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Enhaned di�usion and ordering of self-propelled rodsAparna Baskaran1 and M. Cristina Marhetti21Physis Department, Syrause University, Syrause NY 132442Physis Department and Syrause Biomaterials Institute, Syrause University, Syrause, NY 13244, USA(Dated: June 27, 2008)Starting from a minimal physial model of self propelled hard rods on a substrate in two di-mensions, we derive a modi�ed Smoluhowski equation for the system. Self -propulsion enhaneslongitudinal di�usion and modi�es the mean �eld exluded volume interation. From the Smolu-howski equation we obtain hydrodynami equations for rod onentration, polarization and nematiorder parameter. New results at large sales are a lowering of the density of the isotropi-nematitransition and a strong enhanement of boundary e�ets in on�ned self-propelled systems.PACS numbers: 87.18.Ed, 47.54.-r, 05.65.+bSelf propelled partiles onsume energy from internalor external soures and dissipate it by atively mov-ing through the medium that they inhabit. Assembliesof interating self-propelled partiles (SPP) exhibit riholletive behavior, suh as nonequilibrium phase tran-sitions between disordered and ordered (possibly mov-ing) states and novel long-range orrelations. Biologi-ally relevant systems that belong to this lass inlude�sh shools, bird �oks [1℄, baterial olonies [2℄ and ellextrats of ytoskeletal �laments and assoiated motorproteins [3℄. A non-living realization may be a vibratedmonolayer of granular rods [4℄. Colletions of SPP havebeen the fous of extensive experimental [3, 4, 5℄ and the-oretial studies in reent years. A number of distint the-oretial approahes have proved fruitful for understand-ing the omplex dynamis of these nonequilibrium sys-tems. These inlude numerial studies of simple mod-els [6, 7, 8, 9℄, inspired by the seminal work of Visek[10℄, and phenomenologial ontinuum theories based ongeneral symmetry arguments [11℄. Reent work on de-riving the hydrodynami equations from spei� miro-sopi models has led to some insight into the origin of theolletive behavior of these systems [12, 13, 14, 15, 16℄.An important open question that we address here is theinterplay between self propulsion and steri e�ets aris-ing from the shape of the partile in ontrolling the largesale physis.In this paper we onsider a physial model of self-propelled hard rods that interat with eah other solelythrough exluded volume. The rods move on a passivesubstrate. Self-propulsion is modeled as a nonequilib-rium veloity v0 along the diretion of the rods' long axes.The goal of our work is to understand how self-propulsionmodi�es the di�usion proesses and the mean-�eld On-sager exluded volume interation [17℄. Using the tools ofnonequilibrium statistial mehanis we derive amodi�edSmoluhowski equation that di�ers from the familiar ver-sion for thermal hard rods [17℄ in three respets. The �rstand obvious modi�ation is a onvetive mass �ux at theself-propulsion speed v0 along the diretion of orientationof the rod. Seondly, self-propulsion enhanes the longi-

FIG. 1: A ap-to-side ollision of two self-propelled hard rods(the width of the rod is exaggerated for larity). bk is a unitvetor from rod 2 to rod 1 normal to the point of ontat.Points on the side of the rods are identi�ed by vetors ξi.tudinal di�usion onstant D‖ of the rods, aording to
D‖ → D‖(1+v2

0
/kBT ). This enhanement arises beauseself-propelled partiles perform a persistent random walk,as reently pointed out by other authors [18℄. Finally, themomentum exhanged by two rods upon ollision is ren-dered highly anisotropi by self-propulsion thus modify-ing the Onsager form of the exluded volume interation.This leads to novel anisotropi fores and torques fromsteri repulsion in the Smoluhowski equation.These modi�ations of the Smoluhowski equationhave dramati onsequenes for the properties of the sys-tem on hydrodynami sales. This is illustrated by twoexamples. First, we show that the additional momentumtransfer from self-propulsion lowers the density of theisotropi-nemati transition, thereby providing a miro-sopi identi�ation for the physial mehanism respon-sible for the enhanement of orientational order observedin numerial simulations of motility assays [8℄. Seondly,we demonstrate that self-propulsion greatly enhanes thee�et of on�nement and the role of boundaries.

