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Enhanced diffusion and ordering of self-propelled rods

Aparna Baskaran! and M. Cristina Marchetti?

! Physics Department, Syracuse University, Syracuse NY 13244
? Physics Department and Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 18244, USA
(Dated: June 27, 2008)

Starting from a minimal physical model of self propelled hard rods on a substrate in two di-
mensions, we derive a modified Smoluchowski equation for the system. Self -propulsion enhances
longitudinal diffusion and modifies the mean field excluded volume interaction. From the Smolu-
chowski equation we obtain hydrodynamic equations for rod concentration, polarization and nematic
order parameter. New results at large scales are a lowering of the density of the isotropic-nematic
transition and a strong enhancement of boundary effects in confined self-propelled systems.

PACS numbers: 87.18.Ed, 47.54.-r, 05.65.4+b

Self propelled particles consume energy from internal
or external sources and dissipate it by actively mov-
ing through the medium that they inhabit. Assemblies
of interacting self-propelled particles (SPP) exhibit rich
collective behavior, such as nonequilibrium phase tran-
sitions between disordered and ordered (possibly mov-
ing) states and novel long-range correlations. Biologi-
cally relevant systems that belong to this class include
fish schools, bird flocks [1], bacterial colonies [2] and cell
extracts of cytoskeletal filaments and associated motor
proteins [3]. A non-living realization may be a vibrated
monolayer of granular rods @] Collections of SPP have
been the focus of extensive experimental B, 4, B] and the-
oretical studies in recent years. A number of distinct the-
oretical approaches have proved fruitful for understand-
ing the complex dynamics of these nonequilibrium sys-
tems. These include numerical studies of simple mod-
els E, B, , @], inspired by the seminal work of Vicsek
m], and phenomenological continuum theories based on
general symmetry arguments m] Recent work on de-
riving the hydrodynamic equations from specific micro-
scopic models has led to some insight into the origin of the
collective behavior of these systems m, , , , ]
An important open question that we address here is the
interplay between self propulsion and steric effects aris-
ing from the shape of the particle in controlling the large
scale physics.

In this paper we consider a physical model of self-
propelled hard rods that interact with each other solely
through excluded volume. The rods move on a passive
substrate. Self-propulsion is modeled as a nonequilib-
rium velocity vg along the direction of the rods’ long axes.
The goal of our work is to understand how self-propulsion
modifies the diffusion processes and the mean-field On-
sager excluded volume interaction m] Using the tools of
nonequilibrium statistical mechanics we derive a modified
Smoluchowski equation that differs from the familiar ver-
sion for thermal hard rods m] in three respects. The first
and obvious modification is a convective mass flux at the
self-propulsion speed vy along the direction of orientation
of the rod. Secondly, self-propulsion enhances the longi-
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FIG. 1: A cap-to-side collision of two self-propelled/\hard rods
(the width of the rod is exaggerated for clarity). k is a unit
vector from rod 2 to rod 1 normal to the point of contact.
Points on the side of the rods are identified by vectors &;.

tudinal diffusion constant D) of the rods, according to
Dy — D (1+v§/kpT). This enhancement arises because
self-propelled particles perform a persistent random walk,
as recently pointed out by other authors m] Finally, the
momentum exchanged by two rods upon collision is ren-
dered highly anisotropic by self-propulsion thus modify-
ing the Onsager form of the excluded volume interaction.
This leads to novel anisotropic forces and torques from
steric repulsion in the Smoluchowski equation.

