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Enhan
ed di�usion and ordering of self-propelled rodsAparna Baskaran1 and M. Cristina Mar
hetti21Physi
s Department, Syra
use University, Syra
use NY 132442Physi
s Department and Syra
use Biomaterials Institute, Syra
use University, Syra
use, NY 13244, USA(Dated: June 27, 2008)Starting from a minimal physi
al model of self propelled hard rods on a substrate in two di-mensions, we derive a modi�ed Smolu
howski equation for the system. Self -propulsion enhan
eslongitudinal di�usion and modi�es the mean �eld ex
luded volume intera
tion. From the Smolu-
howski equation we obtain hydrodynami
 equations for rod 
on
entration, polarization and nemati
order parameter. New results at large s
ales are a lowering of the density of the isotropi
-nemati
transition and a strong enhan
ement of boundary e�e
ts in 
on�ned self-propelled systems.PACS numbers: 87.18.Ed, 47.54.-r, 05.65.+bSelf propelled parti
les 
onsume energy from internalor external sour
es and dissipate it by a
tively mov-ing through the medium that they inhabit. Assembliesof intera
ting self-propelled parti
les (SPP) exhibit ri
h
olle
tive behavior, su
h as nonequilibrium phase tran-sitions between disordered and ordered (possibly mov-ing) states and novel long-range 
orrelations. Biologi-
ally relevant systems that belong to this 
lass in
lude�sh s
hools, bird �o
ks [1℄, ba
terial 
olonies [2℄ and 
ellextra
ts of 
ytoskeletal �laments and asso
iated motorproteins [3℄. A non-living realization may be a vibratedmonolayer of granular rods [4℄. Colle
tions of SPP havebeen the fo
us of extensive experimental [3, 4, 5℄ and the-oreti
al studies in re
ent years. A number of distin
t the-oreti
al approa
hes have proved fruitful for understand-ing the 
omplex dynami
s of these nonequilibrium sys-tems. These in
lude numeri
al studies of simple mod-els [6, 7, 8, 9℄, inspired by the seminal work of Vi
sek[10℄, and phenomenologi
al 
ontinuum theories based ongeneral symmetry arguments [11℄. Re
ent work on de-riving the hydrodynami
 equations from spe
i�
 mi
ro-s
opi
 models has led to some insight into the origin of the
olle
tive behavior of these systems [12, 13, 14, 15, 16℄.An important open question that we address here is theinterplay between self propulsion and steri
 e�e
ts aris-ing from the shape of the parti
le in 
ontrolling the larges
ale physi
s.In this paper we 
onsider a physi
al model of self-propelled hard rods that intera
t with ea
h other solelythrough ex
luded volume. The rods move on a passivesubstrate. Self-propulsion is modeled as a nonequilib-rium velo
ity v0 along the dire
tion of the rods' long axes.The goal of our work is to understand how self-propulsionmodi�es the di�usion pro
esses and the mean-�eld On-sager ex
luded volume intera
tion [17℄. Using the tools ofnonequilibrium statisti
al me
hani
s we derive amodi�edSmolu
howski equation that di�ers from the familiar ver-sion for thermal hard rods [17℄ in three respe
ts. The �rstand obvious modi�
ation is a 
onve
tive mass �ux at theself-propulsion speed v0 along the dire
tion of orientationof the rod. Se
ondly, self-propulsion enhan
es the longi-

FIG. 1: A 
ap-to-side 
ollision of two self-propelled hard rods(the width of the rod is exaggerated for 
larity). bk is a unitve
tor from rod 2 to rod 1 normal to the point of 
onta
t.Points on the side of the rods are identi�ed by ve
tors ξi.tudinal di�usion 
onstant D‖ of the rods, a

ording to
D‖ → D‖(1+v2

0
/kBT ). This enhan
ement arises be
auseself-propelled parti
les perform a persistent random walk,as re
ently pointed out by other authors [18℄. Finally, themomentum ex
hanged by two rods upon 
ollision is ren-dered highly anisotropi
 by self-propulsion thus modify-ing the Onsager form of the ex
luded volume intera
tion.This leads to novel anisotropi
 for
es and torques fromsteri
 repulsion in the Smolu
howski equation.These modi�
ations of the Smolu
howski equationhave dramati
 
