
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics College of Arts and Sciences 

2003 

Low-Mobility Solar Cells: a Device Physics Primer with Application Low-Mobility Solar Cells: a Device Physics Primer with Application 

to Amorphous Silicon to Amorphous Silicon 

Eric A. Schiff 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/phy 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
"Low-mobility Solar Cells: A Device Physics Primer with Application to Amorphous Silicon," E. A. Schiff, 
Solar Energy Materials and Solar Cells 78, 567-595 (2003). 

This Article is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been 
accepted for inclusion in Physics by an authorized administrator of SURFACE. For more information, please contact 
surface@syr.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215686752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/phy
https://surface.syr.edu/cas
https://surface.syr.edu/phy?utm_source=surface.syr.edu%2Fphy%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Solar Energy Materials & Solar Cells 78 (2003) 567–595

Low-mobility solar cells: a device physics primer
with application to amorphous silicon

E.A. Schiff*

Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

Abstract

The properties of pin solar cells based on photogeneration of charge carriers into low-

mobility materials were calculated for two models. Ideal p- and n-type electrode layers were

assumed in both cases. The first, elementary case involves only band mobilities and direct

electron–hole recombination. An analytical approximation indicates that the power in thick

cells rises as the 1
4
power of the lower band mobility, which reflects the buildup of space-charge

under illumination. The approximation agrees well with computer simulation. The second

model includes exponential bandtail trapping, which is commonly invoked to account for very

low hole drift mobilities in amorphous silicon and other amorphous semiconductors. The two

models have similar qualitative behavior. Predictions for the solar conversion efficiency of

amorphous silicon-based cells that are limited by valence bandtail trapping are presented. The

predictions account adequately for the efficiencies of present a-Si :H cells in their ‘‘as-

prepared’’ state (without light-soaking), and indicate the improvement that may be expected if

hole drift mobilities (and valence bandtail widths) can be improved.

r 2002 Elsevier Science B.V. All rights reserved.

Keywords: Amorphous silicon; Low-mobility solar cells

1. Introduction

In this paper we discuss the device physics of solar cells based on low-mobility
materials. Solar cells based on hydrogenated amorphous silicon (a-Si : H) [1–3],
on polymers or organic materials [4], and dye-sensitized porous metal-oxide
‘‘membranes’’ [5,6] are examples of such cells. For specificity, we shall define
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‘‘low-mobility’’ materials as those in which at least one of the two carrier particles
(usually electron and hole) has a characteristic mobility less than 1 cm2/V s.
A mobility m is the ratio n(F)/F of the net drift speed n(F) of a carrier in an

electric field F to the field itself. The reason that a low mobility can strongly
affect the workings of a solar cell is that the density of slowly drifting carriers
builds up substantially under solar illumination. This buildup of carriers (and thus
of electrical charge) can dominate the workings of the cell, determining both the
maximum useful thickness of the cell as well as the power generated.
In this paper we shall analyze the device physics of low-mobility solar cells for two

simple models, and then apply this analysis to estimating the maximum achievable
efficiency of solar cells based on hydrogenated amorphous silicon. In the first section
we present a discussion of perhaps the simplest conceivable, ‘‘trap-free’’ model of a
low-mobility absorber with ideal electrodes. We have included introductory material
in this section in an effort to make it reasonably self-contained. We use this model
to develop a perspective on low-mobility cells which is applicable for more
sophisticated models. Although we shall use computer simulations to illustrate solar
cell function throughout this paper, for this simplest model we have found a simple,
analytical approximation for the maximum power density P (in Watts/Area) in the
limit of a low hole mobility mh:

P ¼ ðð2=3ÞVOCÞ
3=2ðmhee0ðeGÞ3Þ1=4: ð1Þ

Here VOC is the solar cell’s ‘‘open-circuit voltage’’. G is the rate at which carriers are
generated by light in the intrinsic layer; G is assumed to be constant throughout this
layer. e is the charge of an electron. ee0 is the dielectric constant of the intrinsic layer
material (in SI units).
In a second section we treat an important, particular model for low-mobilities,

which is trapping of charge carriers in exponential bandtails. The exponential
bandtail model describes mobilities fairly well in several inorganic, non-crystalline
semiconductors, and thus provides a better foundation for quantitative work than
the simpler, ‘‘trap-free’’ model. For simplicity, we assume that only one carrier, the
hole, undergoes bandtail trapping; this assumption applies fairly well to a-Si:H at or
above room temperature. We again study the behavior for homogeneous
photogeneration of carriers throughout the cell, and we again assume ideal
electrodes. The qualitative behavior is fairly similar to that for the ‘‘trap-free’’ case
just described.
In the last section we re-analyze the exponential bandtail model under solar

illumination, which results in highly non-uniform photogeneration. We use the
optical absorption properties of amorphous silicon. We predict the power output of
such cells as a function of the valence bandtail width; these predictions are
summarized in Fig. 12. We believe that these predictions are a fairly accurate guide
to the best power densities that may be achieved in simply engineered solar cells
based on a-Si:H, presuming that the difficult problems of achieving ideal electrode
layers and suppressing defect formation have been solved.
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2. The pin structure without traps

2.1. Preliminaries

The fundamental structure of the solar cells that we consider consists of three
layers: a p-type electrode layer that collects holes, an intrinsic layer in which
photocarriers are generated, and an n-type electrode layer to collect electrons. The
intrinsic layer is assumed to be an insulator under dark conditions, with negligible
dark conductivity. As illustrated in Fig. 1, in this structure excess electrons are
actually donated from the n-type layer to the p-type layer, leaving these layers
positively and negatively charged (respectively), and creating a sizable ‘‘built-in’’
electric field.
Light enters the cell as a stream of photons. The photons are mostly absorbed in

the intrinsic layer, where (ideally) each photon that is absorbed will generate one
electron and one hole photocarrier. The photocarriers are swept away by the built-in
electric field to the n-type and p-type layers, respectively—thus generating solar
electricity!
In this section we describe the most basic photoelectric processes in a low-mobility

intrinsic layer, along with the associated parameters that are used in modeling
semiconductor devices. We shall not present any equivalent discussion for the
electrode layers, which we shall assume are ‘‘ideal’’ and have no effect on the
behavior of the cell. Of course, achieving such ideal electrodes may be difficult in
practice. Fig. 2 is a graph that is often used to illustrate the photoelectric processes in
an intrinsic layer. The vertical axis indicates the energy for electronic levels; the
horizontal axis represents one dimension (x) of ordinary space. The horizontal lines
labeled EC and EV indicate the energies of the conduction and valence bandedges. In
this model, electrons can only occupy conduction band states that have level energies
larger than EC; these states are indicated by the shaded area above EC. The average
speed ve of these electrons in an electric field F is characterized by the electron
mobility me (cm

