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Advances in Physics Preprint

Two-Dimensional Matter: Order, Curvature and Defects

Mark J. Bowick and Luca Giomi

Department of Physics, Syracuse University, Syracuse (NY), 13244

Many systems in nature and the synthetic world involve ordered arrangements of units on
two-dimensional surfaces. We review here the fundamental role payed by both the topology
of the underlying surface and its Gaussian curvature. Topology dictates certain broad fea-
tures of the defect structure of the ground state but curvature-driven energetics controls the
detailed structured of ordered phases. Among the surprises are the appearance in the ground
state of structures that would normally be thermal excitations and thus prohibited at zero
temperature. Examples include excess dislocations in the form of grain boundary scars for
spherical crystals above a minimal system size, dislocation unbinding for toroidal hexatics,
interstitial fractionalization in spherical crystals and the appearance of well-separated discli-
nations for toroidal crystals. Much of the analysis leads to universal predictions that do not
depend on the details of the microscopic interactions that lead to order in the first place.
These predictions are subject to test by the many experimental soft and hard matter systems
that lead to curved ordered structures such as colloidal particles self-assembling on droplets
of one liquid in a second liquid. The defects themselves may be functionalized to create lig-
ands with directional bonding. Thus nano to meso scale superatoms may be designed with
specific valency for use in building supermolecules and novel bulk materials. Parameters such
as particle number, geometrical aspect ratios and anisotropy of elastic moduli permit the
tuning of the precise architecture of the superatoms and associated supermolecules. Thus the
field has tremendous potential from both a fundamental and materials science/supramolecular
chemistry viewpoint.
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1. Order and geometry in condensed matter

1.1. Introduction

More than 200 years ago, in his treatise on the resistance of fluids, d’Alembert
wrote: “Geometry, which should always follow physics when used to describe na-
ture, sometimes commands it” [1]. Since then the physics community has explored
the power of geometry not only to describe, but also to explain structures and
their properties. In the past 20 years soft condensed matter physics has provided
many examples of how the geometry of matter is not a quiescent background for
some microscopic degrees of freedom, but instead plays a major role in determining
structural and mechanical properties and designing the phase diagram of materials
such as colloids, liquid crystals, membranes, glasses and carbon nanostructure.

Geometric models of condensed matter systems have been developed for a wide
class of materials since the pioneering work of Bernal and Finney [2, 3, 4, 5, 6].
In a series of classic papers they suggested that several properties of liquids have
their geometric counterpart in randomly packed arrays of spheres. The difference
in density between the solid and the liquid phase of a simple monoatomic sub-
stance, for instance, is approximately the same between periodically and randomly
packed hard spheres (roughly 15% − 16%). Also the radial distribution function
of randomly packed spheres corresponds well with that determined by X-ray and
neutron diffraction for rare-gas liquids. After Bernal, a significant amount of work
has been done on random close packing and, even though the legitimacy of the no-
tion of random close packing itself has been questioned frequently in recent years
[7], it is now established that many features of the liquid state have in fact a purely
geometrical nature.

After the discovery of icosahedral order in metallic glasses [8, 9, 10] the idea of
geometrical frustration (the geometric impossibility of establishing a preferred local
order everywhere in space, see Sec. 2), became a fundamental concept for the char-
acterization of amorphous solids. Farges and coworkers [11, 12, 13] were the first
to show, by electron diffraction experiments and computer simulations, that the
first atoms of small aggregates of rare gases condensed in ultra-high vacum form
regular tetrahedra, which later organize in the form of small icosahedral clusters.
Since icosahedra do not fill three-dimensional Euclidean space R3, the structure
resulting from the aggregation of these icosahedral building blocks does not ex-
hibit long range translational order. The lack of crystallization in covalent glasses
is also rooted in the geometrical frustration associated with the constant coordina-
tion number of their constituents. Tetravalent monoatomic materials, for instance,
cannot form a constant angle between bonds incident at the same atom and orga-
nize in a regular network at the same time. In multiatomic glass-forming materials
the situation is more involved and the route to the formation of amorphous struc-
tures is related to the fact that crystallization would require complex activated
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phenomena and too large a decrease in entropy.
A breakthrough in the geometrical description of amorphous solids came in 1979

when Kléman and Sadoc first observed that a number of continuous random lattices
can be classified as specific mappings of ordered lattices in spaces of constant cur-
vature onto R3 [14]. This idea was inspired by the observation that whereas regular
tetrahedra do not fill three-dimensional Euclidean space, they do regularly tile the
three-dimensional sphere S3 (the manifold described by the equation

∑4
i=1 x

4
i = R2

in R
4) on which they build a regular polytope (Schläfli symbol {3, 3, 5}) with 120

vertices of coordination number 12. This idea, later developed by several others (see
Sadoc and Mosseri [15], Steinhardt et al. [16], Nelson [17], Kléman [18]), paved the
way for a new approach to spatial disorder based on the interplay between order
and geometry on three-dimensional manifolds of constant Gaussian curvature.

In-plane order on two-dimensional manifolds has been the subject of much re-
search since the discovery of the ordered phases Lβ and Pβ of phospholipid mem-
branes and is now a rich and mature chapter of condensed matter physics [19].
After the seminal work of Nelson and Peliti [20] on shape fluctuations in mem-
branes with crystalline and hexatic order, much work has been done elucidating
the intimate relation between in-plane order and the geometry of the underlying
substrate with many striking results and even more open questions. The funda-
mental role of topological defects in two-dimensional systems, first elucidated in a
series of pioneering papers by Berezinskii [21], Kosterlitz and Thouless [22, 23, 24],
is enhanced in the presence of Gaussian curvature in the underlying medium, and
leads to structures in the ground state that would normally be highly suppressed
in flat systems. The goal of this article is to review the most recent developments
in the study of the ground state properties of two-dimensional order on curved me-
dia; that is the structure and the mechanics of ordered phases on two-dimensional
substrates equipped with non-zero Gaussian curvature, in a regime where thermal
fluctuations are negligible in comparison with other energy scales in the system.
While focusing on ground states we note that finite temperature physics on curved
spaces is a rich source of open problems.

This review is organized as follows. In Sec. 2 we discuss the concept of geometrical
frustration and review some fundamentals of the elasticity of topological defects
in flat and curved spaces. The study of crystalline and orientational order on the
sphere is the basis of most of our current knowledge of order in curved space
and will be reviewed in Sec. 3. Sec. 4 is dedicated to crystalline order on surfaces
with variable Gaussian curvature and boundary. The existence of defective ground
states in toroidal monolayers, with intrinsic crystalline or hexatic order, is a recent
development in the study of order on curved surfaces and is reviewed in Sec. 5.
Finally, in Sec. 6, we discuss some current and potential applications of defective
structures to materials science and nano-engineering.

1.2. Ordered structures in two-dimensional matter

Before discussing more technical aspects of the physics of ordered structures on
curved surfaces we want to recall some salient features of physical systems with
in-pane order and spatial curvature.

1.3. Amphiphilic Membranes

Amphiphilic membranes are thin sheets (50− 100 Å) of amphiphilic molecules im-
mersed in a fluid and organized in the form of a bilayer (see Fig. 2). The most
common constituents of biological membranes are phospholipids consisting of a
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polar head group and a hydrophobic tail made up of two fatty acyl chains (see Fig.
1). Tails have typical length 14− 20 carbon atoms and regulate the thickness and
the stability of the bilayer. The polar head group contains one or more phosphate
groups -POOH-O-R. Most phospholipid head groups belong to the phosphoglyc-
erides, which contain glycerol joining the head and the tail. Examples of phospho-
glycerides include phosphatidylcholine (PC), phosphatidylethanolamine (PE) and
phosphatidylserine (PS). These are distinguished by the residue R carried by the
phosphate group (choline: R=-CH2-CH2-N+-(CH3)3 and ethanolamine: R=-CH2-
CH2-NH2). The fatty acyl chain in biomembranes usually contains an even number
of carbon atoms. They may be saturated (neighboring C atoms are all connected by
single bonds) or unsaturated (some neighboring C atoms are connected by double
bonds).

Figure 1. The structure of phosphatidylcholine.

At low temperature pure phospholipids crystallize and form a bilayer with all the
tails in the trans configuration and the heads parallel to the bilayer surface and
firmly linked into a lattice (mostly by hydrogen bonds). At higher temperature
the order is disrupted and the bilayer becomes fluid. In solution lipid bilayers
can be found in a number of phases with differing degrees of order among the
hydrocarbon chains. For phospholipids in the PC family these phases are usually
called Lα, Lβ and Pβ. In the Lα phase, the tails are liquid and disordered. Lβ is
a gel-like phase in which hydrocarbon tails are ordered and diffusion is severely
reduced. The Lβ → Lα transition is usually referred to as main transition. The
main transition temperature Tm increases with the length of the molecules due
to a stronger Van der Waals attraction between adjacent molecules. The degree of
unsaturation of the hydrocarbon tails also affects Tm. An unsaturated double bond
can produce a kink in the alkane chain, disrupting the regular periodic structure
and thus lowering the transition temperature. For bilayers in the PC family, Tm
ranges form −60 to 80 ◦C, depending on the tail length and the number of double
bonds. The order of the hydrocarbon chains also implies a larger thickness of the
bilayer. The two lamellar phases can be separated by an intermediate “rippled”
phase Pβ in which the bilayer exhibits an undulated structure and almost solid-
like diffusion properties. Hydrocarbon chains can also appear tilted with respect
to the bilayer plane. Tilted phases are generally denoted as L′β and P ′β. There are
in fact several Lβ phases characterized by differing amounts of tilt and in-plane
orientational order [25].

Upon changing their concentration, amphiphiles in solution aggregate in a wide
variety of structures in addition to bilayers. Above the critical micelle concentration
(which is of the order of 10−3 mol/`) spherical micelles appear (see Fig. 2). Their
formation occurs more readily for single-chain amphiphiles (e.g. monoglycerids) and
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Figure 2. Example of structures formed from self-assembly of amphiphilic molecules. (a) a vesicle, (b) a
micelle and (c) a bilayer. [Courtesy of Mariana Ruiz Villarreal].

is favored by the presence of large head groups. At higher amphiphile concentrations
spherical micelles are replaced by non-spherical ones and eventually by cylindrical
rods. Spherical and cylindrical micelles can themselves organize in higher order
structures such as cubic lattices or hexagonally packed rod piles. More exotic phases
can be obtained by adding oil to the solution. Once the oil is dispersed in water,
amphiphiles can form a monolayer across the water-oil interface and self-assemble in
complex tubular structures known under the common name of plumber‘s nightmare
[26].

1.3.1. Colloidosomes

The name colloidosome was coined by Dinsmore et al. to indicate microcapsules
consisting of a shell of coagulated or partially fused colloidal particles surrounding
a liquid core [27]. Because of their controllable size, elasticity and permeability,
colloidosomes have been recognized to form a promising class of “soft devices”
for the encapsulation and delivery of active ingredients with a variety of potential
applications for the development of novel drug and vaccine delivery vehicles and
for the slow release of cosmetic and food supplements. Their major advantage relies
on the fact that the permeability of the shell depends mainly on the size of the
gaps between neighboring colloidal particles which can be tuned by controlling
their size, interactions and degree of fusion. Velev et al. [28, 29, 30] were the first
to report a method for the preparation of colloidosomes by templating octanol-
in-water emulsions stabilized by latex particles and subsequently removing the
octanol core by dissolution in ethanol. Structures of similar architecture have been
obtained by templating water-in-oil emulsions [31, 32]. Multilayer shells consisting
of alternating positive and negative polyelectrolytes and/or nanoparticles have also
been prepared by using layer-by-layer assembly techniques, with the final hollow
shells being obtained by removal of the central, sacrificial colloidal particles [33, 34].
Loxley and Vincent [35] developed a new way of preparing polymeric capsules
with liquid cores based on a phase separation of the polymer within the templated
emulsion. The colloidosomes produced by Dinsmore et al. [27] were obtained by the
assembly of latex particles into shells around water-in-oil emulsion drops, followed
by thermal fusion of the particles in the shell and centrifugal transfer into water
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Figure 3. Scanning electron microscope image of a colloidosome from Dinsmore et al. [27]. The colloi-
dosome is composed of 0.9 µm diameter polystyrene spheres sintered at 105◦C. The close-up on the left
shows the effect of sintering at the contact points of neighboring spheres.

through a planar oil-water interface (see Fig. 3).
The coverage of emulsified droplets by colloidal particles takes place by self-

assembly. The particles dispersed in the fluid spontaneously adsorb on the inter-
face provided the surface energy between the fluid on the inside and the outside
of the droplet (σi,o) is larger than the difference of those between the particles
and the internal fluid (σp,i) and the particles and the external fluid (σp,o). Thus
σi,o > |σp,i − σp,o|. A similar mechanism is used in Pickering emulsions, which are
stabilized by surface adsorption of colloidal particles. Once adsorbed at the inter-
face, interacting particles distribute evenly, assuring a full and uniform coverage of
the droplet. The interactions depend on the type of colloidal particles used as well
as the liquids. Coated polymethylmethacrylate (PMMA) or polystyrene spheres,
for instance, acquire a permanent electric dipole moment at the interface between
the two fluids, probably because of the dissociation of charges on the hydrated
surface similar to what happens at a water-air interface [36]. The resultant dipolar
interaction stabilizes the particles and allows full coverage of the droplet.

The colloidal particles comprising the shell are then locked together to achieve
the desired permeability and robustness of the colloidosome. Several techniques
are available to achieve this. By sintering polystyrene particles at a temperature
slightly above the glass transition (Tg ≈ 100 ◦C), it is possible to achieve a partial
fusion of neighboring particles at the contact points. This process also allows one
to control precisely the size of the gaps between particles and therefore the perme-
ability of the colloidosome. Another method consists of binding the particles with
a polyelectrolyte of opposite charge which can bridge neighboring particles and
immobilize them at the interface. Particle locking clearly enhances the toughness
of the colloidal shell and increases its rupture stress. For sintered polystyrene par-
ticles the latter can be tuned within the range 1− 100 MPa. Colloidosomes locked
with polyelectrolytes are even more deformable and can withstand strains of order
50 % before rupturing.

The crystalline arrangement of charged colloids on a hemispherical droplet has
been recently studied by Irvine and Chaikin who fabricated colloidal suspensions of
PMMA spheres at the interface between water and cyclohexyl bromide (CHB) [37].
Because of the large difference in dielectric constants, ions from the oil strongly
partition into the water phase [38]. When nearly 100% PMMA particles are dis-
persed into the oil phase they form a Wigner crystal and a monolayer near the
interface separated by a zone depleted of particles. These last two features are due
the ion partitioning that provides the water phase with mobile charges. The net
charge of water can be controlled through the pH, shifting the hydrolysis and ion
partitioning equilibria. An electrically neutral water droplet acts as a conductor
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Figure 4. PMMA colloids sitting at the hemispherical interface between water and cyclohexyl bromide.
The particles are positively charged and interact via a screened Coulomb interaction with a Debye screening
length proportional to the concentration of ions in the solvent. [Courtesy of W. Irvine and P. M. Chaikin,
New York University, New York, NY].

and attracts PMMA particles at the interface through an image charge mechanism.
As a result the particles are barely wet by the water phase and organize in a perfect
monolayer at (and not across) the interface.

1.3.2. Viral capsids

Viral capsids are protein shells that enclose the genetic material of a virus and
protect it from enzymatic digestion. Capsid proteins are expressed from the DNA
or RNA genome of the virus and in physiological conditions self-assemble in very
efficient structures which can withstand high forces (their Young modulus is ∼ 2
MPa) and at the same time effectively disassemble to allow the viral genome to be
released in the host cell. Most viral capsids have spherical or rod-like shape, but
less standard shapes, such as conical or toroidal, also occur.

The crystallographic structures of spherical viruses have been extensively inves-
tigated and, thanks to the modern techniques of X-ray spectroscopy and cryo-
transmission electron microscopy, form part of the core knowledge of modern vi-
rology. In most cases the capsid proteins are grouped in subunits called capsomers,
oligomers made of either five (pentamer) or six (hexamer) proteins. Spherical
viruses typically posses icosahedral symmetry with twelve pentamers located at
the vertices of a regular icosahedron. The number of hexamers that complete the
capsids is given by 10(T − 1), where T , the triangulation number, takes values
from a sequence of “magic numbers” (i.e. T = 1, 3, 4, 7 . . .) associated with the
lattice structure of the capsid, as brilliantly explained by Caspar and Klug (CK)
in a seminal 1962 [39] (the CK construction of icosahedral lattices will be reviewed
in Sec. 3). The diameters of spherical viruses span the range from 10 to 100 nm.
While small capsids are almost perfectly spherical, large viruses, such as the bac-
teriophage HK97 or the phycodnavirus, typical exhibit a faceted geometry with
nearly flat portions separated by ridges and sharp corners corresponding to the
twelve pentamers. This morphological difference was explained by Lidmar et al
[40] as a buckling transition resulting from a balance between the stretching energy
associated with the pentamers in capsomer lattices and the bending elasticity of
the viral capsid.

Non-icosahedral capsids of spherocylindrical shape are common among bacterio-
phages such as some T -even phages as well as the φCBK and the φ29. In this case
the capsid has the form of a cylindrical tube composed of a ring of hexamers closed
at the ends by two half-icosahedral caps. This structure is also found in a vari-
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Figure 5. (Color online) Two examples of viral capsids. The L-A virus (on the left) and the cowpea mosaic
virus (CPMV) (on the right). Both have 60 capsomers, but the latter has a marked faceted geometry. From
VIPERdb [46].

ant of the T = 7 papovavirus and can be induced in other icosahedral viruses by
point mutation in the capsid proteins [41, 42]. Of special interest are polymorphic
viruses, which can appear in either spherical or spherocylindrical conformations.
Polymorphism has been observed in the polyoma/SV40 animal virus [43] and the
cowpea chlorotic mottle virus (CCMV) [44] and, for the latter case, appears to
be related to the pH and salt concentration of the environment. The human im-
munodeficiency virus (HIV) also shows broad polymorphism in its capsid shape,
including cone-like structures in addition to tubular and spherical ones and has
been well studied in recent years [45].

1.3.3. Carbon nanotubes and related materials

The science of carbon nano-materials has experienced a period of phenomenal
growth since carbon nanotubes (CNTs) were found by Iijima in 1991 [47] and,
since then, a large number of similar structures, including helix-shaped graphitic
nanotubes [48], nanotori [49], graphitic nanocones [50] and nanoflowers [51] have
been reported in the literature. The excitement in this field stems from certain
exceptional properties that make CNTs potentially useful in many applications
in nanotechnology, electronics, optics and other fields of materials science. They
exhibit extraordinary strength, unique electrical properties and are efficient con-
ductors of heat. Several methods for the preparation of graphitic nanomaterials
have been developed, including laser pyrolysis, arc discharge, and electron irradia-
tion. Recently, metal-catalyzed methods have also been used to synthesize carbon
nanomaterials.

Most single wall nanotubes (SWNT) have diameter of about 1 nm, while the
length is often of the order of microns. The lattice structure of a SWNT can be
obtained from that of a graphene plane by assigning a pair of indices (n,m) which
specify how the graphene lattice is rolled up into a seamless cylinder (see Sec.
5). n = 0 nanotubes are referred to as “zigzag”, while n = m tubules are called
“armchair”. The generic name “chiral” is used otherwise [52]. In terms of tensile
deformations, SWNT are the stiffest materials known with a Young modulus in
the range 1-5 TPa and a tensile strength of 13-53 GPa. This strength results from
the covalent sp2 bonds formed between the individual carbon atoms.

The lattice structure of a nanotube strongly affects its electrical properties be-
cause of the interplay between the unique electronic structure of graphene and the
tubular geometry. For a given (n,m) structure, a nanotube can be a conductor
(if n = m), a small-gap semiconductor (if n −m is a multiple of 3) or a standard
semiconductor (otherwise). Thus all armchair (n = m) nanotubes are metallic, and
nanotubes with (n,m) equal (5,0), (6,4), (9,1), etc. are semiconducting.

Topological defects may occur on the side-wall of carbon nanotubes and related
materials in the form of atomic vacancies, 5−7 dislocations and Stone-Wales defects
[53] (i.e. quadrupoles consisting of two pairs of 5-membered and 7-membered rings)
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and are believed to significantly change the mechanical and transport properties
of carbon nanotubes. The latter, in particular, were suggested to serve as possible
nucleation centers for the formation of dislocations in the original ideal graphene
network and constitute the onset of possible plastic deformations [54]. Electronic
transport is affected by the presence of defects by lowering the conductivity through
the defective region of the tube. Defect formation in armchair-type tubes (which
can conduct electricity) can cause the region surrounding that defect to become
semiconducting. Furthermore, single monoatomic vacancies induce magnetic prop-
erties. Phonon scattering by defective regions heavily affects the thermal properties
of carbon nanotubes and leads to an overall reduction of the thermal conductivity.
Phonon transport simulations indicate that substitutional defects such as nitrogen
or boron will primarily lead to scattering of high frequency optical phonons. Larger
scale defects, however, such as Stone Wales defects, cause phonon scattering over
a wide range of frequencies, leading to a greater reduction in thermal conductivity
[55]. On the other hand, defective regions appear to be natural places for chemical
functionalization. Numerical simulations have shown how the presence of Stone-
Wales defects considerably enhances the adsorption of carboxyl groups (COOH)
which can then bind to molecules with amide and ester bonds [56].

2. Interacting topological defects in curved media

2.1. Geometrical frustration

The notion of geometrical frustration was introduced to describe situations where
certain types of local order, favoured by physical interactions, cannot propagate
throughout a system [57]. The expression was used for the first time by Toulouse in
1977 [58] to describe certain particular magnetic systems with nearest-neighbours
interactions which cannot all be satisfied simultaneously. A textbook example of
frustration in magnetic models is represented by a system of Ising spins on a
triangular lattice with antiferromagnetic bonds: while a perfect antiferromagnetic
alignment would minimize all terms in the Ising Hamiltonian, such an alignment
is not allowed by the topology of the underlying lattice so that for any triangular
plaquette there is always at least one unsatisfied bond (see Fig. 6). This concept
can be extended naturally to any system where interactions impose a local order,
but the most favoured local configuration is geometrically incompatible with the
structure of the embedding space.

Two-dimensional manifolds equipped with some microscopic field for which a
notion of local order can be defined unambiguously provide a paradigm for systems
exhibiting geometrical frustration. Consider for instance an assembly of identical
particles interacting with a spherically symmetric pair potential Vij = V (|xi−xj |),
with xi the position vector of the ith particle in a suitable coordinate system.
In flat two-dimensional space, particles almost always pack in triangular lattices,
unless the interaction potential is carefully tuned to select some some other lattice
topology. Endowing the medium with a non-planar topology introduces frustration
in the sense that the energetically favoured 6−fold orientational order can no longer
be established everywhere in the system. Such geometrical frustration arises at the
microscopic level from the celebrated Euler theorem of topology which relates the
number of vertices V , edges E and faces F of any tessellation of a 2−manifold M :

V − E + F = χ , (1)

where χ is the Euler characteristic of M . If M is an orientable closed surface, one
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Figure 6. (Color online) Examples of geometrical frustration. (Left) Ising antiferromagnet on a triangular
lattice. Because of the topology of the underlying lattice, no arrangement of the three spins can minimize
the Hamiltonian H = −J

P
〈ij〉 SiSj . (Center) Vector field of a sphere. As a consequence of the Poincaré-

Hopf theorem, a vector field must vanish at least at two points, corresponding to the north and south
pole of the sphere in this example. (Right) Triangulation of the sphere. As required by the Euler theorem,
any triangulation of the sphere must contain some vertices of coordination number different from six (i.e.
twelve 5−fold vertices in this case).

can show that χ is determined uniquely by an integer g ≥ 0, called the genus of
M , which represents the number of “handles” of M ; namely χ = 2(1 − g). Two
orientable closed surfaces with the same genus (thus the same Euler characteristic)
are homeomorphic: they can be mapped into one another without changing their
topological properties. In a surface with boundary, the Euler characteristic is given
by χ = 2(1 − g) − h, where h is the number of boundaries or “holes” of M . Thus
a sphere, which has no handles nor boundary (g = h = 0) has χ = 2, while the
embedded torus (g = 1 and h = 0) has χ = 0. A disk, on the other hand, has χ = 1
(g = 0 and h = 1) and is topologically equivalent to a sphere with one hole. In
Secs. 3-5 we discuss ordered structures on three important topologies: the sphere,
the disk and the torus.

In the case of two-dimensional crystals with 6−fold local order Eq. (1) can be
rephrased in a form that is particularly useful in describing the presence of defects
in the lowest energy state by defining a topological charge as the departure from
the ideal coordination number of a planar triangular lattice: qi = 6−ci, with ci the
coordination number of the ith vertex. Now, consider a tessellation in which each
face is an n−sided polygon and let k faces meet at each vertex. Since each edge is
shared between two faces and links two vertices it follows that:

nF = 2E =
∑
k

kVk ,

where Vk is the number of vertices of degree k. For a triangulation n = 3. From
Eq. (1) it follows then:

Q =
V∑
i=1

qi = 6χ . (2)

In the case of a sphere, with χ = 2, Eq. (2) implies any triangulation contains
defective sites such that the total topological charge of the lattice is Q = 12. This
can be achieved, for example, by incorporating twelve 5−fold disclinations (with
q = 1) in a network of 6−fold coordinated sites like in a common soccer ball.
These twelve disclinations, which would be suppressed in the lowest energy state
of a planar crystal, result from the geometrical frustration associated with the
topology of the sphere.

Eq. (2) is a special case of geometrical frustration on 2-manifolds where local
orientations are defined modulo π/3. More generally one can consider a p−atic
director field for which local orientations are defined modulo 2π/p. The topological
charge of a disclination in this case is q = ∆θ/2π

p , where ∆θ is the angle the director
rotates in one counter-clockwise circuit of any closed contour enclosing the defect.
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Figure 7. (Color online) Examples of 5−fold (left) and 7−fold (right) disclinations on a triangular lattice
in regions of positive and negative Gaussian curvature respectively.

Eq. (2) becomes then:

Q =
N∑
i=1

qi = pχ (3)

where N is the total number of defects. The ratio k = q/p is commonly referred to
as the winding number of the disclination. In the case of a simple vector field, for
instance, p = 1 and Eq. (3) corresponds to the well known Poincaré-Hopf theorem
according to which the sum of the indices of all the isolated zeros of a vector field
on a oriented differentiable manifold M is equal to the Euler characteristic χ of
M . Thus for a sphere a vector field must have at least one sink and one source,
each having topological charge one, while on a torus (χ = 0) a vector field can
be defect free. A nematic director n, on the other hand, has p = 2 (i.e. physical
configurations are invariant under inversions n→ −n). Thus disclinations with ±1
topological charge correspond to configurations where the director rotates ±π in
one circuit enclosing the defect. These elementary disclinations have semi-integer
winding number k = ±1/2. As a consequence of Eq. (3) the total topological
charge of a nematic texture on the sphere is Q = 4, corresponding for instance to
the typical baseball texture consisting of four q = 1 (k = 1/2) disclinations located
at the vertices of a regular tetrahedron [59, 60].

2.2. Mathematical preliminaries and notation

The equilibrium structure of two-dimensional locally ordered systems on curved
substrates depends crucially on the existence and arrangement of the defects. The
seminal work of Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) on
defect-mediated melting in two dimensions makes it clear that it is useful to em-
ploy a theoretical framework where the fundamental objects in the system are the
defects themselves, while treating the microscopic constituents within a continuum
elastic theory. This approach has the advantage of far fewer degrees of freedom
than a direct treatment of the microscopic interactions and allows one to explore
the origin of the emergent symmetry observed in non-Euclidean ordered structures
as a result of the interplay between defects and geometry. This interplay is one
of the fundamental hallmarks of order on two-dimensional manifolds and leads
to universal features observed in systems as different as viral capsids and carbon
macromolecules. In this section we will briefly review some concepts of differential
geometry, mostly to establish notation. In the next section we will review some fun-
damentals of the elasticity of defects in two dimensions. The coupling mechanism
between curvature and defects will be introduced in Sec. 2.4.