onsequen
es for the properties of the sys-tem on hydrodynami
 s
ales. This is illustrated by twoexamples. First, we show that the additional momentumtransfer from self-propulsion lowers the density of theisotropi
-nemati
 transition, thereby providing a mi
ro-s
opi
 identi�
ation for the physi
al me
hanism respon-sible for the enhan
ement of orientational order observedin numeri
al simulations of motility assays [8℄. Se
ondly,we demonstrate that self-propulsion greatly enhan
es thee�e
t of 
on�nement and the role of boundaries.

http://arXiv.org/abs/0806.4559v1


2The mi
ros
opi
 model. We 
onsider quasi two-dimensional hard rods of length ℓ and thi
kness 2R 
on-�ned to a plane, as shown in Fig. 1. The i-th rod is
hara
terized by the position ri of its 
enter of mass anda unit ve
tor ûi = (cos θi, sin θi) dire
ted along its longaxis. Ea
h rod free-streams on the substrate, until it
ollides with another rod. The 
ollision results in instan-taneous linear and angular momentum transfer su
h thatthe total energy, linear and angular momenta of the tworods are 
onserved. The mi
rodynami
s of the system isgoverned by 
oupled Langevin equations,
∂vi

∂t
= −

∑

j

T (i, j)vi + F ûi − ζi · vi + ηi (t) , (1)
∂ωi

∂t
= −

∑

j

T (i, j)ωi − ζRωi + ηR
i (t) , (2)where vi = ∂tri and ωi = ∂tθi are the 
enter of massand angular velo
ities, ζi is the fri
tion tensor, with

ζi
αβ = ζ‖ûiαûiβ + ζ⊥(δαβ − ûiαûiβ), ζR is the rota-tional fri
tion, and the mass of the rods has been setto one. The se
ond term on the right hand side ofEq. (1) des
ribes self propulsion as a 
enter of massfor
e F a
ting along the long axis of ea
h rod. Thisfor
e is nonequilibrium in origin and arises from aninternal or external propulsion me
hanism. The ran-dom for
es ηi and ηR

i des
ribe Markovian white noisewith 
orrelations 〈ηiα (t) ηjβ (t′)〉 = ∆i
αβδijδ (t − t′) and〈

ηR
i (t) ηR

j (t′)
〉

= ∆Rδijδ (t − t′). For simpli
ity we as-sume the equilibrium-like form ∆i
αβ = 2kBTaζi

αβ and
∆R = 2kBTaζR/I, with I = ℓ2/12 the moment of iner-tia of the rod and Ta an e�e
tive temperature de�ned bythese relationships. Finally, the 
ollision operator T (i, j)generates the instantaneous momentum transfer betweenrods at 
onta
t and is given by

T (1, 2) =

∫

s1,s2

∫

k̂

∣∣∣V12 · k̂
∣∣∣Θ
(
−V12 · k̂

)

×δ (Γcont) (b12 − 1) , (3)where k̂ is the unit normal at the point of 
onta
t ofthe two rods dire
ted from rod 2 to rod 1, as shownin Fig. 1. The fun
tion Γcont (r1, r2, ξ1, ξ2) is nonzerowhen two rods are at 
onta
t and zero otherwise. Here
ξi is a ve
tor from the 
enter of mass of the i-th rodto the point of 
onta
t, ξi = siûi ± Rk̂, where −ℓ/2 ≤
si ≤ ℓ/2 parametrizes the distan
e of points along theaxis of ea
h rod from the 
enter of mass and ∫si

... ≡
∫ ℓ/2

−ℓ/2
...dsi. Also, V12 = v1 − v2 + ω1 × ξ1 − ω2 × ξ2is the relative velo
ity of the two rods at the point of
onta
t. Finally, the operator b12 repla
es pre
ollisionalvelo
ities with their post
ollisional values, as obtainedby requiring energy and momentum 
onservation. Theexpli
it 
al
ulation of the T operator is given in [19℄.