2/V s):

ve ¼ meF : ð2Þ

Similarly, holes can only occupy states below EV, and their average speed is given by
their mobility mh.
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Fig. 1. The pin diode structure.
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In a pin solar cell, electrons and holes are mostly generated by photons with
energies hn (eV) that are greater than the bandgap EG=EC�EV. A photon excites an
electron out of the filled electronic levels in the valence band and into the conduction
band; the photoexcited electron leaves one hole behind in the valence band.
The generation rate at which electrons (and holes) are generated by the incident

flux of photons will be denoted G (cm�3 s�1). Once these electrons and holes are
generated, they first ‘‘thermalize’’. Initially, an electron will occupy an energy level
somewhat above the conduction bandedge; similarly, the hole will occupy a level
somewhat below the valence bandedge. They each rapidly shed energy and coalesce
onto the levels rather close (roughly within the thermal energy kT) to the bandedges.
In the present model, once this thermalization has occurred, the electrons and

holes can only recombine with each other. We shall consider a slightly more elaborate
model including ‘‘trapping’’ effects later on. The corresponding recombination rate
R of electrons with holes is usually assumed to be proportional to the density of
electrons n, the density of holes p, and the recombination coefficient bR (cm3 s�1):

R ¼ bRnp: ð3Þ

Recombination creates a good deal of energy that is either released as heat (i.e. as a
shower of phonons) or as a photon.1 The latter, ‘‘radiative’’ recombination process is
uncommon in solar cells—but is intentionally maximized in light-emitting devices.
There are two more essential parameters: these are the ‘‘effective densities of

states’’ NC (cm�3) and NV (cm�3) of the conduction bandedge and the valence

G

EG hν

µe

µh

Ec

Ev

x

R = bRnp

Fig. 2. Cartoon illustrating the principal parameters used in modeling photocarriers in semiconductors:

bandedge level energies EC and EV, bandgap EG, interband photocarrier generation G, electron and hole

mobilities me and mh and densities n and p, and electron–hole recombination R.

1We are neglecting ‘‘Auger’’ recombination, which is often considered in crystalline semiconductors. In

Auger recombination, the energy that is released by recombination of an electron and a hole is taken up by

a second electron (or hole); recombination is proportional to n2p or np2. I am unaware of any well-

documented experiment showing Auger recombination in low-mobility semiconductors, although the

possibility should certainly not be excluded.
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bandedge, respectively. The importance of these parameters will only emerge in our
discussion of the ‘‘open-circuit’’ voltage.

2.2. Current–voltage relations for varying cell thickness

In Fig. 3 we present the calculated current density J(V) as a function of bias
voltage for pin diode structures under illumination; results are given for several
thicknesses of the intrinsic layer. The computer calculations throughout this paper
were done using the rAMPS-PC computer program from Pennsylvania State
University [7]. Intrinsic layer parameters are indicated in the caption. We have
chosen the hole mobility mh to be much less than the electron mobility me both for
this figure and for essentially all of the modeling in this paper. The p- and n-layer
parameters were chosen so that these layers are essentially ideal (in the sense that
they do not significantly affect the current–voltage relation). We discuss some
technicalities of using AMPS PC in Appendix A.
In case the reader is unfamiliar with such J–V graphs, we briefly describe their

main attributes. A positive voltage V corresponds to an external electric potential
that is larger at the p-layer electrode than at the n-layer electrode. The value of V for
which J=0 is the ‘‘open-circuit’’ voltage VOC, and is the output of the solar cell when
it is unloaded by any external circuit. As the voltage is reduced below VOC, the
current density is negative, which means that the electrical current flows ‘‘uphill’’
into the positive terminal of the external potential; the energy, which makes this
possible, comes from the light absorbed in the cell. At short-circuit (i.e. at V=0V),
the magnitude of the current density is denoted the ‘‘short-circuit current density’’
JSC; of course the actual current measured in a circuit is the product of the current
density and the area of the cell.
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Fig. 3. Computer calculations of the current density J as a function of applied voltage for illuminated pin

diodes (300K) with varying i-layer thickness. The illumination creates uniform photogeneration G

throughout the i-layer. Intrinsic layer modeling parameters were mh=10�2 cm2/V s, me=20 cm2/V s,

bR=10�9 cm3/s, EG=1.78 eV, NC=NV=5� 1020/cm3.
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No power is delivered to the external circuit under short-circuit or open-circuit
conditions. As the voltage across the cell rises from 0 to VOC, a power density
P(V)=�J(V)V is delivered to the external circuit. The voltage/current pairs
corresponding to the maximum power Pm are indicated in the figure; the maximum
power point must be found individually for each cell.
Fig. 4 illustrates how these principal solar cell parameters depend upon the

thickness of the intrinsic layer. There are four main features to this figure.

* For the thinner structures (do1250 nm), the short-circuit current density JSC is
essentially proportional to thickness. This aspect is simply a property of the
optical absorption model we are using, which assumes a constant generation rate
G throughout an absorber layer of arbitrary thickness.
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Fig. 4. Computer simulation of the dependence of the main solar cell parameters (open-circuit voltage,

short-circuit current density, power density, and fill factor) upon the thickness of the intrinsic layer

(T=300K). The model parameters are the same as for Fig. 3. The solid lines indicate analytical

calculations. Note that the open-circuit voltage VOC is nearly thickness-independent. The short-circuit

current density JSC is proportional to thickness for thicknesses less than about 1250nm, and then

saturates. The maximum power density from the cell is reached for a smaller thickness around 700 nm,

after which it too saturates.
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* The open-circuit voltage VOC largely determines the voltage of the solar cell when
it is generating power. VOC is nearly independent of thickness, which makes it a
particularly fundamental aspect of a solar cell. We shall derive the following
formula for VOC in terms of the fundamental parameters of the intrinsic layer
material:

eV 0
OC ¼ EG þ kT ln

G

bRNCNV

� �
: ð4Þ

Note that this estimate of VOC is not only independent of thickness, it is independent
of the carrier mobilities.

* For intrinsic layers exceeding some collection width dC, the output power density
P of the cell saturates at some maximum value. This is not an optical effect; the
actual power absorbed from the optical beam is strictly proportional to the
thickness for our model of uniform G. dC is actually determined by the buildup of
an electrical ‘‘space-charge’’ of drifting carriers. In the limit of low hole mobility,
we shall obtain the following approximations for the width dc and the power
density generated by the cell:

dC ¼ ðð2=3ÞVOCÞ
1=2ðmhee0=eGÞ1=4; ð5Þ

P ¼ ðð2=3ÞVOCÞ
3=2ðmhee0ðeGÞ3Þ1=4: ð1Þ

Note that these formulae nicely complement the open-circuit voltage formulae,
which do not depend on the hole mobility.

