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A Logic GralllInar Foundation for
Document Representation and Document Layout

Allen L. Brown, Jr.*t and Howard A. Blairt§

Abstract
We present a powerful grammar-based paradigm
for electronic document markup: coordinated def
inite clause translation grammars. This markup is
of a declarative character, being, in effect, a col
lection of constraints on the logical and physical
structure of documents. To the best of our knowl
edge, coordinated grammars and their parsers can
accommodate all of the descriptive and layout pro
cessing functionality enjoyed by extant electronic
markup languages. We describe an operational
prototype that demonstrates the feasibility of a
syntax-directed basis for formalizing and realizing
document layout4

1 Introduction
Our aim is to formulate an electronic markup language
with an unambiguous formal semantics within which
one can specify documents in a declarative fashion. We
contrast our goal with the reality of popular electronic
markup languages such as 'lEX} U-TEJX:, Scribe, SGML
and ODA4 While the casual user's view of some of these
markups (e.g~ UTEX and Scribe) would appear to be
declarative1 , the actual meanings of user issued direc
tives are to be understood through underlying imper
ative languages. This is evident when a user needs to
comprehend the "style" defining mechanisms of these
markups.

The technical point of view that we have adopted
regarding document representation and document pro
cessing is aggressively syntax-oriented. \\7hile our meth
ods are related to both syntax-directed translation of
programming languages and to syntax-directed natural
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1 In complete fairness to the designers of SG~,IL, we should
point out that it is clearly their intfnt to be declarative. The
problem that they leave unresolved is the formal interpretation of
their declarations.

l~guage processing, our approach is novel in that it
uses multiple granunars for the same document .. Specif
ically, these grammars separately represent the logical
and layout views of the document represented. The lay
out granunar is said to be coordinated with the logical
grammar, and the two are allowed to interact through
a narro\\"'ly defined interface ..

In pursuit of our goal we have embarked upon a
three-phased research program4 In the recently con
cluded first phase we have formalized a representative
fragment of the Office Document Architecture (ODA)
by faithfully translating the aDA description of the
specimen document of the published standard into co
ordinated attribute grammars. The particular class of
attribute granunars that we employ is a variant of defi
nite clause translation grammars. With respect to this
translation, aDA layout processing has been formal
ized by giving a declarative (Prolog) description of the
parsing and attribute evaluation processes. The main
conclusion of the first phase of research is that we can
achieve an electronic markup language of ODA-like de
scriptive power with a precise semantical characteriza
tion.

In the remainder of this essay we shall demon
strate that the syntax-directed methods we have de
veloped in our first phase provide a natural and po,v
erful framework for document representation and doc
ument processing. OUf main vehicle for arriving at
this conclusion is the embedding of ODA-like document
representation/processing capabilities in a logic gram
mar framework. Presuming the reader to have some
acquaintance with Prolog, we sketch a direct embed
ding of aDA structures and processing in that lan
guage. \V'e introduce particular logic grammars: definite
clause grammars and definite clause translation gram
mars (DCTG's). \Ve illustrate our own variant of the
latter by reducing to a DCTG a fragment of the above
mentioned ODA specimen document. We then provide
a comprehensive exposition of DCTG's and parsing ap
plied to document representation and document pro
cessing by considering the detailed specification of the
layout process (realized in our operational prototype)
for a simple ODA-like document. We show how to pass



from the definition of the document layout process based
on total parsing that is declarative but impractically in
efficient to one based on partial parsing that is equally
declarative and potentially quite efficient. \\Te briefly
discuss the adaptations of efficient context free parsing
and incremental attribute evaluation techniques that we
plan for our second phase of research. \Ve close by
sketching the future phases of research that follow from
our operational prototype and its associated semantical
framework.

2 Overview of ODA
aDA [11] expresses a syntactically well-defined collec
tion of document constituents of which the principal
sorts are content portions (graphic characters, raster
graphic elements and geometric graphic elements), logi
cal objects and logical object classes, layout objects and
layout object classes, and attributes. A logical (layout)
structure is a tree-like arrangement of logical (layout)
objects and object classes, with the trees 1 being ''foli
ated" with content portion constituents.

The logical structure of an aDA document is a par
titioning of the document's content based on meaning.
In that context, logical object classes are elements of
generic logical structure from which a set of logical ob
jects with common characteristics may be derived (e.g.
composite logical objects representing sections), while
logical objects are elements of a document having spe
cific interpretations (e.g. particular chapters, sections
and paragraphs).

The layout structure of an aDA document is a par
titioning of the document's content based on presenta
tion. In that context, layout object classes are elements
of a generic layout structure from which a set of lay
out objects with common characteristics may be derived
(e.g. pages with common headers and footers), "'bile
layout objects are elements of a specific layout structure
of a document having specific geometric properties (f_g.
particular pages and blocks). An attribute is an element
of a document constituent that has a name and a value,
and that expresses a characteristic of that constituent
or relationship with one or more other constituents (e_g.
the upresentation style" attribute establishes the rela
tionship bet\veen a basic component description and a
presentation st.yle). Document constituent attributes
can be viewed as decorating the aDA structure trees in
much the same way as semantical attributes decorate
parse trees in the attribute grammar paradigm.

The aDA language allows the composition of the
above~mentioned constituents into document descrip
tions, each of the latter being composed of a document
profile and a document body. A document profile is a
collection of predefined (and preinterpreted) attributes
that apply globally to the document description. The

document body consists of a generic logical structure, a
generic layout structure, specific logical structure, spe
cific layout structure, and style constituents. The last
are predet.ermined (and preinterpreted) collections of at
tributes that explicitly and implicitly link logical con
stituents with la)-'out constituents.

