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Active Jamming: Self-propelled soft particles at high density

Silke Henkes,1 Yaouen Fily,1 and M. Cristina Marchetti1, 2

1Physics Department, Syracuse University, Syracuse, NY 13244, USA
2Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA

(Dated: July 23, 2011)

We study numerically the phases and dynamics of a dense collection of self-propelled particles with
soft repulsive interactions in two dimensions. The model is motivated by recent in vitro experiments
on confluent monolayers of migratory epithelial and endothelial cells. The phase diagram exhibits a
liquid phase with giant number fluctuations at low packing fraction φ and high self-propulsion speed
v0 and a jammed phase at high φ and low v0. The dynamics of the jammed phase is controlled by
the low frequency modes of the jammed packing.

PACS numbers: 45.70.-n, 87.18.Hf, 05.65.+b, 63.50.+x

How do collections of active particles behave in very
dense situations? What are the mechanical properties of
the ensuing materials? The answers to these questions
are fundamentally important for a wide range of phys-
ical and biological systems, from tissue formation [1–5]
and vibrated granular materials [6, 7] to the behavior of
packed crowds [8].

The name “active matter” refers to soft materials com-
posed of many interacting units that individually con-
sume energy and collectively generate motion or mechan-
ical stress. Examples range from bacterial suspensions
to epithelial cell layers and flocks of birds. The phases
of active matter have been studied extensively since the
seminal work of Vicsek et al [9]. Self-propelled parti-
cles have a polarity provided by the direction of self-
propulsion. In the presence of noisy polar aligning inter-
actions, they order into a moving state at high density or
low noise [10, 11]. The ordered state has giant number
fluctuations [6, 7, 12] and a rich spatio-temporal dynam-
ics. Continuum theories have been formulated for these
systems and provide a powerful tool for understanding
the generic aspects of their behavior [13]. While the low
density phase of various models of self-propelled parti-
cles is comparatively well understood, much less is known
about the high density phase.

In a separate development, much effort has been de-
voted to the study of passive thermal and athermal gran-
ular matter. These systems undergo a transition be-
tween a flowing, liquid-like state at low density or high
temperature and a glassy state [14, 15]. Near the glass
transition, the relaxation is controlled by dynamical het-
erogeneities, consisting of spatially and temporally cor-
related collective rearrangements of particles [16]. In
the zero-temperature limit, soft repulsive disks undergo
a jamming transition to mechanically stable state at
φ = 0.842 in two dimensions [17]. The elastic properties
of the jammed state are determined by an excess number
of low frequency modes [18] which are also closely linked
to the large-scale rearrangements that microscopic pack-
ings undergo when strained [19] or thermalized [20].

Recent in vitro experiments on confluent monolayers of

migratory epithelial and endothelial cells have revealed
displacement fields and stress distributions that strongly
resemble both dynamical heterogeneities of glasses and
the soft modes of jammed packings [1–5], and an analogy
between the dynamics of these living systems and that of
glassy materials has been proposed [1]. Migratory cells
have been successfully modeled with soft polar particles
at low densities [21] as well as through a mechanical agent
model at high densities [22].
Motivated by the experiments on dense migrating cell

layers, in this paper we consider a model that combines
the polar alignment mechanism of self-propelled parti-
cles with the repulsive soft disk interactions that control
jamming and characterize the phases and their dynami-
cal properties. The model is based on that of Vicsek [9]
and was introduced some time ago by Szabo et al. [21] to
describe the collective dynamics of crawling cells. These
authors focused on the swarming behavior of collections
of cells below close packing, with the goal of understand-
ing the collective dynamics as a flocking transition. Here
we explore the full phase diagram of a confined system.
We show the existence of an active jammed state at high
density with glassy dynamics and fluctuations of the type
seen in confluent cell layers.
We consider Nt polar disks of radii ai and denote by

ri the instantaneous positions of the disks’ centers. The
disks’ polarity is defined by unit vectors n̂i = cosψi x̂+
sinψi ŷ that fix a direction on each disk. The dynamics
is described by coupled equations for the translational
and angular degrees of freedom, given by [21]

ṙi = v0n̂i + µ

zi
∑

j=1

Fij ,

ψ̇i =
1

τ
(θi − ψi) + ηi , 〈ηiηj〉 = σ2δijδ(t− t′) . (1)