* The fill-factor FF, which is defined implicitly from the power relation
P=(FF)JSCVOC, is a helpful characterization for thinner cells, where it
indicates the deviations from the ideal behavior described by FF=0.91. It is
less useful for thicker cells. As can be seen in Fig. 4, the fill-factor saturates at
about the same thickness as the short-circuit current density, having fallen
to a value around 0.4. The power density saturates for cells that are thinner
than is required for JSC and the fill factor to saturate; we discuss the reasons in
Section 2.8.

2.3. Analytical estimate for current density in thin cells

For very thin cells under short-circuit conditions, we can safely assume that every
photocarrier that is generated by photon absorption will be swept across the
absorber layer by the internal electric field and collected. Electrons will be swept into
the n-layer, and holes into the p-layer, respectively. During this collection process,
electric charge moves through the external circuit that sets the voltage across the cell;
this external current balances the charge motion within the cell. The equation
describing the current is then:

JSC ¼ eGd; ð6Þ
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where e=1.6� 10�19 C is the electronic charge. The values predicted using this
equation and G=1021 cm�3 are shown as the solid line in Fig. 4. They provide a very
satisfactory explanation for the short-circuit current density that was calculated
using the full simulation for thinner cells, and indeed one may think of the agreement
as a test of the simulation program.

2.4. VOC and quasi-Fermi levels: a theorem

An analytical approximation to the open-circuit voltage VOC may be obtained
using a remarkable, if difficult to prove, theorem. The theorem is expressed in terms
of quasi-Fermi levels, which are defined as follows. If the mobile electron density (the
density of electrons occupying levels above the conduction bandedge EC) is denoted
n, then the electron quasi-Fermi level EFn is defined:

EFn � EC þ kT ln
n

NC

� �
; ð7Þ

where NC is the conduction bandedge density-of-states. As similar expression defines
the hole quasi-Fermi level EFp in terms of the mobile hole density p,

EFp � EV � kT ln
p

NV

� �
: ð8Þ

Quasi-Fermi levels are often introduced in semiconductor device modeling [8,9].
They have the property that electron and hole currents may be conveniently
expressed in terms of gradients; thus the electrical current density from electrons Jn

may be written

Jn ¼ �nme
@EFn xð Þ

@x
:

The open-circuit voltage theorem is based upon the values of the electron and hole
quasi-Fermi levels E0

Fn and E0
Fp that would occur in the intrinsic layer material in

isolation (i.e. without gradients or electric fields that would transport electrons and
holes in space). Assuming ideal electrodes (the p and n layers), the open-circuit
voltage eVOC is

eVOC ¼ E0
Fn � E0

Fp: ð9Þ

I am not aware of any formal treatment of this theorem, but the basic idea
has been in use for many years [10–12]. This idea is that photocarrier genera-
tion in a material may be viewed as creating two electronic reservoirs
with differing chemical potentials. Electrons in the conduction band are one
such reservoir; holes in the valence band are the second. Under open-
circuit conditions, the n-layer serves as an ideal electrode permitting us to
measure EFn; similarly, the p-layer simply serves as an ideal electrode permitting
us to measure EFp. A voltmeter connected to the n- and p-layers then measures
(EFn�EFp)/e.

E.A. Schiff / Solar Energy Materials & Solar Cells 78 (2003) 567–595574



In Fig. 5 we show the profiles for the valence and conduction bandedges EV and
EC and for the quasi-Fermi levels EFp and EFn based on a full computer simulation.
There is a broad region across the middle of the cell where the quasi-Fermi levels are
constant, so the theorem may be applied. The separation of the two quasi-Fermi
levels in this region is 1.09 eV; the open-circuit voltage calculated by the simulation is
1.0977, which is certainly quite close to the results anticipated from the theorem. The
conduction and valence bandedges are not quite constant, even in the middle of the
cell. Simulations with thicker cells do show more constancy in the bandedge
positions, and the quasi-Fermi levels remain essentially the same.
The regions near the p=i and n=i interfaces are also interesting. Notice that the

quasi-Fermi levels, which are well separated in the intrinsic layer, converge to the
true Fermi energy in the electrode layers. Our implementation of ‘‘ideal’’ electrodes
uses larger bandgap materials than for the intrinsic layer, and assumes that there is
no photogeneration in these layers. For the p-layer, most of the bandgap difference
occurs at the conduction band. This conduction band offset suppresses ‘‘thermionic
emission’’ of electrons from the intrinsic layer into the p-layer [13,14]; thermionic
emission at this interface leads to a substantial decrease in the measured VOC

compared to the ideal, intrinsic-layer dominated value. The n-layer choice is
symmetrical, although in this case the choice has essentially no effect on VOC. The
relative insensitivity of VOC to the n-layer parameters is a consequence of the fairly
large electron mobility assumed by the simulation.
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Fig. 5. Electronic level profiles calculated for a pin diode under illumination (open-circuit). The
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splitting, and the convergence of the quasi-Fermi levels in the electrode layers. The hole mobility was

mh=10�4 cm2/V s; otherwise the parameters are the same as for Fig. 3.
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2.5. Analytical estimate: VOC

Given this theorem, we now calculate VOC for the present model of a pin cell.
In electrically neutral material, n ¼ p: Under illumination, the densities may be
calculated by equating the rate of generation G with the rate of recombination
R ¼ npbR :

R ¼ npbR ¼ G;

n ¼ p ¼ ðG=bRÞ
1=2;

E0
Fn ¼ EC þ

kT

2
ln

G

bRN2
C

� �
;

E0
Fp ¼ EV �

kT

2
ln

G

bRN2
V

� �
:

We are neglecting thermal processes, which generate carriers in the dark. From the
VOC theorem we obtain:

eV 0
OC ¼ EG þ kT ln

G

bRNCNV

� �
: ð10Þ

It is important to note that V 0
OC is independent of the electron and hole mobilities,

and that this formula accounts naturally for the fact that VOC depends little on
thickness. The solid line approximating VOC in Fig. 4 was calculated using this
expression; it accounts very well for the results from the full computer simulation
(shown as circular symbols).2

2.6. Analytical estimate of the saturated power density

Fig. 4 shows that the power delivered by a cell reaches a saturation value for cells
with sufficiently thick intrinsic layers. In this section we present an analytical
estimate for this saturated power density. Although we do not illustrate it here, for
extremely thick cells the power will ultimately decline; this issue is treated briefly in
Appendix B.
We first examine the profile of the electric field shown in Fig. 6 as it was calculated

using the full computer simulation. The dashed curve indicates the field-profile under
open-circuit conditions. Very near the p=i interface, there is a region with a quite
large electric field. At first glance this field suggests that there must be some violation
of the fact that there is no current in the cell under open-circuit conditions. Hole
photocarriers in this high field region drift rapidly towards the p-layer. However, this
drift simply cancels the diffusion of holes out of the p-layer, and the net current
(drift-diffusion) remains zero. The field across the ‘‘back’’ of the cell is nearly zero.

