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Abstract— Wyner's common information can be easily general- Wi Decoder Xn
ized for continuous random variables. We provide an operatnal n n
meaning for such generalization using the Gray-Wyner netwik XY Encode Wo
with lossy source coding. Specifically, a Gray-Wyner network
consists of one encoder and two decoders. A sequence of inde- Wa Decoder yn

pendent copies of a pair of random variable X,Y") ~ p(z,y) is
encoded into three messages, one of them is a common input to
both decoders. The two decoders attempt to reconstruct theato Fig. 1. Gray-Wyner source coding network.
sequences respectively subject to individual distortionanstraints.

We show that Wyner's common information equals the smallest $n
common message rate when the total rate is arbitrarily close Processor 1~
to the rate-distortion function with joint decoding. A surprising
observation is that such equality holds independent of thealues
of distortion constraints as long as the distortions are les than
certain thresholds. An interpretation for such thresholdsis given
for the symmetric case.

Processor 2

I. INTRODUCTION

Classical notions that characterize the amount of common
information contained in a pair of dependent random vagibl Fig. 2. Distribution Approximation.
(X,Y) ~ p(z,y) include Shannon’s mutual information and
Gacs and Korner's common randomness [1]. Each of these

... 9nRol -
notions carries clearly defined operational meaning. Wyn }’ 2 0} Is passed to two separate random number gen

provided yet another definition to quantify the common in@rators, whose outputs are generated independently aegord

formation for a pair of discrete random variables with finitd> distributionsp, (X|W') andp»(V[IW). The Qlitpm sequences
alphabet [3]: of the two processors, denoted &3* and Y™ respectively,

have joint distribution

C(X;Y)= inf I(X,Y;W). 1 -
) = B T YV aE = D ). @
Here, the infimum is taken over all auxiliary random variable weW
W such thatX, W, andY forms a Markov chain, i.eX and Let Cy be the smalles?, such that the distribution in (2) is
Y are conditionally independent give'. arbitrarily close toQ(X™,Y™), in the sense that

Wyner’'s common information also carries its own opera-

1 P(a™, y™
tional meanings, two of them were given in Wyner’s originalD,,(Q; P) = — Z P(z",y") log % 3)
paper [3]. The first approach is shown in Fig. 1. The encoder " anexn gneyn Q" y")
observes a pair of sequencéX™,Y™) and outputs three .54 pe made arbitrarily small.
message$ly, Wi, and W, where Wyner proved that
Wi e {1, 2"} C(X,Y)=C, = Cs, (4)

for i = 0,1,2. Decoder 1 recontructX™ from messages lending clear practical interpretations & X,Y") defined in
(Wo, Wy), and decoder 2 reconstrudt® from (Wy, Ws). For equation (1). However, these interpretations only apply to
any givene, defineC, to be the minimumR, for the system random variables with finite alphabet sets. Indeed, Wyner's
in Fig. 1 such that the total ragfzo R; < H(X,Y)+eand common information was originally defined only for a pair of
the probabilities of error at both decoders are bounded. by finite-alphabet discrete random variables. Its genefidiado
Wyner’s second approach is shown in Fig. 2. In thisultiple dependent variables was first mentioned in [6] and
model, a common messad® uniformly distributed onV = further developed in [7]. The definition in (1) also applies



to random variables with continuous alphabet. Howeves it i Definition 1: An (n, My, M;, M) rate distortion code con-
not clear what physical interpretation such quantity earfor sists of the following:

continuous random variables. « One encoder mapping

We provide such an interpretation using the rate distortion n "
result for the Gray-Wyner network as described in Fig. 1. fe AT XY — IMO < Iy X Ing, (7)
That is, instead of requiring the sources to be reproduced wherel,; = {0,1,2,- —1} fori=0,1,2.
losslessly at the two decoders, we allow certain distostion , Two decoder mapplngﬁ , g“
subject to given distortion constraints [9]. It turns ougtth (x)
Wyner's common information is precisely the smallest com- b An X vy — X (8)
mon message rate for a certain range of distortion consdrain jgy) o Iy X Ing, — Y™ 9)

when the total rate is arbitrarily close to the rate distorti

function with joint decoding. A surprising result is thafs alet fe(X",Y") = (Wo, W1, W), 1 < W; < M; and