Modi�ed Smolu
howski equation. We are interestedhere in the overdamped limit, when inertial e�e
ts arenegligible and the low density dynami
s is des
ribed bya Smolu
howski equation for the the probability distribu-tion c (x, t), with x = (r, θ), of rods at a point r orientedin the dire
tion θ. The derivation of the Smolu
howskiequation for self-propelled hard rods 
an be 
arried outfollowing 
losely that of thermal hard rods and is givenin [19℄. Here, we outline the key steps involved.1. First, the noise averaged statisti
al me
hani
s of asystem des
ribed by a set of 
oupled Langevin equationsis given in terms of the Liouville-Fokker-Plan
k equa-tion governing the dynami
s of an N parti
le distributionfun
tion [20℄. This 
an in turn be 
onverted into a hierar-
hy of equations for redu
ed distribution fun
tions anal-ogous to the BBGKY hierar
hy for Hamiltonian systems.At low density, negle
ting two parti
le 
orrelations, the�rst equation of the hierar
hy gives a 
losed Boltzamnn-Fokker-Plan
k equation for the one parti
le distributionfun
tion f (x, p, t), with p = (v, ω).2. The probability distribution is c (x, t) =
∫

p f(x, p, t).In the regime of large fri
tion, the velo
ities of therods de
ay to a stationary value on mi
ros
opi
 times
ales. We use an approximate solution of the nonin-tera
ting Fokker-Plan
k equation valid in the large fri
-tion regime, f (x, p, t) = c (x, t) fM (p|θ), with fM ∼
exp

(
− 1

2kBTa

(v − v0û)
2 − 1

2kBTa

Iω2

) a Maxwellian dis-tribution 
entered at the self-propulsion velo
ity v0û.With this ansatz, the Bolztmann-Fokker-Plan
k equation
an be transformed to a 
losed equation for the spatialprobability distribution, c.3. To obtain this 
losed equation we need to evaluatethe mean for
e and torque on a given rod due to all otherrods in the �uid, namely 〈T (1, 2)v1〉M and 〈T (1, 2)ω1〉M ,where 〈...〉M =
∫

p1,p2

...fM (p1|θ1)fM (p2|θ2). In the ab-sen
e of self propulsion, this average 
an be readily 
ar-ried out and yields the Onsager ex
luded volume inter-a
tion. For �nite self propulsion, fM depends on theangular 
oordinate and hen
e averaging over velo
itiesindu
es orientational 
orrelations that 
annot be in
orpo-rated exa
tly. To make progress, we let v′
i = vi − ûiv0 inthe 
al
ulation of the velo
ity averages and then negle
tthe 
oupling between velo
ity and angular 
orrelationsby approximating 〈T (1, 2)v1〉M ≃ 〈T (1, 2)v1〉M|v0=0

+
〈T (1, 2)v1〉v0

, where the se
ond term is averaged over
fv0

(p1)fv0
(p2), with fv0

(pi) = δ (vi − v0ûi) δ (ωi).The result is the modi�ed Smolu
howski equation:
∂tc + v0∂‖c = DR∂θc + (D‖ + DS)∂2

‖c + D⊥∂2

⊥c

− 1

IζR
∂θτex −∇ · ζ−1 · Fex

− 1

IζR
∂θτSP −∇ · ζ−1 · FSP , (4)where ∂‖ = û · ∇ and ∂⊥ = ∇ − û(û · ∇). The
onve
tive term on the left hand side of (4) is a trivial



3
onsequen
e of self propulsion and des
ribes mass �uxalong the long axis of the rod. The �rst three termson the right hand side of the equation des
ribe transla-tional di�usion longitudinal (D‖) and transverse (D⊥)to the rod's long axis and rotational di�usion (DR).For long thin rods D‖ = 2D⊥ = D. At low density
D = kBTa/ζ‖ and DR = 6D/ℓ2. A novel 
onsequen
eof self-propulsion is the enhan
ement of longitudinaldi�usion by DS = v2

0
/ζ‖. This 
an be understood bynoting that a di�using rod performs a random walkwith a step length xα = ζ−1

αβ vβ . For thermal systems therod's velo
ity is isotropi
 on average and has magnitude
vth ∼