2 Indeed, the approximation works too well. In deriving the formula for VOC, we assumed that there is a

region with zero electric-field in the middle of the cell. Although we do not explore this in detail, this

assumption breaks down for the thinnest cells in Fig. 4, but the value for VOC still applies. It is likely that a

derivation for VOC even more general than the one described here must exist.
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When the cell is biased at its maximum power point, the electric field penetrates
more deeply into the cell, and net current is flowing. As can be seen, there is a
reasonably linear decline of the field towards zero at a depth that we identify as the
collection width dC. It is worth noting that the area of this graph lying between
the open-circuit and maximum-power curves corresponds to the difference
VOC�VMP=0.36V.
A first estimate of the current that flows in the external bias circuit may be

obtained by calculating the rate at which holes are generated within this collection
zone: jEeGdC. The presumption is that every such hole reaches the p-layer and is
collected there, and that holes generated in the low-field region will recombine with
electrons instead of being collected. Because the electrons are assumed to be far more
mobile than the holes, the necessary electron current that must flow across the low-
field zone can be driven by a negligible electric potential drop.
The presumption that holes generated within the collection zone are collected as

photocurrent is consistent with the upper panel in Fig. 6. This panel illustrates the
generation rate profile G(x) in the calculation (essentially a constant) and the
recombination profile R(x). Deep in the device, for x>dC, all photocarriers that are
generated recombine without being collected (i.e. G=R). Near the p=i interface, for
xodC, photocarriers are mostly collected. There is a transition region that we
attribute to carrier diffusion processes; we discuss these shortly.
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dC may be estimated analytically using an elementary version of the ‘‘regional
approximation’’ of Crandall [15]. As suggested by Fig. 6, the electric field declines
essentially linearly to zero with depth, which corresponds to a uniform charge
density r within collection zone (and zero beyond it). A uniform charge density is the
correct solution to the set of semiconductor modeling equations in the collection
region:

@Jh

@x
¼ e G � Rð Þ ðcontinuity equationÞ;

JhðxÞ ¼ rðxÞmhF ðxÞ ðdrift relationÞ;

@F ðxÞ
@x

¼
rðxÞ
ee0

ðPoisson’s equationÞ:

To evaluate the uniform charge density solution r (0oxodC), consider the field and
current density at x=0. From Poisson’s equation we obtain:

F ð0Þ ¼ �rdC=ee0:

From the continuity equation (with R=0):

Jhð0Þ ¼ �eGdC

and from the drift relation:

Jhð0Þ ¼ rmhF ð0Þ ¼ �r2mhdC=ee0:

We obtain

r ¼ feee0G=mhg
1=2: ð11Þ

The collection width dC is determined by r (which is independent of voltage) and the
electric potential DV across the collection width. From our original assumption of a
linear dependence of field upon depth

F ðxÞ ¼ �
rdC

ee0
1�

x

dC

� �
ð0oxodCÞ;

we obtain (from the definition F(x)=�@V/@x) that

DV ¼ V ðdCÞ � V 0ð Þ ¼ d2
Cr=2ee0

and hence

dC ¼ DVð Þ1=2ð4mhee0=eGÞ1=4: ð12Þ

We need to evaluate dC for the potential corresponding to maximum power. The
output power density is given by P(V)=�J(V)V. J(V) may be identified with the hole
current Jh at x=0, which is �eGdC. DV is the difference between the open-circuit
voltage VOC and the applied potential V:

DV ¼ VOC � V
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Thus PðV Þp VOC � Vð Þ1=2V ; which reaches its maximum at V ¼ 2
3

� �
VOC: From

J=–eGdC and P=–JV, we obtain:

P ¼ ðð2=3ÞVOCÞ
3=2ðmhee0ðeGÞ3Þ1=4 ð1Þ

and

dC ¼ ðð2=3ÞVOCÞ
1=2ðmhee0=eGÞ1=4: ð5Þ

In Fig. 7 we have illustrated this expression for the power density as a function of the
hole mobility mh along with the results from full computer simulation. For hole
mobilities less than 10�2 cm2/V s, the agreement between the approximation and the
analytical calculation is excellent. As the hole mobility increases, there is an obvious
deviation, and for mh=1 the computer simulation predicts a power density that is
30% larger than the analytical approximation.
Most of the difference between the analytical approximations and the computer

simulation may be attributed to our neglect of photocarrier diffusion processes. In
the lower panel of Fig. 7 we have graphed the width of the depletion zone, along with
the ambipolar diffusion length Lamb. Lamb estimates how far photocarriers diffuse
before recombining in a region that is free of external electric fields. The formula for
Lamb is derived in many textbooks; an adequate approximation using the present
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notation is

LambE 4ðkT=eÞ2
m2h

GbR

� �1=4

: ð13Þ

We derive this formula in Appendix C. Note that Lamb increases more rapidly with
the hole mobility than does dC, and that dCELamb for mh=1 cm2/V s. These aspects
are qualitatively consistent with the deviation between the computer simulations and
the drift-zone approximation. We have examined the simple modification of adding
the ambipolar diffusion length to dC to estimate the total current. For mh=1 cm2/V s,
this approximation yielded a power density about 50% larger than that calculated
using the computer simulation. We have not developed a more satisfactory
approximation incorporating diffusion.

2.7. Analytical estimate: power density for thin cells

Crudely speaking, for thin cells the power density is eGdVOC. This expres-
sion corresponds to saying that the fill-factor FF=1, which is an unattain-
able ideal. An improved estimate can be made as follows [10]. We assume
that, as the voltage across the cell is reduced from VOC, and as photo-
carrier collection commences, the recombination rate R of electrons and holes
simply falls below the generation rate G throughout most of the cell. Then the
current density is

jðV Þ ¼ eGd 1�
R Vð Þ

G

� �
;

where d is the thickness of the intrinsic layer.
We can roughly estimate the applied potential associated with a given level of

recombination by applying Eq. (4), but using the recombination rate R instead of the
generation rate G to obtain an estimate at an arbitrary voltage V. This is a very
strong approximation.

eVEEG þ kT ln
R

bRNCNV

� �
;

e VOC � Vð Þ ¼ kT ln
G

R
;

JðV Þ ¼ eGdð1� expð�eDV=kTÞÞ;

P ¼ VdJðV Þ:

Maximizing the expression for the power, we obtain the result for the potential Vm at
the maximum power-point:

ðe=kTÞVm ¼ ðe=kTÞVOC � lnð1þ ðe=kTÞVmÞ:

For bR=10�9 cm3/s, we previously estimated VOC=1.09V. Solving the expression
above by iteration, we obtain Vm=0.997V, which is fairly close to the value
obtained by simulation Vm=0.97V for a 250 nm cell.
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Since for sufficiently thin cells the short-circuit density JSC=eGd, we can also
estimate the FF for thin cells:

FFEðVm=VOCÞð1� expð�eðVOC � VmÞ=kTÞÞ: ð14Þ

For the same numerical values, we obtain FF=0.89. This is somewhat larger than
the value from simulation FF=0.83; we have not explored more complex
approximations.