Wyner's common information is only a function of the joint X" — f( )(Wo, W), (10)

distribution, this smallest common rate remains constaei e - v)

if the distortion constraints vary, as long as they are lbas t Y'=fp ' (Wo, Wa). (11)

certain thresholds. Denote by(A x, Ay) the average distortion between encoder
The rest of the paper is organized as follows. Section ihputs and decoder outputs:

gives the problem formulation and the main results. The fgroo

are given in Appendix. In section Ill, two examples, the Ax :Edl(X”,){”), (12)
doubly symmetric binary source studied in [3] and the bitari Ay = Edy(Y",Y"), (13)
Gaussian source, are given. We conclude in Section IV.  \yhere
Il. PROBLEM FORMU.LATION AND MAIN. RESULT - dy (27, 3") = 1 Zd (2r, 50), (14)
Let {(X%,Y%)}52, be independent copies of a pair of nk 1
dependent random variabléxX,Y) ~ Q(z,y) which take n
values in some arbitrary (finite, countable, or continuous) da(y™, §") ng (YK, Uk )- (15)

spacesX x Y. Here, we useQ(z,y) to denote the joint

distribution of (X, Y'), i.e., probability mass function X, Y")  An (n, My, My, M,) code W|th distortion(Ax, Ay) is re-

are discrete and probability density function (iX,Y) are ferred to as aftn, My, My, Ma, Ax, Ay) rate distortion code.
continuous. Thus the joint distribution of length vectors Definition 2: For any A;,A, > 0, a numberR, is

(X™,Y")is said to be (A;, Ay)-achievable if for anye > 0 we
n can find n sufficiently large such that there exists a
y") = HQ(xi,yi). (5) (n, Moy, My, My, Ax, Ay) rate distortion code with
| . | | My < 2P, (16)
The common information of the paiX,Y’) is a functional of 2 4
Q and is defined as Z “logM; < Rxy(Ar,As)+e, (17)
n
A - X =0
C(X,Y) 2 inf I(X,Y; W), (6) Av<Aite . Ay<Ayie (19)
where the infimum is taken over all random variable tripleghereRxy (A1, Az) is the rate distortion function farX, Y')
X, Y, W satisfying with joint encoding and decoding, i.e.,
« (C1) The marginal distribution foX,Y is Q(x,y), Rxy (A1, A2) =minI(X,Y; X,Y), (19)

e (C2) X andY are conditionally independent give.

Let us consider the lossy source coding problem describe
in Fig. 1. The encoder observes a pair of seque(i&és V"),
and map them to three messag®s, W1, W, with

ere the minimum is taken over all the test channels
ax glz,y) such thatEd, (X, X) < Ay, Edy(Y,Y) < As.
Definition 3: C5(A1, Ay) is defined as the infimum of all
Ry that is(A1, Ag)-achievable.

W;e{l1,--- ,2nRi}’ We now state the main results.

Theorem 1:The common information C(X;Y) =

for i = 0,1,2. Let dy(x,2) anddz(x, ) be bounded single C5(A1,A) in some neighborhood of the origin
letter d|st0rt|0n functions defined oki x X and)’ x ) respec- {(A1,A3) : 0 < Ay, Ay <~} provided that

tively. Decoder 1 reproduceX™ from (W, W) subject to

an average distortion constraiat ; decoder 2 reproducas” Qz,y) >0 allze X,ye), (20)
from (Wo, W>) subject to an average distortion constralit  anq 4, d, satisfy

We now give a precise definition of the quantity (A, As),

which is the smallest common raf, such that the total rate di(z,2) > di(z,z)=0,x#1, (21)
meets the rate distortion bound with joint decoding. do(y,9) > do(y,y) =0,y # 4. (22)