http://arXiv.org/abs/0806.4559v1


2The mirosopi model. We onsider quasi two-dimensional hard rods of length ℓ and thikness 2R on-�ned to a plane, as shown in Fig. 1. The i-th rod isharaterized by the position ri of its enter of mass anda unit vetor ûi = (cos θi, sin θi) direted along its longaxis. Eah rod free-streams on the substrate, until itollides with another rod. The ollision results in instan-taneous linear and angular momentum transfer suh thatthe total energy, linear and angular momenta of the tworods are onserved. The mirodynamis of the system isgoverned by oupled Langevin equations,
∂vi

∂t
= −

∑

j

T (i, j)vi + F ûi − ζi · vi + ηi (t) , (1)
∂ωi

∂t
= −

∑

j

T (i, j)ωi − ζRωi + ηR
i (t) , (2)where vi = ∂tri and ωi = ∂tθi are the enter of massand angular veloities, ζi is the frition tensor, with

ζi
αβ = ζ‖ûiαûiβ + ζ⊥(δαβ − ûiαûiβ), ζR is the rota-tional frition, and the mass of the rods has been setto one. The seond term on the right hand side ofEq. (1) desribes self propulsion as a enter of massfore F ating along the long axis of eah rod. Thisfore is nonequilibrium in origin and arises from aninternal or external propulsion mehanism. The ran-dom fores ηi and ηR

i desribe Markovian white noisewith orrelations 〈ηiα (t) ηjβ (t′)〉 = ∆i
αβδijδ (t − t′) and〈

ηR
i (t) ηR

j (t′)
〉

= ∆Rδijδ (t − t′). For simpliity we as-sume the equilibrium-like form ∆i
αβ = 2kBTaζi

αβ and
∆R = 2kBTaζR/I, with I = ℓ2/12 the moment of iner-tia of the rod and Ta an e�etive temperature de�ned bythese relationships. Finally, the ollision operator T (i, j)generates the instantaneous momentum transfer betweenrods at ontat and is given by

T (1, 2) =

∫

s1,s2

∫

k̂

∣∣∣V12 · k̂
∣∣∣Θ
(
−V12 · k̂

)

×δ (Γcont) (b12 − 1) , (3)where k̂ is the unit normal at the point of ontat ofthe two rods direted from rod 2 to rod 1, as shownin Fig. 1. The funtion Γcont (r1, r2, ξ1, ξ2) is nonzerowhen two rods are at ontat and zero otherwise. Here
ξi is a vetor from the enter of mass of the i-th rodto the point of ontat, ξi = siûi ± Rk̂, where −ℓ/2 ≤
si ≤ ℓ/2 parametrizes the distane of points along theaxis of eah rod from the enter of mass and ∫si

... ≡
∫ ℓ/2

−ℓ/2
...dsi. Also, V12 = v1 − v2 + ω1 × ξ1 − ω2 × ξ2is the relative veloity of the two rods at the point ofontat. Finally, the operator b12 replaes preollisionalveloities with their postollisional values, as obtainedby requiring energy and momentum onservation. Theexpliit alulation of the T operator is given in [19℄.

Modi�ed Smoluhowski equation. We are interestedhere in the overdamped limit, when inertial e�ets arenegligible and the low density dynamis is desribed bya Smoluhowski equation for the the probability distribu-tion c (x, t), with x = (r, θ), of rods at a point r orientedin the diretion θ. The derivation of the Smoluhowskiequation for self-propelled hard rods an be arried outfollowing losely that of thermal hard rods and is givenin [19℄. Here, we outline the key steps involved.1. First, the noise averaged statistial mehanis of asystem desribed by a set of oupled Langevin equationsis given in terms of the Liouville-Fokker-Plank equa-tion governing the dynamis of an N partile distributionfuntion [20℄. This an in turn be onverted into a hierar-hy of equations for redued distribution funtions anal-ogous to the BBGKY hierarhy for Hamiltonian systems.At low density, negleting two partile orrelations, the�rst equation of the hierarhy gives a losed Boltzamnn-Fokker-Plank equation for the one partile distributionfuntion f (x, p, t), with p = (v, ω).2. The probability distribution is c (x, t) =
∫

p f(x, p, t).In the regime of large frition, the veloities of therods deay to a stationary value on mirosopi timesales. We use an approximate solution of the nonin-terating Fokker-Plank equation valid in the large fri-tion regime, f (x, p, t) = c (x, t) fM (p|θ), with fM ∼
exp

