbitrary finite setsQ,U1,U2,U0

respectively. It is easy to see that if a rate quintuple
(R11, R12, R22, R21, R0) is achievable for modified channel
Km, then rate triple(R11 + R12, R22 + R21, R0) is also
achievable for the original channelK.



B. A new achievable rate region

Theorem 1: SupposeZ = (Y1, Y2, X1, X2, U1, U2, U0, Q)
and let P∗ be the set of distribution onZ that can be
decomposed into the form

p(q)p(u0|q)p(u1|u0q)p(u2|u0q)
×p(x1|u1q)p(x2|u2q)p(y1y2|x1x2) (28)

For any Z ∈ P∗, let S(Z) be the set of all quintuples
(R11, R12, R21, R22, R0) of non-negative numbers satisfying:

R11 ≤ I(Y1; X1|U1U2Q) (29)

R21 ≤ I(Y1; U2|X1U0Q) (30)

R11 + R12 ≤ I(Y1; X1|U2U0Q) (31)

R11 + R21 ≤ I(Y1; X1U2|U1U0Q) (32)

R11 + R12 + R21 ≤ I(Y1; X1U2|U0Q) (33)

R0 + R11 + R12 + R21 ≤ I(Y1; X1U2|Q) (34)

R22 ≤ I(Y2; X2|U1U2Q) (35)

R12 ≤ I(Y2; U1|X2U0Q) (36)

R22 + R21 ≤ I(Y2; X2|U1U0Q) (37)

R22 + R12 ≤ I(Y2; X2U1|U2U0Q) (38)

R22 + R21 + R12 ≤ I(Y2; X2U1|U0Q) (39)

R0 + R22 + R21 + R12 ≤ I(Y2; X2U1|Q) (40)

Let Rm be the closure of
⋃

Z∈P∗ S(Z), then Rm is the
achievable rate region ofKm.
Proof of Theorem 1:

Codebook Generation: Let q = (q(1), · · ·, q(n)) be a ran-
dom sequence ofQn distributed according to the probability∏n

t=1 p(q(t)). For the codewordq, generateM0 i.i.d (inde-
pendent and identically distributed) codewordsu0(k), k =
1, 2, · · ·,M0, with each element distributed according to∏n

t=1 p(u(t)
0 |q(t)). For the codewordq and each ofu0(k),

generateN1 i.i.d codewordsu1(j1, k), j1 = 1, 2, · · ·, N1 and
N2 i.i.d codewordsu2(j2, k), j2 = 1, 2, · · ·, N2, with each
element distributed according to

∏n
t=1 p(u(t)

1 |u0(k)(t)q(t))
and

∏n
t=1 p(u(t)

2 |u0(k)(t)q(t)) respectively. For the codeword
q and each of u1(j1, k), generateM1 i.i.d codewords
x1(i1, j1, k), i1 = 1, 2, · · ·,M1, with each element distributed
according to

∏n
t=1 p(x(t)

1 |u1(j1, k)(t)q(t)). For q and each
of u2(j2, k), generateM2 i.i.d codewordsx2(i2, j2, k), i2 =
1, 2, · · ·,M2, with each element distributed according to∏n

t=1 p(x(t)
2 |u2(j2, k)(t)q(t)).

Encoding Rule: For encoder 1, given a message triple
(i1, j1, k), send the corresponding codewordx1(i1, j1, k).
Similarly, for encoder 2, sendx2(i2, j2, k) for the triple
(i2, j2, k).

Decoding Rule:
Receiver 1 determines the unique(i1, j1, j2, k) such that

{q,u0(k),u1(j1, k),u2(j2, k),x1(i1, j1, k),y1}
∈ A(n)

ε (QU0U1U2X1Y1) (41)

Receiver 2 determines the unique(i2, j2, j1, k) such that

{q,u0(k),u2(j2, k),u1(j1, k),x2(i2, j2, k),y2}
∈ A(n)

ε (QU0U2U1X2Y2) (42)

whereA
(n)
ε (·) denotes the jointly typical set.

Analysis of Error Probability: By symmetry of the random
code construction, the error probability for a specific message
quintuple is independent of that quintuple. Therefore we can
assume without loss of generality that(i1, i2, j1, j2, k) =
(1, 1, 1, 1, 1) was sent. We first consider the average error
probability P

(n)
e,1 for receiver 1 and supposey1 was received.

Let E1(i1j1j2k) denote the event (41). Then we have

P
(n)
e,1 ≡ Pr{Ec

1(1111) or
⋃

i1j1j2k 6=1111

E1(i1j1j2k)} (43)

≤ Pr{Ec
1(1111)}+

∑

k 6=1,i1j1j2

Pr{E1(i1j1j2k)} (44)

+
∑

j1 6=1,i1

Pr{E1(i1j111)}+
∑

i1 6=1

Pr{E1(i1111)} (45)

+
∑

i1 6=1,j2 6=1

Pr{E1(i11j21)}+
∑

j2 6=1

Pr{E1(11j21)} (46)

+
∑

j1 6=1,j2 6=1,i1

Pr{E1(i1j1j21)} (47)