A proof of Theorem 1 is given in Appendix A. B. Gaussian source

The condition OI’dl andd2 set forth in the theorem amounts In this section we consider the case Wh}én}/’ are bivariate
to requiring the distortion function be normal, as defined ig5yssian with zero mean and covariance matrix
[10].
. . s 1
If (X,Y) are discrete random variables with finite alphabet, K= [ f ] . (29)
andd; = dy = dy are the Hamming distortion, defined as P

R Proposition 1: For the Gaussian random variab|&’,Y")
dpr(u, @) = { (1% Z ; Z (23) described above, the common information is
) ) 1
o(X;Y) = _1 Tt (30)
then for Ay = Ay = 0, C5(A1,Ay) = C1 = C(X;Y). f1-
Therefore, approach 1 in [3] is a special case of Theorem 1.The proof is given in Appendix C. Proposition 1 can be
Theorem 2:For the symmetric casé\; = A, = A, extended to multivariate Gaussian distributions.
O3(A) = C(X,Y)ifand only if A < Ry (C(X,Y)), where Corollary 1: For N joint Gaussian random variables
R;&(-) denotes the inverse function &fxy (A, A), i.e, the X, Xo,---, X with covariance matrix
distortion rate function.
1 p DY p
A proof of Theorem 2 is given in Appendix B. Ky = p L - p (31)
IIl. EXAMPLES pop ol

the common information is

A. Doubly symmetric binary source (DSBS) 1 Np
C(X1,Xo, -+, Xn)==log(l+—). 32

Consider a DSBS as in [3], [9]. That is, a binary source (X1, X, Xv) 2 og(1 + 1 —p) (32)

where X’ = = {0,1} and forz,y = 0,1, Proposition 2: For bivariate Gaussian random variables

X,Y with zero mean and covariance matrix in (29) and

1 1
Q(x,y) = 5(1 —ag)0y .y + §a0(1 —dy), (24) squared error distortiodd; (u, @) = da(u,4) = (u — @)%, we
have
0 < ap < & andd,, is an indicator function oft = y. X C3(A,A) = C(X5Y). (33)

can be considered as an unbiased binary input to a bin

r
symmetric channel (BSC) with crossover probability and fot anyA <1-p.

Y as the corresponding output, or vice versa. Proof. The joint rate distortion function for Gaussian ran-
It is shown in [3] that for the DSBS dom variables with symmetric squared error distortion [12]
is
C(X:;Y) =1+ h(ag) — 2h(ar), 25
(X:Y) = 1+ h(ao) — 2h(a1) (25) gl 0<psiop
whereh(ap) is the binary entropy function fob < ag < 1 Bxv(8,8) ={ flog g 1-p<p<1 . (34)
anda; = 3 — (1 - 2a0)7. 0 B>1

For a DSBS vv_ith Hamming di;tortioﬂl = dy = dy Thus we have
and symmetric distortion constrailk; = A, = A, the
joint rate distortion function [12] is given by (26), where Rxy(1—p,1—p) = _1
L(z) = —xlogx. It can be seen that

! + T _oxy). @5)

By Theorem 2,y = 1 — p. This means that’;(A, A) =
Rxy(ai,a1) = 1+ h(ag) — 2h(a1) = C(X,Y). C(X;Y) forany A <1 — p.
Remark:C5(A, A) for any0 < A <1 — p is achieved by
Therefore, by Theorem 2 we have= a;. C3(A,A) =14+ R = Ryy(1—p,1— p) R1 = RX\XY(A) = %loglzT”,
h(ao) — 2h(a1) for any0 < A < a;. Ry = Ry 3¢ (A) = 3 log 152, where(X,Y) are the random
Remark:C3(A, A) for any 0 < A < ay is achieved by | 4rigples achlevmg%xy(l —p,l —p).
Ry = Rxy(a1,a1) = 1+ h(ao) — 2h(a1), R1 = Ry xv(A),
andR; = Ry z¢(A), where(X,Y) are the random variables IV. CONCLUSION