Points on a two-dimensional surface S embedded in R
3 are specified by a
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three-dimensional vector R(x) as a function of a two-dimensional coordinate
x = (x1, x2). For each point of S we define three vectors:

gi = ∂iR i = 1, 2 (4)

and n =
g1 × g2

|g1 × g2|
, (5)

where ∂i = ∂/∂xi. The vectors gi belong to TRS, the tangent space of S at R
whereas n is a normal vector. Note that while n is a unit vector, gi are generally
not of unit length. The metric, or first fundamental form, of S is defined as:

ds2 = gijdx
idxj (6)

where gij is the metric tensor:

gij = gi · gj (7)

The dual tensor is denoted as gij and is such that:

gikg
jk = δji ,

with δji the Kronecker symbol. This allows us to introduce contravariant tangent-
plane vectors gi = gijgj , satisfying gi · gj = δji . Any vector v on the tangent plane
can be expressed as a linear combination of basis vectors gi or gi: v = vigi = vig

i,
where vi = gijv

j . The extrinsic curvature of the surface S is encoded in the second
fundamental form bij (also known as the extrinsic curvature tensor):

bij = −gi · ∂jn = n · ∂jgi . (8)

The eigendirections of bij at a given point correspond to the principal curvature di-
rections of S at that point and the associated eigenvalues κ1 and κ2 are the extremal
(or principal) curvatures. The mean curvature H and the Gaussian curvature K
are defined as the sum and the product of the principal curvatures:

2H = κ1 + κ2 = gijb
ij (9)

K = κ1κ2 = 1
2ε
ikεjlbijbkl (10)

where εij is the dual of the Levi-Civita tensor, whose components are given by:

ε11 = ε22 = 0

ε12 = −ε21 =
√
g

where g = det gij . The contravariant form is εij = εij/g and satisfies εikεjk = δji .
Since εijvivj = 0, where vi is any contravariant vector, it follows that the vector
εijv

i is perpendicular to vj . Thus inner multiplication by εij rotates a vector by
π/2. The covariant derivative of a vector field v in the ith coordinate direction is
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defined as usual by:

∇ivk = ∂iv
k + Γkijv

j (11a)

∇ivk = ∂ivk − Γjikvj (11b)

where Γkij is the Christoffel symbol:

Γkij = 1
2g
kl(∂jgil + ∂iglj − ∂lgij) . (12)

Both the metric and the Levi-Civita tensor are invariant under parallel transport.
This translates into:

∇kgij = ∇kgij = 0 ∇kεij = ∇kεij = 0 .

Much of the elastic theory of defects, either in flat or curved systems, relies on the
calculation of the Green function of the Laplace operator. On a generic 2−manifold
the latter obeys:

∆GL(x,y) = δ(x,y) , (13)

where ∆ is the Laplace-Beltrami operator:

∆ =
1
√
g
∂i(
√
g gij∂j) (14)

and δ the delta-function:

δ(x,y) =
δ(x1 − y1)δ(x2 − y2)

√
g

. (15)

The Stokes theorem is frequently invoked when calculating elastic energies of de-
fects. In covariant form it can be stated as follows: given a vector field v on a
2−manifold M with boundary ∂M , the following identity holds:∮

∂M
dxk vk =

∫
M
d2x εij∇ivj . (16)

For consistency we will adopt covariant notation throughout this review. When
discussing planar systems, in particular, we have: bij = H = K = 0 and the
elements of the metric tensor are given in Cartesian coordinates by gxx = gyy = 1,
gxy = gyx = 0 and in polar coordinates by grr = 1, gφφ = r2, grφ = gφr = 0.

The definition of orientational order on a surface clearly requires a non-
ambiguous notion of angular distance between vectors on the same tangent plane.
This is traditionally achieved by introducing a pair of orthonormal vectors eα
(α = 1, 2) called vielbein (note that the canonical coordinate vectors gi are gener-
ally neither orthonormal nor orthogonal) so that:

eα · eβ = (eα)i(eβ)i = δαβ , (eα)i(eα)j = gij , (17)

where δαβ is the usual Kronecker symbol in the indices α and β. A vector field
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v = vigi can be expressed alternatively in the basis eα:

v = vαeα vα = vi(eα)i .

Since the coordinates vα are locally Cartesian, δαβ = δαβ and there is no distinction
between upper and lower Greek indices: vα = vα. Vielbein are constructed to be
invariant under parallel transport, and thus ∇i(eα)j = 0 and:

∇ivα = (eα)j∇ivj = ∂ivα + Ωiαβvβ ,

where Ωiαβ is the so called spin connection, and is given by:

Ωiαβ = eα · ∂ieβ = Γkij(eα)j(eβ)k − (eβ)k∂i(eα)k .

Taking the derivative of the left equation in (17) one immediately sees:

(eα)k∂i(eβ)k = −(eβ)k∂i(eα)k ,

from which it follows that Ωiαβ = −Ωiβα. In two dimensions this permits the
parametrization of the spin-connection Ωiαβ by a single covariant vector Ω (i.e.
the antisymmetry under exchange of the Greek indices leaves only d2(d− 1)/2 = 2
independent components in d = 2 dimensions). Thus

Ωiαβ = εαβΩi , (18)

with εαβ = δ1
αδ

2
β − δ1

βδ
2
α the antisymmetric symbol.

It is well known how the curvature of a manifold manifests itself when a vector
is parallel transported around a closed path. Taking an infinitesimal square loop of
sides dx and dy, the parallel transported vector v′ differs from the original vector
v by an amount:

v′k − vk = Rklijv
ldxidyj , (19)

where Rklij is the Riemann tensor given in two-dimensions by:

Rlijk = Kεliεjk . (20)

In the orthonormal basis eα, Eq. (19) reads:

v′α − vα = Rijαβvβdx
idyj ,

where Rijαβ is the curvature tensor associated with the spin-connection Ωiαβ:

Rijαβ = ∂iΩjαβ − ∂jΩiαβ + ΩiαγΩjγβ − ΩjαγΩiγβ . (21)

In two dimensions, using Eq. (20), one can write:

Rijαβ = (eα)k(eβ)lRijkl = (eα)k(eβ)lεijεklK = εαβεijK ,

which, combined with Eqs. (21) and (18), yields

Rijαβ = εαβ(∂iΩj − ∂jΩi) = εαβεijK , (22)
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Figure 8. Examples of topological defects in a vector field. (a), (b) and (c) have topological charge q = 1,
(d) q = −1 and (e) and (f) have charge q = 3 and q = −3 respectively.

which also implies:

∇×Ω = εij∇iΩj = K . (23)

2.3. Elasticity of defects in the plane

The XY−model is the simplest setting where particle-like objects emerge from
a purely continuum theory [22, 23, 24]. The order parameter is the angular field
θ ∈ [0, 2π], which may represent the orientation of two-dimensional vectors S =
S(cos θ, sin θ) or the phase of a complex field ψ = |ψ|eiθ. The interaction that
tends to minimize the spatial variations of the order parameter results from the
continuum free energy:

Fel =
1
2
KA

∫
d2x |∇θ(x)|2 . (24)

Despite its simplicity this model successfully describes several aspects of the physics
of vortices in superfluid 4He or thin superconducting films, where the angle θ is
identified with the phase of the collective wave function. Eq. (24) also describes
nematic liquid crystals in the limit of equal splay and bending moduli. This ap-
proximation, however, favors q = ±2 (k = ±1) disclinations rather than the more
natural q = ±1 (k = ±1/2) disclinations of nematics and is not particularly suit-
able to describe the ground state. At T > 0, thermal fluctuations drive the two
elastic constants to the same value at long wavelengths, so that there is a unique
Kosterlitz-Thouless transition temperature [61]. As discussed by Deem [62], the
essential effect of unequal elastic constants is to create a distinct long-range contri-
bution to the core energy of each defect. More generally Eq. (24) can be considered
as the simplest phenomenological free energy describing p−atic order (assuming θ
defined modulo 2π/p). Calling v = ∇θ, the minimization of the free energy (24)
leads to the equilibrium condition:

∆θ = ∇ivi = 0 . (25)
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In the presence of a number of disclinations of topological charge qα, θ changes
by (2π/p)

∑
α qα in one circuit around any contour enclosing a total topological

charge
∑

α qα: ∮
dθ =

∮
dxi vi =

2π
p

∑
α

qα . (26)

Using Stokes’ theorem, Eq. (26) can be translated into the requirement:

εij∇ivj = εij∇i∇jθ = η(x) , (27)

where:

η(x) =
2π
p

∑
α

qαδ(x,xα)

is the topological charge density. Using standard manipulations (see for example
[63]) a vector field v satisfying Eq. (25) with the constraint (26) can be found in
the form:

vi(x) = −εji∇j
∫
d2y GL(x,y)η(y) , (28)

where GL(x,y) is the Laplacian Green function. Using Eq. (28) in Eq. (24) leads
to the well known expression:

Fel = −1
2
KA

∫
d2x d2y GL(x,y)η(x)η(y) . (29)

Like charged particles, disclinations interact via a Coulomb potential, which in two
dimensions is proportional to the logarithm of the distance in the plane. As noted,
this framework is valid for both nematic liquid crystals in the one elastic constant
approximation and superfluids. An important difference between these two systems
lies in the choice of the boundary condition for the field θ. Nematogens are typically
forced to be normal to boundary of the substrate and this implies a constraint for
θ, while there is no such constraint for 4He films since the wave function is defined
in a different space from that to which the superfluid is confined. This difference
is crucial on a curved substrate (see Ref. [64] for a detailed review of this topic).

Eq. (29) represents the elastic energy associated with the distortion introduced
by defects in the far field, where the elastic variables change slowly in space. This
expression breaks down in the neighborhood (or core) of a defect, where the order
parameter is destroyed and the actual energetic contribution depends on micro-
scopic details. In order to describe a defective system at any length scale, Eq. (29)
must be corrected by adding a core energy Fc representing the energetic contribu-
tion within the core of a defect, where standard elasticity breaks down. A detailed
calculation of the core energy requires some microscopic model and is usually quite
complicated. Nonetheless its order of magnitude can be estimated by writing:

Fc = πa2fc , (30)

where a is the core radius, corresponding to the short distance cut-off of the elastic
theory, and fc is some unknown energy density independent of a. fc can then be
estimated by minimizing the total energy of the system with respect to a. For a
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planar system with a single disclination of winding numer k, the total energy can
be easily calculated from Eqs. (29) and (30):

F = πKAk
2 log

(
R

a

)
+ πa2fc . (31)

Minimizing Eq. (31) with respect to a, one finds fc = KAk
2/(2a2) from which:

Fc =
1
2
πKAk

2 = εck
2 . (32)

The quantity εc is the energy needed to increase the number of defects by one,
regardless of its location.

The elasticity of dislocations and disclinations in solids resembles in many re-
spects that of vortex lines in the XY−model. In two dimensional elasticity a pure
in-plane deformation is encoded in a displacement field ui, i = 1, 2, which maps
any point in the system x to:

x′ = x+ uigi , (33)

where gi is a suitable basis in the coordinates of the undeformed system. If there
are no defects, the displacement field is a single-valued mapping of the plane into
itself. Topological defects introduce an incompatibility in the displacement field,
in the sense that ui is not a single-valued mapping anymore. The elastic stress in
the region surrounding a defect appears at the macroscopic level from the Hooke’s
law of elasticity:

uij =
1 + ν

Y
σij −

ν

Y
gijσ

k
k , (34)

where Y and ν are the two-dimensional Young modulus and Poisson ratio re-
spectively and σij is the stress tensor. Eq. (34) can be obtained, for example, by
minimizing the elastic energy:

F =
∫
d2x

(
1
2λu

i 2
i + µuiju

ij
)
, (35)

where λ and µ are the Lamé coefficients in two dimensions:

λ =
Y ν

1− ν2
, µ =

Y

2(1 + ν)
.

In the absence of body forces, the force balance equation requires σij to be diver-
gence free:

∇jσij = 0 . (36)

The strain tensor uij represents the variation in the first fundamental form of the
surface due to the deformation field (33), namely:

2uij = gij(x+ u)− gij(x) = ∇iuj +∇jui +O(u2) . (37)
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In the presence of a dislocation line L the function u becomes multivalued so that,
while traversing any closed counterclockwise loop C containing L:∮

C
du = b , (38)

where b is the Burgers vector representing the amount by which the image of a
closed loop under the mapping (33) fails to close in presence of a dislocation line
[65, 66]. If L is an isolated straight dislocation with origin at the point x0, Eq. (38)
implies:

εij∇i∇juk = bkδ(x,x0) . (39)

Generally speaking, maps such as that of Eq. (33), induce variations in both the
length and the orientation of an infinitesimal distance vector dx in the deformed
medium. This statement can be clarified by writing:

dx′i − dxi = (∇jui) dxj = (uij − ωij) dxj

where:

ωij = 1
2 (∇iuj −∇jui) (40)

is the infinitesimal rotation tensor induced by the deformation Eq. (33). In two
dimensions the latter can be conveniently written in the form:

ωij = εij Θ (41)

with:

Θ = 1
2 ε

ik∇iuk . (42)

Since the application of εij to a vector rotates the vector by π/2 clockwise, the
coefficient Θ in Eq. (42) can be interpreted as the average rotation of an infinitesi-
mal line element under a distortion of the form Eq. (33). In presence of an isolated
disclination the field Θ becomes multi-valued. If s is the angular deficit associated
with the disclination, integrating along a circuit enclosing the disclination core
yields: ∮

C
dΘ = s , (43)

which can be rephrased as a statement about commutativity of partial derivatives:

εij∇i∇jΘ = s δ(x,x0) , (44)

where x0 is the position of the disclination core. In a lattice with n−fold rotational
symmetry, s = (2π/n)q, where q is the topological charge introduced above. A
comparison between Eq. (27) and Eq. (44) clarifies the common identification of Θ
with the bond angle field of a crystal [67].

Eqs. (39) and (44) provide a set of relations between the fundamental features of
topological defects in crystals (i.e. the Burgers vector b and the topological charge
q) and the partial derivatives of the displacement field u. These relations can be
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used to derive an equation for the elastic stress arising in a system as a consequence
of the defects. A simple and elegant way to achieve this task in the context of planar
elasticity relies on the parametrization of the stress tensor via a single scalar field
χ known as the Airy stress function (see for example [68]). Taking advantage of
the commutativity of partial derivatives in Euclidean space, one can write

σij = εikεjl∇k∇lχ (45)

so that the force balance condition (36) is automatically satisfied. Applying the
operator εikεjl∇k∇l to both sides of Eq. (34) and using Eq. (45) one finds the
following fourth order Poisson-like problem:

∆2χ(x) = Y η(x) , (46)

where ∆2 is the biharmonic operator and η is the defect charge density:

η(x) =
2π
n

∑
α

qαδ(x− xα) +
∑
β

εijbβi ∇jδ(x− xβ) ,

where sα denotes the topological charge of a disclination at xα and bβ the Burgers
vector of a dislocation at xβ.

Let’s now turn our attention to the case of a planar crystal with local 6−fold
orientational symmetry populated with N disclinations of density:

η(x) =
π

3

N∑
α=1

qαδ(x,xα) . (47)

Assuming a free boundary (i.e. all the components of the stress tensor are zero
along the boundary and thus χ = ∇χ = 0), the stress function χ can be expressed
in the Green form:

χ(x)
Y

=
∫
d2y G2L(x,y)η(y) , (48)

where G2L(x,y) is the biharmonic Green function. The elastic energy of the system
is given by Eq. (35) and (48) in the form:

Fel =
1
2
Y

∫
d2x d2y G2L(x,y)η(x)η(y) . (49)

Eqns. (24) and (49) are the fundamental equations in the elastic theory of defects
in two-dimensional planar p−atics and crystals. In the next section we will see how
a non-zero Gaussian curvature in the underlying medium affects these energies by
effectively screening the topological charge of the defects.

2.4. Coupling mechanisms between curvature and defects

The elasticity of topological defects on curved substrates equipped with local ori-
entational order was first considered by Nelson and Peliti in the context of hex-
atic membranes [20]. It is now standard knowledge in the statistical mechanics
of membranes that long range forces appearing as a consequence of local orienta-
tional order crucially affect the behavior of membranes at finite temperature. The
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stiffness associated with orientational correlations leads to an enhancement of the
bending rigidity that counteracts the thermal softening that occurs in fluid mem-
branes. Furthermore, for planar membranes, the stabilizing effect induced by the
orientational stiffness opposes the entropy-driven tendency to crumple, causing a
transition between a flat and crumpled phase at T > 0. In this review we focus on
the ground state properties of ordered structures on curved surfaces and we refer
the reader to the literature for a discussion of finite temperature physics [19].

In this section we will show how an underlying non-zero Gaussian curvature cou-
ples with the defects by screening their topological charge. As a result, topological
defects, whose existence would be energetically suppressed if the same system was
lying on a flat substrate, instead proliferate. The universality of such a curvature
screening mechanism is remarkable in the sense that it occurs in a conceptually
identical fashion in both p−atics and solids, although the kernel of the elastic inter-
actions between defects differs. As a consequence of curvature screening topological
defects organize themselves on a rigid surface so as to match the Gaussian curva-
ture of the substrate. On the other hand, if the geometry of the substrate is allowed
to change (for instance by lowering the bending rigidity) the system eventually en-
ters a regime where the substrate itself changes shape in order to accommodate
some preferential in-plane order. The latter is the fundamental mechanism behind
the buckling of crystalline membranes [69] and is believed to be the origin of the
polyhedral geometry of large spherical viruses such as bacteriophages [70].

In the case of manifolds equipped with a pure rotational degree of freedom like
p−atics, the curvature affects the elastic energy through the connection which
determine how vectors change when parallel transported. This statement can be
clarified by rewriting the elastic energy (24) in the form:

Fel =
1
2
KA

∫
d2x∇imj∇imj , (50)

where m is a p−atic director field which can be conveniently expressed in a local
orthonormal frame eα (α = 1 2):

m = cos θ e1 + sin θ e2 ,

with θ defined modulo 2π/p. Since ∂imα = −εαβmβ∂iθ, using the properties of
vielbein outlined in Sec. 2.2, we have:

∇imj = (eα)j(∂imα + Ωiαβmβ) = −εαβmβ(eα)j(∂iθ − Ωi) (51)

The elastic energy (50) thus becomes

Fel =
1
2
KA

∫
d2x gij(∂iθ − Ωi)(∂jθ − Ωj) . (52)

Using Eq. (23), the vector field Ω can be expressed as:

Ωi = −εji∇j
∫
d2xGL(x,y)K(y) , (53)

where GL(x,y) is again the Green function of the Laplace-Beltrami operator (14).
Substituting Eqns. (53) and (28) in the expression for the elastic energy (52) we
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obtain:

Fel = −1
2
KA

∫
d2x d2y GL(x,y)[η(x)−K(x)][η(y)−K(y)] . (54)

As anticipated, the Gaussian curvature of the underlying substrate couples with the
defects by screening their topological charge. Eq (54) is identical to the Coulomb
energy of a multi-component plasma of charge density η in a background of charge
density −K. Like particles in a plasma, we can expect defects to screen each other’s
charge, thus forming clusters of zero net charge, and matching the charge distribu-
tion of the surrounding background. This implies that disclinations will be attracted
to regions of like-sign Gaussian curvature.

Crystalline surfaces (i.e. non-Euclidean crystals) differ from manifolds equipped
with a p−atic director field because bonds, whose local orientation is encoded
in the field θ in p−atics, can now be compressed and sheared to relieve part of
the elastic stress due to the geometrical frustration provided by the embedding
manifold. A first attempt at describing the elasticity of defects on a two-dimensional
curved crystal was made by Dodgson [71], who studied the ground state of the
Abrikosov fulx lattice in a model thin-film superconductor on a sphere (subject to
a field radiating from a magnetic monopole at the center) and found evidence for
twelve 5−fold disclinations at the vertices of an icosahedron in a otherwise 6−fold
coordinated environment (see Sec. 3 for a detailed review of spherical crystals).
Later, Dodgson and Moore [72] proposed adding dislocations to the ground state of
a sufficiently large spherical vortex crystal to screen out the strain introduced by the
twelve, topologically required, disclinations. A general framework to describe the
elasticity of defects in non-Euclidean crystals was proposed by Bowick, Nelson and
Travesset (BNT) in 2000 [73]. The BNT model, obtained from the covariantization
of the elastic energy (49), relies on the following expression for the elastic energy of
a collection of disclinations in a triangular lattice of underlying Gaussian curvature
K:

Fel =
1
2
Y

∫
d2x d2y G2L(x,y)[η(x)−K(x)][η(y)−K(y)] , (55)

where η(x) is the topological charge density (47) and G2L(x,y) the Green function
of the covariant biharmonic operator on the manifold. The origin of the coupling
between topological charge and curvature, in this case, is rooted in a profound
result of discrete geometry originally due to Descartes which can be considered the
oldest ancestor of the Gauss-Bonnet theorem of differential geometry. Let P be a
convex polyhedron and define the angular deficit of a vertex v of P as:

k(v) = 2π −
c(v)∑
i=1

αi(v) , (56)

where αi(v) with i ∈ [1, c(v)] are the angles formed by all the faces meeting at v.
Descartes’ theorem states that the sum of the angular deficits of a convex polyhe-
dron is equal to 4π. More generally:∑

v∈P
k(v) = 2πχ , (57)

which is exactly the Gauss-Bonnet theorem for the case in which the Gaussian cur-
vature is concentrated in a finite number of points (vertices) rather than smoothly
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Figure 9. (Color online) Parallel transport of a vector around a corner of a cube. As a consequence of the
discrete Gaussian curvature, the vector is rotated by π/2 after parallel transport.

distributed across the whole surface. The deficit angle k(v) is thus the discrete
analog of the Gaussian curvature. This analogy is not limited exclusively to Eq.
(56). Consider, for example, the corner of a cube and imagine parallel transporting
a vector v around a closed loop encircling the corner (see Fig. 9). After parallel
transport, the vector has rotated by k(v) = π/2 with respect to its original orienta-
tion. Analogously, a vector parallel transported around a closed loop on a surface
rotates by an angle

δ =
∫
d2xK(x) ,

where the integral is over the portion of the surface enclosed by the loop. Now, on
a triangulated surface α(v) ≈ π/3 and:

k(v) = 2π − π

3
c(v) =

π

3
[6− c(v)] .

Thus the source term η − K figuring in Eq. (55) corresponds to the difference
between the pre-existing Gaussian curvature of the manifold with local 6−fold
orientational order and the additional Gaussian curvature induced by a disclination
of topological charge q. A more formal discussion can be found in Ref. [74]. As in the
case of a purely rotational degree of freedom, disclinations in non-Euclidean crystals
organize so as to match the Gaussian curvature of the underlying medium while
maximizing their reciprocal distance as a consequence of the repulsive interaction
between like-sign defects. In the next three sections we will see how the formalism
outlined here applies to three physically relevant examples of manifolds: the sphere,
the topological disk and the torus.

3. Crystalline and nematic order on the sphere

3.1. Introduction

Experimental realizations of spherical crystals are found in emulsions of two im-
miscible fluids, such as oil and water, stabilized against droplet coalescence by
coating droplets of one phase (say water) with small colloidal particles [75, 76].
The colloidal “armor plating” of these Pickering emulsions also plays a role in col-
loidosomes, colloid-coated lipid bilayer vesicles used for encapsulation and delivery
of flavors, fragrances and drugs [27]. Identical micron-sized particles tend to crys-
tallize under typical experimental conditions. The defect structure of crystalline
ground states on a sphere is important in this context since defects influence the
strength of the colloidal armor.
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Defects play an essential role in describing crystalline particle packings on the
sphere. At least twelve particles with 5-fold coordination (i.e., 12 disclinations)
are required for topological reasons, and like the 5-fold rings in carbon fullerenes,
one might expect that the energy would be minimized if the disclination positions
approximated the vertices of a regular icosahedron. This expectation, which also
plays a role in geodesic domes and in the protein capsomere configurations of
spherical virus shells [39, 77], is nevertheless violated when the shells are sufficiently
large and disclination buckling [40] out of the spherical environment is suppressed
by surface tension.

To understand the structure of spherical crystals, we must find the ground state of
M particles distributed on a surface Σ and interacting with, say, pairwise repulsive
potentials. For simplicity consider power law potentials V (r) = e2/rγ , where e
is a generalized electric charge. The energy of M particles at positions r(`), with
` = (l1, l2) ∈ Z⊗Z, becomes 2E0 =

∑
` 6=`′ e

2/|r(`)−r(`′)|γ . This covers most of the
interesting physical systems. The case γ = 1 corresponds to the pure 3D Coulomb
potential, appropriate for charged colloids. This is known as the Thomson problem
in the physics and mathematics literature and has been widely studied for over 100
years [78, 79, 80]. The case γ = 3 corresponds to a dipole interaction, appropriate
for neutral colloids at the interface between two liquids. The different dielectric
constants of the two liquids leads to an asymmetric distribution of charge on the
colloids and a net dipole moment. The case γ = 12 is the repulsive part of the
Lennard-Jones potential and is the important piece of the interaction for driving
crystallization. Finally the limit γ →∞ is an extreme short range interaction that
selects the pair of particles with the minimum distance. The equivalent packing of
spherical caps was introduced in 1930 by the biologist Tammes [81] and connects
the present problem to the rich physics and mathematics of packing [82, 83].

The packing of particles on surfaces of nontrivial topology is relevant to a broad
range of physical, chemical and biological systems in addition to its intrinsic math-
ematical interest. An almost literal realization of the Thomson problem is provided
by multi-electron bubbles [84, 85]. Electrons trapped on the surface of liquid helium
have long been used to investigate two dimensional melting [86, 87]. Multi-electron
bubbles result when a large number of electrons (105−107) at the helium interface
subduct in response to an increase in the anode potential and coat the inside wall of
a helium vapor sphere of radius 10−100µm. Typical electron spacings, both at the
interface and on the sphere, are of order 2000 Å, so the physics is entirely classical,
in contrast to the quantum problem of electron shells which originally motivated
J.J. Thomson [78]. Information about electron configurations on these bubbles can,
in principle, be inferred from studying capillary wave excitations [88, 89]. Similar
electron configurations should arise on the surface of liquid metal drops confined
in Paul traps [90].

A Thomson-like problem also arises in determining the arrangements of the pro-
tein subunits which comprise the shells of spherical viruses [39, 40, 45, 77, 91]. Here,
the “particles” are clusters of protein subunits arranged on a shell. This problem of
protein arrangements was solved in a beautiful paper by Caspar and Klug [39] for
intermediate values of R/a, where R is the sphere radius and a is the mean particle
spacing. Caspar and Klug constructed icosadeltahedral particle packings charac-
terized by integers m and n, which provide regular tessellations of magic numbers
M = 10(n2 + nm+m2) + 2 particles on the sphere. The Caspar-Klug tessellations
provide an excellent starting point for finding low energy particle configurations
on the sphere for intermediate values of M ≈ 8π(R/a)2/

√
3. Particle numbers M

that are not magic numbers can be accommodated by introducing vacancies or
interstitials into these regular packings.
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Other realizations of Thomson-like problems include regular arrangements of
colloidal particles in colloidosome cages [92, 93, 94, 95] proposed for protection of
cells or drug-containing vesicles [27] and fullerene patterns of spherical carbon
atoms [96]. An example with long range (logarithmic) interactions is provided
by the Abrikosov lattice of vortices which would form at low temperatures in a
superconducting metal shell with a large monopole (solenoid tip) at the center
[72].