(
− 1

2kBTa

(v − v0û)
2 − 1

2kBTa

Iω2

) a Maxwellian dis-tribution entered at the self-propulsion veloity v0û.With this ansatz, the Bolztmann-Fokker-Plank equationan be transformed to a losed equation for the spatialprobability distribution, c.3. To obtain this losed equation we need to evaluatethe mean fore and torque on a given rod due to all otherrods in the �uid, namely 〈T (1, 2)v1〉M and 〈T (1, 2)ω1〉M ,where 〈...〉M =
∫

p1,p2

...fM (p1|θ1)fM (p2|θ2). In the ab-sene of self propulsion, this average an be readily ar-ried out and yields the Onsager exluded volume inter-ation. For �nite self propulsion, fM depends on theangular oordinate and hene averaging over veloitiesindues orientational orrelations that annot be inorpo-rated exatly. To make progress, we let v′
i = vi − ûiv0 inthe alulation of the veloity averages and then negletthe oupling between veloity and angular orrelationsby approximating 〈T (1, 2)v1〉M ≃ 〈T (1, 2)v1〉M|v0=0

+
〈T (1, 2)v1〉v0

, where the seond term is averaged over
fv0

(p1)fv0
(p2), with fv0

(pi) = δ (vi − v0ûi) δ (ωi).The result is the modi�ed Smoluhowski equation:
∂tc + v0∂‖c = DR∂θc + (D‖ + DS)∂2

‖c + D⊥∂2

⊥c

− 1

IζR
∂θτex −∇ · ζ−1 · Fex

− 1

IζR
∂θτSP −∇ · ζ−1 · FSP , (4)where ∂‖ = û · ∇ and ∂⊥ = ∇ − û(û · ∇). Theonvetive term on the left hand side of (4) is a trivial



3onsequene of self propulsion and desribes mass �uxalong the long axis of the rod. The �rst three termson the right hand side of the equation desribe transla-tional di�usion longitudinal (D‖) and transverse (D⊥)to the rod's long axis and rotational di�usion (DR).For long thin rods D‖ = 2D⊥ = D. At low density
D = kBTa/ζ‖ and DR = 6D/ℓ2. A novel onsequeneof self-propulsion is the enhanement of longitudinaldi�usion by DS = v2

0
/ζ‖. This an be understood bynoting that a di�using rod performs a random walkwith a step length xα = ζ−1

αβ vβ . For thermal systems therod's veloity is isotropi on average and has magnitude
vth ∼

√
kBTa. In this ase the anisotropy of di�usionarises solely from the anisotropy of the frition tensor.For self-propelled rods the step length along the longdiretion of the rod is enhaned, yielding an additionalontribution to the longitudinal di�usion oe�ient.Equivalently, longitudinal di�usion of a self-propelledrod an be reformulated as a persistent random walkwhere the rod has a bias ∼ v0 towards steps along its longaxis [18℄. The next three terms in (4) desribe exludedvolume e�ets within the mean-�eld approximation dueto Onsager. The orresponding fores and torque anbe derived from the familiar exluded volume potentialas τex = −∂θVex and Fex = −∇Vex, with Vex(x1) =

kBTac(x1, t)
∫

ξ12

∫
û2

|û1 × û2| c (r1 + ξ12, θ2, t), with
ξ12 = ξ1 − ξ2. Finally, τSP and FSP desribe, withina mean-�eld approximation, the additional torque andfore due to anisotropi linear and angular momentumtransfer during the ollision of two self-propelled rods,
(

FSP

τSP

)
= v2

0

∫

x2,s1,s2,k̂

(
k̂

ẑ · (ξ1 × k̂)

)
[ẑ · (û1 × û2)]

2

×Θ(−û12 · k̂)δ (Γcont) c(x1, t)c(x2, t), (5)

with û12 = û1 − û2. In Onsager's mean �eld model, twothin rods of length ℓ exhange an average momentum
〈|∆v|〉 νcoll ∼ kBTa/ℓ per unit time upon ollision, with
〈|∆v|〉 ∼

√
kBTa and νcoll = vth/ℓ ∼

√
kBTa/ℓ. Whenrods are self propelled there are anisotropi ontributionsto both the momentum exhanged (〈|∆v|〉 ∼ v0|û1× û2|)and the ollision rate (νcoll ∼ v0|û1× û2|/ℓ). These yieldthe new anisotropi steri fores and torques in Eq. (5).Hydrodynamis. We now use the modi�ed Smolu-howski equation to obtain oarse-grained equations thatdesribe the dynamis of the systems on wavelengthslong ompared to the length of the rods and on timesales long ompared to the ollision time. In thisregime the dynamis is ontrolled by the �slow vari-ables� orresponding to the onserved densities (here onlythe onentration of �laments ρ =

