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Abstract— Wyner’s common information can be easily general-
ized for continuous random variables. We provide an operational
meaning for such generalization using the Gray-Wyner network
with lossy source coding. Specifically, a Gray-Wyner network
consists of one encoder and two decoders. A sequence of inde-
pendent copies of a pair of random variables(X, Y ) ∼ p(x, y) is
encoded into three messages, one of them is a common input to
both decoders. The two decoders attempt to reconstruct the two
sequences respectively subject to individual distortion constraints.
We show that Wyner’s common information equals the smallest
common message rate when the total rate is arbitrarily close
to the rate-distortion function with joint decoding. A surp rising
observation is that such equality holds independent of the values
of distortion constraints as long as the distortions are less than
certain thresholds. An interpretation for such thresholdsis given
for the symmetric case.

I. I NTRODUCTION

Classical notions that characterize the amount of common
information contained in a pair of dependent random variables
(X, Y ) ∼ p(x, y) include Shannon’s mutual information and
Gács and Körner’s common randomness [1]. Each of these
notions carries clearly defined operational meaning. Wyner
provided yet another definition to quantify the common in-
formation for a pair of discrete random variables with finite
alphabet [3]:

C(X ; Y ) = inf
X−W−Y

I(X, Y ; W ). (1)

Here, the infimum is taken over all auxiliary random variables
W such thatX , W , andY forms a Markov chain, i.e.,X and
Y are conditionally independent givenW .

Wyner’s common information also carries its own opera-
tional meanings, two of them were given in Wyner’s original
paper [3]. The first approach is shown in Fig. 1. The encoder
observes a pair of sequences(Xn, Y n) and outputs three
messagesW0, W1, andW2 where

Wi ∈ {1, · · · , 2nRi}

for i = 0, 1, 2. Decoder 1 recontructsXn from messages
(W0, W1), and decoder 2 reconstructsY n from (W0, W2). For
any givenǫ, defineC1 to be the minimumR0 for the system
in Fig. 1 such that the total rate

∑2
i=0 Ri < H(X, Y )+ ǫ and

the probabilities of error at both decoders are bounded byǫ.
Wyner’s second approach is shown in Fig. 2. In this

model, a common messageW uniformly distributed onW =

Xn, Y n

Encoder

Decoder 1

Decoder 2

W1

W2

W0

X̂n

Ŷ n

Fig. 1. Gray-Wyner source coding network.

W

Processor 1

Processor 2

X̃n

Ỹ n

Fig. 2. Distribution Approximation.

{

1, · · · , 2nR0

}

is passed to two separate random number gen-
erators, whose outputs are generated independently according
to distributionsp1(X |W ) andp2(Y |W ). The output sequences
of the two processors, denoted as̃Xn and Ỹ n respectively,
have joint distribution

p(X̃n, Ỹ n) =
∑

w∈W

1

|W|p1(X
n|W )p2(Y

n|W ). (2)

Let C2 be the smallestR0 such that the distribution in (2) is
arbitrarily close toQ(Xn, Y n), in the sense that

Dn(Q; P ) =
1

n

∑

xn∈Xn,yn∈Yn

P (xn, yn) log
P (xn, yn)

Q(xn, yn)
(3)

can be made arbitrarily small.
Wyner proved that

C(X, Y ) = C1 = C2, (4)

lending clear practical interpretations toC(X, Y ) defined in
equation (1). However, these interpretations only apply to
random variables with finite alphabet sets. Indeed, Wyner’s
common information was originally defined only for a pair of
finite-alphabet discrete random variables. Its generalization to
multiple dependent variables was first mentioned in [6] and
further developed in [7]. The definition in (1) also applies



to random variables with continuous alphabet. However, it is
not clear what physical interpretation such quantity carries for
continuous random variables.

We provide such an interpretation using the rate distortion
result for the Gray-Wyner network as described in Fig. 1.
That is, instead of requiring the sources to be reproduced
losslessly at the two decoders, we allow certain distortions
subject to given distortion constraints [9]. It turns out that
Wyner’s common information is precisely the smallest com-
mon message rate for a certain range of distortion constraints
when the total rate is arbitrarily close to the rate distortion
function with joint decoding. A surprising result is that, as
Wyner’s common information is only a function of the joint
distribution, this smallest common rate remains constant even
if the distortion constraints vary, as long as they are less than
certain thresholds.