These modifications of the Smoluchowski equation
have dramatic consequences for the properties of the sys-
tem on hydrodynamic scales. This is illustrated by two
examples. First, we show that the additional momentum
transfer from self-propulsion lowers the density of the
isotropic-nematic transition, thereby providing a micro-
scopic identification for the physical mechanism respon-
sible for the enhancement of orientational order observed
in numerical simulations of motility assays ﬂg] Secondly,
we demonstrate that self-propulsion greatly enhances the
effect of confinement and the role of boundaries.
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The microscopic model. We consider quasi two-
dimensional hard rods of length ¢ and thickness 2R con-
fined to a plane, as shown in Fig. [l The i-th rod is
characterized by the position r; of its center of mass and
a unit vector @1; = (cos#;,siné;) directed along its long
axis. Each rod free-streams on the substrate, until it
collides with another rod. The collision results in instan-
taneous linear and angular momentum transfer such that
the total energy, linear and angular momenta of the two
rods are conserved. The microdynamics of the system is
governed by coupled Langevin equations,
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where v; = Oir; and w; = 0:0; are the center of mass
and angular velocities, ¢; is the friction tensor, with
Céﬁ = Cllﬁia'&iﬁ + CL((SQQ — '&mﬁiﬁ), Cr is the rota-
tional friction, and the mass of the rods has been set
to one. The second term on the right hand side of
Eq. (@) describes self propulsion as a center of mass
force F' acting along the long axis of each rod. This
force is nonequilibrium in origin and arises from an
internal or external propulsion mechanism. The ran-
dom forces m; and n? describe Markovian white noise
with correlations (1o (t) 15 (t')) = Af0i;0 (t —t') and
(@) nf (")) = AR6;6(t—1t'). For simplicity we as-
sume the equilibrium-like form Afw = 2kBTa<éﬁ and
AR = 2kpT,(®/I, with I = ¢2/12 the moment of iner-
tia of the rod and T, an effective temperature defined by
these relationships. Finally, the collision operator T (4, j)
generates the instantaneous momentum transfer between
rods at contact and is given by

= e o
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where k is the unit normal at the point of contact of
the two rods directed from rod 2 to rod 1, as shown
in Fig. Ml The function Teopt (r1,1r2,&1,&2) is nonzero
when two rods are at contact and zero otherwise. Here
& is a vector from the center of mass of the i-th rod
to the point of contact, & = s;01; £ Rk, where —¢/2 <
s; < ¢/2 parametrizes the distance of points along the
axis of each rod from the center of mass and fsi . =

ff232 .dsi. Also, Vio = vi —vo + w1 X & —ws X &
is the relative velocity of the two rods at the point of
contact. Finally, the operator b;5 replaces precollisional
velocities with their postcollisional values, as obtained
by requiring energy and momentum conservation. The

explicit calculation of the T" operator is given in m]

Modified Smoluchowski equation. We are interested
here in the overdamped limit, when inertial effects are
negligible and the low density dynamics is described by
a Smoluchowski equation for the the probability distribu-
tion ¢ (x,t), with = (r,0), of rods at a point r oriented
in the direction 6. The derivation of the Smoluchowski
equation for self-propelled hard rods can be carried out
following closely that of thermal hard rods and is given

|. Here, we outline the key steps involved.

1. First, the noise averaged statistical mechanics of a
system described by a set of coupled Langevin equations
is given in terms of the Liouville-Fokker-Planck equa-
tion governing the dynamics of an IV particle distribution
function @] This can in turn be converted into a hierar-
chy of equations for reduced distribution functions anal-
ogous to the BBGKY hierarchy for Hamiltonian systems.
At low density, neglecting two particle correlations, the
first equation of the hierarchy gives a closed Boltzamnn-
Fokker-Planck equation for the one particle distribution
function f (z,p,t), with p = (v,w).

2. The probability distribution is ¢ (z, t) f flz,p,t
In the regime of large friction, the velocmes of the
rods decay to a stationary value on microscopic time
scales. We use an approximate solution of the nonin-
teracting Fokker-Planck equation valid in the large fric-
tion regime, f(x,p,t) = c(x,t) far (p|0), with far ~
exp (~3m7n sty 1w
tribution centered at the self-propulsion velocity vgu.
With this ansatz, the Bolztmann-Fokker-Planck equation
can be transformed to a closed equation for the spatial
probability distribution, c.