achievingRRxy (a1,a1). The test channels are In this paper, we generalized Wyner’s common information
to that of continuous random variables and provided a lossy
Pr{X =z[zg} = (1—a1)dsz+a1(l—6d23), (27) source coding interpretation using the Gray-Wyner netwark
Pr{Y =ylzg} = (1—a1)dy5+ai(l—3,5). (28) surprising observation is that the the minimum common rate
for lossy source coding is invariant to the distortion cosist
Hence,R; = Ry = h(a1) — h(A). as long as it is less than a certain threshold.



1+ h(ao) — 2h(B) if0<f<a
R ,P)= 26
xv (5,5) { L(L— ag) — ${L(268 — ag) + LI2(1 - ) ~ ao]} a1 < A< } (26)
APPENDIX We now prove tha€'s (A1, As) < C(X,Y) in the rangeg(0 <
A Proof of Theorem 1 A1, Ay <~}. ForanyRy > C(X,Y) ande > 0 let
We first introduce the following two lemmas. The first one €1 = min(e/3, Ry — C(X;Y)). (46)
is given by Gray [8]. Sincee; > 0, we know from Lemma 2 that there exists a

Lemma 1:Given a two-dimensional sourc&,Y and a code (n, My, My, Ma, Ax, Ay) with Ax < Ay + €1, Ay <
compound distortion measure, we have the following inequad,, + ¢, and

ities 1
—logMy, < I(X,)Y;W)+4+e
n

Rxy (A1, A > R A1) + Ry (Ag), 36
xv (A1, Az) x|y (A1) + Ry (A2) (36) . C(X:Y)+a <R, 47
Rxy (A1) > Rx(Ap) - I(X;Y), (37) 1
—logM; < R A1) + e, 48
and equalities hold in some neighborhood of the origin no 8= xw(B1) + e (48)
{(Ala AQ) 10 < Ala AQ < 7}! prOVided that l 10gM2 < Ry|W(A2) + €. (49)
n
Qz,y) >0 allzeX,ye), (38)  From (47-49), we have that
andd;, do satis 13
b fy — Zlog M;
di(z,2) > dy(2,2) = 0,2 # 7, (39) "o
da(y, ) > da(y,y) = 0,y # 4. (40) < I(X,Y; W) + Rxjw (A1) + Ry jw(Az2) + 31, (50)
= I(X;W)+R A+ I Y, W)+ R A
Here Rx|y(A) is the conditional rate distortion function ( .) xpw (B0) +1( ) viw(A2)
which is defined as —I(X5Y) + 36, (51)
. X = Rx (A1) + Ry (A2) — I(X3Y) + 3e, (52)
RX|Y(A) =min [ (X; X|Y), (41) < Ryy(A1,Ag) + e (53)
where the minimum is taken with respect to all test channgfere (51) follows from the chain rule and the Markov Chain
¢ (]2, y) such thatBd(X, X) < A. X —W -V, (52) and (53) follow from (43-46).
The second lemma is given by Gray and Wyner [9]. This proves that the code satisfies (16)-(18), i.e.,

Lemma 2:For the lossy source coding problem describef}, is (A;, A,)-achievable. This completes the proof of
in the previous section, fod;, A; > 0, the rate distortion ¢5(A;, A,) < C(X;Y).

region is given by 2) Converse:Let A;, A, be in the region(0 < A;, A, <

R(A1, A) = {(Ro, Ry, R)  Ro > I(X, Y; W), 7} such that

Ry > RX‘W(Al),RQ > RY‘W(AQ)}, (42) RX(A1)+RY(A2)_I(X;Y) :RXY(AlvAQ)' (54)
Let Ry be (A, Ay)-achievable. We will show thaR, >
C(X;Y). The proof follows similar procedures as the proof
Note that Lemma 2 is valid for both the discrete case amd Theorem 5.1 in [3].