3 ODA documents as Prolog
We initially attempted to formalize aDA by a direct
Prolog translation of aDA document constructs_ We
translated particular aDA document descriptions into
particular Prolog fragments. Certain aDA constituents
correspond to particular Prolog-defined predicates.2

The real utility of ODA, however, comes only through
the descriptive interpretations of various attributes (e_g.
presentation style) and processes (e_g. document lay
out). The interpretation of these attributes is the main
task of document processing as exemplified by the layout
process. These interpretations are given in [11] in an in
formal fashion. The main task of formalizing aDA is to
define these interpretations rigorously. They will turn
out to be other Prolog fragments relative to which we
define each (and every) Prolog translation of an aDA
document description~ Hereafter, we shall refer to the
translation of an aDA structural document description
into a logic program as the data description and to
the Prolog interpretation of attributes (in the document
processing context) as the process description. The lat
ter rendering can be thought of as defining interpreters
for various document processors.

The recipe for generating the data description is
as follows: Generic (logical and layout) objects are rep
resented as uDary predicates. We may think of these
generic objects as types whose tokens are specific (logical
and layout) objects. In particular, tokens are individ
ual terms in the Prolog language. Generic attributes,
i.e. attributes of generic logical or layout objects, are
represented as binary predicates. For example, the fact
that the generic letter has a presentation style attribute
with value 'letter..l.aJout' is represented by
pr.B.nta~ioD-8tJl.(I,Y) :- lett.reI), 1etter-layout(Y).

which says that the pr•••ntatioJUltyle of the generic
letter is the generic letter-layout. That a specific let
ter object 'Letter had the specific presentation style
'Letter-Layout would result from asserting the fact

presentation-style<.tettex,'LetterJLayout).

We illustrate the use of the above recipe by a par
tial translation of the specimen letter \\'hose aDA doc-

2In our various aDA translation efforts we have ignored the
document profile and all of the details encoded in 0 DA '5 doc
ument content representations. To elucidate the core document
layout process it suffices to view content portions of a document
as atomic constnJcts with certain externally apparent attributes.
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Figure 1: Specimen letter generic logical structure.

ument description is presented in Annex B of Part 2 of
[11]. Specifically, our illustrations are drawn from sec
tions B.5 and B.6 (respectively the "processable form
document with generic logical structure [figure 1], and
generic layout structure [figure 2]" and the "specific logi
cal structure [figure 3] and specific layout structure [fig
ure 4]"). We translate structural aspects of the first
three entries of table B.4 (presenting the hierarchical
object class descriptions of the specimen letter) of [11]
as:

lett.r(I) :
aequenc.CI,ru,Y]),
header(U).
body(Y).

headereI) :-
••quence(I,[T,U,Y,V]),
date(T),
addr•••••(U),
aubjec't(Y),
SlDIaI&rJ (V) •

SWID&rY( D).
sum&ry([IIY])

S1UDIIIArJ _paragraph(I) ,
slDlal&rJ(Y).

The generic attributes assoc.iated with the logical object
classes would be given by:

object_c1ass(I,docuaent_root) :- letter(I).
user_yisibleJUlJle(I,ItLetter") :- lettereI).
object_clas.(1,co~o8it.) :- header(I).
user_visibleJlame(I, ltBeader tl

) :- header(I).
object_class(I,basic) :- date(I).
user_'Yisible-D-ame(I, UDate ll

) : - date(l).
layout_style(I,Y) :- date(I),date_layout(Y).
offset(I,[trailing(710),right_hand(395)]) :- date(I).
content_architectur8_class(I,processable_characters)

date(I).
object_class(I,basic) :- addressee(I).
user_Tisible-name(I,".lddres8ee U

) :- addressee(I).
layout_style(I,Y) :- addressee(I),addressee_layout(Y).
content_architecture_clasa(I,proc8ssable_characters)

addressee(I).
object_class(l,basic) :- subject(I).
user_visible-»'8IIl8(I , "SubjectU

) : - subject (I) .
3

Figure 2: Specimen letter generic layout structure.

layout_styleCI,Y) :- aUbject(I),subject_IaJout(Y)~

presentation_atyleCI,Y) :-
Bubject(I),
subject_pre.entation(Y).

line_apacing(I,300) :- 8ubject(I).
content_architecture_cla•• (l,proc•••able_charactera)

8ubject(I).
object_cla.s(I,coapoaite) :- .u..ary(I}.
layout_atyle(I,Y) :- .~(I),su.aary_l.yout(Y).

u••r_yi.ible_naae(I, uSlJaaU'JU ) :- s--.ary(l).
object_cl.sa(I,ba.ic) :- su.aary_par~aph(I).

ua.r_Yi.ibl._naae(I,"S~aryparagraph"}
SlUIIa&rJ_paragraph (X) •

laJout_stJlaCI,T) :-
trDJIaaX'f_paragraph(1) ,
au..ary_paragraph_laJout(Y).

o~~s.t(I,[left-haDd(705)]) :- ~_paragraph(I).

aligm&eJlt(X,j1Ultified) :- s-.ary_paragraphCI).
pre••ntatioD_.tJle(I,Y) :-

sUI8UI.rJ_paragraph(I) •
.u.aarJ_paragraph_pre.antatioD(T).

cont.nt_architecture_cl..sCI.proce••able_characters)
aua.ary_paragraph(I).