3. To obtain this closed equation we need to evaluate
the mean force and torque on a given rod due to all other
rods in the fluid, namely (T'(1,2)v1) s and (T'(1,2)w1) ar,
where (..)y, = [, -.fu(p1]61) far(p2[f2). In the ab-
sence of self propulsion, this average can be readily car-
ried out and yields the Onsager excluded volume inter-
action. For finite self propulsion, fj; depends on the
angular coordinate and hence averaging over velocities
induces orientational correlations that cannot be incorpo-
rated exactly. To make progress, we let v, = v; — ;09 in
the calculation of the velocity averages and then neglect
the coupling between velocity and angular correlations
by approximating (T'(1,2)vi)m =~ (T(1,2)vi)m),,—o +
(T'(1,2)v1)y,, where the second term is averaged over
foo (P1) foo (P2), With fu, (i) = 6 (vi — voihi) 6 (wi).

The result is the modified Smoluchowski equation:
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where ) = -V and 8, = V —u(a- V). The
convective term on the left hand side of ) is a trivial



consequence of self propulsion and describes mass flux
along the long axis of the rod. The first three terms
on the right hand side of the equation describe transla-
tional diffusion longitudinal (D)) and transverse (D))
to the rod’s long axis and rotational diffusion (Dg).
For long thin rods D = 2D, = D. At low density
D = kBTa/CH and D = 6D/f%. A novel consequence
of self-propulsion is the enhancement of longitudinal
diffusion by Dg = v§/¢). This can be understood by
noting that a diffusing rod performs a random walk
with a step length z, = C;&UB- For thermal systems the
rod’s velocity is isotropic on average and has magnitude
un ~ VkpT,. In this case the anisotropy of diffusion
arises solely from the anisotropy of the friction tensor.
For self-propelled rods the step length along the long
direction of the rod is enhanced, yielding an additional
contribution to the longitudinal diffusion coefficient.
Equivalently, longitudinal diffusion of a self-propelled
rod can be reformulated as a persistent random walk
where the rod has a bias ~ vy towards steps along its long
axis [1§]. The next three terms in (@) describe excluded
volume effects within the mean-field approximation due
to Onsager. The corresponding forces and torque can
be derived from the familiar excluded volume potential
as Teyw = —0pVer and Fop = —V V., with Vo, (z1) =
kBTaC(Il, t) fflz fﬁ2 |ﬁ1 X ﬁ2| C(I‘l + 612, 92, t), with
1o = & — & . Finally, 7sp and Fgp describe, within
a mean-field approximation, the additional torque and
force due to anisotropic linear and angular momentum
transfer during the collision of two self-propelled rods,

k o
(E:ﬁ) = v} /@,51,32,12 ( 2 (&1 1A<)> 2 - (7 x 1))

X@(-ﬁlQ . E)(s (Fcont) C(-Il, t)C(.IQ, t)’ (5)

with 112 = @13 — 2. In Onsager’s mean field model, two
thin rods of length ¢ exchange an average momentum
(|AV]) veouu ~ kpT,/¢ per unit time upon collision, with
(JAv|) ~ VET, and veoy = vin/l ~ VkpT,/¢. When
rods are self propelled there are anisotropic contributions
to both the momentum exchanged ({JAv|) ~ vg|li; X 012])
and the collision rate (Voo ~ vo|l1 X G2|/¢). These yield
the new anisotropic steric forces and torques in Eq. (&).

Hydrodynamics. We now use the modified Smolu-
chowski equation to obtain coarse-grained equations that
describe the dynamics of the systems on wavelengths
long compared to the length of the rods and on time
scales long compared to the collision time. In this
regime the dynamics is controlled by the “slow vari-
ables” corresponding to the conserved densities (here only
the concentration of filaments p = [; c(x,t) ) and the
fields associated with possible broken symmetries. In
a liquid of self-propelled rods, both polar and nematic
order are possible, described by a polarization vector
P(r,t) = [;uc(z,t) and the nematic alignment tensor
Qap(r,t) = [5(Ualip — 30ap)c(z,t), respectively. Since
each rod has a self propulsion velocity vou, the polariza-
tion is also proportional to the self propulsion flow field.
The equations for these continuum fields are obtained by
taking the corresponding moments of the Smoluchowski
equation (@) and are given by

op+voV-P=D,V*p+ DoVV : pQ (6)