The dynamics of ri is overdamped with two sources of
motion: a self propulsion velocity of constant magnitude
v0 directed along n̂i, and the velocity arising from repul-
sive contact forces Fij on particle i from its zi neighbors,
with µ a mobility. The force between particles i and j is
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FIG. 1. (color online) Sample snapshots of the system in
the liquid phase (φ = 0.6, left) and in the jammed phase
(φ = 0.95, right) for v0 = 0.025. The glued boundary is
shown in dark grey. The arrows (red online) represent the
instantaneous velocity field, with v = v0 corresponding to an
arrow of length 1 in units of the particle diameter. Please see
our supplementary materials for movies of these two runs.

Fij = −k(ai + aj − rij)r̂ij if rij < ai + aj and Fij = 0

otherwise, corresponding to soft spheres. The radii are
random and uniformly distributed in a = [0.8, 1.2]. The
dynamics of the orientation ψi is also overdamped. It
is controlled by a torque proportional to the angle be-
tween n̂i and the direction of the velocity vi = ṙi =
vi (cos θi x̂ + sin θi ŷ). In other words, the cell’s polar
axis aligns with the actual velocity, with a lag time τ and
a gaussian random noise ηi of zero mean and variance σ2.
The lag time τ describes a positive feedback between cell
polarity and motility. In living cells this coupling results
into directed migration of the cell that can be reinforced
by neighbors in a dense cell culture, playing an impor-
tant role in collective cell dynamics [23]. Such polariza-
tion is not, however, permanent, but rather it is actively
regulated by both biochemical processes inside the cell
and feedback from neighboring cells. Finally, we define
dimensionless quantities by scaling all lengths with the
average radius a of the spheres and and all times with the
lag time τ . Additionally, we fix µk = 10 and σ = 10−1.

Using this model, we perform molecular dynamics sim-
ulations with Nt = 64 to 10000 particles. Unless other-
wise specified, we show results for Nt = 1000 particles.
To eliminate the global translational mode obtained at
high density in an open system, we confine the particles
to a circular box of radius R with soft repulsive boundary
conditions. These are implemented by “gluing” a row of
soft spheres to the box’s boundary, as shown in Fig. 1.
We explore the phase diagram by varying the self propul-
sion speed v0 and the packing fraction φ =

∑

i a
2
i /R

2.

We first characterize the state of the system by study-
ing the mean square displacement (MSD) of individual
particles as a function of time, shown on the left side
of Fig. 2. At low packing fraction or high velocity, the
MSD grows monotonically well beyond a, corresponding
to a flowing system. Conversely, at high φ or low v0 the
MSD is bounded and smaller than a, i.e. the particles are

FIG. 2. (color online) Left: Mean square displacement vs.
time as a function of density at v0 = 0.025, showing a transi-
tion from rotational diffusion at low φ, to polar alignment for
φ < 0.8 and to the jammed state around φ = 0.842. Right:
Phase diagram in the φ-v0 plane, showing the transition from
the liquid state (blue online) to the solid state (red online).
The dots are simulated (φ,v0)-pair shaded white to black pro-
portional to the fraction of jammed configuration.

trapped in the cage formed by their neighbors. Typical
snapshots of the system in each phase are shown in Fig. 1.
At v0 = 0, the angular degree of freedom ψi becomes ir-
relevant and the problem is equivalent to the athermal
jamming of soft spheres. The transition between a flow-
ing phase and a trapped one at very low v0 is consistent
with this limit; in particular, the critical packing fraction
coincides with the expected value φc ≈ 0.842. By exten-
sion, we call the two active phases “liquid” and “jammed”
respectively. The shape of the (φ, v0) phase diagram as
inferred from the mean square displacement is shown on
the right side of Fig. 2.