The translation of a specific logical document de
scription has the same object-oriented structure as does
the original ODA. That is, each object represented in
Table B.6 of [11] has a corresponding term, realized as
a so-called gensym (constants beginning with I). These
gensyms are created as a side effect of a Prolog query,
whose details need not concern us here~ The query re
sults in the creation of the gensyrns ILetter_l, IBeader_2

J

IBodJ-3, IBody-paragraph..4, IBody_paragraph-S, etc. J as well
as the assertion of ancillary facts about those gensyms

J

such as

object_type('Letter_1,letter).
8ubordinate('Beader_2,ILetter_l).
object_typeCIBeader_2,header).
subordinate(IBody_3,bodJ,IHeader_2).
object_type('BodJ_3,body).
aubordinate(IBody_paragraph_4,.Body_3).



object_type(1Body_paragraph_4,body_paragraph).
content_portion{IBodJ_paragraph_4.ll).
object_type('l,graphic_charactera).
aubordinate(IBody_paragraph_S ••Body_3).
object_type(IBody_paragraph_5,body_paragraph).
content_portion('Body_paragraph_6.'B).
object_tJpe('B,graphic_charactera).

effectively translating the descriptive content of Table
B.6. The translations of the specimen letter's generic
layout structure, generic attributes of the layout object
classes, angl the specific document layout structure par
allels the translations of the analogous logical entities.

For the most part the above leaves the generic
attributes entirely undefined. For example, what
does it mean for the logical class 8UJ1D1l&ry_paragraph

to have an a1ignment attribu te of just ified ( i. e.
alignment(X,justified) :- summary_paragraph(I).)? 1lhe
real definition for this attribute lies in its intended in
terpreter, in this case the layout process. The aDA lay
out process includes the document layout process and
the content layout process. These processes are con
cerned with the creation of a specific layout structures
which can be used by the imaging process to present the
ODA-specified document in human perceptible form in
a presentation medium. The document layout process
creates a specific layout structure in accordance with the
generic layout structure and information derived from
the specific logical structure, the generic logical struc
ture and layout styles (if present).

The gist of aDA '8 layout model is as follows: Each
aDA content portion is mapped on to one or more
(layout) blocks (having geometric extents constrained
by aDA layout attributes such as alignaent having a
value of justified) where the blocks may be generated
"on the fly". The situation of multiple mapping arises
when content layout permits a content object to be split
since the (yet to be mapped) content cannot be fit into
the space remaining in the containing frame. The con
tent portions are totally ordered and it is in that order
that blocks for content objects are generated. The or
der derives from the depth-first (pre-)ordering of the
tree implicit in the specific logical description (figure
3). To capture the layout process we defined the Pro
log predicate laJout_proc••a(l,T,U, y) where y is the spe
cific layout structure (produced by side-effect) resulting
from laying out the specific logical structure u (an in
stance of the generic logical structure whose user vis
ible name is x) according to the generic layout struc
ture whose user visible name is Y. In particular the
query ?- layout_process(letter,letter-layout,SLetter_1,Y)

will result in binding y to 'Letter-layout_S, as well as the
creation of subordinate specific objects and the assert
ing of the facts about them in the fashion we sketched
above. The layout_process predicate can be (and has
been) fully Prolog-defined. The definition is fundamen
tally flawed in that layout occurs mainly by side-effect,

and its definition mimics the traditional procedural style
of document layout. In the sections that follow we ad
dress these fla\~ts by substantially raising the level of
abstraction of the logic programming account of aDA
data descriptions. \Ve thereby enable an declarative ac
count of layout process description.

4 Logic grarnlllars
Definite clause grammars are a version of context-free
grammars [7] that have particularly straightforward
translations into definite clauses (Prolog facts and rules)
yielding parsers for those grammars. The following def
inite clause translation grarnmar3 characterizes a frag
ment of English:

sentence ::= noun_phrase,verb_phrase.
noun_phrase ::= determiner 1 noun_phrase2.
noun_phrase ::: nOUD_phrase2.
nOUD_phrase2 ::a adj.ctiYe,noun_phra8e2~

noun_phraae2 ::a noun.
.erb_phra.e ::- .erb .
• erb_phrase ::- .erb ,noUD_phrase.
deterainer ::- [the].
deterai.ner ::- [1lJ.
adjectiYe ::- [decorated].
noun ::- [pi.plate].
noun ::s [surprise].
~.rb ::- [contains].

The expressions above (whose principal functor is : :-)
are productions of a (context-free) grammar wherein the
(Prolog) constants bracketed by [ and] are terminals,
while the remaining constants are nonterminals. The
first production states that a .entence is a noun-phrase

followed by a .erb_phra... The last production states
that a a verb consists of the word contain•. The trans
lation recipe from productions of a grammar to Prolog
rules and facts (definite clauses) is roughly as follows:
For each production

1. Replace::- with :- in any production free of ter
minals to its right;

2. Append to each nonterminal appearing in a pro
duction having no terminal on its right-band-side
the string (Ii) where Ii is any Prolog variable not
previously used in the translation process;

3. If 10,11,... , and In are the variables appearing (in
their order of introduction) in a transformed pro
duction, append to the right-hand-side of the pro
duction (after the last transformed nonterminal)
the string

append(Il,I2,L3), append(L3,13
I
L4), ... ,

append(Ln,ln,IO); and

3This grammar must be augmented with a definition Cor the
usual append predicate where append (I, Y, Z) holds just in case
the list Z is the list Y appended to the list I.

4



Figure 3: Specimen letter specific logical structure.

Figure 4: Specimen letter specific layout structure.

4. From any production having a terminal on its right
hand side, delete the ::- symbol and append the
string (t) to the nonterminal appearing on the left
hand-side of the production where t is the terminal
expression appearing on the right-hand-side of the
production.

A query (against the Prolog translation) of the form
?- senteDce(S). will gener
ate all of the legal English sentences according to the
given grammar. The query 1- sentence([the, decorated,

pieplate, contains, a, surprise]). will return J8S, and ?

sentence ([pi.plates, contain, surprises]). will return no.