2.8. Discussion

A fairly common approach to studying photodiodes is to calculate the J–V

relation in the dark, and then to assume that the J–V relation under illumination
may be obtained by superposition: Jilluminated=Jdark(V)�Jphoto of the dark current
and a voltage-independent photocurrent. This approach is incorrect for very low-
mobilities; it assumes that the electric-field is unmodified by light, which is certainly
not true for the present models. In addition, two earlier analyses have assumed a
uniform electric field [16,17]. These analyses apply to cells in which the carrier
mobility is large enough that it does not limit the power output; in this paper we have
chosen to examine the low-mobility region.
Crandall [15] has done a comprehensive analysis of the regional approximation

including space-charge effects. He found a space-charge limited regime that was
independent of recombination; Section 2.6 of the present paper is essentially a more
elementary version of his analysis. Crandall’s more general equations include an
analytical treatment of the transition to a recombination-limited cell.
We noted earlier that the power density saturates for significantly smaller

thicknesses than does the short-circuit current density JSC or the fill-factor. The
reason for this difference is that the electric potential across the cell is larger under
short-circuit conditions than it is at the maximum power point. Photocarriers that
are deeper in the cell than dC may thus be collected under short-circuit conditions,
but this additional collection does not contribute to power generation.

3. The pin structure with bandtail traps

In the previous section we analyzed a model with specified electron and hole
mobilities, and we found that a fairly good understanding of the resulting solar cell
could be achieved by considering the space-charge that builds up due to slowly
drifting low-mobility, photocarriers. However, we proposed no mechanism to
explain either the small magnitudes of the mobilities or the asymmetry of the
electron and hole mobilities.
Non-crystalline semiconductors do tend to have fairly low band mobilities. The

best documented case is that of hydrogenated amorphous silicon, for which the
electron band mobility is about 2 cm2/Vs [18,19]. The reduction of this mobility
compared to the value in crystal silicon (around 1800 cm2/V s at 300K) is
undoubtedly an effect of the absence of long-range order, although there is no
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conclusive theoretical calculation of the magnitude of this mobility in amorphous
silicon.
In actual practice, the effective (or ‘‘drift’’) mobility is further reduced, often quite

dramatically, by trapping of carriers into localized states between the bandedges.
More particularly, several amorphous semiconductors have quite low drift mobilities
because of localized ‘‘bandtail’’ levels that lie just above the valence bandedge or just
below the conduction bandedge. These localized states capture and immobilize holes
and electrons, respectively. The carriers remain in the traps until they are thermally
excited back into the bands (or, alternatively, until they recombine). The trapping
events reduce the effective mobility of the carriers, since the carriers spend relatively
little time in band states (where they are mobile), and most of their time in traps
(where they are immobile).
In 1981, research groups at the Massachusetts Institute of Technology [20] and at

the Exxon Corporation Research Laboratories [21] discovered independently that a
quite satisfactory account for drift-mobility measurements in amorphous As2Se3 and
in a-Si:H could be given using an exponential distribution of these trap states. For
the valence bandtail this means that the trap distribution vs. level energy is written:

gVðEÞ ¼ g0V exp �
E � EV

DEV

� �
E > EV: ð15Þ

The prefactor gV
0 has the dimensions cm3/eV. DEV is the width of the valence

bandtail, which was found to be around 50meV in both materials. For a-Si:H, the
conduction bandtail width is smaller (around 22meV [22]), and indeed it is small
enough that near room-temperature (kT=25meV) conduction bandtail trapping can
be neglected.
In this section we present a model for a pin solar cell based on an absorber

material with an exponential valence bandtail. To keep the model reasonably simple,
we neglect electron trapping. As just noted, this is actually an acceptable
approximation for a-Si:H near room-temperature (but a very poor one for a-
As2Se3). As we shall see, the trapping of holes leads to quantitative changes in the
behavior of cells compared to the low-mobility, but trap-free, case of the previous
sections. The qualitative behavior of cells is nearly unchanged.
In addition to the parameters already introduced for the trap-free case, only one

additional parameter (beyond the density of trapping states) is required for
numerical simulation. This parameter is the ‘‘trapping coefficient’’ bT, which
describes the rate of capture of mobile holes (density p) by bandtail traps (density g):
Rtrap=bTpg. A discussion of the parameters used in the present paper is given in
Appendix D; they have been chosen to describe amorphous silicon.

3.1. Current–voltage relations for varying cell thickness

In Fig. 8 we show calculated solar cell parameters as a function of the absorber
layer thickness. The valence bandtail width was 50meV; other parameters are
summarized in Appendix D. The qualitative similarity with Fig. 4, which shows
calculations for the simpler, trap-free model, is unmistakable. In both cases VOC is
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nearly independent of thickness, but the power saturates for thicknesses beyond the
collection width dC. The saturation thresholds are different, and correspond to
different saturated powers (about 8mW/cm2 for Fig. 4, and about 3mW/cm2 for
Fig. 8).
Fig. 4 was obtained using mh=10�2 cm2/V s. Fig. 7, which showed how the

saturated power increased with mh, indicates that a power of 3mW/cm2 would have
resulted if the hole mobility were 2� 10�4 cm2/V s. It is interesting to compare this
mobility with some kind of mobility corresponding to the situation with bandtail
traps. For exponential bandtail trapping, it is incorrect to describe hole transport
in terms of any specific mobility, but an average ‘‘drift-mobility’’ can be defined
for a specific hole displacement L and electric field F [22]. The drift-mobility

0

1

2

3

0

1

2

3

4

5

6

7
0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500
0.4

0.6

0.8

P

G = 1021 cm-3 s-1

P
ow

er
 (

m
W

/c
m

2 ) dC

JSC

VOC

C
ur

re
nt

 D
en

si
ty

 J
S

C
 (

m
A

/c
m

2 )

O
pe

n-
ci

rc
ui

t V
ol

ta
ge

 V
O

C
 (

V
)

F
ill

 F
ac

to
r

Thickness (nm)

FF

Fig. 8. Calculated solar cell parameters at 300K for a model with exponential valence bandtail traps

(50meV width). The short-circuit current density JSC, open-circuit voltage VOC, power density P (at the

maximum power point), and the fill factor are shown for varying absorber layer thickness. The solid line is

an analytical approximation to VOC. dC is the collection width under maximum power conditions; the

dashed lines are just guides. Modeling parameters include mh
0=1 cm2/V s, NV=NC=5� 1020/cm3,

bR=10�9 cm3/s, bT=2� 10�10 cm3/s (see Appendix D).