The rest of the paper is organized as follows. Section II
gives the problem formulation and the main results. The proofs
are given in Appendix. In section III, two examples, the
doubly symmetric binary source studied in [3] and the bivariate
Gaussian source, are given. We conclude in Section IV.

II. PROBLEM FORMULATION AND MAIN RESULT

Let {(Xk, Yk)}∞k=1 be independent copies of a pair of
dependent random variables(X, Y ) ∼ Q(x, y) which take
values in some arbitrary (finite, countable, or continuous)
spacesX × Y. Here, we useQ(x, y) to denote the joint
distribution of(X, Y ), i.e., probability mass function if(X, Y )
are discrete and probability density function if(X, Y ) are
continuous. Thus the joint distribution of lengthn vectors
(Xn, Y n) is

Qn(xn, yn) =

n
∏

i=1

Q(xi, yi). (5)

The common information of the pair(X, Y ) is a functional of
Q and is defined as

C(X, Y ) , inf I(X, Y ; W ), (6)

where the infimum is taken over all random variable triples
X, Y, W satisfying

• (C1) The marginal distribution forX, Y is Q(x, y),
• (C2) X andY are conditionally independent givenW .

Let us consider the lossy source coding problem described
in Fig. 1. The encoder observes a pair of sequences(Xn, Y n),
and map them to three messagesW0, W1, W2 with

Wi ∈ {1, · · · , 2nRi},

for i = 0, 1, 2. Let d1(x, x̂) and d2(x, ŷ) be bounded single
letter distortion functions defined onX ×X andY×Y respec-
tively. Decoder 1 reproducesXn from (W0, W1) subject to
an average distortion constraint∆1; decoder 2 reproducesY n

from (W0, W2) subject to an average distortion constraint∆2.
We now give a precise definition of the quantityC3(∆1, ∆2),
which is the smallest common rateR0 such that the total rate
meets the rate distortion bound with joint decoding.

Definition 1: An (n, M0, M1, M2) rate distortion code con-
sists of the following:

• One encoder mappingfE

fE : Xn × Yn → IM0
× IM1

× IM2
, (7)

whereIMi
= {0, 1, 2, · · · , Mi − 1} for i = 0, 1, 2 .

• Two decoder mappingsf (X)
D , f

(Y )
D

f
(X)
D : IM0

× IM1
→ Xn, (8)

f
(Y )
D : IM0

× IM2
→ Yn. (9)

Let fE(Xn, Y n) = (W0, W1, W2), 1 ≤ Wi ≤ Mi and

X̂n = f
(X)
D (W0, W1), (10)

Ŷ n = f
(Y )
D (W0, W2). (11)

Denote by(∆X , ∆Y ) the average distortion between encoder
inputs and decoder outputs:

∆X = Ed1(X
n, X̂n), (12)

∆Y = Ed2(Y
n, Ŷ n), (13)

where

d1(x
n, x̂n) =

1

n

n
∑

k=1

d1(xk, x̂k), (14)

d2(y
n, ŷn) =

1

n

n
∑

k=1

d2(yk, ŷk). (15)

An (n, M0, M1, M2) code with distortion(∆X , ∆Y ) is re-
ferred to as an(n, M0, M1, M2, ∆X , ∆Y ) rate distortion code.

Definition 2: For any ∆1, ∆2 ≥ 0, a number R0 is
said to be (∆1, ∆2)-achievable if for any ǫ > 0 we
can find n sufficiently large such that there exists a
(n, M0, M1, M2, ∆X , ∆Y ) rate distortion code with

M0 ≤ 2nR0 , (16)
2

∑

i=0

1

n
log Mi ≤ RXY (∆1, ∆2) + ǫ, (17)

∆X ≤ ∆1 + ǫ , ∆Y ≤ ∆2 + ǫ. (18)
whereRXY (∆1, ∆2) is the rate distortion function for(X, Y )
with joint encoding and decoding, i.e.,

RXY (∆1, ∆2) = min I(X, Y ; X̂, Ŷ ), (19)

where the minimum is taken over all the test channels
qt(x̂, ŷ|x, y) such thatEd1(X, X̂) ≤ ∆1, Ed2(Y, Ŷ ) ≤ ∆2.