There are many features of languages that are ei
ther inconvenient or impossible to capture by context
free grammars. Subject-verb agreement in English is
such a feature. We extend our grammatical notation as
illustrated above by the rewritten productions below to
capture subject-verb agreement. Augmenting the gram-

5

mar above with auxiliary (Prolog) variables can support
context sensitivity. This methodology becomes unman
ageable because it does Dot of itself encourage any par
ticular structuring discipline. To address the problem,
investigators of logic-based parsing formalisms [1, 10]
have borrowed liberally from researchers in attribute
grammars (3]. One result of this confluence of inter
ests is the definite clause translation grammar. This
particular logic grammar provides a logic programming
setting with both the context-sensitive expressive po\ver
and structuring discipline of attribute grammars. In
our particular version of DCTG '5 (a variant of that de
scribed in [1]) we present the following context-sensitive
grammar to handle noun-verb agreement:

sentence ::
aeta(seq([noUD_phrase--Tl,yerb_phrase--T2]» <:>

numClumJ ::- T1--nua(Iu.),T2--num(lum).
noun_phrase ::-

.eta(seq([deterainer--Tl,nOUD_phrase2--T2]» <:>



5 Representing and laying out a
siInple ODA-like document

No parse tree variables appear in this DCTG because
none of the nonterminals of this fragment has attributes
dependent upon the attributes of other nonterminals ap
pearing in the same production.

A full recounting of our logic grammar/parsing treat
ment of the data/process descriptions of the aDA spec
imen letter would be inappropriately complex for a re
port of this length. Instead, we shall illustrate the es
sential details of our approach by appealing to an OD~.\.

representable document of considerably simpler struc
ture. The generic logical structure of our simple docu
ment will consist of arbitrarily long sequences of para-

a, surprise). and DO on ?- aentence( [so... , pieplates ,

contains, a, .urpri••])~.

<:> An ODA document can be embedded in the DCTG
formalism in the foIlo\ving way: Generic logical and
generic layout structures will each be encoded as gran1
mars. Nonterminals ,viII correspond to generic objects
and terminals will correspond to individual content por
tions. Attributes in the aDA sense will be directly
mapped into ittributes in the DCTG sense. Specific
logical and layou t structures are simply the parse trees
generated by their respective grammars.

The layout structure grammar is coordinated with
the logical structure grammar. Roughly speaking, this
means that any "string" of content portions generated
by the logical structure grammar is also generated by
the layout structure grammar, and that certain subtrees
of the parse tree of the logical structure grammar will
correspond to subtrees of the parse tree of the layout
structure granunar. The parse trees with respect to the
two grammars for that string are distincta The logical
structure granunar for the fragment of the aDA speci
men document's generic logical structure (with some of
its attributes defined) that we presented in section 3 is
as follows5 :

letter ::- aetaCseq«(header,body]» <:)
obj.c~_cla••(docu..nt_root),
user_yiaible_DUleCULetter ll)a

header ::- ••ta(••q([dat.,addr•••• ,.ubj.ct ••~JJ») (:)
object_clasa(co.posit.).
uaer_yiaible-naae("B••derU

).

.~&rJ ::- ••ta(repCsm-&rJ_paragraph» <:>
object_claas(ca.po8ite),
1l8er_yiaible..n...Cu Sua.aryIt) ~

numClum) ::- Tl--numClum),T2--numClum).
noun_phrase ::- aeta(.eqC[noUB_phraae2--Tl]» <:)

nua(lum) ::- Tl- A nuaClum).
nOUB_phrase2 ::- .etaCseq([adjective,noUD_phrase2--T2]»

num(lum) ::- T2--num(lua).
nOUD_phrase2 ::- metaCseqC[noun--Tl]» <:)

num(lum) ::- Tl--num(lua).
yerb_phrase ::- aeta(seq([verb--Tl]» <:>

numClum) ::- Tl--nua(lum).
verb_phrase ::- metaCseqC[verb--Tl,noun_phrase--Tl]» <:)

num(Jum) ::- Tl--num(lum).
determiner ::~ [the] <:>

num(sing) ~

determiner ::- [the] <:)
DUIIl(plur).

determiner ::= [al <:>
nwa(sing) .

determiner ::= [80me] <:>
num.(plur).

adjective ::- [decorated].
noun ::= [pieplate] <:>

nUJll(sing) a

noun ::= [pieplates] <:>
DUJB(plur) .

noun ::- [surprise] <:>
num(sing) .

noun ::= [surprises] <:>
nua(plur) •

verb ::- [contains] <:>
nma(sing) ~

verb ::- [contain] <;>
nua(plur) .

To understand the DCTG, consider the first rule
of the grammar. This rule has two parts separated
by the token <:>. The first part is a syntactic con
straint indicating (just as before) that a sentence is com
posed or' a nOU11-phra.. followed by a Yerb-phrase. Two
Prolog variables, Tl and T2, are introduced a In the
course of parsing these will be bound respectively to
the parse tree generated for BOUD-phras. and that gen
erated for Y.rb_phra... The second part of the 'rule is
zero or more (one in this case) semantic constraints.
These semantic constraints govern the values that can
be taken on by attributes associated with parse trees
(and therefore with nonterminals). The parse trees ass0

ciated with each of sentence, nOUll-phrase and .erb_phrase

have DUll attributes and the value of that attribute for a
parse tree generated from sentence is constrained to be
the same as the values of that attribute for the parse
trees generated from noun..phrase and yerb_phrase. The
nonterminals of the grammar such as detentiner that
rewrite to terminals such as [the] have the values of
their nlla attributes fixed at particular constants (either
sing or plur). The translation of the DCTG yields yes

on queries such as 1- sentence( [some, pieplates, contain,

4 The idea of describing a document as a grammar mimicing
oDA structure diagrams such as figure 1 and treating document
layout as attribute evaluation is not unique to ourselves (e.g. [4]).
One novelty in our approach is to treat logical and layout structure
as di4tinct but coupled (through their attributes) grammars.