∫
bu

c(x, t) ) and the�elds assoiated with possible broken symmetries. Ina liquid of self-propelled rods, both polar and nematiorder are possible, desribed by a polarization vetor
P(r, t) =

∫
bu
ûc(x, t) and the nemati alignment tensor

Qαβ(r, t) =
∫

bu
(ûαûβ − 1

2
δαβ)c(x, t), respetively. Sineeah rod has a self propulsion veloity v0û, the polariza-tion is also proportional to the self propulsion �ow �eld.The equations for these ontinuum �elds are obtained bytaking the orresponding moments of the Smoluhowskiequation (4) and are given by

∂tρ + v0∇ ·P = Dρ∇2ρ + DQ∇∇ : ρQ (6)
∂tP + DRP − λP · Q + v0∇ · Q +

v0

2
∇ρ + λ′[3(P · ∇)P − 1

2
∇P 2 − P∇ ·P] = Db∇2P + (Dspl − Db)∇∇ ·P (7)

∂tQ + 4DR

(
1 − ρ

ρIN

)
Q + v0F = −λ′′

(
3

5
P · ∇Q +

1

48
Q∇ ·P+

1

48
G +

1

96
F

)
+

DQ

4
(∇∇ − 1

2
1)ρ (8)where Fαβ = (∂αPβ + ∂βPα − δαβ∇ · P) and Gαβ =

Qαγ∂γPβ + Qβγ∂γPα − δαβQσγ∂γPσ. All λ parametersin Eqs. (7) and (8) are proportional to v2

0
and vanish inthe absene of self propulsion. All di�usion onstants areenhaned by self-propulsion via additive terms propor-tional to DS. Finally, we have suppressed in Eqs. (6-8)exluded volume orretions to the di�usive terms, non-linear terms of seond order in gradients, and orretionsto the onvetive terms beyond linear in v0. The om-

plete hydrodynami equations with expliit expressionsfor the various oe�ients an be found in Ref. [19℄.The stable homogeneous stationary solution of Eqs. (6-8) are the bulk states of the self-propelled system. Twosuh states are possible: an isotropi state, with ρ =
constant, P = 0, Qαβ = 0, and a nemati state, with
ρ = constant, P = 0 and Qαβ 6= 0. Hard ore intera-tions and self-propulsion modeled simply as a body foreare not su�ient to generate a bulk polar state, with



4
FIG. 2: (olor online) The polarization in a hannel of width
L for δ/L = 0.2 (solid) and δ/L = 0.6 (dashed).
P 6= 0. Either shape or mass distribution asymmetryof the driven partiles or hydrodynami interations areessential to obtain a marosopi polar (moving) state.Self-propulsion has, however, a profound e�et on theisotropi-nemati transition whih ours at the density
ρIN (v0) = ρN/(1 +

v2

0

5kBT ), where ρN = 3/(πℓ2) is theOnsager transition density. The transition ours wherethe oe�ient of the term linear in Qαβ on the righthand side of Eq. (8) hanges sign, signaling the unsta-ble growth of nemati �utuations. This enhanement oforientational order has been observed in numerial simu-lations of atin motor assays, where atin �laments moveon a substrate grafted with motor proteins [8℄. It arisesfrom the additional torque τSP that self-propelled rodsexperiene upon ollision as ompared to thermal rods.This enhanes entropi ordering and aligns the rods [21℄.Although no bulk polar order is possible in our sys-tem, self-propulsion greatly enhanes the length saleover whih polarization �utuations deay. As a resultboundaries pay a ruial role in self propelled systems.To illustrate this we onsider a self-propelled 2d hardrod �uid on�ned in the hannel of width L between twoboundaries, as shown in Fig. 2. We assume that theboundaries indue polarity by foring all rods to alignin the same diretion, i.e., Px(−L/2) = Px(L/2) = P0.In this geometry the density is onstant. One an eas-ily solve for the polarization pro�le aross the hannelwith the result Px(y) = P0 cosh(y/δ)/ cosh(L/2δ), where
δ =