√
kBTa. In this 
ase the anisotropy of di�usionarises solely from the anisotropy of the fri
tion tensor.For self-propelled rods the step length along the longdire
tion of the rod is enhan
ed, yielding an additional
ontribution to the longitudinal di�usion 
oe�
ient.Equivalently, longitudinal di�usion of a self-propelledrod 
an be reformulated as a persistent random walkwhere the rod has a bias ∼ v0 towards steps along its longaxis [18℄. The next three terms in (4) des
ribe ex
ludedvolume e�e
ts within the mean-�eld approximation dueto Onsager. The 
orresponding for
es and torque 
anbe derived from the familiar ex
luded volume potentialas τex = −∂θVex and Fex = −∇Vex, with Vex(x1) =

kBTac(x1, t)
∫

ξ12

∫
û2

|û1 × û2| c (r1 + ξ12, θ2, t), with
ξ12 = ξ1 − ξ2. Finally, τSP and FSP des
ribe, withina mean-�eld approximation, the additional torque andfor
e due to anisotropi
 linear and angular momentumtransfer during the 
ollision of two self-propelled rods,
(

FSP

τSP

)
= v2

0

∫

x2,s1,s2,k̂

(
k̂

ẑ · (ξ1 × k̂)

)
[ẑ · (û1 × û2)]

2

×Θ(−û12 · k̂)δ (Γcont) c(x1, t)c(x2, t), (5)

with û12 = û1 − û2. In Onsager's mean �eld model, twothin rods of length ℓ ex
hange an average momentum
〈|∆v|〉 νcoll ∼ kBTa/ℓ per unit time upon 
ollision, with
〈|∆v|〉 ∼

√
kBTa and νcoll = vth/ℓ ∼

√
kBTa/ℓ. Whenrods are self propelled there are anisotropi
 
ontributionsto both the momentum ex
hanged (〈|∆v|〉 ∼ v0|û1× û2|)and the 
ollision rate (νcoll ∼ v0|û1× û2|/ℓ). These yieldthe new anisotropi
 steri
 for
es and torques in Eq. (5).Hydrodynami
s. We now use the modi�ed Smolu-
howski equation to obtain 
oarse-grained equations thatdes
ribe the dynami
s of the systems on wavelengthslong 
ompared to the length of the rods and on times
ales long 
ompared to the 
ollision time. In thisregime the dynami
s is 
ontrolled by the �slow vari-ables� 
orresponding to the 
onserved densities (here onlythe 
on
entration of �laments ρ =

∫
bu

c(x, t) ) and the�elds asso
iated with possible broken symmetries. Ina liquid of self-propelled rods, both polar and nemati
order are possible, des
ribed by a polarization ve
tor
P(r, t) =

∫
bu
ûc(x, t) and the nemati
 alignment tensor

Qαβ(r, t) =
∫

bu
(ûαûβ − 1

2
δαβ)c(x, t), respe
tively. Sin
eea
h rod has a self propulsion velo
ity v0û, the polariza-tion is also proportional to the self propulsion �ow �eld.The equations for these 
ontinuum �elds are obtained bytaking the 
orresponding moments of the Smolu
howskiequation (4) and are given by

∂tρ + v0∇ ·P = Dρ∇2ρ + DQ∇∇ : ρQ (6)
∂tP + DRP − λP · Q + v0∇ · Q +

v0

2
∇ρ + λ′[3(P · ∇)P − 1

2
∇P 2 − P∇ ·P] = Db∇2P + (Dspl − Db)∇∇ ·P (7)

∂tQ + 4DR

(
1 − ρ

ρIN

)
Q + v0F = −λ′′

(
3

5
P · ∇Q +

1

48
Q∇ ·P+

1

48
G +

1

96
F

)
+

DQ

4
(∇∇ − 1

2
1)ρ (8)where Fαβ = (∂αPβ + ∂βPα − δαβ∇ · P) and Gαβ =

Qαγ∂γPβ + Qβγ∂γPα − δαβQσγ∂γPσ. All λ parametersin Eqs. (7) and (8) are proportional to v2