Definition 3: C3(∆1, ∆2) is defined as the infimum of all
R0 that is (∆1, ∆2)-achievable.

We now state the main results.
Theorem 1:The common information C(X ; Y ) =

C3(∆1, ∆2) in some neighborhood of the origin
{(∆1, ∆2) : 0 ≤ ∆1, ∆2 ≤ γ} provided that

Q(x, y) > 0 all x ∈ X , y ∈ Y, (20)

andd1, d2 satisfy

d1(x, x̂) > d1(x, x) = 0, x 6= x̂, (21)

d2(y, ŷ) > d2(y, y) = 0, y 6= ŷ. (22)



A proof of Theorem 1 is given in Appendix A.
The condition ond1 andd2 set forth in the theorem amounts

to requiring the distortion function be normal, as defined in
[10].

If (X, Y ) are discrete random variables with finite alphabet,
andd1 = d2 = dH are the Hamming distortion, defined as

dH(u, û) =

{

0, u = û
1, u 6= û,

(23)

then for ∆1 = ∆2 = 0, C3(∆1, ∆2) = C1 = C(X ; Y ).
Therefore, approach 1 in [3] is a special case of Theorem 1.

Theorem 2:For the symmetric case∆1 = ∆2 = ∆,
C3(∆) = C(X, Y ) if and only if ∆ ≤ R−1

XY (C(X, Y )), where
R−1

XY (·) denotes the inverse function ofRXY (∆, ∆), i.e, the
distortion rate function.

A proof of Theorem 2 is given in Appendix B.

III. E XAMPLES

A. Doubly symmetric binary source (DSBS)

Consider a DSBS as in [3], [9]. That is, a binary source
whereX = Y = {0, 1} and forx, y = 0, 1,

Q(x, y) =
1

2
(1 − a0)δx,y +

1

2
a0(1 − δx,y), (24)

0 ≤ a0 ≤ 1
2 and δx,y is an indicator function ofx = y. X

can be considered as an unbiased binary input to a binary
symmetric channel (BSC) with crossover probabilitya0 and
Y as the corresponding output, or vice versa.

It is shown in [3] that for the DSBS

C(X ; Y ) = 1 + h(a0) − 2h(a1), (25)

whereh(a0) is the binary entropy function for0 ≤ a0 ≤ 1
anda1 = 1

2 − 1
2 (1 − 2a0)

1

2 .
For a DSBS with Hamming distortiond1 = d2 = dH

and symmetric distortion constraint∆1 = ∆2 = ∆, the
joint rate distortion function [12] is given by (26), where
L(x) = −x log x. It can be seen that

RXY (a1, a1) = 1 + h(a0) − 2h(a1) = C(X, Y ).

Therefore, by Theorem 2 we haveγ = a1. C3(∆, ∆) = 1 +
h(a0) − 2h(a1) for any 0 ≤ ∆ ≤ a1.

Remark:C3(∆, ∆) for any 0 ≤ ∆ ≤ a1 is achieved by
R0 = RXY (a1, a1) = 1 +h(a0)− 2h(a1), R1 = RX|X̃Ỹ (∆),

andR2 = RY |X̃Ỹ (∆), where(X̃, Ỹ ) are the random variables
achievingRXY (a1, a1). The test channels are

Pr{X = x|x̃ỹ} = (1 − a1)δx,x̃ + a1(1 − δx,x̃), (27)

Pr{Y = y|x̃ỹ} = (1 − a1)δy,ỹ + a1(1 − δy,ỹ). (28)

Hence,R1 = R2 = h(a1) − h(∆).

B. Gaussian source

In this section we consider the case whenX, Y are bivariate
Gaussian with zero mean and covariance matrix

K =

[

1 ρ
ρ 1

]

. (29)

Proposition 1: For the Gaussian random variable(X, Y )
described above, the common information is

C(X ; Y ) =
1

2
log

1 + ρ

1 − ρ
. (30)

The proof is given in Appendix C. Proposition 1 can be
extended to multivariate Gaussian distributions.

Corollary 1: For N joint Gaussian random variables
X1, X2, · · · , XN with covariance matrix

KN =









1 ρ · · · ρ
ρ 1 · · · ρ
· · · · · ·
ρ ρ · · · 1









, (31)

the common information is

C(X1, X2, · · · , XN) =
1

2
log(1 +

Nρ

1 − ρ
). (32)

Proposition 2: For bivariate Gaussian random variables
X, Y with zero mean and covariance matrix in (29) and
squared error distortiond1(u, û) = d2(u, û) = (u − û)2, we
have

C3(∆, ∆) = C(X ; Y ). (33)

for any ∆ ≤ 1 − ρ.

