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Logic is to the quantum as geometry is to gravity
⋆

Rafael D. Sorkin

Perimeter Institute, 31 Caroline Street North, Waterloo ON, N2L 2Y5 Canada

and

Department of Physics, Syracuse University, Syracuse, NY 13244-1130, U.S.A.

address for email: sorkin@physics.syr.edu

Abstract

I will propose that the reality to which the quantum formalism implicitly
refers is a kind of generalized history, the word history having here the
same meaning as in the phrase sum-over-histories. This proposal confers
a certain independence on the concept of event, and it modifies the rules
of inference concerning events in order to resolve a contradiction between
the idea of reality as a single history and the principle that events of zero
measure cannot happen (the Kochen-Specker paradox being a classic ex-
pression of this contradiction). The so-called measurement problem is then
solved if macroscopic events satisfy classical rules of inference, and this can
in principle be decided by a calculation. The resulting conception of real-
ity involves neither multiple worlds nor external observers. It is therefore
suitable for quantum gravity in general and causal sets in particular.

1. Quantum gravity and quantal reality

Why, in our attempts to unify our theories of gravity and the quantum, has progress been

so slow? One reason, no doubt is that it’s simply a very hard problem. Another is that

we lack clear guidance from experiments or astronomical observations. But I believe that

a third thing holding us back is that we haven’t learned how to think clearly about the

quantum world in itself, without reference to “observers” and other external agents.

Because of this we don’t really know how to think about the Planckian regime where

quantum gravity is expected to be most relevant. We don’t know how to think about the

⋆
To appear in G.F.R. Ellis, J. Murugan and A. Weltman (eds), Foundations of Space and

Time (Cambridge University Press)
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vacuum on small scales, or about the inside of a black hole, or about the early universe.

Nor do we have a way to pose questions about relativistic causality in such situations.

This is particularly troubling for the causal set program [1], within which a condition of

“Bell causality” has been defined in the classical case, and has led there to a natural family

of dynamical laws (those of the CSG or “classical sequential growth” models) [2]. If we

possessed an analogous concept of “quantal Bell causality”, we could set about deriving

a dynamics of quantal sequential growth. But without an observer-free notion of reality,

how does one give meaning to superluminal causation or its absence in a causal set?

It’s not that individual physicists have no notion of what the quantal world is like, of

course. We all employ intuitive pictures in our work, and for example, I imagine that very

few people think of a rotons in a superfluid in terms of selfadjoint operators. But what

we lack is a coherent descriptive framework. We lack, in other words, an answer to the

question, What is a quantal reality?

My main purposes in this talk are first to propose an answer to this question (or really

a family possible answers), and second to explain how, on the basis of this answer, the so

called measurement problem can be posed and plausibly solved. My proposal belongs to

the histories-based way of thinking about dynamics, which in a quantal context corresponds

to path-integral formulations. More specifically it rests on three or four basic ideas, that of

event, that of preclusion, and that of anhomomorphic inference concerning coevents, whose

meaning I will try to clarify in what follows.

2. Histories and events (the kinematic input)

In classical physics, it was easy to say what a possible reality was, although the form of

the answer was not static, but changed as our knowledge of nature grew. Electromagnetic

theory, for example, conceived reality as a background Minkowski spacetime inhabited by a

Faraday field Fab together with a collection of particle worldlines, each with a given charge

and mass, while reality for General Relativity was a 4-geometry together with possible

matter fields, thus a diffeomorphism-equivalence class of Lorentzian metrics and other

fields. Of course, we were far from knowing all the details of the actual reality, but we

could say exactly what in principle it would have taken to describe reality fully if we did

have the details. Thus we could survey all the kinematically possible realities, and then
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go on to state the dynamical laws (equations of motion or field equations) that further

circumscribed these possibilities.

Another example comes from Brownian motion, which in important ways stands closer

to quantum mechanics than deterministic classical theories do. Here, if we imagine that

nothing exists but one Brownian particle, then a possible reality is just a single worldline

(continuous but not differentiable), and the dynamical law is a set of transition probabili-

ties, or more correctly a probability-measure on the space of all worldlines.