E.A. Schiff / Solar Energy Materials & Solar Cells 78 (2003) 567–595 583



corresponding to a particular ratio L/F is

mhðL=F Þ ¼ m0h
L=F

m0h=n

� �1�1=a

;

a �
kT

DEV
: ð16Þ

The parameter n is an ‘‘attempt-to-escape’’ frequency that describes the rate S at
which a trapped carrier is thermally released; more specifically S=n exp (�dE/kT),
where dE is the binding energy of the carrier to the trap. The ratio a is called the
‘‘dispersion parameter’’.
For the case of Fig. 8, holes drift about L=200 nm (the collection width dC) under

conditions of maximum power output. Under the same conditions, the voltage
dropped across the collection width is around VOC/3, and the average electric field F is
about VOC/3L=1.6� 104V/cm. The corresponding ratio is L/F=1.25� 10�9 cm2/V.
The hole drift-mobility is about 8� 10�3 cm2/V s for this value of L/F; the necessary
formulae are given in Appendix E. The magnitude is not too different than the value
mh=2� 10�4 cm2/V s for the trap-free calculation, but it is clear that the simpler
calculation is not an adequate quantitative guide to the calculation with bandtail
traps.

3.2. Analytical estimate: open-circuit voltage

The derivation of an analytical estimate for VOC along the lines we previously used
for the trap-free situation may be found in Appendix E. It is a bit messy, but here is
the algebraic expression for eVOC:

eVOC ¼ EG þ
kT

2
ln

G

bRN2
C

� �
þ 2 ln

G

bTN2
V

� �
�

kT

DEV
ln

bR

bT

G

bTN2
n

� �� �� �
ð17Þ

In Fig. 8 we have illustrated the calculated value VOC=0.97V based on this
approximation, along with the results from the simulation. The agreement is very good.
It is worth remarking that these open-circuit voltages are reduced about 10% from

the trap-free value (about 1.10 eV), and that eVOC is substantially smaller than
EG=1.78 eV for both the trap-free and the bandtail cases.

3.3. Effects of bandtail width

For the trap-free models, we studied how the saturated power output of a cell
depended upon the hole-mobility. For the present, bandtail trapping model, the
analogous dependence is that of the saturated power output upon the valence
bandtail width DEV. As the valence bandtail is narrowed, the hole drift-mobility
increases, and we expect increased power.
In Fig. 9 we have illustrated how the saturated power output and the collection

width dC depend upon the valence bandtail width. dC was determined using the
procedure illustrated in Fig. 8. As one would expect from analogy with the trap-free
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case, increasing the drift-mobility increases the power output. The physical
mechanism is exactly the same as for the trap-free case: the space-charge of drifting
holes sets a upper limit to the size of the region from which holes can be collected.
The faster the drift of holes, the less the space-charge at a given level of
photogeneration, and the larger the collection region.
It may be useful to note that the case DEV=0 corresponds precisely to the trap-

free case (with mh=1 cm2/Vs). The increase in power (under uniform generation) as
DEV is reduced from 20 to 0meV is about 30%; this is relatively modest compared to
the nearly tenfold increase as DEV fell from 50 to 20meV. The reason that the
increase in power is arrested is that, when the thermal energy kT is larger than DEV,
bandtail trapping effects are actually fairly small.

4. Implications for solar conversion by amorphous silicon

In the previous section, the discussion of solar cells incorporating intrinsic,
absorber layers with exponential valence bandtail traps was intentionally general,
and we described only the simplest case of uniform photogeneration. However, the
parameters were chosen so that the results can easily be adapted to hydrogenated
amorphous silicon, for which DEVE48meV [21,23]. The principal difficulty in
applying the results from the last section is that the photogeneration in a solar cell is
certainly not uniform, as was assumed; in this section we adapt the model to the case
of solar illumination.3
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3Multijunction structures consisting of two or three cells stacked vertically are used for high-efficiency

amorphous silicon-based cells. The full solar spectrum reaches only the top cell, so the present calculation

can only be applied directly to this cell. We have also assumed that the back surface of the cell is non-

reflecting. A high-efficiency design for a single pin junction solar cell would incorporate both a back-

reflector and other optical enhancements such as substrate texturing.
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In Fig. 10 we have illustrated the total photon flux in the solar spectrum above a
specified photon energy hn.4 We have also illustrated the total photogeneration that
occurs via absorption of this flux in a-Si:H as a function of thickness. We are
neglecting reflection either at the front or the back of the a-Si:H layer. Additionally,
the absorption properties of a-Si:H do vary somewhat with its preparation
conditions; the values we have chosen are fairly typical [24]. Note that, for a film
that is 1000 nm thick, the total photogeneration is about 8.8� 1016 cm�2/s. As
illustrated in the figure, this value corresponds to the solar flux with photon energies
greater than 1.8 eV, and indeed nearly all of the photons absorbed by the film do
have energies larger than this value. The figure also illustrates the important fact that
increasing the thickness of a-Si:H beyond a few hundred nm yields fairly little
additional absorption of the solar spectrum.
Fig. 11 illustrates the main solar cell parameters as a function of thickness; results

are shown for a 50meV valence bandtail width and for no valence bandtail (0meV).
For reference, there is about 100mW/cm2 of solar irradiance available for full solar
illumination. The cell is illuminated through the p-layer; because holes are the lower
mobility photocarrier, it is advantageous that they should be generated closer to the
p-layer, which is their destination. The power would be substantially reduced for
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4Hemispherical irradiance was based on the American Society for Testing and Materials (ASTM) Table

G159-98, ‘‘Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and

Hemispherical for a 371 Tilted Surface.’’