The liquid phase can be further divided by noting that
the behavior of the MSD is not uniform. At very low
density, interactions are negligible and each particle in-
dependently performs a persistent random walk, with

〈[r(t) − r(0)]2〉 = (4v20/σ
2)
[

t+ (2/σ2)
(

e−σ
2t/2 − 1

)]

and a crossover from ballistic behavior 〈[r(t)− r(0)]2〉 ∼
v20t

2 for t << σ−2 to diffusive behavior 〈[r(t)− r(0)]2〉 ∼
(4v20/σ

2)t for t >> σ−2. Here σ−2 = 102 and ballis-
tic behavior is observed at all but the longest times (but
shorter than the limit imposed by the box size, not shown
on Fig. 2), as expected for individual self-propelled par-
ticles [24]. At intermediate density, however, clusters of
aligned particles start to form and the MSD remains bal-
listic at all observed times. This behavior is reminiscent
of those observed in other active systems [10, 11]. An-
other signature of the symmetry breaking introduced by
the active velocity in the liquid phase is the existence of
“giant number fluctuations” [6, 7, 12, 25]. The scaling
of the standard deviation ∆N of the number of particles
with the average number of particles N in subsystems of
various sizes is shown in Fig. 3. We see a transition from
∆N ∼ N1/2, as expected in an ideal gas or in a passive
termal liquid, to ∆N ∼ Nα with α > 1/2 at packing
fraction φ ∼ 0.5, consistent with the change of behavior
observed in the MSD and with previous observations on
self-propelled systems [6, 7, 12, 25].
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FIG. 3. (color online) Scaled number fluctuations for Nt =
10000 and a cut through the phase diagram at v0 = 0.025.
We observe three regimes: gas-like fluctuations at low den-
sity (green online), giant number fluctuations at intermediate
density (red online), and strongly suppressed fluctuations in
the jammed phase (blue online). The dashed line corresponds

to ∆N/N1/2 = 1.

In the jammed phase, we observe regular oscillations of
the particle displacements around their mean positions,
resulting in the oscillatory behavior of the MSD. This be-
havior is easily understood as that of a single particle in a
harmonic well. If we replace the force from the neighbors
by the force−kri due to a harmonic well, the MSD can be
calculated exactly. At times t≫ τ , the particle performs
a circular orbit of angular frequency ω ≈

√

µk/τ , inde-

pendent of v0, and radiusR0 ≈ v0
√

τ/µk. In the jammed
systems each particle is trapped in a cage determined by
its neighbors and the MSD oscillates at a frequency that
is independent of v0, as for a single trapped particle. The
patterns observed in this phase shown in the right frame
of Fig. 1 strikingly resemble the low-frequency modes of
jammed packings and the observed oscillation frequencies
are consistent with this.
For low v0, within the range of linear response, we can

relate the particle displacements to the soft modes of the
system. We denote by {r0i } the mean positions of all
particles in a jammed packing obtained for v0 = 0 and
let ω2

ν and ξν be the eigenvalues and eigenvectors of the
corresponding dynamical matrix. The assumption that
the mean positions are force-balanced and correspond to
a stable jammed packing requires ω2

ν > 0 for all ν. We
then expand both the particle displacements δri = ri−r0i
and the polarization vector n̂i in the modes eigenbasis,

δri =
∑

ν

aν(t)ξ
ν
i , n̂i =

∑

ν

bν(t)ξ
ν
i . (2)

Our objective is to obtain linearized equations for aν(t)
and bν(t). The nonlinearities are in the equation for the
cell orientation that couples the polarization angle to the
direction of the velocity. This coupling through the an-
gle, not through the vector, is a common feature of all
Vicsek-type models [11]. On times long compared to the
alignment time scale, τ , we assume τψ̇i ≪ 1 and linearize

the angular interactions by letting

d

dt

(

eiψi

)

≃
1

τ

[

ei(θ
i

v
−ψi)eiηiτ − 1

]

eiψi . (3)

In addition, we average over the angular noise using
〈eiηiτ 〉 = e−

1

4
σ2τ2

≡ ∆, and introduce a mean-field ap-
proximation for the magnitude of local velocity by letting
vi ≃ [ 1N

∑

i v
2
i ]

1/2 ≡ vrms. We then obtain linearized
equations for the mode amplitudes, given by

ȧν(t) = v0bν(t)− µω2
νaν(t) ,

τ ḃν(t) =
∆

vrms
ȧν(t)− bν(t) ,

v2rms =
1

N

∑

ν

[ȧν(t)]
2 . (4)

Nonlinearities now enter only through vrms, the spatially
averagedmean square particle velocity, assumed constant
below (consistently with numerics in the steady state).
The first two of Eqs. (4) can be rewritten as a single

second order differential equation for aν , given by

äν +
1

τ

[

1−
v0∆

vrms
+ µτω2

ν

]