From the way the random sequencesq,u0,u1,u2,x1 are
generated and by the property of jointly typical set, it follows
that

Pr{Ec
1(1111)} ≤ ε (48)

Now, let us evaluatePr{E1(i1j1j2k)} for k 6= 1. From the
way the random sequencesq,u0,u1,u2,x1 are generated, we
know u0,u1,u2,x1 are all independent fromy1 given q due
to the factk 6= 1. So,

Pr{E1(i1j1j2k)}
=

∑

(qu0u1u2x1y1)∈A
(n)
ε

p(q)p(u0,u1,u2,x1|q)p(y1|q)

≤ |A(n)
ε |2−n(H(Q)−ε)2−n(H(U0U1U2X1|Q)−ε)2−n(H(Y1|Q)−ε)

≤ 2−n(H(Q)+H(U0U1U2X1|Q)+H(Y1|Q)−H(QU0U1U2X1Y1)−4ε)

= 2−n(I(Y1;U0U1U2X1|Q)−4ε)

= 2−n(I(Y1;X1U2|Q)−4ε)

Using similar techniques to evaluate the probabilities of other
error events, we have

P
(n)
e,1 ≤ ε + 2−n(I(Y1;X1U2|Q)−(R11+R12+R21+R0)−4ε)(49)

+ 2−n(I(Y1;X1|U0U2Q)−(R11+R12)−4ε) (50)

+ 2−n(I(Y1;X1|U1U2Q)−R11−4ε) (51)

+ 2−n(I(Y1;U2X1|U0U1Q)−(R11+R21)−4ε) (52)

+ 2−n(I(Y1;U2|U0X1Q)−R21−4ε) (53)

+ 2−n(I(Y1;U2X1|U0Q)−(R11+R12+R21)−4ε)(54)

ε can be arbitrarily small by lettingn → ∞. The conditions
(29)-(34) will make sure thatP (n)

e,1 → 0 whenn →∞.



For receiver 2, we consider the eventE2(i2j2j1k) specified
by (42). With the similar techniques, the decoding error prob-
ability P

(n)
e,2 will vanish on the basis of conditions (35)-(40)

and lettingn →∞. Q.E.D.
From the relation of the modified channelKm and the

original channelK, we give the following theorem without
proof.

Theorem 2: LetR(Z), Z ∈ P∗ be the set of all(R1, R2, R0)
such thatR1 = R11 + R12, R2 = R22 + R21 for some
(R11, R12, R22, R21, R0) ∈ S(Z), thenR∗I =

⋃
Z∈P∗ R(Z)

is achievable for the original channelK.
Now, let us define a subset ofR∗I . Denote byP the set of all

distribution Z = (Y1, Y2, X1, X2, U1, U2, U0, Q) ∈ P∗ such
thatQ = φ, whereφ is a constant. DefineRI =

⋃
Z∈P R(Z).

It is easy to see thatRI ⊆ R∗I .

Corollary 1: The achievable region proposed by Tan [1] is a
subset ofRI , thus a subset ofR∗I , i.e.,RT ⊆ RI ⊆ R∗I .
Proof: We can always express any(R0, R1, R2) ∈ RT (Z)
as R1 = R11 + R12, R2 = R22 + R21 for some
(R11, R12, R22, R21, R0) such that:

R11 ≤ I(Y1; X1|U1U2) (55)

R22 ≤ I(Y2; X2|U1U2) (56)

R12 ≤ ai, R21 ≤ bi, i = 1, 2, 3, 4 (57)

R0 + R11 + R12 + R21 ≤ I(U2X1; Y1) (58)

R0 + R22 + R21 + R12 ≤ I(U1X2; Y2) (59)

It can be easily seen that conditions(55)-(59) imply conditions
(29)-(40) withQ = φ. SoRT ⊆ RI ⊆ R∗I .

Corollary 2: Under the condition of strong interference
in (20)-(21), we haveR∗I = RI = Cs.
Proof: When we apply Fourier-Motzkin Elimination on
the inequalities (29)-(40) and then remove those redundant
inequalities, we get (60)-(72). Under the condition of strong
interference (20)-(21), the original channel becomes a
compound MAC channel with common information, i.e., the
messages of both senders can be all decoded by each receiver
[2]. In this situation, there is no “private message” any more,
so

X1 = U1, X2 = U2. (73)

Substituting allU1, U2 with X1, X2 in (60)-(72) and then
remove those newly generated redundant inequalities, we get
exact (22). Q.E.D.

IV. N UMERICAL EXAMPLES IN GAUSSIAN CHANNEL

The standard form of a Gaussian interference channel is as
follows:

Y1 = X1 + a21X2 + Z1 (74)

Y2 = a12X1 + X2 + Z2 (75)

whereZ1, Z2 are arbitrarily correlated zero mean, unit vari-
ance Gaussian random variables. Suppose the power con-
straints ofX1 andX2 areP1 andP2 respectively.