E.A. Schiff / Solar Energy Materials & Solar Cells 78 (2003) 567–595586



illumination through the n-layer [1–3]. Reflection of light at the front and back
interfaces of the cell is neglected.
The results with a 50meV bandtail in this figure may be directly compared with

Fig. 8, which was calculated for uniform photogeneration. The short-circuit currents
and powers are roughly twice as large as for the earlier figure, which merely reflects
the somewhat arbitrary choice of G=1021 cm�3/s for the uniform photogeneration in
Fig. 8. The open-circuit voltages are similar; this is sensible, since VOC varies only
logarithmically with intensity. There is about a 13% increase in VOC without the
bandtail (0meV width). The improvement may be satisfactorily explained using
Eq. (17). With the 50meV bandtail, the output power saturates for thicknesses
greater than about 200 nm, as would be anticipated given the collection width (about
250 nm) illustrated in Fig. 9. Without the bandtail, the power is larger, with the
improvement being larger for thicker cells. These effects originate in the increase in
collection width as the bandtail narrows. The highly inhomogeneous photogenera-
tion evident in Fig. 10 leads to a much slower increase in the power with thickness
than was illustrated for uniform photogeneration (Fig. 8).
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bandtail widths DEV; otherwise the modeling parameters are the same as for Fig. 8.
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In Fig. 12 we plot the power output as a function of the valence bandtail
width; curves are shown for four thicknesses ranging from 250 to 2000 nm. The
four curves converge for a 50meV bandtail, which simply reflects that the collection
width is less than 250 nm for this bandtail. As the bandtail declines, the collection
width increases, so that thinner cells generate less power than thicker cells; the
increase in power with thickness is much lower than for cells with uniform
photogeneration.
Experimentally, the bandtail width that applies to ‘‘typical’’ a-Si:H is in the range

45–50meV. In Fig. 13 we have illustrated experimental results for a series of a-Si:H
solar cells with varying thickness, as well as the predictions of the present model for
bandtail widths of 40 and 50meV [1]. There have been several reports [25–27] of
improvement in the hole drift-mobilities of a-Si:H. We envision that an improvement
corresponding to DEV=40meV may well be possible. As illustrated, this
improvement would correspond to a power output of about 9mW/cm2, but would
require a 500 nm cell to exploit.
We conclude by commenting briefly on the decline in the power output of a-Si:H-

based solar cells as they become ‘‘light-soaked’’. We believe that the calculations in
this paper adequately describe the initial behavior of a-Si:H cells (before they have
become light-soaked). In simple structures such as we have described in this paper,
the decline in power is about 30% for thicker cells and very long solar exposures
[1–3]. It is believed that this effect is due to the creation of dangling bond defects by
photocarrier recombination in a-Si:H. The defects subsequently trap photocarriers,
presumably leading to a decline in the effective collection width for the cell; light
soaking has relatively little effect on VOC. The present calculations do not address
this effect. They indicate the ultimate conversion efficiencies for cells for which
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dangling bond trapping is unimportant, and they show how narrowing of the
valence bandtail improves this limit. We do not presently know whether such
narrowing will improve cells that are in the light-soaked state, which must await
further research.
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Appendix A. AMPS implementation (trap-free model)

The recombination parameter in rAMPS PC is a ‘‘cross-section’’ sR which is
related to the recombination coefficient bR by sR =vthbR, where vth=107 cm/s is
a conventional ‘‘thermal velocity’’. The use of cross-sections is conventional in
semiconductor physics, although unlikely to have much meaning for low-mobility
materials.

rAMPS PC does not permit an exact translation of the trap-free model in the first
section. There is no parameter in AMPS describing the direct recombination process
of free electrons and free holes. The particular implementation for the present
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simulations assumes narrow exponential bandtails (width=0.01 eV), and a density-
of-states prefactor GD0=GA0=NC/0.025. GD0 and GA0 are AMPS parameter
names for the density prefactors describing the exponential bandtails. 0.025 eV is a
nominal value for kT at room-temperature. The ratio N/n of the density of carriers N

that are trapped in this narrow bandtail to the density of free electrons n is obtained
as follows. One calculates the energy-integral of the exponential trap distribution
(rising towards the bandedge) times the Boltzmann factor (declining as the bandedge
is approached). This density is divided by the effective density NC of the band.
For a 0.01 eV bandtail width we obtain the ratio of trapped electrons to free
electrons to be 2

3
:

To adjust the AMPS parameters to give the same results as the analy-
tical calculation, I used the following substitutions. To get the total space-
charge to be correct for a given quasi-Fermi level position, I set NC and
NV to 3

4
of the value used for the analytical approximation; GA0 and GD0

were reduced by the same factor. To get the same recombination rate, bR needs
to be increased. For a given space-charge of electrons, only 3

5
can re-

combine, and only 2
5
of the holes are targets. On the other hand, AMPS treats

electron-to-trapped-hole and hole-to-trapped-electron recombination separately.
Therefore bR was increased by the factor ð5

3
Þ ð5

2
Þ=2 ¼ 25

12
: Finally, since only 3

5
of the

space-charge is mobile, we need to increase the mobilities by a factor 5
3
to get the

correct currents.

Appendix B. Decline of power for extremely thick cells

We have shown several figures that suggest that, for thick cells, the power reaches
a saturation value that is independent of thickness. Even for the uniform
photogeneration model, this is not strictly true. For sufficiently large intrinsic layer
thickness d, the power will decline due to Ohmic losses of moving the photocurrent
through the ‘‘back’’ region of the cell. Denoting the photoconductivity of this region
as sphoto, the potential drop across the back due to a current density J is VOhmic=Jd/
sphoto. For this Ohmic potential drop to be negligible, we require that
d5sphoto(VOC�V)/J.
For the ‘‘trap-free’’ case it is fairly straightforward to evaluate this thickness. For

G=1021/cm3/s, bR=10�9 cm3/s, and me=20cm2/Vs, we obtain sphoto=3.2� 10�3/O/cm.
For the case of Fig. 4, thick cells have VOC�V=0.3V and J=1.2� 10�2A/cm2 at
the maximum power point. The limiting thickness is 8� 10�2 cm; the largest
thickness included in the figure was 2� 10�4 cm.

Appendix C. Ambipolar diffusion length

Lamb is the length scale characterizing how far a hole will diffuse
before recombining with an electron; this length is the square-root of the product
of the ambipolar diffusion constant Damb [8] and the rate nR at which a hole
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recombines:

Lamb ¼ fDamb=nRg
1=2;

Damb ¼
n þ p

ðn=DhÞ þ ðp=DeÞ
;

LambE 2ðkT=eÞ
mh

nbR

� �1=2

¼ 4ðkT=eÞ2
m2h

GbR

� �1=4

:

We have used the Einstein relation D=(kT/e)m that connects carrier diffusion
coefficients and mobilities, and we have assumed that Dh5De.

Appendix D. Solar cell modeling parameters (with valence bandtail trapping)

We have chosen parameters based on a-Si:H. We are neglecting alloyed materials
such as a-SiGe:H that are based on a-Si:H. Even without alloying effects, there is
variability in the properties of a-Si:H, so the present choices should be considered as
‘‘typical’’ instead of as definitive.