ȧν +
µ

τ
ω2
νaν = 0. (5)

Since µ
τ ω

2
ν ≥ 0, this equation describes a

damped harmonic oscillator provided the friction

f = 1
τ

[

1− v0∆
vrms

+ µτω2
ν

]

is non-negative. The modes

amplitudes are then

aν(t) = aν(0)e
−t/τν cos(ω′

νt+ θ0ν) , (6)

ω′

ν =

[

µ

τ
ω2
ν −

µ2

4

(

ω2
ν − ω2

min

)2
]

1

2

,

with τ−1
ν = µ

(

ω2
ν − ω2

min

)

/2 and ωmin the smallest eigen-
frequency. For the system to reach steady-state, there
need to exist finite amplitude undamped modes. Then
the lowest frequency modes of the system will be un-
damped, corresponding to f = 0, which fixes vrms as

µτω2
min = 1−

v0∆

vrms
. (7)

An important result is that at long times the steady-state
dynamics is dominated by undamped oscillations corre-
sponding to the lowest-frequency modes associated with
the jammed packing defined by the mean particle posi-
tions. Confinement plays a crucial role here. For an open
system or one with with periodic boundary conditions,
the lowest frequency modes are the two translations al-
lowed by symmetry, and ωmin = 0. At high density the
system is then in the aligned phase, with vrms = v0∆.
For a confined system, the lowest frequency modes are
set by the system size.
We test these predictions in the jammed phase by nu-

merically calculating the normal modes of the mean par-
ticle positions. The resulting density of states is indis-
tinguishable from the known form for jammed packings
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FIG. 4. (color online) Left: Density of states of the mean po-
sitions (dashed) and time-averaged projection of the displace-
ments on the modes (solid, scaled for visibility) for φ = 0.86.
Inset: Scaling of peak with system size Nt at v0 = 0.025; the
line has a slope of −0.3. Right: Time projection of the dis-
placement on the modes aν(t) for four representative modes
in the undamped and damped region (φ = 0.86, v0 = 0.025).
Inset: Measured oscillation frequency ω′ as a function of ω.

at the same density (see Figure 4, left), except for the
absence of the two translational modes and a handfull
of negative eigenvalues (5-10 for Nt = 1000) which hint
at rearrangements in the oscillatory phase. We have con-
firmed this by equilibrating the mean positions at v0 = 0,
which leads to a small number of rearrangements. This
observation is likely linked to the extremely limited range
of linear response in jammed packings.

For both sets of mean positions (at finite and vanishing
v0), we project the motion of the system on the modes.
After a transient, the aν(t) corresponding to the lowest-
frequency modes are undamped and oscillate at a single
frequency ω′. In contrast, the aν(t) of the higher fre-
quency modes describe strongly damped forced oscilla-
tions at the same ω′ (see Fig. 4, right). In Fig. 4 (left),
we show the time-averaged mean-square projection coef-
ficient P (ω) as a function of frequency. It is dominated by
a peak at the lowest frequencies where the DOS is finite.
The peak frequency is independent of v0, as predicted
by Eq. 6. The inset to Fig. 4(left) shows the scaling of
the peak frequency with system size. Finally, the inset
to Fig. 4(right), displays a direct measurement of ω′

ν as
a function of the mode frequency. This was obtained by
Fourier transforming aν(t) for individual modes and av-
eraging the result over the P (ω)-distribution. We find
that the single frequency ω′ ≤ ων , consistent with ω

′ be-
ing set by the lowest modes (µ = τ = 1 for our runs), and
with higher-frequency modes doing forced oscillations at
ω′. Nonlinear effects can be analyzed perturbatively and
will be discussed in a future publication.

We have studied numerically a model of self-propelled
particles with soft repulsive interactions at high density,
motivated by recent experiments on migrating cell lay-
ers. The analysis of the role of adhesive forces, viscous
interparticle interactions and of the distribution of stress
and strain in unconfined systems is currently underway.

This work was supported by the National Science

Foundation through awards DMR-0806511 and DMR-
1004789. We thank Olivier Dauchot and Ben Burdick
for useful discussions. The computations were carried
out on SUGAR, a computing cluster supported by NSF-
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