Proof: The joint rate distortion function for Gaussian ran-
dom variables with symmetric squared error distortion [12]
is

RXY (β, β) =











1
2 log 1−ρ2

β2 0 ≤ β ≤ 1 − ρ
1
2 log 1+ρ

2β−(1−ρ) 1 − ρ ≤ β ≤ 1

0 β ≥ 1

. (34)

Thus we have

RXY (1 − ρ, 1 − ρ) =
1

2
log

1 + ρ

1 − ρ
= C(X, Y ). (35)

By Theorem 2,γ = 1 − ρ. This means thatC3(∆, ∆) =
C(X ; Y ) for any ∆ ≤ 1 − ρ.

Remark:C3(∆, ∆) for any 0 ≤ ∆ ≤ 1 − ρ is achieved by
R0 = RXY (1 − ρ, 1 − ρ), R1 = RX|X̃Ỹ (∆) = 1

2 log 1−ρ
∆ ,

R2 = RY |X̃Ỹ (∆) = 1
2 log 1−ρ

∆ , where(X̃, Ỹ ) are the random
variables achievingRXY (1 − ρ, 1 − ρ).

IV. CONCLUSION

In this paper, we generalized Wyner’s common information
to that of continuous random variables and provided a lossy
source coding interpretation using the Gray-Wyner network. A
surprising observation is that the the minimum common rate
for lossy source coding is invariant to the distortion constraint
as long as it is less than a certain threshold.



RXY (β, β)=

{

1 + h(a0) − 2h(β) if 0 ≤ β ≤ a1

L(1 − a0) − 1
2{L(2β − a0) + L[2(1 − β) − a0]} a1 ≤ β ≤ 1

2

(26)

APPENDIX

A. Proof of Theorem 1

We first introduce the following two lemmas. The first one
is given by Gray [8].

Lemma 1:Given a two-dimensional sourceX, Y and a
compound distortion measure, we have the following inequal-
ities

RXY (∆1, ∆2) ≥ RX|Y (∆1) + RY (∆2), (36)

RX|Y (∆1) ≥ RX(∆1) − I(X ; Y ), (37)

and equalities hold in some neighborhood of the origin
{(∆1, ∆2) : 0 ≤ ∆1, ∆2 ≤ γ}, provided that

Q(x, y) > 0 all x ∈ X , y ∈ Y, (38)

andd1, d2 satisfy

d1(x, x̂) > d1(x, x) = 0, x 6= x̂, (39)

d2(y, ŷ) > d2(y, y) = 0, y 6= ŷ. (40)

Here RX|Y (∆) is the conditional rate distortion function
which is defined as

RX|Y (∆) = min I(X ; X̂|Y ), (41)

where the minimum is taken with respect to all test channels
qt(x̂|x, y) such thatEd(X, X̂) ≤ ∆.

The second lemma is given by Gray and Wyner [9].
Lemma 2:For the lossy source coding problem described

in the previous section, for∆1, ∆2 ≥ 0, the rate distortion
region is given by

R(∆1, ∆2) = {(R0, R1, R2) : R0 ≥ I(X, Y ; W ),

R1 ≥ RX|W (∆1), R2 ≥ RY |W (∆2)}, (42)

for some distributionsp(w|x, y)Q(x, y).

Note that Lemma 2 is valid for both the discrete case and
the continuous case. Although Gray and Wyner only treated
the discrete case in [9], the result can be generalized to the
continuous case [11].