Such a possible reality — a spacetime, a field, a worldline, etc. — is what is meant by

the word “history” in the title of this section; and according to the view I am proposing,

such histories furnish the raw material from which reality is constructed. ⋆ However, unlike

in classical physics, we will not (in general) identify quantal reality with a single history,

instead we will have certain sorts of “logical combinations” of histories which will be

described by coevents. In the simplest case a coevent will correspond merely to a set of

histories. Although, without further preparation, I cannot yet make precise what quantal

reality will be, let me stress at the outset what it will not be, namely a wave-function

or state-vector. Nor will the Schrödinger equation enter the story at all. Such objects

can have a technical role to play, but at no stage will they enter the basic interpretive

framework.

As already indicated the concepts of event and coevent will be fundamental to this

framework. In order to define them, we need first to introduce the history space Ω whose

elements are the individual histories. An event is then a subset of Ω. When Ω contains

an infinite number of histories, not every subset will be an event because some sort of

“measurability” condition will be required, but for present purposes I will always assume

that |Ω| <∞. In that case, one can equate the word “event” to the phrase “subset of Ω”.

Notice that this definition of the word “event” parallels its use in everyday speech,

where a sentence like “It rained all day yesterday” denotes in effect a large number of

⋆ The word history thus denotes the same thing it does when people call the path integral a

“sum-over-histories”. To avoid confusion with other uses of the word, one might say proto-

history or perhaps “kinematical” or “bare” history. Given this distinction, one might then

refer to quantal reality as a “quantal history”.

3



more detailed specifications of the weather, all lumped together under the heading “rain”.

(This usage of “event” also follows the customary terminology in probability theory, where

however Ω is often called the “sample space” rather than the history space.) On the other

hand, one should not confuse event in this sense with the word “event” used to denote a

point of spacetime. The latter may also be regarded as a type of event, perhaps, but that

would only be a very special case of what I mean by event herein, and it would be relevant

only in connection with quantum gravity per se.

Let us write A for the space of all events. Structurally, A is a Boolean algebra, meaning

that union, intersection, complementation and symmetric-difference are defined for it. In

logical terms these correspond respectively to the connectives or, and, not, and xor.

Finally, we need to define coevent. We have defined the dual object, an event E ∈ A, as

a subset of Ω, but we can also think of an event as a question, in our previous example the

question “Did it rain all day yesterday”? A coevent can then be thought of as something

that answers all conceivable questions. More formally, a coevent will be a map φ : A→Z2,

where Z2 is the two-element set {0, 1}, the intended meaning being that φ(E) = 1 if and

only if the event E actually happens. Thus, 1 represents the answer “yes” (or “true”) and

0 the answer “no” (or “false”). I will take the point of view that such a coevent is a full

description of reality, quantal or classical. After all, what more could one ask for in the

way of description than an answer to every question that one might ask about the world?

For now we place no conditions on φ other than that it takes events to members of Z2.

(Notice that a coevent is in some sense a “higher order object”. If one thought of events

as “predicates” then a coevent would be a “predicate of predicates”. †)

† A function from a Boolean algebra to Z2 is sometimes called a “truth valuation”, but

that terminology would be misleading here. It would suggest too strongly that the event-

algebra belongs to some a priori formal language or logical scheme, with reality being

merely a “model” of that logic. But in the context of physics, it would seem that the

events come first and the descriptive language second. Moreover, one of the main points

of this paper philosophically is (as its title indicates) that the rules of logical inference

are part of physics and can never be written down fully without some knowledge of the

dynamics.
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3. Preclusion and the quantal measure (the dynamical input)

I’ve said that anhomomorphic logic grows out of the path integral, but in order to under-

stand what this means, you must think of the path integral as something more than just

a propagator from one wave function ψ to another. What, in fact, does the path integral

really compute, if we try to understand it on its own terms?

Let us for a (very brief) moment adopt an “operational” point of view which only cares

about the probabilities of instrumental “pointer events”. Such events can be idealized as

“position measurements” (the positions of the pointers), and it has been known for a long

time that the joint probabilities for successive position measurements can be computed

directly from the path integral without reference to any wave function, except possibly

as a shortcut to specifying initial conditions. The probabilities in question here are those

furnished by the standard evolve−collapse−evolve algorithm to be found in any textbook

of quantum mechanics. When one abstracts from the mathematical machinery used to

compute them, what remains is a probability measure µ on a space of “instrument events”,

and it is this measure, rather than any wave function, that has direct operational meaning!