The problem of the best possible packing on spheres also has applications in the
micro-patterning of spherical particles [97], relevant for photonic crystals, and in
understanding the structure of Clathrin cages, responsible for the vesicular trans-
port of cargo in cells [98]. Crystalline domains covering a fraction of the sphere are
also of experimental interest. In the context of lipid rafts [99], confocal fluorescence
microscopy studies have revealed the coexistence of fluid and solid domains on gi-
ant unilamellar vesicles made of lipid mixtures. The shapes of these solid domains
include stripes of various widths and orientations [100, 101, 102, 103].

3.2. Crystals of point particles

Consider a collection of classical point particles constrained to a frozen (non-
dynamical) two-dimensional surface Σ embedded in three-dimensional Euclidean
space. The particles interact through a general potential defined in the three di-
mensional embedding space or solely within the 2D curved surface itself. We focus
primarily on the potential

V (r) =
e2

rγ
. (58)

Here, e is an “electric charge” such that if r is some quantity with dimensions of
length then e2/rγ has dimension of energy. The case γ = 1 corresponds to the
Coulomb potential in three dimensions. Although we do not treat this problem
explicitly here, the replacement

V (r)→ e2

γ
(r−γ − 1) (59)

allows us to treat the two dimensional Coulomb potential by taking the limit γ → 0,

V (r)→ −e2 log(r) . (60)

The electrostatic energy of a system of M particles at positions r(`), interacting
via Eq.(58), with ` = (l1, l2), l1, l2 ∈ Z, becomes

2E0 =
M∑

`6=`′

e2

|r(`)− r(`′)|γ
. (61)

Note that with this definition the power law interaction acts across a chord of the
sphere, as would be the case for electron bubbles in helium. Although we focus here
on curved crystals, there are some quantities which are insensitive to the curvature
of the surface, and the simpler geometry of the plane can be used to compute them.
The following two subsections hence focus on planar crystalline arrays of particles
interacting via the potential Eq.(58).
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3.2.1. Planar Crystals

The electrostatic energy Eq. (61) and the corresponding elastic tensor, from
which follows the elastic constants of the system, may be explicitly computed
for crystalline orderings of particles in a triangular lattice. For any non-compact
surface, like the plane, the energy Eq. (61) is divergent for all γ ≤ 2. If γ > 0,
the divergence comes exclusively from the zero mode G = 0 associated with the
thermodynamic limit of infinite system size. This term (which would be subtracted
off if a uniform background charge were present) can be isolated by setting |G| ≡
ε� 1 for this mode. The final result for the ground state energy reads

2E0 = − Me2

Γ(γ/2)

(
π

AC

) γ

2
[

4
γ(2− γ)

− σ(γ)
]

+ Me2 π

AC

Γ(1− γ
2 )

γ/2
lim
|G|→ε

22−γ

|G|2−γ

= Me2θ(γ)
(

4π
AC

)γ/2
+Me2 π

AC

Γ(1− γ
2 )

γ/2
lim
|G|→ε

22−γ

|G|2−γ
. (62)

AC is the area of the unit cell of the triangular Bravais lattice (AC =
√

3
2 a

2) and Γ
is the Euler Gamma function. The coefficient σ is a sum over Misra functions. The
coefficient θ(γ) parameterizes the nonsingular part of the energy; its dependence
on the exponent γ is shown in Table 1. This negative quantity parameterizes the
binding energy of the triangular lattice after the positive “zero mode” contribution
is subtracted off. For γ = 1, we have a two dimensional “jellium” model. In the
case of a sphere no neutralizing background is necessary and the energy is rendered
finite by the compact nature of the sphere itself. The maximum distance between
points on the sphere provides a natural infrared cut-off.

For small displacements of the particles from their equilibrium positions, one has

E − E0 =
e2

2

∑
` 6=`′

[
1

|r(`) + u(`)− r(`′)− u(`′)|γ
− 1
|r(`)− r(`′)|γ

]
(63)

where u(`) is a small displacement of the particle ` in the plane of the surface from
its equilibrium position r(`), and therefore a tangent vector to the surface. The
elastic tensor Πij(`, `′) is defined as the leading term in an expansion of Eq.(63),

E − E0 =
e2

2

∑
`6=`′

Πij(`, `′)ui(`)uj(`′) . (64)

In deriving Eq.(63), we assume a constraint of fixed area per particle, enforced by
a uniform background charge density or boundary conditions. This eliminates the
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Table 1. Coefficients of the response func-

tion Eq. (65) and the energy Eq. (62). Re-

sults are accurate up to six digits. The co-

efficient ρ is a rational function of γ.

γ η ρ −θ

1.875 0.699652 31 47.763
1.75 0.619256 15 22.647
1.625 0.544152 87/9 14.288
1.5 0.474268 7 10.118
1.375 0.409548 27/5 7.625
1.25 0.349812 13/3 5.9701
1.125 0.295033 25/7 4.7955
1 0.245065 3 3.9210
0.875 0.199772 23/9 3.2471
0.75 0.159010 11/5 2.7138
0.625 0.122622 21/11 2.283
0.5 0.090439 5/3 1.9294
0.375 0.062279 1.46154 1.6352
0.25 0.037955 9/7 1.3881
0.125 0.017265 43/30 1.1787

term linear in ui(`). The final result is

Πij(p) = AC
∑

`

eip·r(`)Πij(`,0)

=
22−γπ

AC

Γ(1− γ/2)
Γ(γ/2)

pipj
|p|2−γ

+

+
η(γ)

A
γ/2
C

[
|p|2δij + ρ(γ)(δkiδlj + δkjδli)pkpl

]
+ O(|p|4). (65)

The coefficients η(γ) and ρ(γ) depend only on the potential. In Table 1, some values
of the coefficients for a range of potentials with 0 < γ < 2 are listed.

3.2.2. Continuum free energy

When the deviations from the ground state are small, the long wavelength lattice
deformations may be described by a continuous Landau elastic energy of the form
(35). The elastic tensor Eq. (64), within Landau elastic theory, is then

e2Πij(p) = AC
[
µ|p|2δij + (λ+ µ)pipj

]
. (66)

A comparison with Eq. (65) immediately yields an explicit expression for the elastic
constants of the crystal

µ = η(γ)
e2

A
1+γ/2
C

, λ =∞ (67)

Y =
4µ(λ+ µ)

2µ+ λ
= 4η(γ)

e2

A
1+γ/2
C

, (68)

where Y is Young’s modulus. The result λ = ∞ is equivalent to a divergent com-
pressional sound velocity as p → 0 and for γ = 1 is just a statement of the
incompressibility of a two-dimensional Wigner crystal. Alternatively, we can allow
for wavevector-dependent elastic constants µ(p) and λ(p) in Eq. (66). In this case
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n steps
m steps

  n m(  ,   ) lattice

Figure 10. (Color online) Construction of an (n,m) icosadeltahedral lattice. The filled circles indicate two
nearest-neighbor five fold disclinations. Because these defects sit on the vertices of an icosahedron, they
are separated by a geodesic distance R cos−1(1/

√
5), where R is the sphere radius.

.

λ(p) diverges as p→ 0:

λ(p) ≈ 22−γπ

AC

Γ(1− γ/2)
Γ(γ/2)

1
p2−γ , (69)

while limp→0 µ(p) is given by Eq. (67).

3.2.3. Spherical Crystals

Spherical crystals have many properties not shared by planar ones, one of the
most remarkable being that there is an excess of twelve positive (5−fold) disclina-
tions. These disclinations repel, and the simplest spherical crystals will be those
having the minimum number of defects (i.e. twelve) located at the vertices of an
icosahedron. Triangular lattices on the sphere with an icosahedral defect pattern
are classified by a pair of integers (n,m), as illustrated in Fig. 10. The path from
one disclination to a neighboring disclination for an (n,m) icosadeltahedral lattice
consists of n straight steps, a subsequent 60◦ turn, and m final straight steps. The
geodesic distance between nearest-neighbor disclinations on a sphere of radius R is
d = R cos−1(1/

√
5). The total number of particles M on the sphere described by

this (n,m)-lattice is M = Nnm, where

Nnm = 10(n2 +m2 + nm) + 2 . (70)

Such (n,m) configurations were once believed to be ground states for relatively
small numbers (M ≤ 300, say) of particles interacting through a Coulomb potential
[104, 105, 106, 107, 108]. The energy of discrete particle arrays described by Eq.
(61) can be evaluated by starting with some configuration close to an (n,m) one
and relaxing it to find a minimum. It is found that the (n,m) configurations are
always local minima. Whether these icosahedral configurations are global minima
as well will be analyzed later. Results for the energy E(M) are shown in the inset
to Fig. 11.

From Fig. 11 it is clear that energies grow very fast for increasing volume. More
interestingly, the (n, 0) and (n, n) configurations show a growing difference in en-
ergy for increasing volume size, implying that the energy of icosahedral configura-
tions does not tend to a universal value for large numbers of particles but rather
remains sensitive to the (n,m) configuration, a result also noted by other authors
[105]. Further insight comes from investigating the distribution of energy. Plots of
the local electrostatic energy, the electrostatic energy at point x on the sphere, as
defined in Eq. (61) are shown in Fig. 12 [109]. From Fig. 12 it should be noted that
the triangles obtained by the Voronoi-Delaunay construction, after minimization
of the potential Eq. (61), are very close to equilateral. The distribution of the local
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Figure 11. (Color online) Difference in energy of (n, n) and (n, 0) configurations. Results are for a power

law potential with γ = 1.5 and energies are plotted in units of e2

Rγ
.

Figure 12. (Color online) Potential energy distribution for a (n, 0) configuration with n=10 and M=1002
(top) and a (n, n) configuration with n=6 and M=1082 (bottom).

energies for the (n, 0) and (n, n) configurations are very different. The (n, 0) con-
figuration shows maximum energies along the paths joining the defects. The (n, n)
configuration, on the other hand, has its maximum energies along the directions
defined by the triangles formed by three nearest neighbor disclinations. The size of
these regions of differing electrostatic energy turns out to scale with system size,
making it very plausible that there might be small differences in the energy per
particle for (n, 0) and (n, n) configurations in the limit n→∞.

3.3. Geometric Formalism on the Sphere

Spherical substrates provide the simplest example of the problem of crystals on
curved surfaces. The study of spherical crystals is simplified by two important
properties: there is a unique scale with dimensions of length, the radius R, and
there is a fixed excess disclinicity of twelve following from the Euler theorem (1)

Q =
N∑
i=1

qi = 6χ = 12 . (71)

The free energy Eq. (55), applied to the sphere, is tractable analytically because the
inverse biharmonic operator on a sphere of radius R can be computed explicitly. It is
shown in [73] that the Green’s function for the biharmonic, in spherical coordinates
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(θ, φ), has the following simple form on a unit sphere:

χ(θa, φa; θb, φb) = 1 +
∫ 1−cosβ

2

0
dz

log z
1− z

, (72)

where β is the geodesic distance between two disclinations located at (θa, φa) and
(θb, φb),

cosβ = cos θa cos θb + sin θa sin θb cos(φa − φb) . (73)

The total energy of a spherical crystal with an arbitrary number of disclinations
follows from Eq. (55) and Eq. (72) and has the simple form [73]

2E(Y ) = E0 +
πY

36
R2

N∑
i=1

N∑
j=1

qiqjχ(θi, φi; θj , φj) +N Ec , (74)

where {θi, φi}i=1,··· ,N are the coordinates of N defects and we restrict ourselves to
5−fold (qi = +1)and 7−fold (qi = −1) defects. The quantity E0 is the zero point
energy and is defined in Eq. (62). Although 5 and 7-fold disclinations will in general
have different core energies [110], we assume equal core energies here for simplicity.
What matters for our calculations in any case is the dislocation core energy Ed,
which we take to be Ed = E5 + E7 ≡ 2Ec.

The value of the Young’s modulus and the flat space ground state energy E0

have been computed in Sec. 3.2.1. When the sphere radius R is large compared to
the particle spacing a, we can use flat space values of Y and the flat space energy
E0(M) associated with a finite number of particles M . To obtain the leading terms
in the expansion of the ground state energy for large but finite M , the precise
compactification of the plane employed is irrelevant – it may be achieved by periodic
boundary conditions, for example. For a sufficiently large plane the finite size effects
will be negligible. The density σ of particles is then M divided by the total surface
of the compact plane, taken to be the surface area S of a sphere of radius R,

σ = 1/AC =
M

S
, S = 4πR2 . (75)

From Eq. (67) the expression for the Young’s modulus suitable for M particles on
a spherical crystal of radius R with 0 < γ < 2 is then

Y = 4µ =
4η(γ)M1+γ/2

(4π)1+γ/2

e2

R2+γ
. (76)

One remaining detail is the divergent contribution to the energy E0 in Eq. (62).
Since the divergent part comes solely from the zero mode, the spatial variations in
the density of the actual distribution are irrelevant. It may therefore be computed
for a uniform density of charges. The divergent part is identical to the energy of
a constant continuum of charges as described by the density Eq. (75). We now
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evaluate this divergent part of the energy on a sphere, instead of a plane.

ED ≡ Me2 π

AC

Γ(1− γ
2 )

γ/2
lim
|G|→ε

22−γ

|G|2−γ

→ e2

∫
d2x d2y

ρ(x)ρ(y)
|x− y|γ

(77)

=
M2

2γ−1(2− γ)
e2

Rγ
.

The divergent part has thus been regularized, and the energy is finite and well-
defined for all M < ∞. Note that for the case γ < 2, ED ∼ M2−γ/2(M/S)γ/2.
Hence ED is not simply a function of the particle density M/S, as one would
expect for a short range interaction.

3.3.1. The energy of spherical crystals

Upon substituting the elastic constant of Eq. (76) into Eq. (74), one arrives at

2E = E0 +
πY

36
R2

N∑
i=1

N∑
j=1

qiqjχ(θi, φi; θj , φj) +NEc

= E0 +
4η(γ)

(4π)1+γ/2

π

36
C(i1 · · · iN )M1+γ/2 e

2

Rγ
+NEc , (78)

where E0 is defined in Eq. (62) and the function C(i1 · · · iN ) depends on the position
i1 = (θ1, φ1) etc. of the N disclination charges and is universal with respect to the
potential. The total energy of a spherical crystal, including the contributions to E0

is then

2Etot =
e2

Rγ

{
M2

2γ−1(2− γ)

+
[
θ(γ)

(4π)γ/2
+
π

6
η(γ)

(4π)γ/2+1
C(i1, . . . , iN )

]
Mγ/2+1

}
+NEc (79)

Note that the leading correction to the zero mode energy proportional to M2

varies as M1+γ/2, and depends both on the flat space function θ(γ) and on the
C-coefficient

C(i1, · · · , iN ) =
N∑
j=1

N∑
i=1

qiqjχ(θi, ψi; θj , ψj) , (80)

associated with a particular configuration of disclinations. Note that the core en-
ergies contribute to the second sub-leading coefficient. For short-range potentials,
such as γ > 2, the ground energy is extensive, and the leading term varies as
M1+γ/2. The extensive nature of the M1+γ/2 term becomes clear upon noting that

M1+γ/2 e
2

Rγ
∝ R2 × e2

aγ+2
, (81)

where a is the particle spacing. Comparison with Eq. (74) shows that the dimension
of Young’s modulus Y arises solely from the lattice constant a and the electric
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Figure 13. (Color online) Illustration of the calculation discussed in the text. The energy of the discrete
(n, n) configuration on the left is extrapolated for large M and compared to the energy computed with
the continuum model on the right. While in the continuum model only twelve degrees of freedom (the
12 disclinations) need to be considered, the direct calculation of a family of discrete models requires the
consideration of the full lattice and a careful extrapolation of the energies to large M .

charge e, consistent with elastic constants arising from physics on the scale of the
lattice constant in an essentially flat geometry. This observation is now generalized
to the rest of the couplings discussed in the previous section.

For a fluid membrane not on a frozen topography, Helfrich terms arising from
the mean curvature H as well as the Gaussian curvature can be important. Their
scaling behavior is given by

κg

∫
d2xK ∼ κ

∫
d2xH2 ∼ κ ∼ e2

Rγ
Mγ/2 . (82)

Both terms would therefore contribute to the same order in the M expansion,
although the last term is purely topological. For crystals embedded in a frozen
topography we expect an expansion along the lines of Eq. (79),

2Etot(M) =

(
a0M

2 −
∑
i=1

aiM
γ/2+1−i

)
e2

Rγ
. (83)

The nonextensive term a0M
2 arises from the long range interactions. The next

extensive contribution comes from the interaction between Gaussian curvature and
defects as well as the extensive energy per particle in flat space. Bending rigidity
contributions are higher order in 1/M and can be absorbed into a redefinition of
the disclination core energy. Core energies also depend on non-universal details of
the short-distance physics.

The results presented so far are strictly for systems at zero temperature.
In systems with short range interactions, the elastic constants can be strongly
temperature-dependent. An extreme example is hard disks of radius a0, which may
be viewed as a limiting case of a power law potential of the form V (r) ' ε0(a0/r)γ ,
with γ → ∞. In this case, the elastic constants are strictly proportional to tem-
perature. It is straightforward, however, to adapt the techniques presented here to
the simpler problem of short range pair potentials.

3.3.2. Energies of Icosahedral configurations

The configuration on a sphere with the minimum number of charge ±1 defects is
twelve +1 (5−valent) disclinations, which minimize their energy by sitting at the
vertices of an icosahedron Y. The energies of such configurations will be computed
for the discrete spherical tessellations described in Sec. 3.2.3 and compared with
the predictions of continuum elastic theory, as illustrated in Fig. 13. It is well
established that for sufficiently large values of M configurations with more than 12
disclinations (i.e., those with “grain boundary scars”) have lower energies [73, 111].
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Figure 14. (Color online) Energy coefficient a1 as a function of gamma (solid line) and from the numerical
results with (n,m) configurations (filled circles), for the icosahedral configurations. Plot of a1(γ,Y) -

a1(γ,Y)(n,n) (circles), a1(γ,Y) - a1(γ,Y)(n,0) (diamonds), a1(γ,Y)(n,n) - a1(γ,Y)(n,0) (squares).

It is of interest, however, to study simple icosahedral configurations for large M ,
as metastable states with a well defined energy.

Within the continuum elastic theory it can be shown that twelve disclinations
at the vertices of an icosahedron minimize the energy [73] when no further defects
are allowed. The C-coefficient of Eq. (79) for this configuration of defects has been
computed in [73]

C(Y) = 0.6043 . (84)

Y here stands for a particle configuration with 12 defects at the vertices of an
icosahedron. Using the energy of Eq. (79), the coefficient a1(γ,Y) appearing in
the expansion of Eq. (83) may be computed, with the results shown in Fig. 14
and Table 2. From the results described in Sec. 3.2.3, the a1 coefficient may be
extrapolated to very large numbers of particles using the expansion derived from
Eq. (83). Indeed, as shown in Fig. 15, plots of

ε(M) ≡ 2RγEtot(M)/e2 − a0(γ)M2

M1+γ/2
(85)

vs 1/M are linear, with a slope that determines a1(γ) and an intercept related
to the higher order core energy-like contribution. The results of these extrapola-
tions are shown in Table 2. The agreement between the continuum elastic theory
and the explicit computation for the (n, n) configuration is remarkable, holding
to almost five significant figures. For the (n, 0) lattice there is agreement to four
significant figures. This agreement is even more striking when it is recalled that the
a1-coefficient is obtained after subtraction of the term a0(γ)M2, as illustrated in
Fig. 11. Furthermore, in the range from γ = 0.125 to γ = 1.875, all the significant
digits vary and yet the accuracy of the calculation is virtually independent of γ.

3.3.3. The Energy difference of the (n,m) lattices

The a1-coefficient computed within the continuum elastic approach above does
not depend on the icosadeltahedral class (n,m). Results from the direct minimiza-
tion of particles do, however, show a weak dependence (in the 4th significant digit)
on the particular (n,m) configuration, as is apparent from Fig. 11 and Table 2. It
should be noted that the discrepancy from the continuum result has a well defined
sign, and is therefore reasonably attributed to a term not present in the energy
expansion.
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Figure 15. (Color online) Numerical estimate of ε(M) as a function of 1/M for (n, 0) and (n, n) icosadelta-
hedral lattices with γ = (1.5, 0.5).

Table 2. Numerical values of the coefficient

a1(γ,Y) (twelve disclinations on the vertices of an

icosahedron) using the C-coefficient from Eq.(84).

The same coefficients from the (n, n) and (n, 0)

lattices

γ a1(γ,Y) (n, n) (n, 0)

1.875 4.45118 4.45110(4) 4.45095(4)
1.75 2.47175 2.47166(3) 2.47150(3)
1.625 1.82629 1.82621(2) 1.82603(2)
1.5 1.51473 1.51454(2) 1.51445(2)
1.375 1.33695 1.33683(4) 1.33667(4)
1.25 1.22617 1.22599(7) 1.22589(7)
1.125 1.15366 1.1535(2) 1.15340(2)
1.0 1.10494 1.10482(3) 1.10464(3)
0.875 1.07187 1.07174(3) 1.07160(3)
0.75 1.04940 1.04921(6) 1.04910(6)
0.625 1.03421 1.03413(5) 1.03398(5)
0.5 1.02392 1.02390(4) 1.02372(4)
0.375 1.01672 1.01663(6) 1.01656(6)
0.25 1.01115 1.01106(3) 1.01103(3)
0.125 1.00595 1.00592(2) 1.00589(2)

3.4. Thomson problem with a continuous distribution of dislocations

When the number of particles is extremely large, the minimum energy configura-
tions can be approximated by a closed analytical form, upon assuming a continuous
distribution of defects.

The formal elimination of the geometric frustration introduced by the Gaussian
curvature may be formulated as a concrete set of equations in the case of the sphere.
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We shall use the identity

s(x) =
π

3
√
g

N∑
i=1

qiδ(x,xi) (86)

=
1
R2

+
π

3R2

∞∑
l=1

l∑
m=−l

Y l∗
m (θ, φ)

N∑
i=1

qiY
l∗
m (θi, φi)

= K(x) +
π

3R2

∞∑
l=1

l∑
m=−l

Y l∗
m (θ, φ)

N∑
i=1

qiY
l
m(θi, φi),

which follows from the topological constraint Eq. (71). Provided a disclination
configuration exists such that

N∑
i=1

qiY
l
m(θi, φi) = 0 , (87)

for each (l ≥ 1,m), the disclination density completely screens the Gaussian cur-
vature. A configuration of defects satisfying Eq.(87) is an absolute minimum of the
elastic energy, a result easily understood by writing the energy in the form

E = E0 +
π2Y

9
R2

∞∑
l=1

l∑
m=−l

∣∣∣∑N
i=1 qiY

l
m(θi, φi)

∣∣∣2
l2(l + 1)2

+N Ec , (88)

where the zero point energy E0 in Eq. (62) is kept. A configuration satisfying Eq.
(87)) will be denoted by G. For this hypothetical configuration, the C-coefficient
in Eq. 79 vanishes, although there is now a large contribution (linear in R) from
the dislocation core energies represented by the last term of Eq. (88).

Table 3. Value of

the a1 coefficients for

the G configuration

Eq. (87).

γ a1(γ,G)

1.875 4.45227
1.75 2.47289
1.625 1.82746
1.5 1.51592
1.375 1.33815
1.25 1.22737
1.125 1.15485
1 1.10610
0.875 1.07297
0.75 1.05044
0.625 1.03515
0.5 1.02473
0.375 1.01737
0.25 1.01161
0.125 1.00620

The G configuration may be characterized more explicitly. It consists of a density
of dislocations that converges to the local Gaussian curvature. It can be shown
that upon approximating the dislocations (each regarded as a disclination dipole
with spacing a) as a continuum distribution, this dislocation density for a sphere
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becomes

b(θ, φ) =
1

6R

6∑
k=1

cot[αk(θ, φ)]ekφ . (89)

The summation here runs over the six coordinates of the northern hemisphere of
an icosahedron, (0, 0) and (θY , 2πk/5), where θY = arccos(1/

√
5) and αk is the

angle θ relative to a coordinate system with the north pole located at (θY , 2πk/5)
for k = 1, · · · 5. This angle is given implicitly by

cos[αk(θ, φ)] = cos(θ) cos(θY)− sin(θ) sin(θY) cos
(

2π
5
k + φ

)
. (90)

The implicit form of Eq. (89) can be further simplified

ekφ = fk(θ, φ)
{
− sin(θY) sin

(
2π
5
k + φ

)
gθ (91)

+ [cos(θY) sin θ + sin(θY)] cos θ cos
(
φ+

2π
5
k

)
gφ

}
where fk(θ, φ) = 1/ sin[αk(θ, φ)]. Close to one of the 12 disclinations with charge
s = 2π/6 Eq. (89) predicts a singularity in the dislocation density [74]

b ≈ s

2πRa
. (92)

For small angles, close to each disclination, there is a short-distance singularity

b(θ) =
π

3Rθ
+ · · · , (93)

in agreement with known results in flat space. Eq. (89) represents a continuous
distribution of dislocations, and neglects both dislocation discreteness and their
mutual interactions. It represents six families of dislocations with azimuthal Burg-
ers vectors associated with antipodal pairs of the 12 original disclinations in the
icosahedron. When discreteness and interactions are taken in account, we expect
these dislocations to condense into grain boundary arms, containing with quan-
tized Burgers vectors and variable spacing in the radial direction [73, 112, 113].
The total number of discrete arms remains, therefore, the variable that needs to
be determined for a discrete solution of the Thomson problem.

3.4.1. The intermediate regime

Within the continuum elastic approach, the dominant configurations for a small
number of particles are 12 defects with an icosahedral symmetry [73]. We have
just seen, however, that adding a continuous distribution of dislocations, as might
be appropriate when the particle number is large, can more efficiently screen the
Gaussian curvature on a sphere. The natural problem then becomes to determine
the precise structure of the defect arrays for intermediate numbers of particles
when the discreteness of interacting dislocations is taken into account.

We note first that the particular arrangement of defects dominating in this regime
will not be fully universal. The particular array structure favored can vary from
system to system with fixed particle number, depending, e.g., on details such as
the dislocation core energy. This result may be traced back to the M -expansion of
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Figure 16. (Color online) Results of a minimization of 500 particles interacting with a Coulomb potential,
showing the appearance of scars.

Figure 17. (Color online) Ground state configurations forM ≈ 2000 particles obtained from the continuum
elastic formalism. In the top figure one finds scars (m = 2) and in the bottom pentagonal buttons (m = 5)
forming a rhombic tricontahedron.

Eq. (83), in which the sub-leading terms which depend on non-universal properties
influence the dominant terms for finite values of M . Some typical defect configura-
tions obtained by direct minimization of particles on the sphere are shown in Fig.
16 and show incipient scars, already at 500 particles (in [73] the minimum number
of particles where scars are systematically found is predicted to be around 400). By
using the geometrical model described here, where the energy is parameterized just
by a Young’s modulus and a dislocation core energy [73, 92] one can simulate larger
particle numbers and one obtains results as in Fig. 17. Note the occurrence of low
energy configurations with scars (m = 2) in one instance and pentagonal buttons
(m = 5) in another. The dislocation spacing decreases the further a dislocation is
from the central disclination.

An overview of results involving grain boundary scars is presented in Fig. 18.
If a disclination is placed on a perfect crystal, no additional defects will appear
if the disclination is located on the tip of a cone with total Gaussian curvature
equal to the disclination charge. If a disclination is forced into a flat monolayer,
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Figure 18. (Color online) Schematic illustrating the genesis of grain boundary scars. A disclination is first
constructed from a perfect lattice. If this disclination is placed on a tip of a cone, with a delta function of
Gaussian curvature balancing the defect charge, then no additional defects form. If the crystal is forced
into a monolayer, grain boundaries radiating out of the disclination radiate all the way to the boundary.
In the intermediate regime of constant non-zero Gaussian curvature, m grain boundaries of finite length
and variable spacing of dislocations form.

then m low angle grain boundaries, with constant spacing between dislocations as
shown in Fig. 18 and grains going all the way to the boundary, will be favored
(see [112] for a detailed discussion). In the intermediate situation where a finite
Gaussian curvature is spread over a finite area, as in the case of a spherical cap,
a disclination arises at the center of the cap and finite length grain boundaries
stretched out over an area of (π/3)R2 with variable spacing dominate, again as
illustrated in Fig. 18.