We now prove Theorem 1.
1) Achievability: For a givenQ(x, y) > 0 x ∈ X , y ∈ Y,

let C(X ; Y ) = I(XY ; W ) where (X, Y, W ) satisfiesX −
W −Y and

∑

w p(x, y, w) = Q(x, y), i.e.,W is the auxiliary
variable that achievesC(X, Y ). Let (∆1, ∆2) be in the range
{0 ≤ ∆1, ∆2 ≤ γ} whereγ is chosen such that the following
equalities hold

RX(∆1) = RX|W (∆1) + I(X ; W ), (43)

RY (∆2) = RY |W (∆2) + I(Y ; W ), (44)

RXY (∆1, ∆2) = RX(∆1) + RY (∆2) − I(X ; Y ).(45)

We now prove thatC3(∆1, ∆2) ≤ C(X, Y ) in the range{0 ≤
∆1, ∆2 ≤ γ}. For anyR0 > C(X, Y ) andǫ > 0 let

ǫ1 = min(ǫ/3, R0 − C(X ; Y )). (46)

Since ǫ1 > 0, we know from Lemma 2 that there exists a
code(n, M0, M1, M2, ∆X , ∆Y ) with ∆X ≤ ∆1 + ǫ1, ∆Y ≤
∆2 + ǫ1 and

1

n
log M0 ≤ I(X, Y ; W ) + ǫ1

= C(X ; Y ) + ǫ1 ≤ R0, (47)
1

n
log M1 ≤ RX|W (∆1) + ǫ1, (48)

1

n
log M2 ≤ RY |W (∆2) + ǫ1. (49)

From (47-49), we have that

1

n

2
∑

i=0

log Mi

≤ I(X, Y ; W ) + RX|W (∆1) + RY |W (∆2) + 3ǫ1, (50)

= I(X ; W ) + RX|W (∆1) + I(Y ; W ) + RY |W (∆2)

−I(X ; Y ) + 3ǫ1, (51)

= RX(∆1) + RY (∆2) − I(X ; Y ) + 3ǫ1, (52)

≤ RXY (∆1, ∆2) + ǫ. (53)

where (51) follows from the chain rule and the Markov Chain
X − W − Y , (52) and (53) follow from (43-46).

This proves that the code satisfies (16)-(18), i.e.,
R0 is (∆1, ∆2)-achievable. This completes the proof of
C3(∆1, ∆2) ≤ C(X ; Y ).

2) Converse:Let ∆1, ∆2 be in the region{0 ≤ ∆1, ∆2 ≤
γ} such that

RX(∆1) + RY (∆2) − I(X ; Y ) = RXY (∆1, ∆2). (54)

Let R0 be (∆1, ∆2)-achievable. We will show thatR0 ≥
C(X ; Y ). The proof follows similar procedures as the proof
of Theorem 5.1 in [3].

Since R0 is (∆1, ∆2)-achievable, there exists an
(n, M0, M1, M2, ∆X , ∆Y ) code satisfying (16)-(18). Let
fE(Xn, Y n) = (W0, W1, W2), we have that

R0 ≥ 1

n
log M0 ≥ 1

n
H(W0), (55)

≥ 1

n
I(Xn, Y n; W0), (56)

=
1

n
H(Xn, Y n) − 1

n
H(Xn, Y n|W0), (57)

= H(X, Y ) − 1

n

n
∑

k=1

H(Xk, Yk|Xk−1, Y k−1, W0),(58)

≥ H(X, Y ) − 1

n

n
∑

k=1

Γ1(δ
(k)), (59)



≥ H(X, Y ) − Γ1(
1

n

n
∑

k=1

δ(k)), (60)

where (59) comes from the definition ofΓ1(·) (c.f. Corollary
4.5, [3]) and the definition ofδ(k), where

δ(k) = I(Xk; Yk|Xk−1, Y k−1, W0).

Inequality (60) follows from the concavity ofΓ1(δ).
Therefore, sinceC(X ; Y ) = H(X, Y )−Γ1(0) (c.f. equation

(4.4) in [3]) and (60), to establishR0 ≥ C(X ; Y ) we only
need to prove that, for arbitraryǫ > 0,

1

n

n
∑

k=1

δ(k) ≤ v(ǫ), (61)

lim
ǫ→0

v(ǫ) = 0. (62)

From (57), we have that

1

n
log M0 ≥ 1

n
H(Xn, Y n) − 1

n
H(Xn, Y n|W0), (63)

=
1

n
H(Xn, Y n) +

1

n
I(Xn; Y n|W0)

− 1

n
H(Xn|W0) −

1

n
H(Y n|W0). (64)

Consider again the(n, M0, M1, M2, ∆X , ∆Y ) code that sat-
isfies (16)-(18) for arbitraryǫ > 0. SetX̂n = f