0
and vanish inthe absen
e of self propulsion. All di�usion 
onstants areenhan
ed by self-propulsion via additive terms propor-tional to DS. Finally, we have suppressed in Eqs. (6-8)ex
luded volume 
orre
tions to the di�usive terms, non-linear terms of se
ond order in gradients, and 
orre
tionsto the 
onve
tive terms beyond linear in v0. The 
om-

plete hydrodynami
 equations with expli
it expressionsfor the various 
oe�
ients 
an be found in Ref. [19℄.The stable homogeneous stationary solution of Eqs. (6-8) are the bulk states of the self-propelled system. Twosu
h states are possible: an isotropi
 state, with ρ =
constant, P = 0, Qαβ = 0, and a nemati
 state, with
ρ = constant, P = 0 and Qαβ 6= 0. Hard 
ore intera
-tions and self-propulsion modeled simply as a body for
eare not su�
ient to generate a bulk polar state, with
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FIG. 2: (
olor online) The polarization in a 
hannel of width
L for δ/L = 0.2 (solid) and δ/L = 0.6 (dashed).
P 6= 0. Either shape or mass distribution asymmetryof the driven parti
les or hydrodynami
 intera
tions areessential to obtain a ma
ros
opi
 polar (moving) state.Self-propulsion has, however, a profound e�e
t on theisotropi
-nemati
 transition whi
h o

urs at the density
ρIN (v0) = ρN/(1 +

v2

0

5kBT ), where ρN = 3/(πℓ2) is theOnsager transition density. The transition o

urs wherethe 
oe�
ient of the term linear in Qαβ on the righthand side of Eq. (8) 
hanges sign, signaling the unsta-ble growth of nemati
 �u
tuations. This enhan
ement oforientational order has been observed in numeri
al simu-lations of a
tin motor assays, where a
tin �laments moveon a substrate grafted with motor proteins [8℄. It arisesfrom the additional torque τSP that self-propelled rodsexperien
e upon 
ollision as 
ompared to thermal rods.This enhan
es entropi
 ordering and aligns the rods [21℄.Although no bulk polar order is possible in our sys-tem, self-propulsion greatly enhan
es the length s
aleover whi
h polarization �u
tuations de
ay. As a resultboundaries pay a 
ru
ial role in self propelled systems.To illustrate this we 
onsider a self-propelled 2d hardrod �uid 
on�ned in the 
hannel of width L between twoboundaries, as shown in Fig. 2. We assume that theboundaries indu
e polarity by for
ing all rods to alignin the same dire
tion, i.e., Px(−L/2) = Px(L/2) = P0.In this geometry the density is 
onstant. One 
an eas-ily solve for the polarization pro�le a
ross the 
hannelwith the result Px(y) = P0 cosh(y/δ)/ cosh(L/2δ), where
δ =

√
Db/DR = ℓ/2

√
5/2 + v2

0
/kBT is the boundarylayer width over whi
h the polarization penetrates in the
hannel. In the absen
e of self-propulsion δ ∼ ℓ, i.e., a�nite polarization at the boundary de
ays (via rotationaldi�usion) over a length s
ale of order ℓ. For large self-propulsion velo
ity, δ ∼ |v0|. If L ∼ δ the entire 
hannelis e�e
tively polarized. We stress that numeri
al simu-lations of self-propelled rods on a substrate have indeedobserved large 
orrelated regions of �nite polarization,but never an ordered bulk state. We expe
t that theboundary layer length δ also sets the s
ale of 
orrelationsin bulk systems. Finally, as shown in [15℄, Eqs. (6-8) yieldtwo important properties of �u
tuations in self-propelledsystems. First, the isotropi
 state 
an support sound-like propagating density waves for a range of waveve
-tors above a 
riti
al value of v0. Se
ondly, large number

�u
tuations always destabilize the homogeneous nemati
state. We refer the reader to Ref. [15℄ for a 
ompletedes
ription of both results.In summary, we have analyzed a simple model that
aptures two 
ru
ial properties of self-propelled systems:the orientable shape of the parti
les and the self propul-sion. Using the tools of nonequilibrium statisti
al me-
hani
s we have derived a modi�ed Smolu
howski equa-tion for SPP and used it to identify the mi
ros
opi
 originof several observed or observable large s
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