Additional results may be obtained for the number of arms within the grain
boundary, the actual variable spacing between dislocations within the grain and
the length of the grains as a function of the number of particles.

When grain boundary scars appear, one can estimate the number of excess dislo-
cations which decorate each of the 12 curvature-induced disclinations on the sphere
using ideas from Ref. [73]. This estimate is in reasonable agreement with experi-
ments probing equilibrated assemblies of polystyrene beads on water droplets [92].
Consider the region surrounding one of the 12 excess disclinations, with charge
s = 2π/6, centered on the north pole. As discussed in Ref. [73], one expects the
stresses and strains at a fixed geodesic distance r from the pole on a sphere of
radius R to be controlled by an effective disclination charge

seff (r) = s−
∫ 2π

0
dφ

∫ r

0
dr′
√
g K

=
π

3
− 4π sin2

( r

2R

)
. (94)

Here the Gaussian curvature is K = 1/R2 and the metric tensor associated
with spherical polar coordinates (r, φ), with distance element ds2 = d2r +
R2 sin2(r/R)d2φ, gives

√
g = R sin(r/R). Suppose m grain boundaries radiate from

the disclination at the north pole. Then, in an approximation which neglects inter-
actions between the individual arms, the spacing between the dislocations in these
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grains is [73]

l(r) =
am

seff (r)
, (95)

which implies an effective dislocation density

nd(r) =
1
l(r)

=
1
ma

[
π

3
− 4π sin2

( r

2R

)]
=

2π
ma

[
cos
( r
R

)
− 5

6

]
. (96)

This density vanishes when r → rc, where

rc = R arccos
(

5
6

)
≈ 33.56◦R , (97)

which is the distance at which the m grain boundaries terminate. The total number
of dislocations residing within this radius is thus

Nd = m

∫ rc

0
dr nd(r)

=
π

3a
rc −

4π
a

∫ rc

0
dr sin2

( r

2R

)
=
π

3

[√
11− 5 arccos

(
5
6

)](
R

a

)
≈ 0.408

(
R

a

)
. (98)

As discussed in Ref. [114], it is also of interest to consider 2π disclination defects
(appropriate to crystals of tilted molecules [115]) on the sphere. The icosahedral
configuration of 12 s = 2π/6 disclinations is now replaced by just two s = 2π discli-
nations at the north and south poles. Using the approximation discussed above, it
is straightforward to show that the density of dislocations in each of m (noninter-
acting) grain boundary arms now reads

nd(r) =
2π
ma

cos
( r
R

)
. (99)

This density vanishes at rc = (π/2)R, corresponding to a hemisphere of area on
the sphere for each cluster of arms.

It is of considerable interest to repeat the above calculation for a square lattice, as
found for example in the protein surface layers (s-layers) of some bacteria [116, 117].
In this case the basic disclination has s = 2π/4. The effective dislocation density
becomes

nd(r) =
1
l(r)

=
1
ma

[π
2
− 4π sin2

( r

2R

)]
=

2π
ma

[
cos
( r
R

)
− 3

4

]
. (100)

This density vanishes when r → rc, where

rc = R arccos
(

3
4

)
≈ 41.4◦R , (101)
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which is the distance at which the m grain boundaries terminate. The longer angu-
lar length of square lattice scars reflects the larger initial disclination charge (90◦)
that must be screened. The total number of dislocations residing within this radius
is thus

Nd = m

∫ rc

0
dr nd(r)

=
π

2a
rc −

4π
a

∫ rc

0
dr sin2

( r

2R

)
=
π

2

[√
7− 3 arccos

(
3
4

)](
R

a

)
≈ 0.75

(
R

a

)
. (102)

Thus the angular length of scars and the total number of excess dislocations is a
measure of the underlying topology of the lattice tiling the sphere.

3.5. Interstitial fractionalization on the sphere

3.5.1. Introduction

Consistent with theoretical expectations, experiments on particle-coated water
droplets in oil [92] reveal that the twelve excess disclinations sprout grain bound-
ary “scars” for sufficiently large R/a. When triangulations of microscopic particle
packings are used to reveal the local coordination number, these grain boundaries
appear as additional dislocations, i.e., 5-7 pairs, arrayed around an unpaired 5, in a
pattern such as 5-7–5-7–5–7-5–7-5. Although the critical value of R/a above which
grain boundaries appear depends on microscopic details, both theoretical estimates
and experiments indicate that this instability arises as soon as R/a & 5 − 6, i.e.,
when the total number of particles exceeds several hundred. Thus, unlike crystals
in flat space, dislocations arrayed in grain boundaries are an intrinsic part of the
ground state. These grain boundaries can, moreover, stop and start freely on the
sphere, unlike their flat space counterparts. Such terminations occur naturally (and
with low energy cost) because crystalline grains rotate under parallel transport due
to the nonzero Gaussian curvature of the sphere.

If disclinations and dislocations are crucial for understanding spherical crystal-
lography, what can we say about vacancies and interstitials, which are well known
to play a key role in conventional crystals [118, 119]. It is natural to introduce
vacancies and interstitials in an attempt to understand spherical particle packings
that deviate from the sequence of “magic numbers” Nnm = 10(n2 +nm+m2) + 2.
It is tempting to ignore the instability to grain boundary scars for large Nnm

and regard the commensurate (n,m) lattice as an interesting metastable state. It
would then be natural to introduce vacancies and interstitials to describe candi-
date ground state packings for Nnm ± t particles, where t = 1, 2, ... and much less
than the distance to the next magic number. There is, however, another surprise
in store: in contrast to flat space, where vacancy and interstitial defects are sta-
ble and well defined, one finds that interstitials and vacancies are typically ripped
apart into dislocation fragments by the strain fields of nearby 5-fold disclinations.
The dislocations then combine with some of the excess 5’s to form defect clusters
such 5-7-5. Thus, vacancies and interstitials lose their integrity via fragmentation
in spherical crystals, and mediate formation of small grain boundary scars.
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Figure 19. (Color online) Initial icosahedral configuration of an (8,3) spherical crystal lattice with 12
disclination defects. This lattice is chiral, and is arranged such that 8 steps along a Bragg row, followed by
3 steps to the right along a Bragg row at a 120◦ angle, connect neighboring 5-fold disclinations. Distinct
initial locations for interstitials are shown as triangular plaquettes labeled by characters and numbers.

3.5.2. Interstitial fractionalization

We are interested in studying the effect of inserting an interstitial or a vacancy
into a regular (n,m) icosahedral lattice by adding or removing a single particle,
giving rise to particle numbers Nnm±1 not falling in the classification of icosadelta-
hedral lattices and in studying the relation of interstitials to the extra dislocation
defects (scars) found in spherical crystals above a critical system size [73, 92].
Refs. [120, 121, 122, 123, 124, 125, 126, 127] study configurations and energies of
interstitial and vacancy defects and their energetics in triangular lattices in flat
space.

The presence of excess dislocation defects in the ground state of spherical crystals
is dramatically illustrated by the following numerical experiment: we start with a
regular icosadeltahedral tessellation of the sphere – say an (8, 3), corresponding to
N83 = 972 (Fig. 19). This may be done with the applet located at [109] using the
Construct (m,n) algorithm. Although the true ground state for 972 particles on
the sphere with most pair potentials has additional dislocation defects (i.e. tightly
bound pairs of 5- and 7- coordinated particles) arrayed in grain boundary scars [73],
the regular icosadeltahedral lattice is a local minimum from which it is difficult to
escape without the addition of thermal noise. In fact it is a major challenge to find
fast and reliable algorithms to locate the true ground state (global minimum) in this
problem with its complex energy landscape. Now add a single particle to the lattice
at the center of mass of a spherical triangle whose vertices are 3 nearest-neighbor
5-fold disclinations (using commands shift + click). The self-interstitial so formed
is then relaxed by a standard relaxation algorithm, with sufficient thermal noise to
allow dislocation glide over the Peierls potential [93]. One immediately finds that an
interstitial is structurally unstable. In a few time steps it morphs into a complex of
dislocations with zero net Burgers vector. The most common structure observed is
a set of three dislocations, with Burgers vectors perpendicular to a line joining each
5-7 pair, inclined at 120◦ angles to each other. Eventually the interstitial complex
is ripped apart entirely, as illustrated schematically in Fig. 20 (see also Fig. 21).
Intermediate configurations and final states as the dislocations glide apart will be
classified later. Most often three separate dislocations are formed which each glide
toward a 5-fold disclination. The end result is the formation of a “mini-scar” (a
5−7−5 grain boundary) at each of the vertex 5s. Subsequent removal of a particle
to restore the particle number to the original 972 and relaxing still leaves scars
with total energy lower than the starting configuration with 12 isolated 5’s. This
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Figure 20. (Color online) A schematic of interstitial fractionization. The a symbols are alternative ways
of representing dislocations depicted elsewhere as 5-7 pairs.

observation confirms that scars are definitely lower energy states and not simply
artifacts of the relaxation algorithm.

The above phenomenon of low-temperature (T & 0) unbinding of dislocations by
spatial curvature is a curved space analog of melting at finite temperature. The
extended nature of fractionated interstitials (each separating dislocation compo-
nent involves an extra row of particles) means that they cannot be treated as small
perturbations from the initial spherical crystal with particle number Nnm.

Let’s return to the specific case of the N = 973 particle configuration generated
by an interstitial inserted into one triangular plaquette of a regular (8, 3) lattice
of Nnm = 972 particles with the requisite 12 disclination defects (5-fold coordi-
nated particles) at the vertices of a regular icosahedron, as shown in Fig. 19. The
spherical crystal is distorted by the additional particle – the local configuration
adopted by the interstitial changes as the crystal relaxes toward a lower energy
state. As in the case of planar lattices, one also finds here that various intersti-
tial defect configurations appear, such as the twofold symmetric interstitial I2, the
threefold symmetric interstitial I3, and the fourfold symmetric interstitial I4 (see
Figs. 21, 22, and 23). The most common intermediate complex formed by the
interstitial is threefold symmetric in the rough form of a triangular loop composed
of three dislocations with radially oriented Burgers vectors. All of the configura-
tions adopted by an interstitial prior to unbinding can be described as a set of
dislocations with zero net Burgers vector.

In marked contrast to interstitial defects in a planar crystal, interstitial defect
configurations in a spherical crystal are metastable states with characteristic decay
processes. As we shall see, the instability is caused by interactions with the in-
evitable disclinations associated with the nonzero Gaussian curvature of the sphere.
A representative evolution of an interstitial inserted at the center of three neigh-
boring disclinations in an (8, 3) icosadeltahedron is shown in Fig. 21. After some
local relaxation the interstitial configuration denoted I3 is formed, as shown in
Fig. 21 (a). We also show there the construction of a triangular contour surround-
ing the original interstitial defect. The presence of an interstitial follows because
the contour encloses 7 particles instead of 6, the number appropriate to a per-
fect triangular lattice. During the annealed relaxation illustrated in Figs. 21(b)
through (d), the dislocations which are bound together in the initial interstitial
unbind into individual dislocations and subsequently glide towards nearby discli-
nations, eventually forming minimal 5-7-5 grain boundary scars. If one thinks of
the initial dislocations as internal degrees of freedom within the interstitial, one
could say that one-third of an interstitial is present in each mini-scar in the final
state and thus that the interstitial demonstrates 1/3 fractionalization. For other
initial conditions the fractionation is into two dislocations, each representing 1/2
of the original interstitial. The instability of interstitial defects in curved crystals
may be studied via continuum elasticity theory by calculating the interaction en-
ergies between defects at each stage of the relaxation process of Fig. 21 [119]. We
note that the triangular plaquette around the initial defect has been deformed such
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Figure 21. (Color online) The fractionalization of an interstitial defect inserted at the center of three
neighboring disclinations in an (8,3) spherical tessellation: (a) the initial interstitial defect configuration
(I3) shown surrounded by a triangular reference contour; (b) the bound defect unbinds to form three
separate dislocations (5-7)- pairs; (c) each dislocation glides (i.e., moves parallel to its Burgers vector)
towards the nearest disclination; (d) three mini-grain boundary scars are formed. We also keep track of
the evolution of the initial defect in (a) by illustrating the deformation of the triangular contour around
the initial defect for (b), (c), and (d) induced by the passage of the dislocation.

that it conforms as closely as possible to the regular triangular lattice during the
relaxation process. Its deformation reveals the passage of the escaping dislocations.

3.5.3. Interstitial defect energies

In this section, we discuss the energy of an interstitial defect in a spherical crystal.
Consider N point particles constrained to lie on the two-dimensional surface of a
unit sphere. The energy of N particles interacting through a generalized Coulomb
potential within the curved surface is given by

E =
1,N∑
i<j

1
|xi − xj |γ

, (103)

where x is the position of the particle in three dimensions and γ is an integer. For
a flat triangular lattice with periodic boundary conditions, the interstitial defect
energy at constant density was defined in [122, 123] as

EI = Erelaxed − Eper , (104)

where Erelaxed is the relaxed energy of the rearranged lattice of N particles with
the interstitial defect in the area A, and Eper is the energy of the perfect crystal
at the same areal density N/A. In curved space, however, the definition of a “per-
fect crystal” is more subtle, since disclination defects resulting from the Gaussian
curvature and the topology are inevitable. We will take as a reference crystal the
(n,m) icosadeltahedral configurations corresponding to triangular tessellations of
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a magic number of particles Nnm = 10(n2 + m2 + nm) + 2. Once an interstitial
or vacancy is added to such a (n,m) configuration, we are no longer at a magic
number of particles since these are quite sparsely distributed. We thus need to de-
fine the energy of the perfect crystal. Here we define the energy of the interstitial
(vacancy) defect at constant density in the spherical crystal as

EI = Elocal − E∗annealed , (105)

where Elocal measures the energy of the relaxed interstitial while the constituent
dislocations are still bound and E∗annealed is the minimum energy of all possible
final states attained after annealed relaxation leading to interstitial fractionaliza-
tion. This definition will be more explicitly discussed in the following section (see
Table 5). We note that both Elocal and E∗annealed are measured at the same areal
density (Nnm±1)/A, where ±1 correspond to an interstitial (vacancy) respectively.
The lowest relaxed energy E∗annealed plays the role of the energy of the perfect lattice
in the planar case at the density of (Nnm ± 1)/A.

Numerical measurements of Elocal and E∗annealed for the power-law potentials with
γ = 1, 3, 6 and 12 have been performed by adding one interstitial at the center of a
spherical triangle formed by three nearest-neighbor disclinations in the (8, 3) lattice
(the location represented by C in Fig. 19) [119]. Elocal is measured by quenching
the system at the moment just prior to the fractionation of the interstitial into
individual dislocations [(a) in Fig. 21]. The results are reported in Table 4.

Table 4. The lowest local and annealed relaxed energy with the central interstitials

created by putting a particle at C in Fig. 19 of the (8, 3) lattice, for γ = 1, 3, 6, and

12. The differences between two relaxed energies are calculated. Because the particles

are embedded in a sphere of unit radius with our conventions, near-neighbor particle

spacings are of order a ∼ N−1/2 � 1, leading to a strong γ dependence in the total

energy given by Eq. (103).

γ 1 3 6 12

Local 456601.99 2840600.7 9.62182 ×108 3.03015 ×1014

Annealed 456600.91 2840025.5 9.60570 ×108 3.00313 ×1014

Elocal − E∗annealed 1.08 575.2 0.01612 ×108 0.02702 ×1014

3.5.4. Position dependence of interstitial defect energies

By adding a particle in different plaquettes within the large spherical triangle
of Fig. 19, one can explore the dependence of the final state on the initial inter-
stitial location. In contrast to the case for planar crystals, both the location and
orientation of the interstitial defect relative to nearby disclinations influences the
resultant configuration and its corresponding evolution, leading to distinct relaxed
configurations. The insertion of a particle at the center of the large spherical trian-
gle leads to an I3-type initial configuration, whereas adding the interstitial to the
plaquette along an edge results in an I2-type initial configuration.

During the relaxation process, one also finds that the dislocation complex rep-
resenting an interstitial can rotate so as to reorient the Burgers vectors so that
constituent dislocations can glide towards a nearby disclination and bind to it.
This phenomenon is especially noticeable if one places one extra particle slightly
off the absolute center C, such as at the locations C ′ or 0 in Fig. 19.

In Figs. 22 and Fig. 23 this phenomenon is illustrated explicitly. In Fig. 22(a),
an interstitial initially placed at the position C ′ in Fig. 19 morphs quickly to an I3

configuration. In (a), however, the orientations of the dislocations within I3 are not
appropriate for dislocation glide to the surrounding disclinations since the 5 end
of the dislocations point towards rather than away from these 5-fold disclinations,
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Table 5. The three classes of final annealed state depending

on the initial interstitial location. The relaxed energies are

measured for the power law potential γ = 6. Here Eannealed
with 3 scars corresponds to E∗annealed.

Initial Location Eannealed Annealed State

C, C′, 7, 8, 10 9.60570 ×108 3 scars (5-7-5)
0, 2, 3, 4, 6, 9 9.61011 ×108 2 scars (5-7-5)

1, 5 9.61062 ×108 2 scars (5-7-5-7-5)

causing them to be repelled. Glide-induced fractionalization is therefore prohibited
in this orientation. Remarkably, though, the entire complex of dislocations can
change its orientation by a transition through an intermediate I2 configuration
(shown in Fig. 22(b)) and subsequently to a second I3 configuration [Fig. 22(c)].
The final I3 configuration is rotated by 60◦ with respect to the first I3 and can
now fractionate analogously to an interstitial with initial position C in Fig. 19.

One also find rotational reorientation of an interstitial defect with an I4-type in-
termediate state, as shown in Fig. 23. This particular relaxation process reveals an
interesting feature of dislocation dynamics on a curved surface. The I3 configura-
tion generated after the intermediate [see Fig. 23(c)] now has one dislocation with
its glide plane such that it can glide head-on into a vertex disclination. This discli-
nation absorbs the dislocation but hops over one lattice spacing to accommodate
the curved space Burgers vector. The other two dislocations end up bound in the
form of mini-scars. In this case then the interstitial has fractionated into 2 rather
than 3 parts and one say that there has been 1/2 fractionization of the intersti-
tial. Absorption and emission of dislocations by 5-fold disclinations are somewhat
analogous to absorption and emission of vacancies and interstitials by dislocations
(allowing dislocations to climb), a phenomenon well-known in flat space.

What is the dependence of the final state on the initial location of the interstitial?
The distinct initial conditions shown in Fig. 19 lead to three different final annealed
states, as summarized in Table 5. The final state with three mini-scars of the form
5-7-5 has the lowest energy of all final states and provides a measure of E∗annealed.

It is also informative to track the position dependence of the interstitial energy
after it relaxes. Numerical measurements of local relaxed energy for the interstitial
as a function of initial location are presented in Table 6. In most cases the initial I3

complexion undergoes transitions to more stable interstitial configurations, except
the configuration that starts from the very center location C in Fig. 19. For the
initial conditions, C, C ′, 0, and 3, I3 is the most stable. Note that the interstitial
created at the exact center C has the lowest defect energy, while the one nearest
to the disclination from the location 10 requires the largest energy for interstitial
defect formation.

Figure 22. (Color online) The rotational motion of an interstitial configuration (created with the initial
location C′ in Fig. 19) mediated by the transition: I3 → I2 → I3.
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Figure 23. (Color online) The rotational motion of an interstitial configuration (created with the initial
location 0 in Fig. 19) mediated by the transition: I3 → I4 → I3.

Table 6. The energy of interstitial defects created at different

initial positions within the spherical crystal. The energies shown

are for a power law potential with γ = 6.

n Transition Elocal of I3 Elocal − E∗annealed
C I3 9.62182 ×108 0.01612 ×108

C′ I3 → I2 → I3 9.62195 ×108 0.01655 ×108

0 I3 → I4 → I3 9.62274 ×108 0.01708 ×108

1 I3 → I2 9.62391 ×108 0.01820 ×108

2 I3 → I2 9.62296 ×108 0.01725 ×108

3 I3 9.62269 ×108 0.01698 ×108

4 I3 → I2 9.62595 ×108 0.02025 ×108

5 I3 → I2 9.62479 ×108 0.01909 ×108

6 I3 → I2 9.62420 ×108 0.01849 ×108

7 I3 → I2 9.62350 ×108 0.01780 ×108

8 I3 → I4 9.62494 ×108 0.01924 ×108

9 I3 → I2 9.62526 ×108 0.01956 ×108

10 I3 → I4 9.62608 ×108 0.02037 ×108

Figure 24. (a) Vector order on the sphere with its 2 vortex defects; (b) Nematic order on the sphere with
its 4 type 1/2 disclination defects. Taken from [128].

3.6. Spherical Nematics

The case of nematic order on the sphere is also of great interest from both a funda-
mental and materials science viewpoint [60, 128]. The free energy for nematogens
on the sphere is given by

F = −πK
8

∑
i 6=j

ninj ln(1− βij) + E(R)
∑
j

nj
2 , (106)
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where βij is the geodesic angle between defects i and j with winding numbers ni and
nj , and E(R) is the defect self-energy. Nematic spheres might be made by coating
a droplet with gemini lipids, ABA triblock copolymers or nanorods. Microfluidic
techniques for creating a thin spherical shell of liquid crystal in a double emulsion
have been explored in [129, 130]. Although the tetrahedral array of four type-1/2
nematic disclinations might be unstable to Boojum formation (type-1 defects) for
spheres immersed in a nematic bulk fluid [131], Huber and Stark [132] have shown
that nematic wetting for spheres immersed in an isotropic fluid is a promising
alternative route to a spherical nematic.

An important motivation for exploring nematic order on spherical topologies is
the search for superatoms of low valency. We have seen that spherical crystals have
12 distinguished regions, each region being marked by the presence of either an
isolated 5-disclination or an extended defect array like a scar. By functionalizing
these regions one could hope to engineer 12-valent supermolecules. In particular one
might be able to take advantage of the unusual presence of 5-7 pairs (dislocations)
in scars to convert scars to sticky zones of the spherical superatom. Twelve is very
likely too high a coordination number, however, to produce viable molecules or bulk
materials. How can we change the coordination number of spherical superatoms?
The solution lies in changing the local order on the sphere. An ordered state on
the sphere with p-fold symmetry will have 2p net topological defects by Eq. (3).
The crystalline case discussed so far corresponds to p = 6. Vector-like order on the
sphere corresponds to p = 1 and the defects correspond to index-one vortices –
one can also visualize the source and sink of fluid flow on a sphere [see Fig. 24(a)]
or imagine the base and crown bald spots of hair combed on a sphere. Thus a
2-sphere decorated with magnetic (or any other vector) field lines is a candidate
for a valence-2 superatom. Consider now nematic order: p = 2. In this case the
vortex configurations above each break up into 2 type-1/2 nematic disclinations,
leading to a total of 4 defects located at the corners of a tetrahedron (in the one
Frank constant approximation) [59] (see Fig. 24(b)). This raises the possibility of
making tetravalent superatoms with sp3 type bonding [128].

The precise geometry of the defect structure is important for determining what
kind of chemical linkers could be attached to the defects to facilitate the creation
of large scale structures like a diamond-type lattice of linked tetravalent colloids.
Diamond lattices are desirable for photonic crystals (optical analogs of semicon-
ductors) since they are known to possess a large photonic band gap [133].

Although the elementary type-1/2 disclinations favor a tetrahedral geometry if
splay and bend deformations are degenerate in energy this changes when elastic
anisotropy is present. In the limit of pure splay or pure bend the energy of a +1
defect becomes degenerate with two 1/2 defects. Thus two +1 defects sitting at
the north and south pole can be separated be cutting the sphere on a great circle
joining the two defects and rotating by an arbitrary angle α. This gives rise to a
set of four 1/2 disclinations lying on the same great circle and therefore coplanar
in the embedding space [134]. Thus the tetrahedral configuration crosses over to a
great-circle configuration as one increases the anisotropy of the elastic constants.
This explicitly demonstrates that defect positions can be controlled by varying
the elastic anisotropy. Thus the structure of directional bonding for the associated
supermolecules is controllable.
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Figure 25. (Color online) (Left) the ground state configuration of 1082 nematic rods of aspect ratio 15 on
a unit sphere. (Right) the exact location of the four disclinations lying near one great circle. From [134].

4. Crystalline order on surfaces with variable Gaussian curvature and
boundary

4.1. Introduction

Under specific experimental conditions amphiphilic molecules in solution, such as
lipids or amphiphilic block copolymers, self-assemble in a spectacular variety of
shapes including spherical and cylindrical micelles, vesicles and lamellae, together
with more complex geometries such as uni- and multilamellar vesicles, onion vesi-
cles, toroidal and cage-shaped micelles. The exact shape and size of these structures
has been observed to depend on both molecular details, such as molecular size, the
hydrophilic/hydrophobic ratio and molecular stiffness, and collective parameters,
such as the concentration or the diffusivity of the molecules.

As noted previously, amphiphilic membranes can exist in different thermody-
namic states depending on the degree of orientational and positional order and
their precise molecular constituents. The L′β and Pβ phases, which occur in lipid
membranes featuring the phosphatidylcholine (PC) group, have been found, in
particular, to exhibit in-plane orientational correlations extending over 200 Å, one
order of magnitude larger than the typical spacing between PC groups [25, 135].
Because of thermal fluctuations, such membranes are typically corrugated, possess-
ing spatially inhomogeneous Gaussian and mean curvature. Furthermore it is likely
for lipid membranes to have pores providing a passage from the exterior to the in-
terior of a vesicle. It is therefore natural to ask how variable Gaussian curvature
and the presence of one or more boundaries affects the phenomenology reviewed
thus far for the sphere.

In this section we discuss crystalline order for two important surfaces with vari-
able Gaussian curvature and (possibly) boundary, namely the bumpy surface that
is obtained by revolving the graph of a Gaussian function around its symmetry
axis (i.e. a Gaussian bump) and the paraboloid of revolution. The former can be
thought as a gentle deformation of a plane and thus can serve as a playground to
analyze the onset of behavior not found in planar systems; the latter is possibly
the simplest two-dimensional Riemannian surface having variable Gaussian curva-
ture and boundary and provides a setting that is simple enough to carry out a full
analytical treatment and analyze also large curvature regimes. Furthermore, since
paraboloidal shapes naturally occur across the air/liquid interface of a fluid placed
in a rotating cylindrical vessel, a direct physical realization of paraboloidal crystals
can be constructed by assembling monodisperse objects on the surface of a rotating
liquid. In Sec. 4.5 we review a simple experiment by Bowick et al [136] in which
such a macroscopic model for a paraboloidal crystal is constructed by assembling
a two-dimensional soap bubble “raft” on the air/liquid interface of a water-soap
solution, thus extending the classic work of Bragg and Nye on planar bubble rafts.
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Purely orientational order on the Gaussian bump has been recently reviewed by
Turner et al [64] and won’t be discussed here.

4.2. Surfaces of revolution and conformal mapping

Before analyzing the ground state structure of a crystalline paraboloid and Gaus-
sian bump, it is useful to review the geometry of surfaces of revolution. The notion
of conformal mapping of Riemannian surfaces will also be used in the following
and will be briefly reviewed in this section with special attention to its application
to the calculation of Green functions on simply connected 2−manifolds.