the continuous case. Although Gray and Wyner only treatedSince Ry is (Ai,Ap)-achievable, there exists an
the discrete case in [9], the result can be generalized to thwe Mo, M1, M2, Ax,Ay) code satisfying (16)-(18). Let

for some distribution®(w|z, y)Q(z,y).

continuous case [11]. fe(X™ Y™ = (Wy, W1, Ws), we have that

We now prove Theorem 1. 1 1

1) Achievability: For a givenQ(z,y) > 0z € X,y € Y, Ro > —logMo > —H(Wo), (55)
let C(X;Y) = I(XY; W) where (X,Y, W) satisfiesX — 1 n oon
W—Y andY, plz,y,w) = Q(z,y), i.e., W is the auxiliary = ~I(X™ Y™ Wo), (56)
variable that achieve§'(X,Y). Let (A1, As) be in the range 1 n on 1 n oon
{0 <A, Ay <A} WheEe'y is)chosén such)that the following ~n H(X™Y™) = n H(X", Y™ [Wo), (57)

equalities hold n
a = H(X,Y)— 1 > H(Xy, Vi XL YR W,)(58)
Rx(A;) = RX|W(A1)+I(X;W), (43) =
Ry (Az) = Ryw(A2)+I1(Y;W), (44)

> H(X,)Y) - Ty (™), (59)

S|
NE

ny(Al,AQ) = Rx(A1)—|—Ry(A2)—I(X;Y).(45)

b
Il

1



1 n
> _ - (k)
> H(X,Y) rl(n;é ) (60)
where (59) comes from the definition f (-) (c.f. Corollary
4.5, [3]) and the definition 06(*), where

60 = T(Xp; Vi X1, YL W),

Inequality (60) follows from the concavity dfy(9).

Therefore, sinc€'(X;Y) = H(X,Y)-I'1(0) (c.f. equation
(4.4) in [3]) and (60), to establistky, > C(X;Y) we only
need to prove that, for arbitrary> 0,

L5750 < (o), (61)
" k=1
lin%v(e) = 0. (62)
From (57), we have that
Lioghty > SH(X"v™) - ZH(X" Y"Wy), (63)
n n n

1 1
—H(X",Y") + —I(X™ Y"|Wo)
n n

~LH(X"|Wo) — LH(Y' W) (64)

Consider again thén, My, M, M2, Ax, Ay) code that sat-
isfies (16)-(18) for arbitrary > 0. Set X" = 5 (W,, W)
andY™ = £ (W,, W), we have

Ligrr, > Laom), (65)
n n
1
> EH(W1|Wo)a (66)
1
> EI(X";W1|W0), (67)
1 ~
> Liesgrm). 69)

where inequality (68) follows from the Markov chais™ —
Wo, W1 — X™. Similarly, we have

1 1 N
= log My > —I(Y"™; V" Wp). (69)
n n

Adding (64), (68) and (69), we obtain

2
Z 1 log M;
" n
=0
1
~(H(X"Y") + (X", Y™ Wo) — H(X™|Wo)
—H(Y"™Wo) + I(X™; X" [Wo) + I(Y"™; Y™ |Wy))(70)
1
E(I(X";Wo) + (Y™ Wo) = I(X™;Y™)
H(X™ Y Wo)4+I(X™ X" [Wo)+1(Y™; Y™ [ Wo)i71)

1 . .
E(I(XH;XH’ Wo)+ I(Y™; Y™ Wy) — I(X™Y™)

Y

+I(X™ Y™ [Wh)), (72)
> %(I(X";X")H(Y";Y")—nI(X;Y)
H (X" Y™ [Wh)), (73)

> RX(A1)+RY(A2)—I(X;Y)+%I(X";Y"|Wo), (74)

1
= ny(Al,Ag)-f— EI(X”,Y”WQ) (75)

where (71), (72) follow from the chain rule, (73) follows
from the fact that conditioning does not increase entrop¥) (
follows from the definition of rate distortion function ané)
is from (54).
On the other hand, the code satisfies (17), so we have
2

1
Z o log M; < Rxy (A1, Az) + €. (76)
1=0
Combining (75) and (76) we will have that
Lrxm v wg) < e (77)
n

Also, it is easy to check that the following inequality isdru

1 1<
- n.yn bl (k)
nI(X ;Y™W,) > - kglé . (78)
Combining (77) and (78), we obtain
Ly s < (79)
n
k=1

which completes the proof.