EG: The ‘‘electrical’’ bandgap EG in a given amorphous silicon based material is
not precisely established. Our value (1.78 eV) is somewhat smaller than estimates
from internal photoemission [28], but is closer to estimates from temperature-
dependent VOC measurements [29].

DEV, mh
0, NVbT: These three parameters may be obtained from hole time-of-flight

measurements such as the 1994 paper of Gu et al. [23]. This paper proposed
DEV=48meV, mh

0=0.27 cm2/V s, and an attempt-to-escape frequency
n=7.7� 1010 s; the product NVbT is equal to n. Unpublished work from Syracuse
University [27] indicates that hole drift mobilities have increased in more modern
samples, although no detailed description yet exists for how and why the three time-
of-flight parameters vary in differing forms of a-Si:H. For simplicity, we use a
valence band mobility mh

0=1 cm2/V s and n=1011/s; the bandtail width is treated as a
variable in the present work.

NV, gV
0 , bT: Little is known about the value for NV; we used 5� 1020/cm3 based on

the temperature-dependence of VOC [29]. This choice, in conjunction with the value
for n, implies bT=2� 10�10 cm3/s. Time-of-flight also constrains the ratio gV

0 /NV; we
used gV

0=1022/cm3/eV. This issue is discussed further just below.
bR: The recombination coefficient bR is about 10�9 cm3/s based on high-intensity

recombination measurements [30,31].
NC, me: NC is not directly known; we arbitrarily used NC=NV. From electron time-of-

flight measurements, me is 2 cm
2/V s [18,19]. Neither parameter strongly affects results.

D.1. Relation of NV and g(E)

We derive the relationship of the band density-of-states parameter NV

when the bandedge lies within an exponential density of states. Assuming
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that the bandedge is at E=0, the exponential density of states may be
written:

gðEÞ ¼ g0V expð�E=DEVÞ:

The effective density of states is

NV ¼
Z 0

�N

gðEÞexpðE=kT Þ dE:

We obtain:

NV ¼ kTg0V 1� kT=DEV

� ��1
: ð18Þ

This relationship is valid only for kToDEV. When kT>DEV, the effective band
density corresponds to states lying below the exponential region.

Appendix E. Drift mobilities and bandtail trapping

The time-dependent displacement of a hole is written as

LðtÞ ¼ ðm0hE=nÞfvtga;

a �
kT

DEV
:

The parameter n is an ‘‘attempt-to-escape’’ frequency that describes the rate R

at which a trapped carrier is thermally released; more specifically R ¼
n expð0� dE=kTÞ; where dE is the binding energy of the carrier to the trap. The
ratio a is called the ‘‘dispersion parameter’’. The drift-mobility corresponding to a
particular ratio L/E is

mhðL=EÞ ¼ m0h
L=E

m0h=n

� �1�1=a

:

Appendix F. Analytical derivation of VOC (with valence bandtail trapping)

In this appendix we derive an analytical approximation for VOC including
valence bandtail trapping. We use the quasi-Fermi level approach that was
described for the ‘‘no-traps’’ model. The present calculation is actually a
simplification of one by Tiedje that incorporated both valence bandtail and
conduction bandtail trapping [11].
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F.1. Electron quasi-Fermi level

The derivation of the electron quasi-Fermi level EFn is nearly identical to that for
the trap-free case. P is the density of holes in bandtail states; we are assuming that
the density of mobile holes p in band states is much smaller than P.

nPbR ¼ G;

n ¼ P;

n2 ¼ G=bR;

n ¼ ðG=bRÞ
1=2;

n � NC expð�ðEC � EFnÞ=kTÞ;

E0
Fn ¼ EC þ kT lnðn=NCÞ ¼ EC þ ðkT=2Þln

G

bRN2
C

� �
:

bR now denotes the coefficient for electron capture by a trapped hole; the definitions
of the remaining symbols are unchanged, as is the equation for the electron quasi-
Fermi level.

F.2. Hole quasi-Fermi level

The first issue is the distribution of holes in the bandtail traps. This needs a figure
to illustrate, but there are about NV total traps in the bandtail that are distributed
exponentially with a characteristic energy kTV. Very deep in the bandtail,
the occupancy by holes is kept to a rather low, constant value f by competi-
tion between capture of holes (coefficient bT) and capture of electrons. A
demarcation energy EDp may be defined as the level at which the occupancy of
holes switches from the constant value f to an Boltzmann exponential as the valence
band is approached.

f �
pbT

nbR
;

PEfNV expð�ðEDp � EVÞ=kTVÞ:

The idea of the expression for P is that, if EDp were at the valence bandedge, then the
density would be about fNV. Since EDp is actually above the edge, the density is lower
according to the exponential decay of the trap density.
Now, the demarcation energy may be calculated by equating the rate of emission

of a trapped hole at EDp with the rate of electron capture by the same hole:

nbR ¼ n expð�ðEDp � EVÞ=kTÞ;

P ¼ n ¼ fNV
nbR

n

� �kT=kTV

;
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n ¼
pbTNV

nbR

nbR

n

� �kT=kTV

¼ p
nbR

v

� �ðkT=kTVÞ�1

;

pbR

n
¼

nbR

n

� �2�ðkT=kTVÞ

:

We have used the detailed balance expression n=NVbT. We can use the expression for
p to get EFp in terms n and thus in terms of G.

p ¼ NV expð�ðEFp � EVÞ=kTÞ;

EFp ¼ EV � kT lnðp=NVÞ;

EFp ¼ EV � kT In
n

NVbR

� �
nbR

n

� �2�ðkT=kTVÞ
" #

;

EFp ¼ EV � kT ln
bT

bR

� �
ðG=bRÞ

1=2bR

n

 !2�ðkT=kTVÞ
2
4

3
5;

EFp ¼ EV � kT In
bT

bR

� �
GbR

n2

� �1�ðkT=2kTVÞ
" #

;

EFp ¼ EV � kT In
G

bTN2
V

� �
þ

ðkTÞ2

2kTV
In

bR

bT

G

bTN2
V

� �� �
:

F.3. Open-circuit voltage

Here’s the algebraic expression for eVOC:

eVOC ¼ EG þ
kT

2
ln

G

bRN2
C

� �
þ 2 ln

G

bTN2
V

� �
�

kT

kTV
ln

bR

bT

G

bTN2
V

� �� �� �
: ð17Þ

Something interesting happens at T=TV:

eVOC ¼ EG þ kT ln
G

bRNCNV

� �
:

This is the exact expression without trapping (from the first section); the factor bT
cancelled out. At T=TV, the effects of hole trapping are essentially negligible, so this
makes some sense. For T>TV the earlier derivation (without traps) is essentially
correct even with the bandtail.
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