(X)
D (W0, W1)

and Ŷ n = f
(Y )
D (W0, W2), we have

1

n
log M1 ≥ 1

n
H(W1), (65)

≥ 1

n
H(W1|W0), (66)

≥ 1

n
I(Xn; W1|W0), (67)

≥ 1

n
I(Xn; X̂n|W0). (68)

where inequality (68) follows from the Markov chainXn −
W0, W1 − X̂n. Similarly, we have

1

n
log M2 ≥ 1

n
I(Y n; Ŷ n|W0). (69)

Adding (64), (68) and (69), we obtain

2
∑

i=0

1

n
log Mi

≥ 1

n
(H(Xn, Y n) + I(Xn; Y n|W0) − H(Xn|W0)

−H(Y n|W0) + I(Xn; X̂n|W0) + I(Y n; Ŷ n|W0)),(70)

=
1

n
(I(Xn; W0) + I(Y n; W0) − I(Xn; Y n)

+I(Xn; Y n|W0)+I(Xn; X̂n|W0)+I(Y n; Ŷ n|W0)),(71)

=
1

n
(I(Xn; X̂n, W0) + I(Y n; Ŷ n, W0) − I(Xn; Y n)

+I(Xn; Y n|W0)), (72)

≥ 1

n
(I(Xn; X̂n)+I(Y n; Ŷ n)−nI(X ; Y )

+I(Xn; Y n|W0)), (73)

≥ RX(∆1)+RY (∆2)−I(X ; Y )+
1

n
I(Xn; Y n|W0), (74)

= RXY (∆1, ∆2) +
1

n
I(Xn; Y n|W0). (75)

where (71), (72) follow from the chain rule, (73) follows
from the fact that conditioning does not increase entropy, (74)
follows from the definition of rate distortion function and (75)
is from (54).

On the other hand, the code satisfies (17), so we have

2
∑

i=0

1

n
log Mi ≤ RXY (∆1, ∆2) + ǫ. (76)

Combining (75) and (76) we will have that

1

n
I(Xn; Y n|W0) ≤ ǫ. (77)

Also, it is easy to check that the following inequality is true.

1

n
I(Xn; Y n|W0) ≥

1

n

n
∑

k=1

δ(k). (78)

Combining (77) and (78), we obtain

1

n

n
∑

k=1

δ(k) ≤ ǫ, (79)

which completes the proof.

B. Proof of Theorem 2

Before proving Theorem 2, we first introduce two lemmas.
Lemma 3:For any∆1, ∆2,

C3(∆1, ∆2) ≤ RXY (∆1, ∆2). (80)

Proof: The lemma follows from the fact thatR0 =
RXY (∆1, ∆2) is (∆1, ∆2)-achievable.

Lemma 4:Let τ = R−1
XY (C(X, Y )), ∆ ≤ τ , if R0 is ∆-

achievable, then there exists aW such thatX − W − Y ,
R0 ≥ I(X, Y ; W ), and

I(X, Y ; W ) + RX|W (∆) + RY |W (∆) = RXY (∆, ∆). (81)

Proof: For ∆ ≤ τ , if R0 is ∆-achievable, we have that for
any ǫ > 0, there exists a code(n, M0, M1, M2, ∆, ∆) that
satisfies (16)-(18). LetR′

i = 1
n

log Mi for i = 0, 1, 2, we have
that

2
∑

i=0

R′
i ≤ RXY (∆, ∆) + ǫ. (82)

From the definition of rate distortion region [9], we know that
(R′

0, R
′
1 − ǫ/2, R′

2 − ǫ/2) is in the rate distortion regionR.
By Lemma 2, there exists aW jointly distributed withX, Y
asp(w|x, y)Q(x, y) and satisfies

R′
0+R′

1+R′
2−ǫ≥ I(X, Y ; W )+RX|W (∆)+RY |W (∆),(83)

≥ I(X, Y ; W ) + RXY |W (∆, ∆), (84)

≥ RXY (∆, ∆), (85)

where inequalities (84) and (85) are from Them 3.1 in [8].
The equality in (84) holds only whenX is conditionally



independent ofY given W and equality in (85) holds only
when0 ≤ ∆ ≤ γ. For ∆ = τ , combined with (82), we have
that I(X, Y ; W ) = RXY (τ, τ). Hence for any∆ ≤ τ ,