A surface of revolution M is a surface obtained by revolving a two-dimensional
curve around an axis. The resulting surface therefore always has azimuthal sym-
metry. The standard parametrization of a surface of revolution is:x = ξ(r) cosφ

y = ξ(r) sinφ
z = η(r)

(107)

where r ∈ [0, R] (with R possibly infinite) and φ = [0, 2π). The metric of the
surface (107) is given by:

ds2 = [(ξ′)2 + (η′)2]dr2 + ξ2dφ2 , (108)

where the prime indicate a partial derivative with respect to r. The Gaussian
curvature is a function of r only and is given by:

K =
η′(ξ′η′′ − ξ′′η′)
ξ(ξ′2 + η′2)2

. (109)

In the presence of a boundary ∂M the condition (2) for the total topological charge
of any triangulation on M reads:

Q =
V∂M∑
i=1

(4− ci) +
VM∑
i=1

(6− ci) = 6χ (110)

where V∂M and VM are the number of vertices on the boundary and the interior
of the manifold respectively (with V = V∂M + VM the total number of vertices).
qi,∂M = 4−ci is the topological charge of a vertex of coordination number ci located
on the boundary, where the coordination number of a perfect triangular lattice is
four rather than six. A surface of revolution with boundary ∂M = {r = R}× [0, 2π]
is homeomorphic to a disk (g = 0 and h = 1) and has therefore χ = 1 and total
topological charge Q = 6. This topological constraint can be satisfied, for instance,
by placing six isolated 3−fold disclinations along the boundary and keeping the
interior of the surface defect-free or by placing a 5−fold disclination in the interior
and the remaining five 3−fold disclinations along the boundary.

Let us consider now a generic Riemannian surface M and two curves on S in-
tersecting at some point x0. The angle between the two intersecting curves is, by
definition, the angle between the tangents to these curves at x0. A mapping of a
portion S of a surface onto a portion S∗ is called conformal (or angle-preserving)
if the angle of intersection of every arbitrary pair of intersecting arcs on S∗ is the
same as that of the corresponding inverse images on S at the corresponding point
(see for example [137]). It is not difficult to prove that a mapping from a portion
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S of a surface onto a portion S∗ is conformal if and only if, when on S and S∗ the
same coordinate systems have been introduced, the coefficients g∗ij and gij of the
metric tensor of S∗ and S are related by:

g∗ij = w(x)gij , (111)

with w a positive function of the coordinates x = (x1, x2). Eq. (111) implies indeed
that the angle between any pair of intersecting curves is the same in S∗ and S.
Isometries are a special case of conformal mappings where w = 1 and the mapping
is both distance and angle-preserving.

A special type of conformal mapping is that of a portion S of a surface into a
plane. This may be accomplished by introducing a set of coordinates u = (u1, u2)
such that:

ds2 = w(u)[(du1)2 + (du2)2] . (112)

Coordinates (u1, u2) satisfying Eq. (112) are called isothermal (or conformal). In
general, any simply connected Riemannian manifold with a C∞−smooth metric
ds2 can be equipped with a set of local isothermal coordinates. This important
result can be stated by saying that any simply connected Riemannian manifold is
locally conformally equivalent to a planar domain in two-dimensions. In conformal
coordinates, the Gaussian curvature reads:

K = −2∆[logw(u)]
w(u)

. (113)

Conformal mapping is the fundamental tool behind the celebrated uniformization
theorem according to which, every simply connected Riemannian surface is confor-
mally equivalent to the unit disk, the complex plane or the Riemann sphere. This
theorem, first proved by Koebe and Poincaré independently in 1907, extends the
Riemann mapping theorem for simply connected domains in the complex plane
to all simply connected Riemannian surfaces and provides an insightful classifica-
tion scheme. Its formidable power lies in the fact that the mapping that allows
one to transform a generic surface into a simpler “irreducible” one is not an arbi-
trary homeomorphism but is conformal, and thus preserves part of the geometrical
structure of the original manifold. In the following we will see how this feature has
important consequences in the elastic theory of defects on curved surfaces. The uni-
formization of Riemannian surfaces is historically the first example of geometriza-
tion. In the case of manifolds of higher Hausdorff dimension, and 3-manifolds in
particular, the latter program has become, following Thurston, one of the most
challenging and fascinating chapters of modern geometry.

A bounded Gaussian bump and a paraboloid of revolution are both conformally
equivalent to the unit disk D of the complex plane. Calling z = %eiφ, the new metric
will be:

ds2 = w(z)(d%2 + %2dφ2) . (114)

The conformal factor w can be found by equating the metrics (108) and (114). This
yields:

w(ρ) =
[
ξ(r)
%

]2

, (115)
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with % and r related by the differential equation

d%

dr
±

√
(ξ′)2 + (η′)2

ξ2
% = 0 , (116)

whose solution is given by:

% = exp

{
±
∫
dr

√
(ξ′)2 + (η′)2

ξ2

}
. (117)

The sign of the exponent and the integration constant in Eq. (117) can be tuned
to obtain the desired scale and direction of the conformal map.

The calculation of the Green function of the Laplace and biharmonic operator
is considerably simplified once a surface of revolution has been endowed with a
local system of isothermal coordinates. In this case it is easy to show the Laplace-
Beltrami operator ∆g takes the form:

∆g = w−1∆ , (118)

where ∆ is now the Laplacian in the Euclidean metric tensor:

γ%% = 1, γ%φ = 0, γφφ = %2, (119)

with determinant γ. Since the determinant of the metric tensor is rescaled (
√
g →

w
√
γ) under conformal mapping, the Laplace and biharmonic equation for the

Green function become:

∆GL(z, ζ) = δ(z, ζ) (120a)

∆w−1∆G2L(z, ζ) = δ(z, ζ) (120b)

where δ(z, ζ) is the standard delta function at the point z = ζ of the unit disk.
Eq. (120a) is now the standard Laplace-Green equation. Its associated Dirichlet
problem has the familiar solution:

GL(z, ζ) =
1

2π
log
∣∣∣∣ z − ζ1− zζ

∣∣∣∣ . (121)

Eq. (120b) is known as the weighted biharmonic Green equation. The uniqueness of
its solution requires imposing both Dirichlet and Neumann boundary conditions:{

G2L(z, ζ) = 0 z ∈ ∂D
∂n(z)G2L(z, ζ) = 0 z ∈ ∂D

(122)

where ∂n(z) denotes the derivative with respect to the variable z along the normal
direction at ∂D. Its solution can be expressed in integral form as

G2L(z, ζ) =
∫
d2σGL(z, σ)[GL(σ, ζ)−H(σ, ζ)] , (123)

where H(σ, ζ) is a harmonic kernel that enforces the Neumann condition. Such a
function depends on the form of the conformal weight w. For radial weights w =
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w0(|z|2), such as those obtained by conformally mapping a surface of revolution,
H(σ, ζ) has been calculated explicitly by Shimorin [138]:

H(σ, ζ) = −2
∫ 1

|ζ|

dt

t

∫ t2

0
dsw0(s)k

( s
t2
ζ σ
)

(124)

where:

k(z ζ) =
∑
n≥0

(z ζ)n

cn
+
∑
n<0

(z ζ)|n|

c|n|
(125)

and the coefficients cn are given by:

cn = 2
∫ 1

0
dt tnw0(t) . (126)

4.3. Crystalline order on the Gaussian bump

The most natural way of introducing a non-vanishing Gaussian curvature on an
initially flat medium is to gently deform the medium at one point in such a way
that the curvature introduced by this deformation dies off at infinity. If the initial
planar domain is the entire Euclidean plane R2, the Euler characteristic is zero and,
independently of the value of the Gaussian curvature, an ordered phase embedded
on it is not topologically required to contain defects. Such a construction is clearly
ideal to detect the onset of structural behavior not occurring in the ground state of a
planar system such as the appearance of dislocations and disclinations. Vitelli et al
[139, 140] analyzed crystalline and p−atic order on the bumpy surface obtained by
revolving the graph of a Gaussian function about its symmetry axis. The resulting
Gaussian bump has parametrization:


x = r cosφ
y = r sinφ
z = h exp

(
− r2

2r2
0

) (127)

with r ∈ [0, R] and φ ∈ [0, 2π). In this parametrization the metric tensor gij (with
determinant g) and the Gaussian curvature are given by:

grr = `(r), grφ = 0, gφφ = r2, (128a)

K =
α2e
− r2
r20

r2
0 `

2(r)

(
1− r2

r2
0

)
, (128b)

where α = h/r0 is the aspect ratio of the bump and `(r) is given by

`(r) = 1 +
α2r2

r2
0

e
− r2
r20 . (129)
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It is instructive to verify that the Euler characteristic χ vanishes when the boundary
radius R is set to infinity. Employing the Gauss-Bonnet theorem one has

χ =
∫ R

0
dr
√
g K +

1
2π

∮
CR

ds κg , (130)

where κg, the geodesic curvature of the circular boundary CR of radius R, is given
by

κg =
1

R
√
`(R)

. (131)

If the bump is unbounded the second term in Eq. (130) disappears and, in the limit
R→∞, one has ∫ ∞

0
dr
√
g K = 0

which implies χ = 0. For finite values of R, on the other hand, the first integral in
Eq. (130) gives: ∫ R

0
dr
√
g K = 1− 1√

`(R)
,

so that the terms proportional to 1/
√
`(R) cancel each other, yielding χ = 1.

Because the infinite bump has χ = 0 disclinations must appear in pairs and dislo-
cations must have total Burgers vector zero:∑

i

qi =
∑
i

bi = 0 .

Vitelli et al showed that topological defects appear in the ground state when the
aspect ratio α exceeds a critical value αc. Because of the topological constraint, de-
fects appear initially in the form of a pair of unbound dislocations, roughly located
in the region where K = 0. Upon increasing the aspect ratio, more dislocations
appear. This mechanism clearly resembles the defect proliferation that occurs in
two-dimensional melting and suggests an interpretation of the curvature as a local
effective temperature.

At the onset of defect proliferation, inter-defect interactions are negligible com-
pared to the interactions with the “smeared out” topological charge associated with
the curvature of the underlying medium. The dislocation unbinding mechanism is
then described by a non-local function of the Gaussian curvature representing the
defect-curvature interaction part of the elastic energy of Eq. (54):

Fint = Y

∫
d2x η(x)

∫
d2y G2L(x,y)K(y) = Y

∫
d2x η(x)ϕ(x) , (132)

where Fint is the curvature-defect interaction part of the elastic energy and ϕ(x)
can be interpreted as a geometric potential associated with the Gaussian curvature
of the embedding manifold:

∆2ϕ(x) = K(x) . (133)
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Figure 26. (Color online) Curvature-defect interaction energy of an isolated disclination for a Gaussian
bump of aspect ratio α = 0.5. Open symbols represent the data from a numerical minimization of a
fixed connectivity harmonic model. The lower and upper branch are obtained from Eq. (136) by setting
θ = ±π/2 and letting Λ equal 4 (blue curve) and 8 (red curve). [Courtesy of V. Vitelli, University of
Pennsylvania, Philadelphia, PA].

Thus

ϕ(x) =
∫
d2z d2y GL(x,y)[GL(y, z)K(z) + U(y)] , (134)

where U(y) is a harmonic function which enforces the boundary conditions. The
Laplacian Green function has the form (121) with the conformal distance ρ = |z|
given here by

% =
r

R
exp

{
−
∫ R

r
dr′
√
`(r′)− 1
r′

}
. (135)

For a single dislocation of Burgers vector b, Fint has the form [139]:

Fint =
1
8
hbα2Y sinφ

(
e−λ

2 − 1
λ

+
λ

Λ2

)
, (136)

where λ = r/r0 and Λ = R/r0. The first term in Eq. (136) corresponds to the
R→∞ geometric potential, while the second is a finite size correction arising from
a circular boundary of radiusR. A plot of the function (136) is shown in Fig. 26. The
profile of the function Fint can be undestood by regarding a dislocation as bound
pair of disclinations of opposite topological charge. Each disclination interacts with
a potential of the form (133). For small r, positive (negative) disclinations are
attracted (repelled) by the center of the bump. As a consequence disclinations
experience a force which increases linearly with r. Thus if the positive disclination
in the dipole is closer to the top, it will experience a force that is opposite and
slightly less than that acting on the negative disclination that is further from the
top. As a result an effective “tidal” force will push the dislocation downhill. For
large r, however, the geometric potential saturates and the attractive force exerted
on the positive disclination takes over and drags the dislocation toward the center
of the bump. The minimum of the elastic energy corresponding to the equilibrium
between these two competing forces is obtained for λ ≈ 1.1. The origin of these
forces is the Peach-Koehler force fk = εkjbiσij acting on a dislocation of Burgers
vector bi in an external stress field σij . In the case of a two-dimensional crystal
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Figure 27. (Color online) Dislocation unbinding. (a) Critical aspect ratio αc as a function of r0/b. The
theoretical estimate (137) is plotted versus r0/b for core energies Ed = 0 (dashed line) and Ec = 0.1B2Y
(solid line). Circles are obtained from a numerical minimization of a fixed connectivity harmonic model.
On right the logarithm of the numerically calculated strain energy for a (c) defect-free configuration on a
bump of r0 = 10b and α = 0.7 > αc and (d) the defective configuration shown in the inset. [Courtesy of
V. Vitelli, University of Pennsylvania, Philadelphia, PA].

on a substrate with preexisting Gaussian curvature, dislocations couple with the
internal stress due to the curvature of the medium, with similar effects.

Unbound dislocations occur in the ground state of a crystalline Gaussian bump
when the aspect ratio α exceeds a critical value. For nearly flat landscapes the
energetic cost of a pair of unbound dislocations is larger than that arising from
the distortion of the medium and the system is favored to be defect free. Upon
increasing the aspect ratio, however, the resulting elastic strain can be partially
relieved by introducing a pair of dislocations with equal and opposite Burgers
vector. The transition occurs when the energy gain from placing each dislocation
in the minimum of the potential energy Fint outweights the total work needed to
tear them apart plus the core energies 2Ed. The resulting critical aspect ratio is
given by:

α2
c ≈

b

2r0
log
(r0

b′

)
, (137)

where b′ = (b/2)e−8πEc/(Y b2) . The number of unbound dislocations increases with
increasing aspect ratio and elementary 5−7 dislocations cluster in more complicated
structures with zero net Burgers vector. Fig. 27 shows a plot of the critical aspect
ratio αc as the function of the dimensionless parameter r0/b from Ref. [139], as
well as density plots of the strain energy corresponding to a defect-free bump (c)
and a representative configuration featuring two unbound dislocations (b).

The interaction between defects and curvature also has some remarkable sta-
bilizing effects on defect dynamics. Dislocation dynamics consists of two distinct
processes: glide and climb. Glide is motion along the direction of the Burgers vector.
It requires only local rearrangement of atoms and thus has a very low activation
energy, making it dominant at low temperatures. Climb consists of motion in the
direction perpendicular to the Burgers vector. It requires diffusion of vacancies
and interstitials and is usually suppressed therefore relative to glide. As a conse-
quence of the underlying curvature, however, a gliding dislocation experiences a
“recalling” force frecall ≈ kd|y|, where y is the transverse displacement and kd is
a position-dependent effective spring constant. At leading order in y and α, the
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Figure 28. (Color online) Dislocation glide. (a) Recalling potential 1
2
kdy

2 acting on dislocations gliding

in the direction y (expressed in units of the lattice spacing a) for r0/a = 10, λ = 0.5 (at y = 0), Λ = 8 and
α = 0.1 (dark blue), 0.3 (blue), 0.5 (orange) and 0.7 (red). The energy is scaled by 10−4. Effective spring
constant for r0 = 10a and α = 0.5. The ordinate axis is scaled by 10−2. Filled and empty circles represent
numerical data obtained from a fixed connectivity harmonic model. [Courtesy of V. Vitelli, University of
Pennsylvania, Philadelphia, PA].

latter is given by:

kd(r) =
bα2Y

4r0

[
1− (1 + λ2)e−λ

2

λ3

]
. (138)

This effective recalling force is not due to any external field nor to the interaction
of dislocations with other defects, but exclusively to the coupling of the gliding
dislocation with the curvature of the substrate. As expected, the effective spring
constant (138) vanishes for planar crystals (i.e. α→ 0). Since Y b2 can be hundreds
of kBT , at finite temperature the harmonic potential 1

2kdy
2 associated with the

recalling force raises the activation energy of thermally induced dislocation glide.
The harmonic recalling potential and the effective spring constant (138) are plot-
ted in Fig. 28, together with numerical data obtained from a fixed connectivity
harmonic model [139].

Spatial curvature also provides an effective potential in the thermal diffusion of
interstitials and vacancies. These can be constructed by grouping three dislocation
dipoles. The elastic energy associated with a single interstitial/vacancy can be
derived from Eq. (132) in the form

Fint(x) ≈ 1
2
Y ΩV (x) , (139)

where V = ∆ϕ and Ω is the area excess or deficit associated with the defects.
As a result, interstitials tend to climb to the top of the bump while vacancies are
pushed into the flat regions. Like a disclination of positive topological charge, an
interstitial is attracted to regions of positive Gaussian curvature while a vacancy
is attracted to regions of negative Gaussian curvature.

The crystalline structure arising on a Gaussian bump has been investigated nu-
merically by Hexemer et al [141]. By means of smart Monte Carlo (SMC) sim-
ulations, the authors analyzed the ground state configuration of a system of N
point-like particles (with N up to 780) interacting on a Gaussian bump of variable
aspect ratio with a Yukawa potential of the form U(r) = exp(−κr)/r, with r the
Euclidean distance between two particles in R

3. This potential approximately de-
scribes the interaction between charged particles in solution with counter-ions, with
κ−1 being the Deybe-Hückel screening length. Starting from an initially defect-free
lattice and relaxing it with order 105 SMC iterations, Hexemer et al observed the
appearance of defects for increasing aspect ratio. Fig. 29 shows the arrangement of
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Figure 29. (Color online) Delaunay triangulation of 780 particles on a Gaussian bump. (a) and (b) Top
view of the lattice containing two dislocations of opposite Burgers vector on a bump of aspect ratio
α = 0.82. (c) and (d) Three dislocations arranged around a bump of aspect ratio α = 0.95. (e) and (f) A
more complex arrangements of dislocations on a bump of aspect ratio α = 1.58. [Courtesy of Alexander
Hexemer, UC Santa Barbara, Santa Barbara, CA. Currently at Lawrence Berkeley National Lab., Berkeley,
CA].

780 particles for three different aspect ratios. As predicted by the elastic theory,
the proliferation of defects starts with the appearance of a pair of isolated dislo-
cations (Figs. 29a and b). They are sitting at λ = 1.46 from the center and are
rotated by 180◦, giving rise to a configuration with total Burgers vector close to
zero. Upon increasing the aspect ratio, a third dislocation is observed (Fig. 29c
and d). The three dislocations are rotated by 120◦ with respect to each other. The
green and blue circles in Fig. 29c and d mark the region of zero Gaussian curvature
and the minimum of the geometric potential at 1.1 r0. As shown in the figure, for
α = 0.95 two of the three dislocation are not sitting at 1.1 r0 as one might expect.
One is deep inside the area of positive Gaussian curvature while the other is in the
region of negative Gaussian curvature. Hexemer et al attributed this discrepancy
to finite-size effects.

Fig. 29e and f show the lowest energy state on a bump of aspect ratio α = 1.58.
In this situation dislocations appear arranged in the form of grain boundaries. This
phenomenon has a simple interpretation. The total elastic energy of a collection of
defects on a curved surface consists of three parts: the curvature-defect interaction
discussed above, which tends to localize the defects where the geometric poten-
tial is minimal, a defect-defect interaction which is repulsive for like-sign defects
and attractive for defects of opposite sign and an additional contribution due to
the curvature alone. For a small number of dislocations, inter-defect interactions
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Figure 30. Total number of disclinations in the ground state as a function of the aspect ratio α. [Courtesy
of Alexander Hexemer, UC Santa Barbara, Santa Barbara, CA (currently at Lawrence Berkeley National
Lab., Berkeley, CA).]

are negligible compared with curvature-defect interactions and dislocations tend
to gather where Fint is minimal. As shown from the data in Fig. 30, however, the
total number of dislocations in the bump is linearly proportional to the aspect
ratio. When the total number of dislocations on the bump exceeds some threshold
value the repulsive interaction takes over and dislocations start spreading. Dislo-
cations with parallel (antiparallel) Burgers vector are organized in such a way as
to maximize (minimize) their reciprocal distance while still taking advantage of
the Gaussian curvature screening. The competition leads to the appearance of the
Y−shaped grain boundaries shown in Fig. 29. The branching allows the disloca-
tions to lower their potential energy by keeping a large number of dislocations close
to the 1.1 r0 circle.

4.4. Paraboloidal crystals

A paraboloid of revolution is a simple surface with both variable Gaussian curvature
and boundary. Its standard parametrization is given by

x = r cosφ
y = r sinφ
z = h

R2 r2
(140)

with r ∈ [0, R] and φ = [0, 2π]. Here h is the height of the paraboloid and R the
maximum radius. In the following we will call κ = 2h/R2 the normal curvature of
the paraboloid at the origin. The metric tensor gij and the Gaussian curvature are
given respectively by:

grr = 1 + κ2r2, grφ = 0, gφφ = r2 , (141a)

K =
κ2

(1 + κ2r2)2
. (141b)

The problem of finding the optimal arrangement of disclinations in the ground
state of paraboloidal crystals has been considered by the authors of this review
article [142, 143]. As in the case of a Gaussian bump, when the maximal Gaussian
curvature exceeds some critical value (depending on κ and R) defects proliferate
in an initially defect-free configuration. Unlike the Gaussian bump, however, the
Gaussian curvature on a paraboloid is strictly positive and only vanishes at infinity.
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Positive isolated disclinations are thus energetically preferred to dislocation dipoles
and the defect proliferation mechanism consists of a “migration” of one of the
six topologically required +1-disclinations from the boundary to the origin of the
paraboloid. Dislocations, on the other hand, appear in the system clustered in the
form of grain boundary scars in the high density regime as in spherical crystals.
Since the Gaussian curvature is not constant throughout the manifold, however,
this transition is preceded by a regime in which isolated disclinations and scars
coexist in the crystal.

Let ρ(x) be the effective topological charge density of a system of N disclinations
on a background of Gaussian curvature K(x):

ρ(x) =
π

3

N∑
i=1

qiδ(x,xi)−K(x) . (142)

If free boundary conditions are choosen, the elastic energy (55) can be written as

Fel =
1

2Y

∫
d2xΓ2(x) , (143)

where Γ(x) = ∆χ(x), and χ(x) satisfies the inhomogeneous biharmonic equation

∆2χ(x) = Y ρ(x) , (144)

with boundary conditions {
χ(x) = 0 x ∈ ∂M
νi∇iχ(x) x ∈ ∂M

(145)

where νi is the ith component of the tangent vector ν perpendicular to the bound-
ary. In the parametrization (140), the normal vector ν is simply given by gr/|gr|,
with gr the basis vector associated with the coordinate r. The stress function Γ(x)
can thus be expressed as

Γ(x)
Y

=
∫
d2y GL(x,y)ρ(y) + U(x) . (146)

GL(x,y) is given in (121) and U(x) is a harmonic function on the paraboloid that
enforces the Neumann boundary conditions in Eq. (145). The conformal distance
on the paraboloid is given by

%(r) = λ
re
√

1+κ2r2

1 +
√

1 + κ2r2
. (147)

Using Eqns. (147) and (121) in Eq. (143), the elastic energy Fel of a collection of
N disclinations in a paraboloidal crystal can be expressed as:

Γ(x)
Y

=
π

3

N∑
i=1

qiGL(x,xi)− Γs(|x|) + U(x) , (148)

where the first term represents the bare contribution of the defects to the energy
density and the second corresponds to the screening effect of the Gaussian curva-
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Figure 31. (Color online) The function Γs(r) and Uκ,R for different values of κ.

ture. Explicitly:

Γs(|x|) = log

(
αe
√

1+κ2r2

1 +
√

1 + κ2r2

)
, (149)

where r = |x| and

α =
1 +
√

1 + κ2R2

exp
(√

1 + κ2R2
) (150)

is a normalization constant depending on boundary radius R and the ratio κ. Fig.
31a shows a plot of the screening function Γs(r) for different values of κ ∈ [1, 2].
As expected, the contribution due to Gaussian curvature is maximal at the origin
of the paraboloid and drops to zero at the boundary.

The calculation of the harmonic function U(x) requires a little more effort. If the
crystal was defect-free (or populated by a perfectly isotropic distribution of defects)
the function U(x) would be azimuthally symmetric and constant on the boundary.
By the maximum principle of harmonic functions, U(x) would then be constant
on the whole manifold and depend only on κ and the radius R: U(x) = Uκ,R. This
constant can be determined by integrating ∆χ(x) = Γ(x) and imposing the second
boundary condition in Eq. (145). This gives:

Uκ,R =
2π
A

∫ R

0
dr
√
g Γs(r), (151)

where A is the area of the paraboloid:

A =
2π
3κ2

[(
1 + κ2R2

) 3
2 − 1

]
. (152)

As shown in Figure 31b, the value of Uκ,R quickly approaches the linear regime as
the size of the radius increases:

Uκ,R ≈ −
1
4
κR+

1
3
· (153)

Then, for a defect-free configuration, the contribution of the boundary to the en-
ergy density is a constant offset that persists even for large radii. In the presence
of disclinations, on the other hand, the function χ(x) is no longer expected to
be azimuthally symmetric and the harmonic function U(x) will not be constant
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throughout the paraboloid. In this case U(x) can be expressed in the integral form

U(x) = −
∫
d2y H(x,y)ρ(y), (154)

where H(x,y) is the harmonic kernel (124). In the regime of large core energies
Fc � Fel, the creation of defects is strongly penalized and the lattice necessarily has
the minimum number of disclinations allowed by the topology of the paraboloidal
substrate. From symmetry considerations, we might expect the optimal distribution
of defects to consist of b +1−disclinations arranged along the boundary at the base
vertices of a b-gonal pyramid and a b-fold apex (of topological charge q0 = 6−b) at
the origin. The homogeneous boundary conditions adopted require the first term
in Eq. (148) to vanish at the boundary. In the minimal energy configuration then,
the system has the freedom to tune the total number of defects along the boundary
to minimize the elastic energy Eq. (143) for any given value of the ratio κ. This
behavior is exclusive to manifolds with boundary and doesn’t have any counterpart
in crystals on compact surfaces like the sphere and the torus.

We will label a pyramidal configuration by Yb, where b denotes the number of
base +1−disclinations. The coordinates (r, φ) of the vertices are given by

Yb :

{
(0, any),

(
R,

2πk
b

)
1≤k≤b

}
. (155)

Using the Euler theorem one can show that it is possible to construct infinite
families of polyhedra with the symmetry group Cbv from the pyramidal backbone
Yb. The number of vertices is given by:

V = 1
2bn(n+ 1) + 1, (156)

where n is a positive integer which represents the number of edges (not necessarily
of the same length) of the polyhedron which separates two neighboring disclina-
tions. In the following we will refer to these polyhedra with the symbol Yb,n. Fig.
32 illustrates two Yb,n lattices for the cases b = 4 and n = 7 (with V = 113), and
b = 5 and n = 10 (V = 276). By a numerical minimization of the energy Eq. (143)
one can establish that the Yb are indeed equilibrium configurations for b ∈ [3, 5],
for some range of the parameters κ and R. The cases of b = 5, 6 are particularly
significant because they are characterized by an equal number of defects (N = 6)
of the same topological charge (q = 1). The two configurations will be associated
therefore with the same core energy Fc and this introduces the possibility of a
structural transition between Y5 and Y6 governed by the curvature ratio κ and the
boundary radius R. For fixed R and small values of κ, the 6−fold symmetric con-
figuration Y6 is the global minimum of the free energy Eq. (143). For κ larger than
some critical value κc(R), however, the Y6 crystal becomes unstable with respect to
the 5−fold symmetric configuration Y5. A numerical calculation of the intersection
point between the elastic energies of Y5 and Y6 for different values of κ and R allow
us to construct the phase diagram shown in Fig. 33. The word “phase” in this
context refers to the symmetry of the ground state configuration as a function of
the geometrical system parameters κ and R. In principle, if we keep increasing the
curvature we might expect the crystal to undergo a further transition to the Y4

phase. In this case, however, the core energy will also increase by a factor 4/3 and
so this is not generally possible in the regime in which Fc � Fel. For intermediate
regimes (i.e. Fc ∼ Fel), Y5 → Y4 and Y4 → Y3 transitions are also possible. The
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Figure 32. (Color online) Two examples of Yb,n triangulations of the paraboloid (Y4,7 on the top and
Y5,10 on the bottom). Plaquettes with disclinations are highlighted in red, for +1−disclinations, and green
for +2−disclinations.