√
Db/DR = ℓ/2

√
5/2 + v2

0
/kBT is the boundarylayer width over whih the polarization penetrates in thehannel. In the absene of self-propulsion δ ∼ ℓ, i.e., a�nite polarization at the boundary deays (via rotationaldi�usion) over a length sale of order ℓ. For large self-propulsion veloity, δ ∼ |v0|. If L ∼ δ the entire hannelis e�etively polarized. We stress that numerial simu-lations of self-propelled rods on a substrate have indeedobserved large orrelated regions of �nite polarization,but never an ordered bulk state. We expet that theboundary layer length δ also sets the sale of orrelationsin bulk systems. Finally, as shown in [15℄, Eqs. (6-8) yieldtwo important properties of �utuations in self-propelledsystems. First, the isotropi state an support sound-like propagating density waves for a range of waveve-tors above a ritial value of v0. Seondly, large number

�utuations always destabilize the homogeneous nematistate. We refer the reader to Ref. [15℄ for a ompletedesription of both results.In summary, we have analyzed a simple model thataptures two ruial properties of self-propelled systems:the orientable shape of the partiles and the self propul-sion. Using the tools of nonequilibrium statistial me-hanis we have derived a modi�ed Smoluhowski equa-tion for SPP and used it to identify the mirosopi originof several observed or observable large sale phenomena.This work was supported by the NSF on grants DMR-0305407 and DMR-0705105.[1℄ J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995); J.Toner, Y. Tu and S. Ramaswamy, Ann. Phys. 318, 170(2005).[2℄ O. A. Igoshin, R. Welh and D. Kaiser, PNAS, 101, 4256(2004).[3℄ F. J. Nedele, T. Surrey, A. C. Maggs and S. Leibler,Nature 389, 305 (1997).[4℄ V. Narayanan, S. Ramaswamy and N. Menon, Siene317, 105 (2007); A. Kudrolli, G. Lumay, D. Volfson andL. S. Tsimring, Phys. Rev. Lett. 100, 058001 (2008).[5℄ A. Sokolov, I. S. Aranson, J. O. Kessler and R. E. Gold-stein, Phys. Rev. Lett. 98, 158102 (2007).[6℄ M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L.S. Chayes, Phys. Rev. Lett.96, 104302 (2006).[7℄ H. Chate, F. Ginelly and R. Montagne, Phys. Rev. Lett.,96, 180602 (2006).[8℄ P. Kraikivski, R. Lipowsky and J. Kierfeld, Phys. Rev.Lett. 96, 258103 (2006).[9℄ F. Peruani, A. Deutsh and M. Bär, Phys. Rev. E 74,030904 (2006).[10℄ T. Visek, A. Czirok, E. Ben-Jaob, I. Cohen and O.Shohet, Phys. Rev. Lett. 75, 1226 (1995).[11℄ R. A. Simha and S. Ramaswamy, Phys. Rev. Lett., 89,058101 (2002); S. Ramaswamy, R. A. Simha and J. Toner,Europhys. Lett. 62 196 (2003).[12℄ I. S. Aranson and L. Tsimring, Phys. Rev. E. 71,050901(R) (2005).[13℄ E. Bertin, M. Droz and G. Gregoire, Phys. Rev.E, 74,022101 (2006).[14℄ T. B. Liverpool and M. C. Marhetti, Phys. Rev. Lett.90, 138102 (2003); A. Ahmadi, M. C. Marhetti, T. B.Liverpool, Phys. Rev. E 74, 061913 (2006).[15℄ A. Baskaran and M. C. Marhetti, Phys. Rev. E 77,011920 (2008).[16℄ D. Saintaillan and M. J. Shelley, Phys. Rev. Lett., 100,178103 (2008).[17℄ M Doi, S. F Edwards, The Theory of Polymer Dynamis,Oxford University Press (1986).[18℄ D. Selmezi, S. Mosler, P. H. Hagedorn, N. B. Larsen, andH. Flyvbjerg, Biophys. J. 89, 912 (2005); F. Peruani, L.G. Morelli, Phys. Rev. Lett, 99,010602 (2007).[19℄ A. Baskaran and M. C. Marhetti, to be published.[20℄ R. Zwanzig, Nonequilibrium Statistial Mehanis, Ox-ford University Press (2001).[21℄ No enhanement of orientational order ours if the self-propulsion veloity is normal to the rods' long axis.
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