I(X, Y ; W ) + RX|W (∆) + RY |W (∆) = RXY (∆, ∆). (86)

This completes the proof.
We now prove Theorem 2.
First we show that for any∆ such thatC3(∆) = C(X, Y ),

we have∆ ≤ τ . From Lemma 3,RXY (∆, ∆) ≥ C(X, Y ).
RXY (∆, ∆) is a non increasing function of∆, therefore,∆ ≤
R−1

XY (C(X, Y )) = τ .
Next we will show that for any distortion∆ ≤ τ , C3(∆) =

C(X, Y ).
For anyR0 that is∆-achievable, from Lemma 4, there exists

a W such thatX − W − Y and R0 ≥ I(X, Y ; W ). Hence,
R0 ≥ I(X, Y ; W ) ≥ C(X, Y ), which implies C3(∆) ≥
C(X, Y ).

From Lemma 3,C3(τ) ≤ C(X, Y ). Hence, C3(τ) =
C(X, Y ). Thus, any rateR0 > C(X, Y ) is τ -achievable. By
Lemma 4, we have

C(X, Y ) + RX|W (τ) + RY |W (τ) = RXY (τ, τ),

where W is the random variable such thatC(X, Y ) =
I(X, Y ; W ). Thus, by Lemma 1, for any∆ ≤ τ ,

C(X, Y ) + RX|W (∆) + RY |W (∆) = RXY (∆, ∆).

Then use the same proof as the achievability part of Theorem
1, we can prove that when the distortion∆ ≤ τ , any rate
R0 > C(X, Y ) is ∆-achievable. Hence,C3(∆) ≤ C(X, Y ),
completing the proof.

C. Proof of Proposition 1

Let W, N1 andN2 be standard Gaussian random variables
independent of each other and expressX, Y as

X =
√

ρW +
√

1 − ρN1, (87)

Y =
√

ρW +
√

1 − ρN2. (88)

It is easy to verify that conditions (C1) and (C2) are
satisfied. Straightforward calculation yieldsI(X, Y ; W ) =
1
2 log 1+ρ

1−ρ
.

The proof is thus complete if one can proveI(X, Y ; W ) >
1
2 log 1+ρ

1−ρ
for all W satisfying the conditions (C1) and (C2).

Let PX,W,Y be any joint distribution satisfying the con-
ditions (C1) and (C2) and letK denote the corresponding
covariance matrix. LetP̃X,W,Y be joint Gaussian satisfying
the conditions (C1) and (C2) with zero mean and the same
covariance matrixK. From the fact that conditional differen-
tial entropy is maximized under Gaussian distribution for a
given covariance matrix [13], we have

h(X, Y |W ) ≤ hP̃ (X, Y |W ). (89)

ThereforeI(X, Y ; W ) ≥ IP̃ (X, Y ; W ). Hence we only need
to consider(X, W, Y ) that are jointly Gaussian distributed.

Without loss of generality, letW be a Gaussian random
variable with zero mean and varianceσ2, and

X = ρ1W +
√

1 − ρ2
1σ

2N1, (90)

Y = ρ2W +
√

1 − ρ2
2σ

2N2, (91)

whereN1 andN2 are standard Gaussian random variables and
W, N1, N2 are mutually independent with each other.

SinceEXY = ρ, we have

ρ = ρ1ρ2σ
2, (92)

and due to the Markov chainX−W−Y , we haveH(X |W ) =
H(X |W, Y ), i.e.,

1 − ρ2
1 =

1 + 2ρρ1ρ2 − ρ2 − ρ2
1 − ρ2

2

1 − ρ2
2

. (93)

Combining (92) and (93), we getσ2 = 1. Therefore, we can
lower boundI(X, Y ; W ) by

I(X, Y ; W ) = h(X, Y ) − h(X |W ) − h(Y |W ), (94)

=
1

2
log

1 − ρ2

(1 − ρ2
1)(1 − ρ2

2)
, (95)

=
1

2
log

1 − ρ2

1 + ρ2 − ρ2
1 − ρ2

2

, (96)

≥ 1

2
log

1 − ρ2

1 + ρ2 − 2ρ
, (97)

=
1

2
log

1 + ρ

1 − ρ
, (98)

where we use the facts thatρ1ρ2 = ρ andρ2
1 + ρ2

2 ≥ 2ρ1ρ2.

REFERENCES
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