Although we have the mathematical formula for the achiev-
able region, the computation of it seems formidable because
we need to exhaust all kinds of distributions. In order to see
the shape of the region and compareR∗I andRT , we have
to make some constraints to the model. First, we constrain
all the input signals to be Gaussian distributed. Second, we
set the time sharing variableQ = φ, i.e., the region we
compute is actuallyRI instead ofR∗I . Consider, for certain
λ, λ̄, γ, γ̄, µ, µ̄, θ, θ̄ ∈ [0, 1], with λ + λ̄ = 1, γ + γ̄ =
1, µ + µ̄ = 1, θ + θ̄ = 1, and additional auxiliary variables
W1, V1,W2, V2, U0, the following hold:

U0 ∼ N(0, P0) (76)

W1 ∼ N(0, λθ̄P1) (77)

V1 ∼ N(0, λ̄θ̄P1) (78)

X1 = W1 + V1 +
√

θP1/P0U0 ∼ N(0, P1) (79)

W2 ∼ N(0, γµ̄P2) (80)

V2 ∼ N(0, γ̄µ̄P2) (81)

X2 = W2 + V2 +
√

µP2/P0U0 ∼ N(0, P2) (82)

where W1,W2 are the private messages,U1 = V1 +√
θP1/P0U0, U2 = V2+

√
µP2/P0U0 are common messages.

After computing those mutual information formula in (29)-
(40) and taking the convex hull of all the power allocation,
we have the achievable regionRI in Fig.2. Since this is a
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Fig. 2. Achievable rate region forK. P1 = 6, P2 = 1.5, P0 = 1, a12 =
a21 = 0.74

3-dimensional region, it is hard to illustrate the comparison
of the proposed achievable regionRI and the previous result
RT . So, we slice the 3D achievable region with planes parallel
to (R1, R2) plane (i.e., planes with constantR0) and compare
the two regions. The comparison is shown in Fig.3.

Remarks:
1) The 3-dimensional region in Fig.2 agrees with our

intuition that it is a convex region.
2) The intersection of the proposed achievable region and

the plane withR0 = 0 is actuallyG′ in Han and Kobayashi’s
paper [9].



R1 ≤ I(Y1;X1|U2U0Q) (60)

R1 ≤ I(Y1;X1|U1U2Q) + I(Y2; U1|X2U0Q) (61)

R2 ≤ I(Y2;X2|U1U0Q) (62)

R2 ≤ I(Y2;X2|U2U1Q) + I(Y1; U2|X1U0Q) (63)

R1 + R2 ≤ I(Y2;X2|U1U2Q) + I(Y1; X1U2|U0Q) (64)

R1 + R2 ≤ I(Y1;X1; U1U2Q) + I(Y2; X2U1|U0Q) (65)

R1 + R2 ≤ I(Y1;X1U2|U1U0Q) + I(Y2; X2U1|U2U0Q) (66)

2R1 + R2 ≤ I(Y1;X1|U1U2Q) + I(Y2; X2U1|U2U0Q) + I(Y1; X1U2|U0Q) (67)

R1 + 2R2 ≤ I(Y2;X2|U1U2Q) + I(Y1; X1U2|U1U0Q) + I(Y2; X2U1|U0Q) (68)

R0 + R1 + R2 ≤ I(Y2;X2|U1U2Q) + I(Y1; X1U2Q) (69)

R0 + R1 + R2 ≤ I(Y1;X1|U1U2Q) + I(Y2; X2U1Q) (70)

R0 + 2R1 + R2 ≤ I(Y1;X1|U1U2Q) + I(Y2; X2U1|U2U0Q) + I(Y1; X1U2Q) (71)

R0 + R1 + 2R2 ≤ I(Y2;X2|U1U2Q) + I(Y1; X1U2|U1U0Q) + I(Y2; X2U1|Q) (72)
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Fig. 3. Comparison of achievable rate regionRT andRI . P1 = 6, P2 =
1.5, P0 = 1, a12 = a21 = 0.74. Dashed lines are forRT while solid lines
are forRI . a) and e) are forR0 = 0.8; b) and f) are forR0 = 0.4; c) and
g) are forR0 = 0.2; d) and h) are forR0 = 0.

3) The comparison in Fig.3 shows that for those parameters
P1, P2, P0, a12, a21 with the given values, our proposed region
RI strictly extendsRT . However, our numerical simulation
shows that for some other values of the parameters, our
achievable region coincides with that ofRT . In fact, the
achievable region derived in [1] follows Carleial’s idea of
sequential superposition coding [8] while our proposed achiev-
able region follows Han and Kobayshi’s idea of simultaneous
superposition coding [9]. Therefore, our gain in the achievable
region is from the superiority of simultaneous superposition
coding over sequential superposition coding.

V. CONCLUSION AND DISCUSSION

We proposed a new achievable rate region for the interfer-
ence channel with common information, which extends the
achievable region previously proposed by Tan [1]. Numerical
examples in Gaussian case is presented to show for certain
values of the parameters, our achievable region can strictly

extendRT . It is also shown that our proposed achievable
region coincides with the capacity region under the condition
of strong interference.

For future work, one can combine FDMA/TDMA with
Han and Kobayashi’s simultaneous superposition code, i.e.,
consider the case when the time-sharing variableW 6= φ. It
is conjectured that this combination will yield an even larger
achievable region.
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