B. Proof of Theorem 2

Before proving Theorem 2, we first introduce two lemmas.
Lemma 3:For anyAq, Ag,

C3(A1,A2) < Rxy(Aq,As). (80)

Proof. The lemma follows from the fact thaR,
Rxvy(A1,As) is (A1, Ag)-achievable.

Lemma 4:Let 7 = Ry (C(X,Y)), A < 7, if Ry is A-
achievable, then there exists¥& such thatX — W — Y,
Ry > I(X,Y; W), and

I(X,Y; W) + Rxjw(A) + Ryjw(A) = Rxy(A,A). (81)

Proof. For A < 7, if Ry is A-achievable, we have that for
any e > 0, there exists a codén, My, My, Ms, A, A) that
satisfies (16)-(18). LeR, = L log M; for i = 0, 1,2, we have
that

2

ZR; S ny(A, A) + €.

=0
From the definition of rate distortion region [9], we knowtha
(R{, Ry — €/2, Ry — €/2) is in the rate distortion regiofk.
By Lemma 2, there exists B jointly distributed with X, Y
asp(w|z,y)Q(z,y) and satisfies

Ry+ Ry +Ry—e> I(X,Y; W)+ Rx|w(A) + Ry w (A)(83)
> RXY(Av A)v (85)

(82)

where inequalities (84) and (85) are from Them 3.1 in [8].
The equality in (84) holds only wherX is conditionally



independent ofY” given W and equality in (85) holds only  Without loss of generality, lei¥ be a Gaussian random
when0 < A < . For A = 7, combined with (82), we have variable with zero mean and varianeé, and
that I(X,Y; W) = Rxvy (7, 7). Hence for anyA < r,

X = pW+4/1-p2c2Ny, (90)
I(X,Y; W) + Rxyw(A) + Ryyw(A) = Rxy (A, A). (86)
Y = poW+4/1—p302No, (91)

This completes the proof.

We now prove Theorem 2.

First we show that for anyA such thatCs5(A) = C(X,Y
we haveA < 7. From Lemma 3,Rxy (A, A) > C(X,Y

whereN; and N, are standard Gaussian random variables and
) W, N1, Ny are mutually independent with each other.
)’ Since EXY = p, we have

Rxy(A,A) is anon increasing function &, therefore A < p = p1p20?, (92)
R (C(X,Y)) =T. :
. . . and due to the Markov chaii —W —Y', we haveH (X |W) =
Next we will show that for any distortiolh < 7, C3(A) = :
H(X|W)Y), ie.,

C(X,Y).

For anyR, that isA-achievable, from Lemma 4, there exists 1—p? = 1+ 2pp1p2 — p* — pi — p3 (93)

—p? = )

aW such thatX — W —Y and Ry > I(X,Y;W). Hence,
Ry > I(X,Y;W) > C(X,Y), which implies C5(A) >
C(X,Y).

From Lemma 3,C5(r) < C(X,Y). Hence, Cs5(r) =

1—p3
Combining (92) and (93), we get’> = 1. Therefore, we can
lower boundI(X,Y; W) by

C(X,Y). Thus, any rateR, > C(X,Y) is r-achievable. By I(X,Y;W) = h(X,Y) = h(X|W)—-h(Y|W), (94)
L 4, we h —p?

emma 4, we have _ %1og ’ 12)£ - (95)

C(X,Y) + Ry (1) + By (7) = Ry (7,7), X e
where W is the random variable such that(X,Y) = - §1Og 1+ p2 —p? —p3’ (%6)
I(X,Y;W). Thus, by Lemma 1, for anpj < 7, —p?