6

So Simple concatenation of phrase structures is indicated in our
DCTG's by use of the metasyntactic constructor seq. such con..
structors being introduced by the indicator meta.. We also make
use of the metasyntactic constructor rep indicating arbitrary rel>
etition of the phrase structure(s) in its scope. Readers familiar
with ODA should note the analogy with the aDA content gener
ator operators SEQ and Jl.EP.



Figure 5: Simple generic logical structure.

graphs. (We shall take a paragraph to be a simple text
portion.) Similarly, the generic layout structure for our
simple document consists of arbitrarily long sequences
of plates (pages), which in turn are arbitrarily long se
quences of paragraph blocks. Below we present DCTG's
simple6 and simple..18yout that correspond to the generic
logical and layout document structures illustrated in
(respectively) figures 5 and 6. We begin by declaring
simple-J.aJont and para-block to be the styles correspond
ing respectively to simple and para:

stJ1es(simple_laJout,simple).

sty1es(para_block,para).

Were simpl. and para aDA logical objects, these dec
larations would correspond to asserting that the val
ues of the "layout style" attributes of these two objects
respectively have as values the generic layout objects
s iJIIple..1ayout and parLblock~

Below is the DCTG representing the generic logical
structure of the a:iaple document:

.t.pl.~~TO ::2 ••ta(rep(para--Tl»,
{TO--content_interYa1(U.Y)} <:)

logical_type(root),
(style(X) ::- styl••<l,at.ple»,
(countent(Z) ::- aua_conntent_from(T1,Z».
(content_interYa1(K s l) ::-

II ill 1.
au._countent_froa(Tl,I».

para ::x aeta(seq([text--T1]» <:)
(style(I) ::- style.(X,para»,
(countant(Z) ::- T1--countent(Z»,
(content_interYa1(R,I) ::-

number(JI).
T1--countent(U), I is (M + (U - 1»).

tert ::= [liTEITl It] <: >
(countent(Z) ::- Z is 1),
(content_inter?al(I,I) ::- number(I».

tert ::= ['tTEIT2"] <: >
(countent(Z) ::- Z is 1),
(content_interva1(1,1) ::- number(I»,
layout_directi.e_req(apart).

text ::= [UTEIT3"] <: >
(countent(Z) ::- Z is 1),
(content_interval(.,') ::- number(I».

6 We identify a granunar with its root nontenninal. Hence we
speak of the simple DCTG.

7

The DCTG has root nonterminal simple, intermedi
ate nonternlinals para and text, and terminals UTEITl ",

UTElT2 ft
, and IITEIT3" (which expressions are Prolog text

ternls). The syntactic part of the .iJIlple DCTG pro
duction asserts that a simple is any nonernpt.y finite se
quence of paxa's. (.t\.. formally more accurate view of the
syntactic part of the first rule is that it is an abbrevia
tion for the infinite collection of rules

Bimple ::- .eta(aeq([para--T1]».
simple ::- aeta(••q([para--Tl,para--T2]).
aimpl- ::- ••ta(••q([para--Tl,para~-T2,para--T3J».

Similarly, para is syntactically specified to be a text and
text is syntactically specified to be one of the three ter
minals, HTElTl", UTEIT21J

, or "TEIT31t
•

In addition to the syntactic characterization of non
terminals provided by productions, there is the seman
tic characterization provided by guards and attributes.
The guard of the simple production (the expression em
braced by {}) guarantees that the production can be
used successfully only if the countent_intenal attribute
can be given a value consisting of the ordered pair whose
first and second components are the values of u and y

respectively (i. e. the indices of the content portions
spanned by ai.apl.)~ ablple has attributes logical_type,

style, counten't, and content_interya1. The first attribute
asserts that _impl. names a logical structure grammar
(i.e. a "root object" in the parlance of ODA)~ The sec
ond says that the atyle of ai.Jlple is I if I styles simple, i. e.
I • .iJapl.-la1out~ The countent attribute asserts that the
number of content objects spanned by simple is the sum
of the numbers of content objects spanned by each of the
immediate descendants (i. f. the para's) of li..JIple. The
content_interYu attribute indicates that the interval of
indices of content portions· spanned by si.Jlple includes
the first through last content portions~

The style attribute of para is I if I styles para, i.e. I

• para_block. The countent attribute of para is the same
as the countent attribute of the object (i. f. text) that is
the immediate descendant of para. The content_interval

attribute of para is the same as the content_interyal at
tribute of the object (i.e. text) that is the immediate
descendant of para.

Finally, the second occurrence of text has a layout
directive request of apart. That is, the content associ
ated with no previous logical object will be placed on
the same layout object (a plate in this case) as the con
tent associated with that occurrence of text. This at
tribution corresponds to the aDA layout directive "nev

layout object". This particular content object is to be
placed in a layout object distinct from that which re
ceives the previous (in the layout order) content object.
The countent attributes of all the occurrences of text

have values of 1. The content_inter.&! attributes of all



the occurrences of text have values that are intervals of
length 1 beginning at an index 1 greater than the upper
bound of the previously indexed object (in the layout

order).
Below is the DCTG representing the generic layout

structure of the simple document:
aimple_layout--TO ::- aeta(rep(plate--Tl»,

{TO--content_interva1(l.Y)} <:>
layout.type(root),
(page_coun~(PC) ::- .ua_pag._count.~ro.(Tl.PC»,

(out_treea(TTI,TTO) ::-
atJlea(siaple-layout,I),
~indl~ode(node(I,STT,Se.).TTI,TT01,tru8),

propagate_~re.8(Tl,TT01,TTO»,

(countent(Z) ::- 8ua_coUDtent_~ro.(Tl,Z»,

(content_interval(B,I) ::.
nUibereM),
aua_countent.froa(T1,U),
• is (M + Cll . 1»).