Figure 33. (Color online) Phase diagram in the large core energy regime. For small κ the lattice preserves
the 6−fold rotational symmetry of the flat case. As the curvature at the origin increases the system
undergoes a transition to the Y5 phase.

critical value of the parameters κ and R, however, is not universal and will depend
on the precise values of the core energy and the Young modulus.

When the core energy Fc is small, the elastic energy Eq. (143) can be lowered by
creating additional defects. Let us assume that a fivefold disclination is sitting at
the point x0 = (r0, φ0). We can introduce a notion of distance on the paraboloid by
setting up a system of geodesic polar coordinates (s, ϕ) with origin at x0. We expect
that the stress introduced by the defect is controlled by an effective disclination
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charge inside a circular domain CL of geodesic radius L:

qeff = q −
∫ 2π

0
dϕ

∫ L

0
ds
√
g K(s, ϕ), (157)

where q = π/3 is the charge of the isolated defect and the integral measures the
screening due to the total Gaussian curvature within the domain. The metric tensor
and the Gaussian curvature of a generic Riemannian manifold can be expressed in
geodesic polar coordinates in the form (see for example Do Carmo [144]):

gss = 1, gsϕ = 0, gϕϕ = G, (158a)

K(s, ϕ) = −∂
2
s

√
G√
G

, (158b)

where G = gϕ · gϕ. Furthermore, an expansion of the metric around the origin
(0, ϕ) yields:

√
G = s− 1

6K0s
3 + o(s5).

For small distance from the origin, Eq. (157) becomes:

qeff = q +
∫ 2π

0
dϕ

∫ L

0
ds ∂2

s

√
G (159)

= q − πK0L
2 + o(L4). (160)

The right hand side of Eq. (160) is a very general expression for the effective discli-
nation charge at small distance and doesn’t depend on the embedding manifold. If
a grain boundary is radiating from the original disclination, we expect the spacing
between consecutive dislocations to scale like a/qeff , with a the lattice spacing
[73]. When qeff → 0+ the dislocation spacing diverges and the grain boundary
terminates. Since the Gaussian curvature is not constant, the choice of the origin
(i.e. the position of the central disclination along the grain boundary) affects the
evaluation of qeff . One can identify upper and lower bounds by observing that:

max
r
K(r) = K(0) = κ2, (161a)

min
r
K(r) = K(R) =

κ2

(1 + κ2R2)2
· (161b)

Unlike the case of surfaces of constant Gaussian curvature, the phase diagram for
paraboloidal crystals consists of three regions separated by the curves:

K0L
2 =

1
3

K0 = Kmin, Kmax. (162)

When L − L(Kmin) → 0+, the effective disclination charge goes to zero and the
distance between two consecutive dislocations diverges at any point. On the other
hand if L− L(Kmax)→ 0−, the disclination charge will prefer to be delocalized in
the form of grain boundary scars. For L(Kmax) < L < L(Kmin) the paraboloid will
be equipped with regions where the Gaussian curvature is high enough to support
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Figure 34. (Color online) Defect phase diagram for a paraboloidal crystal of radius R = 1. The two
phase boundaries that separate the isolated disclinations (ID) regime from the coexistence regime and
the coexistence regime from the scar phase correspond to the solutions of Eq. (163) for K0 = Kmin and
K0 = Kmax, respectively.

the existence of isolated disclinations as well as regions where the screening due to
the curvature is no longer sufficient and the proliferation of grain boundary scars
is energetically favored. This leads to a three region phase diagram in which the
regime of isolated disclinations is separated from the delocalized regime of scars
by a novel phase in which both isolated disclinations and scars coexist in different
parts of the paraboloid according to the magnitude of the Gaussian curvature.

It is useful to measure the distance Lc in terms of the lattice spacing a and
rephrase Eq. (162) as a condition on a (or equivalently on the number of vertices
V ). To do this we note that in order for the domain CL to completely screen the
topological charge of the shortest scar possible (i.e. 5−7−5), the geodesic radius L
has to be large enough to enclose the entire length of the scar. Calling ` the geodesic
distance associated with a single lattice spacing a, we will then approximate L ∼ 3`.
This leads to the following expression for the lattice spacing a at the onset of scar
formation:

a2 ≈ 2
K0

(
1− cos

1
3
√

3

)
. (163)

The lattice spacing a can be approximately expressed as a function of the number
of vertices of the crystal by dividing the area A of the paraboloid by the area of a
hexagonal Voronoi cell of radius a/2 with a2 ≈ A/

√
3

2 V . The phase diagram arising
from the solution of Eq. (163) is sketched in Fig. 34 for the case R = 1. The two
phase boundaries that separate the isolated defects (ID in the plot) regime from
the coexistence regime and this one from the grain boundaries phase correspond
to the solutions for K0 = Kmin and K0 = Kmax respectively.

Fig. 35 shows the Voronoi lattice and the Delaunay triangulations obtained from
a numerical minimization of a system of V classical particles (up to V = 200)
constrained to lie on the surface of a paraboloid and interacting with a Coulomb
potential of the form U(r) = 1/r, with r the Euclidean distance between two
particles in R3. Simulations are carried out using a parallel implementation of Dif-
ferential Evolution (DE) [142, 145]. In all the systems observed disclinations always
appear clustered in either grain boundary scars or dislocations with the exception
of isolated +1−disclinations which appear in the bulk as expected from the curva-
ture screening argument discussed above. The complex aggregation of defects along
the boundary together with the presence of negatively charged clusters indicates
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Figure 35. (Color online) Voronoi lattice and Delaunay triangulations for ten selected systems from nu-
merical simulations with R = 1. The first row corresponds to V = 200 and κ = 1.6, while the second row is
for V = 200 and κ = 0.8. In the bottom four rows V = 150 , 100 , 80 , 60 , 50 , 30 , 20 , 16 and κ = 1.6. From
[143].

that the effect of the boundary, in the case of relatively small systems like the ones
simulated, is more drastic than predicted by the homogeneous boundary conditions
Eq. (145). Even in the computationally expensive case of V = 100, the distance
between the origin and the boundary of the paraboloid is only four lattice spacings.
In this situation we expect the distribution of particles along the boundary to play
a major role in driving the order in the bulk.

For larger systems, such as V = 200 (top of Fig. 35), the behavior of the parti-
cles in the bulk is less affected by the boundary and the crystalline order reflects
more closely the free-boundary problem previously presented. A comparison of the
lattices in the first two rows of Fig. 35, in particular, reveals substantial agreement
with the scenario summarized in Fig. 34. For κ = 0.8 and V = 200, the defects are
all localized along the boundary with the exception of one length-3 scar in the bulk
at distance r ≈ 0.63 from the center. For κ = 1.6, the pattern of defects in the bulk
is characterized by the coexistence of an isolated +1−disclination at the origin and
a length-5 W−shaped scar displaced along a parallel one lattice spacing away from
the central disclination. Apart from the evident difficulty in comparing the struc-
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tures of small systems with those predicted from continuum elasticity theory, this
behavior is consistent with the simple picture sketched in the phase-diagram of Fig.
34. The local 5−fold symmetry at the origin of the κ = 1.6 configuration, compared
with 6−fold symmetry for κ = 0.8, suggests, as in the case of spherical crystals
[94], that the complicated structure of defect clusters appearing in large systems
is the result of the instability of the simpler Yb,n configurations from which they
partially inherit their overall symmetry. A more accurate numerical verification of
our theory remains a challenge for the future.

The symmetry of the configurations presented in Fig. 35 deserves special atten-
tion. As for any surface of revolution, the circular paraboloid possesses the sym-
metry group O(2) of all rotations about a fixed point and reflections in any axis
through that fixed point. Any given triangulation of the paraboloid may destroy
the full rotational symmetry completely or just partially, leaving the system in one
of the following two subgroups: the pyramidal group Cnv or the reflection symme-
try group Cs. In general we found the latter symmetry group for system sizes up
to V = 200 particles. The symmetry for larger system sizes is under investigation.

4.5. Experimental realization of paraboloidal crystals

Some sixty years ago Bragg and Nye used bubble rafts to model metallic crys-
talline structures [146]. A carefully made assemblage of bubbles, floating on the
surface of a soap solution and held together by capillary forces, forms an excel-
lent two-dimensional replica of a crystalline solid, in which the regular triangular
arrangement of bubbles is analogous to the close packed structure of atoms in a
metal. Feynman considered this technique to be important enough that the famous
Feynman lectures in physics include a reproduction of the original Bragg-Nye paper
in its entirety [147]. Bubble rafts can be made easily and inexpensively, equilibrate
quickly, exhibit topological defects such as disclinations, dislocations and grain
boundaries, and provide vivid images of the structure of defects. Bubble raft mod-
els have been used to study two-dimensional polycrystalline and amorphous arrays
[148], nanoindentation of an initially defect-free crystal [149], and the dynamic be-
havior of crystals under shear [150]. In this section we review the experimental
realization of a bubble-raft model for a paraboloidal crystal done by Bowick et al
[136] by assembling a single layer of millimeter-sized soap bubbles on the surface
of a rotating liquid, thus extending the classic work of Bragg and Nye on planar
soap bubble rafts.

As we mentioned in the introduction, paraboloidal shapes naturally occur across
the air/liquid interface of a fluid placed in a rotating cylindrical vessel. It is simple
to verify that the height z of such an interface above the xy−plane of a system of
Cartesian coordinates is given by

z =
ω2

2g
r2 + C , (164)

where ω is the angular velocity and g the gravitational acceleration and C =
D − ω2R2/4g is an integration constant following from the requirement that the
volume of the liquid during rotation be equal to the volume of the liquid at rest (D
is its height) [151]. Thus the normal curvature at the origin is given by κ = ω2/g.

Fig. 36 shows a computer reconstruction from Ref. [136] of two bubble rafts
with κ = 0.15 cm−1 and κ = 0.32 cm1 respectively. Soap bubbles have diameter
a = 0.84(1) mm with monodispersity ∆a/a ≈ 0.003. The images shown in Fig.
36 are taken with a CCD digital camera rotating along with a cylindrical vessel
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Figure 36. (Color online) Lateral and top view of a computer reconstruction of two paraboloidal rafts
with κ1 ≈ 0.15 cm−1 (a, b) and κ2 ≈ 0.32 cm−1 (c, d). The number of bubbles is N1 = 3813 and
N2 = 3299 respectively. The color scheme highlights the 5−fold (red) and 7−fold (blue) disclinations over
6−fold coordinated bubbles (yellow). From Ref. [136].

of radius R = 5 cm and Delaunay triangulated to determine the lattice topology.
The degree of order of the crystalline raft can be characterized by the translational
and orientational correlation functions g(r) and g6(r) [110]. The former gives the
probability of finding a particle at distance r from a fixed particle at the origin. The
function is normalized with the density of an equivalent homogeneous system in
order to ensure g(r) = 1 for a system with no structure. Interactions between par-
ticles build up correlations in their position and g(r) exhibits decaying oscillations,
asymptotically approaching one. For a two-dimensional solid with a triangular lat-
tice structure the radial correlation function is expected to exhibit sharp peaks
at r/a =

√
n2 + nm+m2 = 1,

√
3, 2, 2

√
3 . . ., while the amplitude of the peaks

decays algebraically as r−η with η = 1/3 (dashed line in Fig. 37). Within the pre-
cision of the data, the positional order of the paraboloidal crystals assembled with
the bubble raft model reflects this behavior, although with more accurate measure-
ments one might see dependence of the exponent η on the curvature (because of
the proliferation of defects with curvature).

The orientational correlation function g6(r) is calculated as the average of the
product 〈ψ(0)ψ∗(r)〉 of the hexatic order parameter over the whole sample. For each
bubble (labeled j) that has two or more neighbors, ψj(r) = (1/Zj)

∑Zj
k=1 exp(6iθjk),

where Zj is the number of neighbors of i and θjk is the angle between the j − k
bonds and a reference axis. One expects g6(r) to decay exponentially in a disordered
phase, algebraically in a hexatic phase and to approach a finite asymptote in the
case of a crystalline solid. In the systems studied g6(r) approaches 0.8 within 5–6
lattice spacings.

Of particular interest is the structure of the grain boundaries appearing in the
paraboloidal lattice for different values of the curvature parameter κ. Grain bound-
aries form in the bubble array during the growing process as a consequence of
geometrical frustration. As noted, any triangular lattice confined in a simply con-
nected region with the topology of the disk is required to have a net disclination
charge Q = 6. In the absence of curvature, however, the elastic stress due to an
isolated disclination is extremely high and defects are energetically favored to clus-
ter in the form of a grain boundary consisting of one-dimensional arrays of tightly
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Figure 37. (Color online) Translational and orientational correlation functions (g and g6, respectively) for
rafts with (a,b) κ ≈ 0.32 cm−1, a = (0.8410±0.0025) mm, and (c,d) κ ≈ 0.15 cm−1, a = (0.9071±0.0037)
mm. All the curves are plotted as functions of r/a, where r is the planar distance from the center and a
is the bubble radius. The envelope for the crystalline solid decays algebraically (dashed line), while the
orientational correlation function approaches the constant value 0.8. From Ref. [136].

Figure 38. (Color online) An enlarged view of the terminating grain boundary scar shown in Fig 36d
for a system with large Gaussian curvature. The scar starts from the circular perimeter of the vessel
and terminates roughly in the center carrying a net +1 topological charge. The image of the bubbles (left)
shows that they may deform slightly to better fill space, whereas the computer reconstruction of the lattice
(right) uses perfect spheres of uniform size. From Ref. [136].

bound (5, 7)−fold disclination pairs. In a planar confined system, grain boundaries
typically span the entire length of the crystal. In the curved case, however, they can
appear in the form of scars carrying a net +1 topological charge and terminating
in the bulk of the crystal.

Prominent examples of grain boundaries are visible in the two lattices shown in
Fig. 36. For a gently curved paraboloid (with κ ≈ 0.15 cm−1), grain boundaries
form long (possibly branched) chains running from one side to the other and passing
through the center. As the curvature of the paraboloid is increased, however, this
long grain boundary is observed to terminate in the center (see Fig. 36d; a close-
up version of this image is seen in Fig. 38). For R = 5 cm, the elastic theory of
defects predicts a structural transition at κc = 0.27 cm−1 in the limit of large
core energies. In this limit the creation of defects is strongly penalized and the
lattice has the minimum number of disclinations required by the topology of the
embedding surface. In a low curvature paraboloid (κ < κc) these disclinations
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are preferentially located along the boundary to reduce the elastic energy of the
system. When the aspect ratio of the paraboloid exceeds a critical value κc(R),
however, the curvature at the origin is enough to support the existence of a 5−fold
disclination and the system undergoes a structural transition. In the limit of large
core energies, when only six disclinations are present, such a transition implies a
change from the C6v to the C5v rotational symmetry group.

Together with the theoretical argument reviewed in the previous section, these
experimental observations point to the following mechanism for scar nucleation in
a paraboloidal crystal. In the regime in which the creation of defects is energeti-
cally inexpensive, geometrical frustration due to the confinement of the lattice in a
simply connected region is responsible for the formation of a long side-to-side grain
boundary. When the curvature of the paraboloid exceeds a critical value, depen-
dent on the radius of the circular boundary, the existence of a +1 disclination near
the center is energetically favored. Such a disclination serves as a nucleation site for
5-7 dislocations and the side-to-side grain boundary is replaced by a terminating
center-to-side scar.

5. Crystalline and p−atic order in toroidal geometries

5.1. Introduction

Circa twenty years afer their first observation in partially polymerized diacetylenic
phospholipid membranes by Mutz and Bensimon [152], self-assembled toroidal ag-
gregates are now considered the progenitors of a magnificent cornucopia of complex
structures, also featuring branched network and micellar surfaces of high genus. The
existence of such complex structures has become an experimental fact thanks to
the enormous work in the past decade on the study of self-assembly of amphiphilic
compounds such as lipids, surfactants and amphiphilic block copolymers. After
the work of Eisenberg and coworkers [153, 154, 155] it became clear that block
copolymers in particular afford access to a variety of complex structures spanning
an unexpectedly vast range of topologies and geometries. More recently, several
experimental studies have been performed on di- and triblock copolymers with
the intent of unraveling the origin of morphological complexity in copolymer sur-
factants and some possible pathways for micelle and vesicle formation have been
proposed.

Jain and Bates, for instance, reported the formation of several non-simply-
connected micellar structures from the self-assembly of diblock copolymer poly(1,2-
butadiene-b-ethylene oxide) (PB-PEO) [156] (see Fig. 39). These polymers self-
assemble in Y−shaped junctions and these form the building blocks for more com-
plex micellar structures via re-assembly. Later, Pochan et al. [157] found that al-
most all of the microstructures assembled from poly(acrylic acid-b-methyl acrylate-
b-styrene) (PAA99-PMA73-PS66) triblock copolymers are ringlike or toroidal mi-
celles. The route to toroidal micelles in block copolymers, however, is believed to
be different from that to more complex network structures suggested by Jain and
Bates, since residual Y−shaped aggregates are very rarely found in the sample.
According to the authors of Ref. [157], the formation of toroidal micelles has to
be attributed primarly to the collapse of cylindrical micelles. On the other hand,
mere end-to-end connection of cylindrical micelles doesn’t appear to be the exclu-
sive ring-forming mechanism in triblock systems since the average circumference
of the self-assembled tori appears smaller than the contour length of the average
cylindrical micelles. It seems to be a more complicated process, possibly involving
interactions and exchange of matter between neighboring cylinders.
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Figure 39. Complex non-simply connected structures from self-assembly of diblock copolymer poly(1,2-
butadiene-b-ethylene oxide) (PB-PEO). From Ref. [156].

Toroidal micelles have also been observed in recent experiments by Kim et al
[158] from the self-assembly of amphiphilic dumbbell molecules based on a aro-
matic rod segment that is grafted by hydrophilic polyether dendrons at one end
and hydrophobic branches at the other end. Molecular dumbbells dissolved in a
selective solvent self-assemble in an aggregate structure due to their amphiphilic
character. This process has been observed to yield coexisting spherical and open-
ended cylindrical micelles. These structures, however, change slowly over the course
of a week to toroidal micelles which thus appear more stable. The formation of ring-
like structures was explained in this case as result of the coalescence of spherical
micelles occurring to reduce the contact between hydrophobic segments and water
molecules.

An alternative pathway for the self-assembly of toroidal structures in copolymer
solutions has been proposed and numerically tested by He and Schimd [159]. In this
pathway, the micelles do not coalesce, but simply grow by attracting copolymers
from the solution. Once a critical micelle size is exceeded, copolymers start to flip-
flop in such a way that the micelle core becomes itself solvent-philic (semi-vesicle
state). Finally the solvent diffuses inside the core and the semi-vesicle swells into
a vesicle.

The existence of toroidal aggregates in amphiphilic compounds was suggested
theoretically for smectic-C (SmC) membranes, based on the argument that ori-
entational order is not frustrated on a surface with zero Euler characteristic and
thus a toroidal topology may be energetically favoured in p−atic membranes with
large order parameter coupling compared with the bending rigidity [59, 160]. This
hypothesis was tested by Evans in 1995 with the result that a toroidal topology
is indeed prefered over the spherical one for wide range of geometrical and me-
chanical parameters in defect-free p−atic tori. The role of disclinations in p−atic
tori was investigated systematically by Bowick, Nelson and Travesset nine years
after the original work of Evans with the conclusion that, even if not required by
topological constraints, unbound disclinations can be energetically convenient even
in very dense systems [161]. The precise number of unbound disclinations is con-
trolled primarly by the aspect ratio of the torus. The existence of defects in the
ground state of an ordered phase on the torus is crucial for toroidal crystals where
it leads to some unique structural features as well as a spectacular example of a
curvature-driven transition to a disordered, liquid-like, state in the limit the aspect
ratio approaches to one [162, 163]. In the remainder of this section we will review
these three examples of order on embedded tori.
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Figure 40. (Color online) The standard parametrization of a circular torus of radii R1 and R2.

5.2. Geometry of the torus

The standard two-dimensional axisymmetric torus embedded in R
3 is obtained by

revolving a circle of radius R2 about a coplanar axis located at distance R1 ≥ R2

from its center. Choosing the symmetry axis as the z direction of a Cartesian frame,
a convenient parametrization can be found in terms of the polar angle ψ along the
revolving circle and the azimuthal angle φ on the xy−plane:x = (R1 +R2 cosψ) cosφ

y = (R1 +R2 cosψ) sinφ
z = R2 sinψ

, (165)

where ψ , φ ∈ [−π, π). These coordinates satisfy the Cartesian equation(
R1 −

√
x2 + y2

)2
+ z2 = R2

2 (166)

In this parametrization the metric tensor gij and Gaussian curvature K are given
by

gψψ = R2
2 , gψφ = 0 , gφφ = (R1 +R2 cosψ)2 , (167)

K =
cosψ

R2(R1 +R2 cosψ)
. (168)

The Gaussian curvature is therefore positive on the outside of the torus, negative
on the inside and zero along the two circles of radius R1 at ψ = ±π/2 (see Fig.
40). Moreover K is maximally positive along the external equator at ψ = 0 and
maximally negative on the internal equator at ψ = ±π. The Gauss-Bonnet theorem
requires the total topological charge and the integrated Gaussian curvature to be
zero on the torus:

N∑
k=1

qk =
∫
d2xK(x) = 0 . (169)

A global measure of the curvature of the embedded torus is provided by the aspect
ratio r = R1/R2. Our discussion will be limited to the case r ≥ 1. A “fat” torus
with r = 1 is obtained by taking R1 = R2 and is characterized by a singularity
in the Gaussian curvature along the internal equator at ψ = ±π. The case r < 0
corresponds to a self-intersecting torus whose symmetry axis lies in the interior of
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the revolving circle. The “skinny” torus limit, r → ∞, can be obtained either by
taking R2 → 0 with finite R1 or by letting R2 stay finite and taking R1 →∞. The
Gaussian curvature diverges in the first case and goes to zero in the second. Neither
case, however, reflects a real physical situation since the area A = (2π)2R1R2 of
the torus becomes zero or infinite respectively.

Non-axisymmetric tori can be generated in various ways by deforming the surface
of revolution (165). A special and physically relevant transformation consists of an
inversion wrt the unit sphere, a translation about a vector β and a second inversion.
Thus a point R on the surface is mapped onto:

R′ =
R
R2 + β
| RR2 + β|2

(170)

This map is conformal and transforms an axisymmetric shape to a non-axisymmet-
ric one if the vector β is not parallel to the symmetry axis [164]. As β is increased
in magnitude, the asymmetry increases until, in the limit, the torus becomes a
perfect sphere with an infinitesimal handle. The physical importance of mapping
(170) relies on the fact that it leaves the bending energy κ

∫
d2xH2 invariant with

significant consequences for the equilibrium shape and stability of fluid toroidal
membranes.

As in any closed manifold the traditional Green-Laplace equation doesn’t have
a solution on the torus. An alternative Green function, can be obtained from the
modified equation:

∆gGL(x,y) = δg(x,y)−A−1 (171)

As usual the calculation of the Green function can be simplified considerably by
conformally mapping the torus to a domain of the Euclidean plane via a suitable
system of isothermal coordinates. Intuitively the torus is conformally equivalent
to a rectangular domain described by a system of Cartesian coordinates. To make
this explicit, one can equate the metric of the torus in the coordinates (ψ, φ) to a
conformally Euclidean metric in the coordinates (ξ, η):

ds2 = R2
2dψ

2 + (R1 +R2 cosψ)2dφ2 = w (dξ2 + dη2) ,

where w is a positive conformal factor. Taking η = φ and w = (R1 + R2 cosψ)2,
the coordinate ξ is determined by the differential equation:

dξ

dψ
= ± 1

r + cosψ
, (172)

where r = R1/R2, the aspect ratio of the torus, may be taken greater than or equal
to one without loss of generality. Choosing the plus sign and integrating both sides
of Eq. (172) we find:

ξ =
∫ ψ

0

dψ′

r + cosψ′
. (173)

Taking ψ ∈ [−π, π), the integral (173) yields:

ξ = κ arctan
(
ω tan

ψ

2

)
,
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where

κ =
2√
r2 − 1

, ω =

√
r − 1
r + 1

. (174)

In the transformed coordinate system (ξ, η) the modified Green-Laplace equation
reads:

∆GL(x,y) = δ(x,y)− w

A
, (175)

where ∆ and δ are now the Euclidean Laplacian and delta function. The function
GL(x,y) can be expressed in the form:

GL(x,y) = G0(x,y)− 〈G0(x, · )〉 − 〈G0(· ,y)〉+ 〈G0(· , · )〉 ,

where G0(x,y) is the Laplacian Green function on a periodic rectangle and the
angular brackets stand for the normalized integral of the function G0(x,y) with
respect to the dotted variable:

〈G0(x, · )〉 =
∫
d2y

A
G0(x,y) . (176)

Analogously the function 〈G0(· , · )〉 is given by

〈G0(· , · )〉 =
∫
d2x d2y

A2
G0(x,y)

and ensures the neutrality property:∫
d2xGL(x,y) =

∫
d2y GL(x,y) = 0 . (177)

The modified Laplacian Green function on a periodic rectangle of edges p1 and p2

can be conveniently calculated in the form:

G0(x,y) =
∑
λ 6=0

uλ(x)uλ(y)
λ

, (178)

where uλ is the eigenfunction of the Laplace operator with periodic boundary
conditions:

∆uλ(x) = λuλ(x) , (179)

such that: {
uλ(0, η) = uλ(p1, η)

uλ(ξ, 0) = uλ(ξ, p2)
.

In Cartesian coordinates the eigenfunctions are simple plane waves of the form:

uλ(ξ, η) =
ei(λnξ+µmη)

√
p1p2

, (180)
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where λn and µm are given by:

λn =
2πn
p1

µm =
2πm
p2

n, m = 0, ±1, ±2 . . .

and the eigenvalue λ is given by:

λ = −λ2
n − µ2

m . (181)

Calling for simplicity x = (x, y) and y = (ξ, η), the function G0 is given by:

G0(x,y) = − 1
p1p2

∑
(n,m) 6=(0,0)

eiλn(x−ξ)eiµm(y−η)

λ2
n + µ2

m

. (182)

Summing this series eventually leads to [163]:

G0(x,y) =
log 2
6π
− 1

2 p1p2
|y − η|2 +

1
2π

log

∣∣∣∣∣∣
ϑ1( z−ζp1/π

| ip2

p1
)

ϑ
′ 1
3

1 (0| ip2

p1
)

∣∣∣∣∣∣ , (183)

where ϑ1(u|τ) is the Jacobi theta function [165, 166] defined as:

ϑ1(u|τ) = 2q
1
4 sinu

∞∏
n=1

(
1− 2q2n cos 2u+ q4n

) (
1− q2n

)
, (184)

with q = exp(iπτ), z = x+ iy and ζ = ξ + iη.

5.3. Defect-free p−atic textures and genera transition

There has been much effort in recent years to shed light on possible pathways in
the self-assembly of toroidal micelles and vesicles from block copolymer solutions
and other amphiphilic compounds. In particular, the spontaneous formation of
structures of genus g ≥ 1 from preexisting spherical objects, a process appearing
in several different scenarios proposed in the literature, has attracted the most
attention and debate because of its exotic character. The simplest question one
can ask in this context is whether a vesicle can be energetically favored to change
its topology from spherical to toroidal once the total surface area, and therefore the
number of constituent molecules in the vesicle, is specified. Evans addressed this
problem in 1995 [160] and showed how such a transition between genera is indeed
possible in fluid membranes and is even enhanced if the membrane is endowed
with in-plane orientational order. Although oversimplified if compared to the great
complexity of the real self-assembly mechanism, Evans’ calculation provides insight
into the delicate problem of stability of toroidal vesicles as well as a good starting
point for our discussion of order on the torus.