S g g > g (o7)
C(X,Y) + Rxyw(A) + Ryjw(A) = Rxy (A, A). To11h 7

= —log——- 98

Then use the same proof as the achievability part of Theorem 2 BT p’ (%8)

1, we can prove that when the distortidh < 7, any rateé \ here we use the facts thatps = p and p?
Ry > C(X,Y) is A-achievable. Hence5(A) < C(X,Y),
completing the proof.

+ p} > 2p1po.
REFERENCES

[1] P. Gacs and J. Kdrner, “Common information is much g mutual
information,” Problems Contr. Inform. Theoryol. 2, pp. 149-162, 1973.
[2] R. Ahlswede and J. Korner, “On common information andated
Let W, N1 and N, be standard Gaussian random variables characteristics of correlated information sourcégc. of the 7th Prague
independent of each other and expréss” as Conference of Information Theqrg974.
[3] A. D. Wyner, “The common information of two dependent dam
variables,” IEEE Trans. Inf. Theoryvol. 21, no. 2, pp. 163-179, March,

C. Proof of Proposition 1

X = VpW++/1—pNy, (87) 1975.
Y = W+ \/1TpN2. (88) [4] H. S. Witsenhausen, “On sequences of pairs of dependamiom

varibles,” SIAM J. Appl. Math.vol. 28, pp. 100-113, Jan. 1975.

H. S. Witsenhausen, “Values and bounds for the commaorimétion of
two discrete random variablesSIAM J. Appl. Math.vol. 31, no. 2, pp.
313-333, 1976.

P. Cuff, H.Permuter and T. M. Cover, “Coordination capat IEEE
Trans. Inf. Theoryvol.56, pp. 4181-4206, Sep. 2010.

W. Liu, G. Xu and B. Chen, “The common information of N depent
random variables,Proc. Annual Allerton Conference on Communication,

It is easy to verify that conditions (C1l) and (C2) arés]
satisfied. Straightforward calculation yield§X,Y; W) =
%log }ﬂ. (6l

The pproof is thus complete if one can prokeX,Y; W) > 7

%log }f—g for all W satisfying the conditions (C1) and (C2).
Let Px w,y be any joint distribution satisfying the con-
ditions (C1) and (C2) and lek denote the corresponding

covariance matrix. LetPx w,y be joint Gaussian satisfying

the conditions (C1) and (C2) with zero mean and the sartte

8] R. M. Gray,

Control, and ComputingMonticello, IL, Sep. 2010.

“A new class of lower bounds to information astof
stationary sources via conditional rate-distortion fioret,” IEEE Trans.
Inf. Theory vol. 19, pp.480-489, Jul. 1973.

R. M. Gray and A. D. Wyner, “Source coding for a simple netky’
Bell Syst. Tech. Jvol. 58, pp. 1681-1721, Nov. 1974.

covariance matrix<. From the fact that conditional differen-j10] r. w. Yeung,information Theory and Network Codin§pringer, 2008.
tial entropy is maximized under Gaussian distribution for @] A. D. Wyner, “The rate-distortion function for sourceding with side

given covariance matrix [13], we have
hMX,Y|W) < hp(X,Y|W). (89)

Thereforel(X,Y; W) > I5(X,Y;W). Hence we only need
to consider( X, W,Y") that are jointly Gaussian distributed.

information at the decoderf: General sourcesfhformation and contrql
vol. 38, pp. 60-80, 1978.

[12] T. Berger,Rate Distortion TheoryEnglewood Cliffs, N.J.: Prentice-Hall,

1971.

[13] J. A. Thomas, “Feedback can at most double Gaussiarnpieuiccess

channel capacity.IEEE Trans. Inf. Theoryol. IT-33, no. 5, pp.711-716,
Sep. 1987.



	Wyner’s Common Information for Continuous Random Variables - A Lossy Source Coding Interpretation
	Recommended Citation

	TR 2011 06 title page Xu.pdf
	Xu TR 2011 06