plat.--TO ::-
••ta(rep{para_block--Tl»),
{TO--••t_depth(I), su-•••t.depth_froa{Tl,S), I >- S}

laJout_type(page>.
(page_count (PC) ::- PC is 1),
(set_depth(X) ::- 1 is 1.0>,
(out_trees (TTI.TTO) ::. propagate_trees(Tl,TTI,TTO»,
(countent(Z) ::- 8ua_counteut-1r~(Tl,Z}),

(content_interTa1(K,I) ::-
number (1) ,
sum_countent_froa(T1,U),
I i. (ft + (U - 1»),

layout_directiye_ack(apart,text).
para_block ::- -.ta(seq([space--Tl]» <:>

layout_type(block),
(out_trees(TTI,TTO) ::-

atyles(para_block,Y),
fiDdl~ode(node(Y,STT,Se.),TTI,[TITTO],true»,

(countent(Z) ::- Tl--counteut(Z»,
(content.interval(R,.) ::

Tl--countent(U), I is (R + (U - 1»),
(set_depth(I) ::- Tl--set_depth(I».

space ::= eI TElTl"] <:>
(set_depth(I) ::- I is 0.5),
(countent(Z) ::- Z is 1),
(content_interYal(I,') ;:- number(I».

space ::= [llTEIT2 I1
] <:>

(set_depth(l) ::- I is 0.5),
(countent(Z) ::- Z i. 1),

Figure 6: Simple generic layout structure.

(content_interyalCI,J) ::- number(I».
apace ::. P'TElT3"] <: >

(.et_depth(l) ::- I is O.S),
(countent(Z) ::- Z is 1),
(content_interya!(I,I) ::- Dumber(I».

The guard of the aiJlple-laJout production guarantees
that the production can be used successfully only if the
countent_inter.,&! attribute can be given a value consist
ing of the ordered pair whose first and second compo
nents are the values of u and Yrespectively. aimple-layout

has intermediate nonterminals plate, para-block, and
space. The syntactic part of the aimple-layout rule as
serts that a .iJlple..laJout is any nonempty finite se
quence of plate'S, that a plate is any nonempty finite
sequence of pUB-block'S, that a para-block is a apace, and
that a space is one of the terminals "TEITt", "TEIT2" and
"TElT3". Consistent with our earlier remarks that the
layout structure grammar is coordinated with the log
ical structure grammar, the terminals of simple-l&yout

subsume those of • iJRple. Thrning now to the semantic
attributes of the 8J...ple-layont DCTG, we shall explain
all but the out_trees attribute. We shall postpone its
explanation until our description of the layout process.

ai.mple-layout has a laJout_tJPe of root, indicating
that .u.ple-laJout names a layout structure grammar.
The value of the page-count attribute is constrained by its
rule to be the reckoning of the number of layout objects
spanned by -iaple-laJout having a laJout_type attribute
with value page. The countent attribute asserts that the
number of content objects spanned by simple-layout is
the sum of the numbers of content objects spanned by
each of the immediate descendants (i. e. the plat•• '8) of
si.llple-layout. The content.intenal attribute indicates
the interval of indices of content objects spanned by

<:> siJlple..laJout includes the first through last (in layout
order) content objects.

plate has a layout_type attribute with value page and
a page_COUJlt attribute with a fixed value of unity. (Nat
urally, an object of layout_type of page counts as a single
page!) The value of the ••t-depth attribute of an object
indicates an object's vertical extent, and, in the case
of a plate, has a value of 1.0. The layout...directiye..ack

attribute for plate indicates the type and the source
of layout-directi"e..reqUests to which a plate is willing
to respond. In this case plate responds to apart re
quests from (logical) objects of type tert. As the re
quest indicates that requesting content object is to be
placed in a layout object distinct from that which re
ceived the previous content object, the acknowledge
ment of the request leads to the creation of a new plate

object to receive the requesting content object. The
countent attribute asserts that the number of content
objects spanned by plate is the sum of the numbers of
content objects spanned by each of the immediate de
scendants (i.e. the para-block'S) of plate. The value of

8



Figure 7: Simple specific logical structure.

the content_inter'l'&! attribute of plate is the pair con
sisting of the index of the first content object spanned
by the left-most (in layout order) of the plate'S imme
diate descendants, and the index of the last content ob
ject spanned by the right-most (in layout order) of the
plate's immediate descendants. The guard of the plate

rule admits only those applications of the production in
which the sum of the ••t..depth'S of the pua-block'S is no
larger than the ••t-depth of the plat•.

A parLblock has a layout-type attribute with value
block and "synthesizes" the value of its ••t-d.pth at
tribute from the value of the same attribute of the
spac. object below. A para..block'S countent attribute as
serts that the number of content objects spanned by
the para....block is the same as that spanned by its im
mediate descendant (i. f. the space). The value of the
content_intert'u attribute of para...block is the pair con
sisting of the index of the first content object spanned
(left-most in layout order) by the para-block'S iInmedi
ate descendant, and the index of the last content object
spanned (right-most in layout order) by the plate'S im
mediate descendant.

All three apace objects have ••t-depth attributes
with values of 0.6. As indicated by the values of their
countent attributes, each spans precisely one content ob
ject. As a consequence, their content-interyal attributes
are unit intervals whose boundaries are the indices (in
layout order) of the single content objects spanned.

Considering the input string of content portions,
[UTEXT1", UTEI.T2 t1

, "TEIT311
], the logical structure grammar

simple (figure 5) yields only one context free parse, that
of figure 7. On the same input list of content portions,
the layout structure grammar sbple..l.ayout (figure 6)
yields four context free parses, figures 8-11. The main
task of the layout process is to "disambiguate" the latter
parses by using the context-sensitive information pro
vided primarily by the attributes in the layout structure
grammar. A collection of preference criteria is applied

9

Figure 8: First simple specific layout structure.