1
0P +DRP —\P-Q+ 1V - -Q+ %Ovp +N[3(P-V)P - §VP2 —~ PV -P]=D,V?P + (Dgyp — D,)VV - P (7)
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where Fag = (8apﬁ —i—aﬁpa — 5QBV . P) and Gaﬁ =
Qa0+ Ps + Q3,0 Po — 003Qs~0FPs. All X\ parameters
in Egs. (@) and (®) are proportional to v3 and vanish in
the absence of self propulsion. All diffusion constants are
enhanced by self-propulsion via additive terms propor-
tional to Dg. Finally, we have suppressed in Eqgs. (GHR)
excluded volume corrections to the diffusive terms, non-
linear terms of second order in gradients, and corrections
to the convective terms beyond linear in vy. The com-

1 1 1 D 1
P-VQ+EQV~P+—G+—F> +=2(VV-21)p (8)
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plete hydrodynamic equations with explicit expressions
for the various coefficients can be found in Ref. ||E]

The stable homogeneous stationary solution of Eqs. (6+
[B) are the bulk states of the self-propelled system. Two
such states are possible: an isotropic state, with p =
constant, P = 0, Q.3 = 0, and a nematic state, with
p = constant, P = 0 and Q.3 # 0. Hard core interac-
tions and self-propulsion modeled simply as a body force
are not sufficient to generate a bulk polar state, with
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FIG. 2: (color online) The polarization in a channel of width
L for 6/L = 0.2 (solid) and 6/L = 0.6 (dashed).

P # 0. Either shape or mass distribution asymmetry
of the driven particles or hydrodynamic interactions are
essential to obtain a macroscopic polar (moving) state.
Self-propulsion has, however, a profound effect on the
isotropic-nematic transiztion which occurs at the density
prn(vo) = pn /(1 + gpip), where py = 3/(m(?) is the
Onsager transition density. The transition occurs where
the coefficient of the term linear in Qo3 on the right
hand side of Eq. (8) changes sign, signaling the unsta-
ble growth of nematic fluctuations. This enhancement of
orientational order has been observed in numerical simu-
lations of actin motor assays, where actin filaments move
on a substrate grafted with motor proteins ﬂg] It arises
from the additional torque 7sp that self-propelled rods
experience upon collision as compared to thermal rods.
This enhances entropic ordering and aligns the rods M]

Although no bulk polar order is possible in our sys-
tem, self-propulsion greatly enhances the length scale
over which polarization fluctuations decay. As a result
boundaries pay a crucial role in self propelled systems.
To illustrate this we consider a self-propelled 2d hard
rod fluid confined in the channel of width L between two
boundaries, as shown in Fig. @ We assume that the
boundaries induce polarity by forcing all rods to align
in the same direction, i.e., P,(—L/2) = P,(L/2) = Pp.
In this geometry the density is constant. One can eas-
ily solve for the polarization profile across the channel
with the result P,(y) = Py cosh(y/d)/ cosh(L/26), where
§ = \/Dy/Dr = £/2/5/24v¢/kpT is the boundary
layer width over which the polarization penetrates in the
channel. In the absence of self-propulsion § ~ /, i.e., a
finite polarization at the boundary decays (via rotational
diffusion) over a length scale of order ¢. For large self-
propulsion velocity, § ~ |vg|. If L ~ ¢ the entire channel
is effectively polarized. We stress that numerical simu-
lations of self-propelled rods on a substrate have indeed
observed large correlated regions of finite polarization,
but never an ordered bulk state. We expect that the
boundary layer length ¢ also sets the scale of correlations
in bulk systems. Finally, as shown in M], Egs. ([G1]) yield
two important properties of fluctuations in self-propelled
systems. First, the isotropic state can support sound-
like propagating density waves for a range of wavevec-
tors above a critical value of vy. Secondly, large number

fluctuations always destabilize the homogeneous nematic
state. We refer the reader to Ref. m] for a complete
description of both results.

In summary, we have analyzed a simple model that
captures two crucial properties of self-propelled systems:
the orientable shape of the particles and the self propul-
sion. Using the tools of nonequilibrium statistical me-
chanics we have derived a modified Smoluchowski equa-
tion for SPP and used it to identify the microscopic origin
of several observed or observable large scale phenomena.

This work was supported by the NSF on grants DMR-
0305407 and DMR-0705105.
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