Let θ be the local orientation of a p−atic director field on a surface as defined in
Sec. 2. A standard orientational order parameter is given by scalar field:

ψ(x) = 〈eipθ(x)〉 , (185)

where 〈·〉 deontes a thermal average. The total elastic energy of the vesicle consists
of a pure bending term Fb, describing the elasticity of the membrane in the liquid
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state, and a term Fp associated with the internal p−atic order. Thus F = Fp +Fb,
with:

Fp =
∫
d2x

(
τ |ψ|2 +

u

2
|ψ|4 + C|(∇− ipΩ)ψ|2

)
(186a)

Fb =
∫
d2x

(
2κH2 + κgK

)
(186b)

where κ and κg are the bending and Gaussian rigidity respectively1 and the op-
erator ∇− ipΩ is obtained from the covariant derivative of a p−atic tensor order
parameter expressed in a local orthonormal frame as described in Sec. 2.4, with Ω
the covariant vector of Eq. (53) that parametrizes the spin-connection. The free en-
ergy (186a) is invariant under rotations of the local reference frame by an arbitrary
angle χ:

ψ → ψ eipχ (187a)

Ωi → Ωi − ∂iχ , (187b)

which is a typical gauge transformation. The gradient term in Eq. (186a) is the
same as in Eq. 52, upon identifying KA = p2C. As observed by Park et al. [168],
Eqns. (186a) and (186b) closely resemble the Landau-Ginzburg Hamiltonian of a
superconductor in an external magnetic field:

H =
∫
d3x

{∣∣∣∣(∇− 2ie
~c
A

)
ψ

∣∣∣∣2 + τ |ψ|2 +
u

2
|ψ|4 +

1
8π
|∇ ×A−H|2

}
. (188)

When exposed to an external magnetic field, a super-conducting material can un-
dergo a second order mean-field transition from a metal to a super-conductor char-
acterized by an Abrikosov lattice of vortices whose density is determined by the
temperature and the applied magnetic field H. The magnetic field, in particular,
is conjugate to the vortex number Nv since:∫

d3x∇×A = φ0LNv , (189)

where L is the length of the sample in the direction of H and φ0 = hc/2e is the flux
quantum. In this context the vector potential associated with the applied magnetic
field is replaced by the covariant vector Ω whose curl is the Gaussian curvature.
Morover, on a closed surface:

∫
d2x∇×Ω =

∫
d2xK =

2π
p

N∑
i=1

qi .

Thus a p−atic phase on a closed 2−manifold is analogous to an Abrikosov phase
with a fixed total vorticity rather than a fixed applied magnetic field.

1The expression of the bending energy used in Eq. (186b) is that originally gave by Helfrich for a membrane

with zero pre-existing curvature [167]. Often the equivalent expression
R
d2x ( 1

2
κH2 +κgK) is found in the

literature. In this case, however, the mean curvature H is defined as the sum of the principal curvatures
rather than their average.
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The transition to an ordered phase in controlled by the parameter τ in Eq. (186a).
For τ above a critical value τc (τc = 0 on a flat surface), ψ = 0 and the system is in
the isotropic phase. In this regime the only contribution to the energy is determined
by the shape of the vesicle as expressed by the bending term (186b). For τ < τc, on
the other hand, the gauge symmetry is spontaneously broken and ψ 6= 0, with the
exception of a number of isolated defective points. Within a meanfield approach,
thermal fluctuations can be neglected and the preferred configuration of the system
corresponds to the minimum of the free energy. A ground state configuration for
the p−atic order parameter can be found by rewriting the gradient energy term in
Eq. (186a) as ∫

d2x |(∇− ipΩ)ψ|2 =
∫
dx1 dx2√g DkψD∗kψ

∗

= −
∫
dx1 dx2 ψ∗

(
Dk√g Dk

)
ψ ,

with Dk = ∂k−ipΩk, and expressing ψ in the basis of eigenfunctions of the operator
in parentheses:

ψ =
∑
n

anϕn (190)

with ϕn satisfying the Hermitean equation

− 1
√
g
Dk (
√
g Dk)ϕn =

4πλ
A

ϕn (191)

with the normalization condition∫
d2xϕ∗nϕm =

A

4π
δnm . (192)

The complex coefficients ak are then determined by minimization of the free en-
ergy F . The eigenfunctions are sometimes referred to as “Landau levels” and are
typically degenerate. If ψ is expanded in this complete set of eigenfunctions then,
in meanfield, the partition function is dominated by configurations involving only
Landau levels with the lowest eigenvalue λ0. Taking lowest levels only, the p−atic
free energy (186a) becomes

Fp =
∫
d2x

[(
τ +

4πλ0C

A

)
|ψ|2 +

u

2
|ψ|4

]
. (193)

To find the lowest energy configuration of the field ψ one now has to solve the
eigenvalue problem (191) to determine the lowest eigenvalue λ0 and minimize the
free energy with respect to the parameters of the linear combination (190). Notice
that the mean field transition has been lowered from τc = 0 to τc = −4πλ0C/A.
Although λ0 = 0 on a flat surface, it is finite and positive-definite on a surface with
finite Gaussian curvature [160].

For a sphere of unit radius parametrized in standard spherical coordinates (θ, φ),
the eigenvalue problem (191) is solved by λ0 = p and ϕn of the form [169]

ϕn =

√
2p+ 1

4π(p+ n)!(p− n)!
sinp+n

(
θ

2

)
cosp−n

(
θ

2

)
einφ (194)
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Figure 41. (Color online) Eigenvalues λ versus the aspect ratio r for varius p−atic configurations (labelled
pn) on the axisymmetric torus. The number of disclination pairs for each configuration is 2n. Data are
taken from [160].

for integer values of n between −p and p. These functions have 2p zeros, corre-
sponding to topological defects of unit charge and winding number 1/p. Because
of the lowest Landau level approximation used to derive Eq. (193), eigenfunctions
(194) are degenerate to quadratic order in ψ. This implies the freedom to place
defects anywhere on the sphere with no additional energy cost of order ψ2. The ψ4

term, on the other hand, lifts this degeneracy and make the defects repel.
For axisymmetric tori the eigenvalue problem (191) was solved numerically by

Evans with the result shown in Fig. 41. Eigenvalues are plotted as a function
of the aspect ratio r of the torus for various p−atic textures labelled pn with
0 ≤ n ≤ p. Eigenfunctions ϕn have 4n zeros corresponding to 2n disclinations of
topological charge q = 1 (winding number 1/n) and 2n disclinations of topological
charge q = −1 (winding number −1/n). Except for vector order (p = 1), defective
configurations are energetically favored for small aspect ratios and the number of
disclination pairs increases with r as a consequence of the larger (in magnitude)
Gaussian curvature.

Carrying out the integrals in Eq. (186a) and (186b) in the lowest Landau level
approximation, the total elastic free energy of spherical and toroidal vesicles can
be written as

Fsphere = 4π(2κ+ κg)− 2π
(
C2

uA

) [ τA
4πC + p

]2
Jsphere(p)

(195a)

Ftorus = κ
2π2r2

√
r2 − 1

− 2π
(
C2

uA

) [ τA
4πC + λ0(r)

]2
Jtorus(p, r)

(195b)

where J is the minimal value of the integral of |ψMF|4 and

ψMF =

{∑p
n=−p anϕn sphere

a+ϕp + a−ϕ−n torus
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Figure 42. (Color online) Phase diagram for vesicles of constant area of genus zero and one with intrinsic
vector (top left), nematic (top right), tetradic (bottom left) and hexatic (bottom right) order. The position
of the transition line depends on the value of κg/κ. Toroidal vesicles that exist in the shaded region are
non-axisymmetric. Data are taken from [160].

is the linear combination of eigenfuctions that are degenerate to quadratic order
in ψ. The second term in Eqs. (195a) and (195b) disappears in the isotropic phase
when τ > −4πλ0C/A due to the intrinsic orientational order on the manifold.
Even in this case, Eqs. (195a) and (195b) reveal the existence of a transition line
between spherical and toroidal shape. In the absence of in-plane orientational order
the bending energy term in Eq. (195b) is minimized by the so called Clifford torus
with r =

√
2. In this case Ftorus = 4π2κ, which is smaller than Fsphere = 4π(2κ+κg)

when κg/κ > π − 2. Toroidal vesicles with r =
√

2 are therefore energetically fa-
vored in the fluid phase for large values of κg/κ. This argument cannot be invoked
to explain the complex self-assembly of toroidal structures from homogeneous so-
lutions mentioned in the introduction, but does provide a simple (but non-trivial)
example of a toroidal shape being energetically preferred to a spherical one.

The critical value of κg/κ of the genera transition is lowered for vesicles possessing
in-plane p−atic order. This is displayed in the phase diagrams of Fig. 42 for the
case of vector (p = 1), nematic (p = 2), tetradic (p = 4) and hexatic (p = 6) order.
The lines, whose position depends on κg/κ, separate spheres (above the line) from
tori (below the line). Even for simple vector order, stable toroidal vesicles exist as
well for κg/κ < π − 2. For κg/κ > π − 2, furthermore, transition lines are closed,
with spheres on the inside and tori on the outside. In the shaded regions non-
axisymmetric tori are favored over symmetric ones. The hexatic phase diagram
(bottom right corner of Fig. 42) deserves special attention. The shaded region is
split in two parts. That on the right contains spheres if κg/κ < π − 2 and non-
axisymmetric tori otherwise, while that on the left contains spheres above the
transition line and non-axisymmetric tori below. The white region of the phase
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diagram is also divided in two. The top left region of the diagram behaves as
described above, while the other part is characterized by closed lines separating
spheres (outside) and small tori (inside). These last class of tori exhibit ten pairs of
q = ±1 disclinations with positive disclinations distributed on the external equator
of the torus and negative disclinations along the internal equator. This last feature
is an important property sheared by toroidal objects with in-plane order and will
be clarified in the following sections. The results reviewed here are valid within the
mean-field approach and the lowest Landau level approximation, which both hold
deep in the ordered phase that we are most interested in. At higher temperatures
Evans proved the approximations are still valid away from the transition line and
for C/A � κ/kBT � 1 [160]. The latter condition is generally fulfilled by several
systems (i.e. κ/kBT = 1− 10 for lipid bilayers).

5.4. Defective ground states in hexatics

Evans’ analysis, summarized in the previous section, indicates that disclinations,
even if not required by topological constraints, can nonetheless appear in the
ground state of p−atic tori as a consequence of the coupling between in-plane
orientational order and spatial curvature. The occurrence of defects in the ground
state of toroidal hexatic vesicles was systematically investigated by Bowick, Nelson
and Travesset based on the formalism outlined in Sec. 2 [161]. Before embarking
on a detailed analysis of the elasticity of defects in hexatic tori, it is instructive to
obtain a rough estimate of how many pairs of ±1-disclinations would be required
to achieve perfect screening of the background topological charge associated with
the Gaussian curvature of the torus. Consider a wedge of angular width ∆φ on the
outside wall of positive Gaussian curvature. The net curvature charge associated
with this region is

seff =
∫ φ0+ ∆φ

2

φ0−∆φ
2

dφ

∫ π

2

−π
2

dψ
√
g K = 2∆φ . (196)

Upon equating seff to 2π/6, the charge of a single disclination, one finds that ∆φ =
2π/12, independently of R1 and R2. Thus, 2π/∆φ = 12 positive disclinations would
be required to completely compensate the negative curvature of the inner wall.
This simple argument neglects core energies and interactions between disclinations,
effects which will cause the preferred number of defect pairs to be less than twelve.

The total elastic energy of a toroidal hexatic vesicle containing N disclinations
of topological charge qi (i = 1 . . . N) takes the form

F

KA
=
π2

9

1,N∑
i<j

qiqjQ(xi,xj)−
π

3

N∑
i=1

qiL(xi)

+
2π2

r +
√
r2 − 1

+
κ

KA

2π2r2

√
r2 − 1

+
εc
KA

N∑
i=1

q2
i (197)

where the first two terms represent the contributions due to the pair interaction
between defects and the interaction of defects with the topological charge of the
substrate associated with the Gaussian curvature. The third term in Eq. (197)
is the spin-wave part of the frustrated hexatic energy while the last two terms
represents the bending energy and the defect core energy respectively. The defect-
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Figure 43. (Color online) The total energy (in units of KA/2 of hexatic tori of aspect ratio r =
√

2
(left) and r = 2.6926) for varying number of defects. The bending energy at fixed r is subtracted off. The
disclination core energy is set to 0.1KA, which is 0.2 in the above units.

defect interaction potential has been calculated in Ref. [161]:

Q(xi,xj) =− 1
4π

log

∣∣∣ϑ1

(
φi−φj

2π + i
2π

αi−αj√
r2−1

∣∣∣ i√
r2−1

)∣∣∣2
4π2

∣∣∣η ( i√
r2−1

)∣∣∣6
+

1
2
√
r2 − 1

(
αi − αj

2π

)2

, (198)

where α is related to the polar angle ψ on a cross-section of the torus by:

cosψ =
r cosα− 1
r − cosα

(199)

and η is the Dedekind eta function:

η(τ) = e
2πiτ
24

∞∏
n=1

(1− e2πinτ ) . (200)

The one-body interaction between defects and curvature, on the other hand, is
expressed via the potential energy

L(xi) = log
(

1
r − cosαi

)
. (201)

For opposite sign disclinations, the defect-defect interaction, determined by the
function Q(xi,xj), is attractive for all separations at constant φ. If only this term
were present, the attraction would bring both charges as close as possible, binding
all disclinations into dipoles which have a higher energy than a defect-free con-
figuration. Thus if no other terms were present, the ground state configuration
would be defect free. The defect-curvature interaction term L(xi), however, favors
the appearance of additional defects. This term acts like an electric field pulling
the positive (negative) disclinations into regions of positive (negative) Gaussian
curvature.

The elastic energy (197) was analyzed numerically in Ref. [161] for various aspect
ratios and defect core energies. A plot of the energy of configurations obtained by
placing a ring of (N/2) (+1)-disclinations equally spaced along the same parallel on
the outside of the torus and a second ring of (N/2) (−1)-disclinations on the inside,
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is shown in Fig. 43 for various N and variable angular separation ∆ψ between the
rings. The disclination core energy is taken to be εc = cKA, with c a numerical
constant taken equal to 0.1 in the plots. The energy at the maximum separation
(∆ψ = π) first decreases and then increases with N . The optimal number of defect
pairs N/2 is 6 and 7 (the latter curve is not shown in the plot) for r =

√
2 and

r = 2.6926 respectively.
The existence of defects in the ground state of a toroidal vesicle with hexatic order

is also affected by the total number of molecules N forming the hexatic phase. In
Ref. [161] it was found that defects disappear in the limit N →∞, but are present
for numbers of molecules as large as N = 1010. This number is several orders of
magnitude larger than the typical number of molecules of biological vesicles such
as red-blood cells (i.e. N ∼ 108). To make this estimate, one considers a pair
of opposite sign disclinations that have been pulled apart from the circle of zero
Gaussian curvature to the equators in the regions of like sign Gaussian curvature;
thus ψ+ = 0 and ψ− = π. Upon approximating the defect-pair energy by its flat
space value, the total energy reads:

F = −π
3
KA log

(
r + 1
r − 1

)
+

π

18
KA log

(
R2

a0

)
+ 2εc , (202)

where a0 is the lattice spacing. Eq. (202) changes sign when

R2

a0
= e
− 36εc
KA

(
r + 1
r − 1

)6

. (203)

Taking

N ≈ A
√

3
2 a

2
0

=
8π2

√
3 r
(
R2
a0

)2

leads to the conclusion that defects are favored for:

N <
8π2

√
3
e
− 72εc
πKA

[
r

(
r + 1
r − 1

)12
]
≈ 4.6 r

(
r + 1
r − 1

)12

(204)

where the last identity has been obtained by taking εc/KA = 0.1. This result
establishes that defects are present in the ground state of a hexatic tours for any
fixed number of molecules provided the torus is sufficiently fat. For the energetically
favored Clifford torus with r =

√
2, Eq. (204) predicts a critical number of molecules

to be order N ∼ 1010.
In absence of defects the ratio between the hexatic stiffness KA and the bending

rigidity κ dictates the optimal shape of the toroidal vesicle. Taking qi = 0 in Eq.
(197) one obtains in this case:

F =
2π2KA

r +
√
r2 − 1

+ κ
2π2r2

r2 − 1
. (205)

The first term represents the energetic cost associated with the distortion of the
hexatic director field due to the Gaussian curvature alone. In the limit of large and
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small hexatic stiffness Eq. (205) is minimized by:

r =
√

2 KA � κ

r =
√

KA
2κ KA � κ

which provides a compelling example of the interplay between order and geometry:
if the stiffness associated with the intrinsic hexatic order is much smaller than
the bending rigidity, the Clifford torus is the optimal geometry; if on the other
hand, the hexatic stiffness dominates, then a thin torus, similar to a bicycle tire,
is optimal.

5.5. Toroidal crystals

Crystalline assemblages of identical sub-units packed together and elastically bent
in the form of a torus have been found in the past ten years in a variety of systems
of surprisingly different nature, such as viral capsids, self-assembled monolayers
and carbon nanomaterials. In the introduction we mentioned the self-assembly of
toroidal micelles and vesicles from homogeneous solutions of amphiphilic molecules
such as oligomers of aromatic compounds or block copolymers. Toroidal geometries
also occur in microbiology in the viral capsid of the coronavirus torovirus [170].
The torovirus is an RNA viral package of maximal diameter between 120 and 140
nm and is surrounded, as other coronaviridae, by a double wreath/ring of cladding
proteins.

Carbon nanotori form another fascinating and technologically promising class
of toroidal crystals [49] with remarkable magnetic and electronic properties. The
interplay between the ballistic motion of the π electrons and the geometry of the
embedding torus leads to a rich variety of quantum mechanical properties includ-
ing Pauli paramagnetism [171] and Aharonov-Bohm oscillations in the magnetiza-
tion [172]. Ring closure of carbon nanotubes by chemical methods [173] suggest
that nanotubes may be more flexible than at first thought and provides another
technique of constructing carbon tori. In this section we review some recent de-
velopments in the study of the geometry and the elasticity of toroidal crystals.
Additional details can be found in Refs. [162, 163].

5.5.1. Geometry of toroidal polyhedra

Toroidal crystals with local 6−fold order can be described as toroidal polyhedra
with all triangular faces. After the discovery of carbon nanotubes in 1991 and the
subsequent theoretical construction (later followed by the experimental observa-
tion) of graphitic tori, this class of polyhedra has drawn considerable attention
and many possible tessellations of the circular torus have been proposed by the
community [174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184]. Here we review
the construction of a defect-free triangulated torus and we show how the most
symmetric defective triangulations can be generally grouped into two fundamental
classes corresponding to symmetry groups Dnh and Dnd respectively.

The structure of a triangulated cylinder can be specified by a pair of triangular
lattice vectors c and t, called the chiral and translation vector respectively, which
together define how the planar lattice is rolled up. In the canonical basis a1 = (1, 0)
and a2 = (1

2 ,
√

3
2 ), the vector c has the form

c = na1 +ma2 n, m ∈ Z . (206)
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Figure 44. (Color online) Construction of a defect-free triangulation of the torus. On top planar map of
the triangulated torus corresponding to the (n,m, l) configuration (6, 3, 1). On the bottom (6, 3, 6) chiral
torus. The edges of each one of the six tubular segments has been highlighted in red.

The translation vector t, on the other hand, can be expressed as an integer multiple

t = let l ∈ Z (207)

of the shortest lattice vector et perpendicular to c. The vector et is readily found
to be of the form

et =
(n+ 2m)a1 − (2n+m)a2

(n+ 2m : 2n+m)
,

where (a : b) denotes the greatest common divisor of a and b and enforces the
minimal length. The three-dimensional structure of the torus is obtained by con-
necting the edge OT of the rectangle in Fig. 44 (left) to O′C and OC to O′T . The
edge OT is then mapped to the external equator of the torus while the edge OC
to the φ = 0 meridian. The resultant toroidal lattice has characteristic chirality
related to the initial choice of the vector c. In the nanotubes literature armchair
refers to the lattice obtained by choosing n = m, zigzag to that obtained for m = 0
and chiral to all other lattices. An example of an (n,m, l) chiral torus is shown in
Fig. 44 (right) for the case n = 6, m = 3 and l = 6. The chirality is extremely
important in graphitic carbon nanotube or nanotori, where it determines whether
the electronic behavior of the system is metallic or semiconducting.

By Euler’s theorem one can prove that the number of triangular faces F and the
number of vertices V of a triangular toroidal lattice is given by

V = 1
2F .

Denoting AR the area of the rectangle with edges c and t and AT the area of a
fundamental equilateral triangle, the number of vertices of a defect-free toroidal
triangulation is then:

V =
AR
2AT

=
2l (n2 + nm+m2)
(n+ 2m : 2n+m)

. (208)

The planar construction reviewed above allows only lattices with an even number
of vertices. Defect-free toroidal deltahedra with an odd number of vertices are
also possible and their construction is generally achieved by assembling congruent
octahedral building blocks. We refer the reader to Ref. [185] for an comprehensive
review of the topic.
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The embedding of an equal number of pentagonal and heptagonal disclinations
in the hexagonal network was first proposed by Dunlap in 1992 as a possible way
to incorporate positive and negative Gaussian curvature into the cylindrical geom-
etry of carbon tubules [174]. According to the Dunlap construction the necessary
curvature is incorporated by the insertion of “knees” (straight cylindrical sections
of the same diameter joined with a kink) in correspondence with each pentagon-
heptagon pair arising from the junction of tubular segments of different chirality
(see Fig. 46). In particular, a junction between a (n, 0) and a (m,m) tube can be

Figure 45. (Color online) Voronoi lattices of a TPn prismatic (top) and TAn antiprismatic (bottom)
toroids with R1 = 1 and R2 = 0.3.

obtained by placing a 7−fold disclination along the internal equator of the torus
and a 5−fold disclination along the external equator. Since the radii of the two
segments of a junction are different by construction, the values of n and m are
commonly chosen to minimize the ratio |c(n,0)|/|c(m,m)| = n/

√
3m. By repeating

the 5− 7 construction periodically it is possible to construct an infinite number of
toroidal lattices with an even number of disclinations pairs and dihedral symmetry
group Dnh (where 2n is the total number of 5−7 pairs, Fig. 45 top and Fig. 47). The
structure of the lattice is described by the alternation of two motifs with crystalline
axes mutually rotated by 30◦ as a consequence of the connecting disclination. One
of the fundamental aspects of Dunlap’s construction is that all the disclinations are
aligned along the two equators of the torus where the like-sign Gaussian curvature
is maximal. As we will see below, this feature makes these arrangements optimal
in releasing the elastic stress due to curvature. Other defective triangulations with
Dnh symmetry group have been proposed in Ref. [163] and won’t be discussed here.

Another class of crystalline tori with dihedral antiprismatic symmetry Dnd was
initially proposed by Itoh et al [177, 178, 179] shortly after Dunlap. Aimed at

Figure 46. (Color online) Dunlap knees obtained by joining two straight tubular segments with (n, 0) and
(m,m) chirality. [Courtesy of A. A. Lucas and A. Fonseca, Facultés Universitaries Notre-Dame de la Paix,
Namur, Belgium].
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Figure 47. (Color online) Five-fold polygonal torus obtained by joining (5, 5) and (9, 0) tubular segments
via ten pairs of 5 − 7 rings. This structure was originally proposed by the authors of Ref. [186, 187] as a
possible low-strain configuration for carbon nanotori. [Courtesy of A. A. Lucas and A. Fonseca, Facultés
Universitaries Notre-Dame de la Paix, Namur, Belgium].

reproducing a structure similar to the C60 fullerene, Itoh’s original construction
implied ten disclination pairs and the point group D5d. In contrast to Dunlap tori,
disclinations are never aligned along the equators in antiprismatic tori, instead be-
ing staggered at some angular distance δψ from the equatorial plane. Hereafter we
will use the symbols TPn and TAn to refer to toroidal lattices with 2n disclination
pairs and symmetry group Dnh and Dnd respectively.

Figure 48. (a) Unit cell for toroidal antiprisms. 5−fold vertices are circled and 7−fold vertices are boxed.
(b) Unit cell of a Dnd torus in the Berger-Avron construction. The graph consists of four generation of tiles
and the internal equator of the torus is mapped into the horizontal line passing to the mid-point between
the 6th and the 7th vertex.

A systematic construction of defected triangulations of the torus can be achieved
in the context of planar graphs [188, 189, 190]. A topological embedding of a graph
in a two-dimensional manifold corresponds to a triangulation of the manifold if
each region of the graph is bounded by exactly three vertices and three edges, and
any two regions have either one common vertex or one common edge or no com-
mon elements of the graph. The simplest example of toroidal polyhedra with Dnd

symmetry group, featuring only 5−fold and 7−fold vertices, can be constructed by
repeating n times the unit cell of Fig. 48a. These toroidal antiprisms have V = 4n
vertices and can be obtained equivalently from the edge skeleton of a n−fold an-
tiprism by attaching at each of the base edges a pentagonal pyramid and by closing
the upper part of the polyhedron with n additional triangles. By counting the faces
one finds F = 5n + 2n + n = 8n from which V = 4n. The simplest polyhedron
of this family has V = 12 and D3d symmetry group (see top left of Fig. 49) and
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Figure 49. (Color online) First six toroidal antiprisms obtained by repeating the unit cell of Fig. 48. The
first polyhedron on the left is the “drilled icosahedron”.

corresponds to the “drilled icosahedron” obtained by removing two parallel faces of
an icosahedron and connecting the corresponding edges with the six lateral faces
of an antiprism with triangular base (i.e. a prolate octahedron). Starting from
this family of toroidal antiprisms a number of associated triangulations having the
same defect structure can be obtained by geometrical transformations such as the
Goldberg inclusion [39, 191, 192]. Such transformations, popularized by Caspar
and Klug for the construction of the icosadeltahedral structure of spherical viruses
[39], consist in partitioning each triangular face of the original graph into smaller
triangular faces in such a way that old vertices preserve their valence and new
vertices have valence six. The partition is obtained by specifying two integer num-
bers (L,M) which define how the original vertices of each triangle are connected
by the new edges so that the total number of vertices is increased by a factor
T = L2 + LM +M2.

A general classification scheme for Dnd symmetric tori was provided by Berger
and Avron [189, 190] in 1995. Their scheme is based on the construction of unit
graphs comprising triangular tiles of different generations. In each generation, tiles
are scaled in length by a factor 1/

√
2 with respect to the previous generation. This

rescaling approximates the non-uniformity of the metric of a circular torus.
In the past few years, alternative constructions of triangulated tori have been

proposed as well as novel geometrical and graph-theoretical methods to express
the coordinates of their three-dimensional structures (see for example Kirby [180],
László at al [181, 182], Diudea et al [183, 184]). Here we choose to focus on the
defect structure associated with the two most important class TPn and TAn with
groups Dnh and Dnd.
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5.5.2. Elasticity of defects on the torus

The total free energy of a toroidal crystal with N disclinations can be expressed
as usual as

F =
1

2Y

∫
d2xΓ2(x) + εc

N∑
i=1

q2
i + F0 (209)

where Y is the two dimensional Young modulus and

Γ(x) =
π

3

N∑
k=1

qkΓd(x,xk)− Γs(x) . (210)

The defect part of the stress function Γ(x) can be found by integrating the Green
function (183) and takes the form

Γd(x,xk)
Y

=
κ

16π2

(
ψk −

2
κ
ξk

)2

− 1
4π2κ

(φ− φk)2 +
1

4π2r
log(r + cosψk)

− κ

4π2
Re{Li2(αeiψk)}+

1
2π

log
∣∣∣∣ϑ1

(
z − zk
κ

∣∣∣∣2iκ
)∣∣∣∣ , (211)

where Li2 is the usual Eulerian dilogarithm and

α =
√
r2 − 1− r . (212)

The function Γs(x) representing the stress field due to the Gaussian curvature of
the torus, on the other hand, is given by

Γs(x)
Y

= log

[
r +
√
r2 − 1

2(r + cosψ)

]
+
r −
√
r2 − 1
r

. (213)

A derivation of the functions Γd(x,xk) and Γs(x) is reported in Ref. [163] and
won’t be repeated here.