Figure 9: Second simple specific layout structure.

to the set of context free parses (of the layout struc
ture grammar on a particular input string of content
portions). These criteria induce a preference ordering
on the parses. With respect to that ordering the "best"
parses are chosen. A parse tree Pl is preferred to a parse
tree P2 if

1. Pl satisfies the guards (the literals embraced by {})
on all the productions used in its construction, but
P2 does not;

2. P1 and P2 are unordered by the previous criterion,
but P1 is coordinated with the parse of the input list
according to the logical structure grammar while P2

is not;

3. Pi and P2 are unordered by the previous criteria,
but PI spans fewer page objects than does P2; and



Figure 10: Third simple specific layout structure.

4. Pi and P2 are unordered by the previous criteria, but
some content portion I appears on an earlier page in
Pi than it does in P2, while no content portion before
(in the layou t ordering) I appears on an earlier page
in P2 than it does in Pi.

We define a Prolog predicate layout

laJout(CG,FG,L,FTT) :-
bagof(FT,

(parseC [CG] , [cr ICTT] ,L, D).
parse([FG],[FTIFTTi],L,[]),
rr-·out_tr••• ([CT],DTT),
reqs_ackd(CO,CT,FG,FT»,

FTT2) ,
ain_pages(FTT2,FTT3),
.dn-p1ac.(L,FTT3,FTT).

that guarantees an ordering under these criteria by
means of other Prolog defined predicates that we shall
describe presently.

pa.r•• ( [CO], [CT ICTT] ,L, D) parses the input list of
content portions L (bound to [UTEIT1It, UTEIn u

, "TEIT3U])

according to the logical structure grammar CG (bound to
siJDp1e), binding CT to the resulting parse tree. Similarly,
par••C[FG], [FT \ FTT1] ,L, 0) parses the input list of con
tent portions L according to the layout structure gram
mar FG (bound to aimple-layout) , binding FT to the result
ing parse tree. The success of FT· .... out_tre.sC reT] , OTT)

guarantees that the appropriate stylistic correspon
dences obtain between elements of the specific logical
structure represented by CT and the specific layout struc
ture represented by " (i. e. they are coordinated). Re
call that in the discussion above we mentioned the apart

"request" and "response". The reqs-ackd predicate as
sures that for each request in the logical structure there
is indeed a respondent in the layout structure. Suc
cessful acknowledgement demands (among other things)
the rejection of any context-free parse that does not

10

Figure 11: Fourth simple specific layout structure.

have the content associated with the requesting text

object appearing in a plate distinct from that receiv
ing the content associated with the previous text ob
ject. Among the parse trees of figures 8-11 then, only
those of figures 10 and 11 are acceptable. Figure 8
is rejected by the guard of the plate rule and figure
9 is rejected by reqa-&ckd. FTT2 is now bound to a list
of parse trees (bindings of FT) for which all the fore
going conditions obtained, that is, those of figures 10
and 11. ain-pag••(FTT2,FTT3) succeeds just in case FTT3 is
bound to those parse trees FT (on the list FTT2) having
the least number of pages, (pages being those subtrees
having an attribute layout_type with value pag.). In this
instance, that means exactly the parse tree of figure
lOw Finally, a:in-plac.(L~FTT3,FTI)guarantees that FTT is
bound to those "'5 on the list FTT3 such that the con
tent items appear as early as possible in the layout order
(when compared with other members ofrrr3) among the
subtrees having an attribute layout_type \vith value page.

Again, that means exactly the parse tree of figure 10.

6 Partial parsing

\Ve have shown how the logic grammar representations
of documents together with attributed parsing can give
a declarative account of document layout. Our approach
as described thus far would be hopelessly inefficient as a
practical basis for document layout. The main problems
(in order of increasing gravity) are three:

1. The parsers that we generated from the granunars
are the obvious sorts of top-down) recursive descent
parsers that naturally arise from context-free gram
mars. These parsers exhibit exponential worst-case
performance. This problem is straightforwardly



remedied by adopting any of the \\'ell-kno\vn O( n3 )

parsers [5] for context-free gramlnars.

2. OUf evaluation of attributes is on an "as-needed"
basis. This engenders both the reevaluation of at
tributes and recurring visits to individual nodes of
a particular parse tree. Again, the adoption and
adaptation of one of the efficient batch-oriented at
tribute evaluation strategies described in [3] or in
cremental strategies described in [9] would address
this problem.

3. We have posed the layout task as a certain opti
mization over competing attributed parses of a doc
ument's content. The optimization scheme we de
scribed is an instance of "generate and test". To re
capitulate, VY'"e generate all of the candidate context
free parses, evaluate their attributes, and compare
the various parses to find the optimal ones. Most of
the ultimately rejected candidates could have been
rejected before carrying their parses or attribute
evaluations to completion..

We shall devote the remainder of this section to describ
ing our solution, paT1ial parsing, to the last problem
above.

Partial parsing depends on the partial parse tree
abstraction. Before characterizing this abstraction, we
need to examine some of the details of total parse trees
(with respect to a given grammar): A node is either
a content object (restricted still to text strings), or a
3-ary term with principal (Prolog) functor node, whose
first subterm is a nonterminal of the given granunar
(the label of the node), whose second subterm is a list
of nodes and whose third subterm is a list of valued,
attributes. A node that is simply a content object is
said to be tenninal and self-labeling. A valued attribute
is a variable-free n-ary term whose principal functor is
an attribute. A parse tree is a nonempty finite set of
nodes such that

1. there is a unique node, designated the root;

2. the remaining nodes are partitioned into m disjoint
sets of nodes each of which is a (sub)tree (of the
original) rooted in one of the m nodes forming the
list that comprises the second subterm of the node
originally designated as the root; and

3. for each parse tree rooted at a node with label M
and having subtrees rooted at nodes with labels
N1 , ... , Nm, there is a productioD of the grammar
whose left-hand-side is M and whose right-hand
side is the concatenation of the symbols N 1 , ... , Nm

(in that order).

A total parse tree is a ground (variable-free) term from
the Prolog point of view. A partial parse tree will be a
generalization of a total parse tree permitting the occur
rence of variables at certain locations. \Ve amend the 11

definitions of node and valued attribute thus: A node
is either a variable, a content object (restricted still to
text strings), or a 3-ary term with principal functor node,

whose first subterm is a nonterminal of the given gran1
mar, whose second subterm is a node list, and whose
third subterm is a list of valued attributes. A node list
is either an empty list, a variable or a pairing of a node
and a node list. A valued attribute is an n-ary variable
free term whose principal functor is an attribute. Every
total parse tree is a substitution instance (a uniform re
placement of variables by other terms) of some partial
parse tree. Indeed, a total parse tree is a partial parse
tree. We can define a preference ordering on the partial
parse trees analogous to the one we defined on the total
parse trees in such a way that any maximally preferred
parse tree among the total parse trees also happens to
be maximally preferred among the partial parse trees.

We can greatly restrict the parse trees that we need
to consider in our optimization problem. This follo\vs
from the fact that layout is the assignment of content
items to pages in a manner consistent \\·ith the layout
order of the content items. Thus, 'Yle are interested in
the partial parses that correspond to having filled the
first n pages with some initial segment of the input list
of content portions. For a particular layout structure
grammar and input list of content portions we define the
n-page partial parse trees to be those partial parse trees
generated by the grammar, each of which has n disjoint
subtrees that are variable-free and whose root nodes all
number among their valued attributes layout_type<page),

and each of which spans an initial segment of the input
list of content portions. For these partial parse trees
we define the following preference ordering: An n-page
partial parse tree P1 is preferred to an n-page partial
parse tree P2 if

1. P1 satisfies the guards on all the productions used
in its construction, but P2 does not;

2. P1 and P2 are unordered by the previous criterion,
but P1 is stylistically consistent (coordinated) with
the portion of the logical grammar (total) parse tree
spanning the same initial segment of the input list
as Pi while P2 is not; and

3. P1 and P2 are unordered by the previous criteria,
but Pi spans a longer initial segment of the input
list than does P2.

These partial parse trees can be generat~d in a top
down or bottom-up fashion, and in the order of increas
ing n. Straightforward modification of virtually any
context-free grammar parsing algorithm and associated
attribute valuation algorithms will provide a framework
that will facilitate the early rejection of partial parses
of which the eventually rejected total parses are substi
tution instances.
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7 Future directions

\\'e have constructed parsers for coordinated grammars
that produce layouts in essentially the fashion described
in sections 5 and 6. In order to address the first two
efficiency-related problems that we described in section
6, \\re shall redesign and reimplement our parsers to ex
ploit the classes of efficient context-free parsers and in
cremental attribute evaluators described in [5] and [9].
OUf current parsers are of an interpretive nature. That
is, they take as input a coordinated pair of grammars
and an input string of content items and produce a co
ordinated pair of parse trees. It is possible to compile
the coordinated pair of grammars so as to generate a
Prolog program specific to parsing according to those
gra.mmars. \rVe intend to implement such a compilation
stategy and thereby make additional gains in efficiency.

We have alluded to the fact that coordinated gram
mars (and hence document descriptions) have a declar
ative formal semantics. Such a formal semantics could
be had simply by considering the usual minimal model
semantics [8] of the definite clauses into which coor
dinated grammars can be compiled. We have instead
chosen to take a more illuminating path: We are explor
ing a mathematical abstraction called a markup scheme
[2], a formal framework modeled after program schemes
[6]. Markup schemes admit a least fixed point semantics
analogous to that of logic programs. Moreover, within
this framework it is possible to abstract away the de
tails of various electronic markup languages and com
pare their expressive power according to the presence or
absence of various features. We intend to carry out such
a comparison among selected markups, examining their
expressive power with respect to both structural (e.g.
dynamic changes in page style) and functional (e.g. the
degree of forward reference permitted) features of those
representations.

In addition to making analytic use of markup
schemes, we shall employ them in a synthetic fashion.
The logic grarmnar formulation of document represen
tation that we have presented is not particularly spe
cialized to the representation of documents. We should
like to conceive such a specialization, both for reasons of
efficiency of document processing and to enhance the us
ability of the description language. To that end we hope
to formulate a constraint logic programming language
whose domain of discourse includes certain tree struc
tures that describe particular documents, and whose
constraints govern the admissibility of these tree struc
tures according to structural or functional considera
tions.

While the first phase of our research has demon
strated that grammars and parsing can give declarative
accounts of traditional document representation and
document processing, it remains to be demonstrated

t?at this point of view is a practical basis for opera
tIonal document processing systems. A main thrust of
our second phase of research will be to enhance the de
scriptive power (beyond the bounds y,'e have imposed
to simulate strictly ODA-like expressibility) and explore
efficient parsers that can make a synta.'C-directed docu
ment layout a practical reality. In the third phase we
shall articulate and explore a constraint logic program
ming language for markup.

8 Conclusions

We have offered here a powerful logic grammar-based
paradigm for electronic document markup. This
markup is of a declarative character, being, in effect,
a collection of constraints on the logical and physical
structure of documents. Moreover 1 this logic grammar
representation admits a formal semantics that can be
used directly to compare and contrast a variety of ex
tant (and possible) electronic markup languages. To
the. best of our knowledge, coordinated grammars and
theIr parsers can accommodate all of the descriptive and
layout processing functionality enjoyed by extant elec
tronic markup languages. We have demonstrated the
pos~i~ility of syntax-directed basis for formalizing and
realiZIng document layout. We recognize that substan
tially more work is needed to make a syntax-directed
document layout a practical reality within the coordi
nated grammar framework. We have embarked upon an
effort to achieve that reality.
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