To analyze the elastic free energy (209) we start by considering the energies of
two opposite sign disclinations constrained to lie on the same meridian. The elastic
free energy of this system is shown in Fig. 50 as a function of the angular separation
between the two disclinations. The energy is minimized for the positive (5−fold)
disclination on the external equator (maximally positive Gaussian curvature) and
the negative (7−fold) disclination on the internal equator (maximally negative
Gaussian curvature). The picture emerging from this simple test case suggests that
a good ansatz for an optimal defect pattern is a certain number p of equally spaced
+1 disclinations on the external equator matched by the same number of equally
spaced −1 disclinations on the internal equator. We name this configuration with
the symbol Tp, where p stands for the total number of disclination pairs.

Tp :

{(
0,

2πk
p

)
1≤k≤p

;
(
π,

2πk
p

)
1≤k≤p

}
, (214)

where the two pairs of numbers specify the (ψ, φ) coordinates of the positive and
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Figure 50. (Color online) Elastic energy of a 5 − 7 disclination dipole constrained to lie on the same
meridian, as a function of the angular separation. In the inset, illustration of a circular torus of radii R1 >
R2. Regions of positive and negative Gaussian curvature have been shaded in red and blue respectively.

negative disclinations respectively. A comparison of the energy of different Tp con-
figurations, as a function of aspect ratio and disclination core energy, is summarized
in the phase diagram of Fig. 51. We stress here that only Tp configurations with p
even have an embedding on the torus corresponding to lattices of the TPp

2 class.
Nevertheless a comparison with p−odd configurations can provide additional in-
formation on the stability of p−even lattices. For small core energies, moreover,
thermally excited configurations with a large number of defects and similar p−polar
distributions of topological charge are expected to exhibit an elastic energy com-
parable in magnitude with that of these minimal constructions. The defect core
energy has been expressed here in the form

Fc = εc

2p∑
i=1

q2
i = 2pεc . (215)

The core energy εc of a single disclination depends on the details of the crystal-
forming material and the corresponding microscopic interactions. A simple phe-
nomenological argument (see for example Ref. [193]) gives

εc
Y
∼ a2

32π
,

where a the lattice spacing. Taking a2 = A/
√

3
2 V , with A the area of the torus,

yields

εc
AY
∼ 1

16
√

3πV
∼ 10−2

V
. (216)

For a system of order V = 103 subunits, then, the dimensionless core energy on
the left hand side of Eq. (216) is of order 10−5. This estimate motivates our choice
of the scale for εc/(AY ) in Fig. 51.

For dimensionless core energies below 4·10−5 and aspect ratios r between 3.68 and
10.12 the ground state structure is the TP5 lattice corresponding to a double ring
of +1 and −1 disclinations distributed on the external and internal equators of the
torus as the vertices of a regular decagon (the T10 configuration). The TP5 lattice
has dihedral symmetry group D5h. That this structure might represent a stable
configuration for polygonal carbon toroids has been conjectured by the authors of
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Figure 51. (Color online) Phase diagram for Tp configurations in the plane (r, εc/AY ). For r ∈ [3.68, 10.12]
and εc ∼ 0 the structure is given by a T10 configuration with symmetry group D5h.

Ref. [186], based on the argument that the 36◦ angle arising from the insertion of
ten pentagonal-heptagonal pairs into the lattice would optimize the geometry of a
nanotorus consistently with the structure of the sp2 bonds of the carbon network
(unlike the 30◦ angle of the 6−fold symmetric configuration originally proposed
by Dunlap). In later molecular dynamics simulations, Han [194, 195] found that a
5−fold symmetric lattice, such as the one obtained from a (9,0)/(5,5) junction (see
Fig. 47), is in fact stable for toroids with aspect ratio less then r ∼ 10. The stability,
in this case, results from the strain energy per atom being smaller than the binding
energy of carbon atoms. Irrespective of the direct experimental observation of such
disclinated toroidal crystals, which is still open, we show here how continuum
elasticity predicts that a 5−fold symmetric lattice indeed constitutes a minimum
of the elastic energy for a broad range of aspect ratios and defect core energies.

For small aspect ratios the 5−fold symmetric configuration becomes unstable
and is replaced by the 9−fold symmetric phase T9. As we mentioned, however, this
configuration doesn’t correspond to a possible triangulation of the torus. It is likely
that the ground sate in this regime consists of ten skew disclination pairs as in the
antiprismatic TAn lattice. The latter can be described by introducing a further
degree of freedom δψ representing the angular displacement of defects from the
equatorial plane:

TAn :

{(
(−1)2kδψ,

2πk
n

)
1≤k≤n

;
(

(−1)2k(π − δψ),
2πk
n

)
1≤k≤n

}
(217)

A comparison of the TP5 configuration and the TA5 configuration is shown in
Fig. 52 for different values of δψ. The intersection points of the boundary curves
with the δψ−axis has been calculated by extrapolating the (r, δψ) data points in
the range δ ∈ [0.07, 0.8] with ∆(δψ) = 2.5π · 10−3. For small δψ and r ∈ [3.3, 7.5]
the prismatic TP5 configuration is energetically favored. For r < 3.3, however,
the lattice undergoes a structural transition to the TA5 phase. For r > 7.5 the
prismatic symmetry of the TP5 configuration breaks down again. In this regime,
however, the elastic energy of both configurations rapidly rises because of the lower
curvature and defects disappear.

In the regime of large particle numbers, the amount of curvature required to
screen the stress field of an isolated disclination in units of lattice spacing becomes
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Figure 52. (Color online) Phase diagram of a 5−fold symmetric lattice in the plane (r, δψ). For small
δψ and r in the range [3.3, 7.5] the prismatic TP5 configuration is energetically favored. For r < 3.3 the
system undergoes a structural transition to the antiprismatic phase TA5.

too large and disclinations are unstable to grain boundary “scars” consisting of a
linear array of tightly bound 5 − 7 pairs radiating from an unpaired disclination
[73, 142]. In a manifold with variable Gaussian curvature this effects leads to a
regime of coexistence of isolated disclinations (in regions of large curvature) and
scars. In the case of the torus the Gaussian curvature inside (|ψ| > π/2) is always
larger in magnitude than that outside (|ψ| < π/2) for any aspect ratio and so we
may expect a regime in which the negative internal curvature is still large enough to
support the existence of isolated 7−fold disclinations, while on the exterior of the
torus disclinations are delocalized in the form of positively charged grain boundary
scars.

This hypothesis can be checked by comparing the energy of the TP5 lattice
previously described with that of “scarred” configurations obtained by decorating
the original toroid in such a way that each +1 disclination on the external equator is
replaced by a 5−7−5 mini-scar. The result of this comparison is summarized in the
phase diagram of Fig. 53 in terms of r and the number of vertices of the triangular
lattice V (the corresponding hexagonal lattice has twice the number of vertices,
i.e. Vhex = 2V ). V can be derived from the angular separation of neighboring
disclinations in the same scar by approximating V ≈ A/AV , with AV =

√
3

2 a
2 the

area of a hexagonal Voronoi cell and a the lattice spacing. When the aspect ratio
is increased from 1 to 6.8 the range of the curvature screening becomes shorter
and the number of subunits required to destroy the stability of the TP5 lattice
decreases. For r > 6.8, however, the geodesic distance between the two equators of
the torus becomes too small and the repulsion between like-sign defects takes over.
Thus the trend is inverted.

Some example of toroidal lattices obtained from numerical simulations are shown
in Fig. 54. The configurations are found by optimizing a system of V point-like
particles constrained to lie on the surface of a torus and interacting via a pair
potential of the form Uij = 1/|xi−xj |3 where | · | denotes the Euclidean distance in
R

3. The choice of the cubic potential is motivated here by the so called “poppy seed
bagel theorem” [80], according to which the configuration of points that minimizes
the Riesz energy E =

∑
i<j 1/|xi − xj |s on a rectifiable manifold of Hausdorff

dimension d is uniformly distributed on the manifold for s ≥ d. In the case of a
torus of revolution this implies that for small s the points are mostly distributed
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Figure 53. (Color online) Isolated defects and scar phases in the (r, V ) plane. When the number of vertices
V increases the range of the screening curvature becomes smaller than one lattice spacing and disclinations
appear delocalized in the form of a 5− 7− 5 grain boundary mini-scar.

on the exterior of the torus (the interior becomes completely empty in the limit
V →∞). As s is increased, however, the points cover a progressively larger portion
of the surface. The distribution becomes uniform for s ≥ 2. On the other hand, since
the number of local minima of the Riesz energy increases with s, it is practical to
choose a value not much larger than two. The choice s = 3 has the further advantage
of modelling a real physical system of neutral colloidal particles assembled at an
interface [36] and is therefore suitable for direct comparison with experiments on
colloidal suspensions. The lowest energies found, as well as the number of defects in
the corresponding configuration, are reported in Table 7. The complete set of data
produced in these simulations together with a collection of interactive 3D graphics
for each low energy configuration studied can be found on-line [196].

5.5.3. The Fat Torus Limit

We have seen that disclination defects, forbidden in the lowest energy state of
a planar crystal, may be energetically favored on a substrate of non-vanishing
Gaussian curvature. It is therefore natural to ask whether large curvature can
completely destroy crystalline order by driving the proliferation of a sufficiently
high density of defects. The resulting state would be amorphous. The problem
of generating amorphous structures by tiling a two-dimensional curved space with
identical rigid subunits has drawn attention over the years, particularly through the
connection to the structure of such disordered materials as supercooled liquids and
metallic glasses. Since the work of Frank [197] the notion of geometrical frustration
arises frequently in investigations of supercooled liquids and the glass transition. A
paradigmatic example is represented by the icosahedral order in metallic liquids and
glasses which, although locally favored, cannot propagate throughout all of three-
dimensional Euclidean space. A two-dimensional analog, consisting of a liquid of
monodisperse hard disks in a 2-manifold of constant negative Gaussian curvature
(the hyperbolic plane) was first proposed by Nelson and coworkers in 1983 [17, 198].
In such a system the impossibility of covering the entire manifold with a 6-fold
coordinated array of disks mimics many aspects of the geometrical frustration of
icosahedral order in three dimensions. In all these models of geometrical frustration,
however, the origin of the disorder is primarily due to the short-range nature of the
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Figure 54. (Color online) Selected low energy configurations for toroidal lattices of aspect ratio r = 3, 4, 6
and 20. Lattices are labeled by (r, V ), with V the number of particles.

potential between the subunits. In a more realistic setting, part of the frustration
is relieved by the fact that hexagonal unit cells can compress in order to match the
underlying geometry.

The embedding of a triangular lattice on an axisymmetric torus, provides a
particularly suitable playground to study curvature-driven disorder. When r → 1
the Gaussian curvature on the inside of the torus grows like 1/(r− 1) and diverges
on the internal equator at ψ = π. We thus expect a high density of defects in the
vicinity of the curvature singularity and a resultant loss of the local 6−fold bond
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Table 7. Low energy configuration for a selected number of

toroidal lattices with aspect ratios r = 3, 4, 6 and 20. For each as-

pect ratio the table displays the number of particles V , the lowest

energy found and the number of k−fold vertices Vk with k = 4–8.

r V V4 V5 V6 V7 V8 Energy

3

32 0 16 0 16 0 505.086593
35 0 10 15 10 0 637.633663
42 0 12 18 12 0 1020.466912
120 0 14 92 14 0 14671.476332
121 0 20 81 20 0 14981.224344
125 0 19 87 19 0 16255.583992
126 0 12 102 12 0 16586.793347
130 0 20 90 20 0 17930.955152
180 0 10 160 10 0 40623.325218
220 0 10 200 10 0 67176.585493
260 2 16 222 20 0 102100.926892
300 1 10 277 12 0 146139.605664
340 0 10 320 10 0 199812.441922
420 0 11 398 11 0 339147.966681
460 2 14 426 18 0 425754.968401
500 2 16 462 20 0 524508.172150
1000 1 17 963 19 0 2965940.674307

4

66 0 22 22 22 0 4905.964854
104 0 26 52 26 0 15598.534409
105 0 15 75 15 0 15984.990289
113 0 19 75 19 0 19237.981548
117 0 22 73 22 0 21007.172188
119 0 12 95 12 0 21914.283713
120 0 10 100 10 0 22371.402771
121 0 12 97 12 0 22859.735385
125 0 10 105 10 0 24816.591295
126 0 10 106 10 0 25311.298095
180 0 10 160 10 0 62142.129092
220 0 10 200 10 0 102919.127703
260 0 10 240 10 0 156499.285669
300 0 10 280 10 0 223997.341297
340 0 10 320 10 0 306568.539431
420 0 13 394 13 0 520431.653442
460 0 11 438 11 0 653485.181907
500 0 14 472 14 0 805206.972227

6

87 0 0 87 0 0 17765.124942
108 0 12 84 12 0 30894.374674
112 0 0 112 0 0 33902.717714
115 0 0 115 0 0 36254.709031
116 0 0 116 0 0 37074.949162
180 0 10 160 10 0 112810.451302
220 0 10 200 10 0 187146.462245
260 0 10 240 10 0 284907.016076
340 0 10 320 10 0 559161.546358
420 0 10 400 10 0 950488.931696
500 0 13 474 13 0 1471923.063515
1000 0 30 940 30 0 8351619.696538

20

160 0 0 160 0 0 463967.242489
170 0 0 160 0 0 543799.839326
180 0 0 180 0 0 631751.371902
220 0 0 220 0 0 1065625.748639
260 0 0 260 0 0 1636942.532923
300 0 0 300 0 0 2370110.403872

orientational order. In this regime the system will have crystalline regions on the
outside of the torus and amorphous regions near the curvature singularity.

In this section we this claim can be supported using the elastic theory of contin-
uous distributions of edge dislocations on a “fat” torus. Our argument is based on
the following construction. As a consequence of the curvature singularity the sur-
face area of an arbitrary wedge of angular width ∆φ becomes smaller and smaller
as the sectional angle ψ increases and vanishes at ψ = π. If a defect-free lattice
is embedded on such a wedge, Bragg rows will become closer and closer as the
singularity is approached with a consequent rise in the elastic energy (see Fig. 55).
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Figure 55. (Color online) Top view of a defect free triangulation of a fat torus with (n,m, l) = (10, 10, 20)
and V = 400. The corresponding elastic energy becomes very high in the interior of the torus where the
triangles are more compressed to match the reduction of surface area.

An intuitive way to reduce the distortion of the lattice is to recursively remove
Bragg rows as one approaches the point ψ = π (see Fig. 56). This is equivalent
to introducing a growing density of edge dislocations. This dislocation “cloud”
will ultimately disorder the system by destroying the local 6−fold bond orienta-
tional order. One might therefore view the curvature as playing the role of a local
effective temperature which can drive “melting” by liberating disclinations and
dislocations. In two-dimensional non-Euclidean crystals at T = 0, however, the
mechanism for dislocation proliferation is fundamentally different from the usual
thermal melting. While the latter is governed by an entropy gain due to unbinding
of dislocation pairs, the amorphization at T = 0 is due to the adjustment of the
lattice to the geometry of the embedding manifold via the proliferation of defects
and the consequent release of elastic stress. A similar phenomenon occurs in the
disorder-driven amorphization of vortex lattices in type-II and high-Tc supercon-
ductors [199, 200, 201].

Figure 56. (Color online) A schematic example of a dislocation pile-up on a square lattice resulting from
the shrinking of the area on a regular wedge of a fat torus.

Since the shrinking area per plaquette on the inside of the torus necessitates
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a high density of dislocations we may approximate the dislocation cloud in this
region by a continuous distribution of Burgers vector density b. Minimizing the
elastic energy with respect to b yields a variational equation from which the optimal
dislocation density can be calculated as a function of the ratio εd/(Y R2) between
the dislocation core energy εd and elastic energy scale Y R2 with R = R1 = R2.

As a starting point, we calculate the Green function GL(x,y) in the fat torus
limit r → 1 (i.e. κ→∞ and ω → 0, see Eq. (174)). The conformal angle ξ in this
limit is

lim
r→1

ξ = tan
ψ

2
,

and to leading order of κ we have

κ

16π2

(
ψ − 2

κ
ξ

)2

→ κ

16π2
ψ2 − ψ

4π
tan

ψ

2
,

κ

4π2
Re{Li2(αeiψ)} → κ

16π2
ψ2 +

1
2π2

log
(

cos
ψ

2

)
.

To handle the limit of the Jacobi theta function we can take u = ∆z/κ, q =
eiπτ = e−

2π
κ and calculate the limit q → 1. This can be done by using the modular

transformation properties of Jacobi functions[165, 166]:

ϑ1

(
u
τ | −

1
τ

)
= −i(−iτ)

1
2 e

iu2

πτ ϑ1(u|τ) . (218)

Thus τ ′ = −1/τ = iκ/2, u′ = u/τ = ∆z/(2i) and q′ = eiτ
′

= e−
πκ

2 , where

lim
q→1

ϑ1(u, q) = lim
q′→0

i

(
i

τ ′

)− 1
2

e
iu′2
πτ′ ϑ1(u′, q′) .

This is easily evaluated by means of the expansion

ϑ1(u, q) = 2q
1
4 sinu+ o

(
q

9
4

)
.

Taking the logarithm and neglecting irrelevant constant terms, we obtain

log

∣∣∣∣∣ϑ1

(
z − z′

κ

∣∣∣∣∣2iκ
)∣∣∣∣∣ ∼ log

∣∣∣∣sinh
(
z − z′

2

)∣∣∣∣ ,
which finally leads to

GL(ψ, φ, ψ′, φ′) ∼ − ψ′

4π2
tan

ψ′

2
+

1
2π

log
∣∣∣∣sinh

(
z − z′

2

)∣∣∣∣ , (219)

with z = tan(ψ/2) + iφ. With the Green function in hand, we can calculate the
effect of the curvature singularity at ψ = π on the distribution of defects. Let b be
the Burgers vector density of the dislocation cloud. Hereafter we work in a local
frame, so that

b = bψgψ + bφgφ , (220)
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with gi = ∂iR a basis vector in the tangent plane of the torus. R is a three-
dimensional surface vector parameterizing the torus and its Cartesian components
are given in Eq. (165). The quantity b has to be such that∫

D
d2x b(x) = bD ,

with bD the total Burger’s vector in a generic domain D. Because on a closed man-
ifold dislocation lines cannot terminate on the boundary, extending the integration
to the whole torus we have: ∫

d2x b(x) = 0 . (221)

Since the basis vectors gi in Eq. (220) have the dimension of length, contravariant
coordinates bi have dimensions of an inverse area. Assuming all defects to be paired
in the form of dislocations (i.e. qi = 0 everywhere), the total energy of the crystal
reads

F =
1

2Y

∫
d2xΓ2(x) + εd

∫
d2x |b(x)|2 , (222)

where εd is the dislocation core energy. The function Γ(x) encoding the elastic
stress due to the curvature and the screening contribution of the dislocation cloud
obeys

1
Y

∆gΓ(x) = εik∇ibk(x)−K(x) , (223)

where ∇i is the usual covariant derivative along the coordinate-direction i and εik
is the Levi-Civita antisymmetric tensor on the torus:

εψφ = −εφψ =
√
g , εji = gikε

jk .

The stress function Γ(x) can be expressed in the form Γ(x) = Γd(ψ, φ) − Γs(ψ)
with

Γs(ψ)
Y

= log
[

1
2(1 + cosψ)

]
+ 1 , (224a)

Γs(ψ, φ)
Y

=
∫
d2y εik∇ibk(y)GL(x,y) . (224b)

The integral term in Eq. (224b) can now be reduced to a more friendly functional
of b, suitable for a variational approach. Given the azimuthal symmetry we assume
that all dislocations are aligned along b = bφgφ.

Γd(ψ)
Y

=
1

2π

∫ π

−π
dψ′
√
g bφ(ψ′)

[
ψ′ + sinψ′ + π sgn(ψ − ψ′)

]
. (225)

Substituting Eq. (225) and (224a) in Eq. (222) and minimizing with respect to bφ,
the problem can be converted, after some algebraic manipulations, to the following
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Figure 57. (Color online) The Burgers vector component b(ψ) for different choices of λ.

Fredholm equation of the second kind:

λB(ψ)−
∫ π

−π
dψ′B(ψ′)K(ψ,ψ′) = f(ψ) , (226)

where λ = εd/(Y R2), B(ψ) = R2(1 + cosψ)2bφ(ψ) and the kernel K(ψ,ψ′) is given
by:

K(ψ,ψ′) =
1

4(1 + cosψ′)

{
π−1(ψ′ + sinψ′)(ψ + sinψ)

+ |ψ − ψ′|+ 2 cos
ψ + ψ′

2
sin
|ψ − ψ′|

2

}
. (227)

The function f(ψ) on the right hand side of Eq. (226) is given by

f(ψ) = −1
4

∫ ψ

−ψ
dψ′ (1 + cosψ′) Γs(ψ′)

=
1
2
{

[log 2(1 + cosψ)− 2] sinψ − 2 Cl2(ψ + π)
}

(228)

where Cl2 is the Clausen function (see Ref. [202], pp. 1005-1006) defined as

Cl2(x) = −
∫ x

0
dx log

(
2 sin

t

2

)
=
∞∑
k=1

sin kx
k2

.

As previously noted the dislocation core energy is εd is much smaller than the
elastic energy scale Y R2. Eq (226) is then suitable to be solved in powers of the
dimensionless number λ:

B(ψ) = B0(ψ) + λB1(ψ) + λ2B2(ψ) + · · ·

The corrections to the zero-order term B0(ψ) can be calculated recursively by
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solving a set of Fredholm equations of the first kind:

Bk−1(ψ) =
∫ π

−π
dψ′Bk(ψ)K(ψ,ψ′) k ≥ 1 .

The function B0(ψ) associated with the Burgers vector density of the dislocation
cloud in the limit λ → 0, on the other hand, can be calculated directly from
Eq. (223) by setting the effective topological charge density on the right hand side
to zero:

εik∇ibk(x)−K(x) = 0 . (229)

from which one obtains B0(ψ) = sinψ and

bφ =
sinψ

R2(1 + cosψ)2
. (230)

The Burgers vector density bφ obtained by a numerical solution of Eq. (226) is
shown in Fig. 57 for different values of λ. The Burgers vector density is measured
in units of R−2. The function bφ has cubic singularities at ψ = ±π and is approxi-
mately zero on the outside of the torus. The solid blue curve in Fig. 57 represents
the zeroth order solution of Eq.(230).

Now, in the theory of dislocation mediated melting a system at the solid liquid
phase boundary is described as a crystalline solid saturated with dislocations. In
three-dimensions, in particular, there is a strong experimental evidence of the exis-
tence of a critical dislocation density at the melting point ρ(Tm) ≈ 0.6b−2 where b
is the length of the length of the smallest perfect-dislocation Burgers vector [203].
Several theoretical works have motivated this evidence both for three-dimensional
solids and vortex lattices in super conductors [200]. On the other hand, given the
existence of such a critical density, its value can be empirically used to determine
whether a system is in a solid or liquid-like phase in the same spirit as the Lin-
demann criterion. With this goal in mind we can calculate the dislocation density
by requiring |b| = ρa with ρ the density of single lattice spacing dislocations. This
yields:

ρ(ψ, V )a2 = 2π

(√
3

2
V

)− 1
2 ∣∣∣∣tan

ψ

2

∣∣∣∣+ o(λ) (231)

Solving ρ(ψ, V )a2 = 0.6 as a function of ψ and V we obtain the diagram of Fig. 58.
As expected the inside of the torus contains an amorphous region whose angular
size decreases with the number of vertices V as a consequence of the reduction of
the lattice spacing.

6. Conclusion and discussion

In this article we have reviewed recent progress toward understanding the ground
state properties of two-dimensional ordered phases on substrate of non-zero Gaus-
sian curvature. Curved phases of matter are found in a broad class of systems com-
prising materials as different as viral capsids and carbon nanotori. The geometry
of the substrate gives rise to novel defective structures that would be energetically
prohibitive in the ground state of conventional flat systems. Defects may appear
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Figure 58. (Color online) Phase diagram for curvature driven amorphization. The inside of the torus
contains an amorphous region whose angular size decreases with the number of vertices V as a consequence
of the reduction of the lattice spacing.

Figure 59. (Color online) (Left) Idealized drawing of a side and top view and of a rippled gold nanoparticle
showing the two polar defects that must exist to allow the alternation of concentric rings. (Right) TEM
images of a chain obtained when 11-mercaptoundecanoic acid functionalized nanoparticles are reacted with
a water phase containing divalent 1,6-diaminohexane in a two-phase reaction. Scale bar 50 nm. From [204].

in curved space either because they are required by the topology of the underlying
substrate (as in the case of spherical crystals and nematics) or because they are
favored by the curvature itself. The purely curvature driven energetic nature of the
latter phenomenon is of fundamental interest.

On the material science side, non-Euclidean systems provides a promising route
to constructing arrays of nanoparticles via the chemical functionalization of topo-
logical defects created on the surface of the particles by coating them with an or-
dered monolayer. Candidates for such coatings include triblock coplymers, gemini
lipids, metallic or semiconducting nanorods and conventional liquid crystal com-
pounds. If the induced order is vector-like or striped, then there must necessarily
be two defective regions corresponding to the bald spots exhibited by a combed
sphere or the source and sink of fluid flow confined to a sphere. Not only are the
defects physically and mathematically distinguished, since the condensed matter
order vanishes there, but it also turns out that chemical processes can detect the
defects and insert linker molecules at the precise defect locations. This creates the
possibility of efficiently making functionalized nanoparticles with a precise valence
and corresponding directional bonding. The nanoparticles themselves can then be
linked into well-defined two and three dimensional arrays. Control over the valence
and the geometry of the directional bonding can be achieved by varying the nature
of the ordered monolayer.

This scheme has been demonstrated recently in the work of DeVries et al. [204] in
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which gold nanoparticles are coated with two species of naturally phase separating
ligands (see Fig. 59). Phase separation on the spherical gold surface translates to a
striped arrangement of alternating ligands. Such a spherical smectic has topological
defects at the north and south pole of the nanopartcle. These may be functionalized
by attaching thiol-based linker molecules at the defects via place-exchange reac-
tions. This creates a divalent gold nanoparticle with directional bonds 180 degrees
apart. These in turn can be linked to create polymers and free-standing films.
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[1] J. D’Alembert Essai d’une nouvelle théorie de la résistance des fluides, 1752.
[2] J.D. Bernal, Nature 185 (1960), p. 68.
[3] ———, Proc. R. Soc. A 280 (1964), p. 299.
[4] J.D. Bernal and J.L. Finney, Discuss. Faraday Soc. 43 (1967), p. 62.
[5] J.L. Finney and J.D. Bernal, Nature 213 (1967), p. 1079.
[6] J.L. Finney, Proc. R. Soc. A 319 (1970), p. 479.
[7] S. Torquato, T.M. Truskett, and P.G. Debenedetti, Phys. Rev. Lett. 84 (2000), p. 2064.
[8] D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett. 53 (1984), p. 1951.
[9] D. Levine and P.J. Steinhardt, Phys. Rev. Lett. 53 (1984), p. 2477.

[10] J.C. Dyre, Rev. Mod. Phys. 78 (2006), p. 953.
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