How one may compute µ directly from the path integral is described in more detail in

reference [3], but for us here the important points are three. First that µ refers not to

“measurements” per se, but merely to certain macroscopic happenings, and second that it

is natural, when µ is expressed as a path-integral, to regard these macroscopic happenings

as being events in precisely the sense defined above. (The histories in this case would

specify the trajectories of the molecules comprising the “pointer”, and an event would

be, as always, a set of histories.) The crucial observation then is that the path integral

computation of µ makes sense for any set of histories — any event — and therefore need

not be tied to some undefined notion of “measurement”.

This event-function µ : A→R
+ I will call the quantal measure, and I will take the

point of view that it is the answer to my question above about what the path integral really

computes when we try to understand it on its own terms. From this histories vantage point,

the textbook rules for computing probabilities are not fundamental principles, but rather

rules of thumb whose practical success for certain macroscopic events needs to be explained

on the basis of a deeper understanding of what the quantal measure is telling us about

microscopic reality. Or to put the point another way, quantum mechanics formulated via

the path integral presents itself to us as a generalized probability theory with µ appearing
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as a generalized probability measure [4] [5][6]. Our first task then is to interpret this

generalized measure. (Much more could be said about the formal properties of µ and their

relation to the hierarchy of [7] and to the decoherence functional that was first defined

within the “decoherent histories” interpretation of quantum mechanics [8]. I will, however,

limit myself to these two references and to a reference to an experiment currently testing

the “3-slit sum rule” that expresses in great generality the quadratic nature of the Born

rule [9].)

One’s first thought might be to interpret µ(E) as an ordinary probability attaching

to the event E, but this idea founders at once on the failure of µ to be additive on disjoint

events. Since such non-additivity expresses the physical phenomenon of interference that

lies at the heart of quantum mechanics, the impasse seems to me to be definitive: some

other concept than probability in the sense of relative frequency seems to be called for.

Moreover, µ fails to be bounded above by 1, whence some events E would have to be

“more than certain”, were we to take µ(E) as a probability in the ordinary sense. There is

however, one special case in which normalization and additivity become irrelevant, namely

for events E such that µ(E) = 0. In such a case, one could conclude on almost any

interpretation that the event E should never happen. (Classically, µ(E) can never vanish

exactly except in trivial cases, but quantally it can, thanks precisely to interference!) Such

an event (of µ-measure 0), I will denote as precluded, and I propose to interpret µ in terms

of the following preclusion postulate: If µ(E) = 0 then E does not happen.

With respect to a given coevent φ, the “not happening” of E is expressed, as we

have seen, by the equation φ(E) = 0, and the preclusion postulate becomes thereby a rule

limiting the coevents that are dynamically possible:

µ(E) = 0 ⇒ φ(E) = 0

A coevent that fulfills this condition, I will call preclusive.

By isolating in this manner what one might call the purely logical implications of the

generalized measure µ , one may hope to bring out those aspects which are peculiarly

quantal, as opposed to aspects pertaining to probability more generally. Of course it

will be necessary at some stage to recover not only the “logical” but also the properly

probabilistic predictions one obtains from the standard quantum apparatus. Whether
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or not the preclusion rule above will suffice for this is not entirely clear, but if it does,

one will have cleared up some of the confusion surrounding even the classical probability

concept. If on the other hand, one needed something more than the strict preclusion rule,

one could simply extend it to embrace the case of “approximate preclusion”, where µ(E)

is not exactly zero but still small enough to be treated as if it vanished. In this way,

the difficulties of classical probability would not have grown any better, but (hopefully)

they would not have grown any worse either [10]. By basing the probability concept

on approximate preclusion, one would in effect be adopting the interpretation sometimes

known as Cournot’s principle, according to which the assertion that an event of sufficiently

small measure will not happen exhausts the scientific meaning of probability. (See [11] for

a concise statement of this idea.) ♭ Cournot’s principle is not free of problems, of course,

but neither is any other account of probability, as far as I know. In any case, it seems

prudent to leave probability aside at first, and concentrate on the purely logical questions

raised by the preclusion principle. Considering that the latter seem to require a radical

revision of some basic logical presuppositions, questions of probability might appear in a

very different light, once a more adequate picture of quantal reality is in place.

To summarize the burden of this section then, the idea is that the whole dynamical

content of the quantal formalism reduces to the preclusion rule stated above (possibly

supplemented by its generalization to the case of approximate preclusion).

4. The three-slit paradox and its cognates

Viewed through the lens of the path-integral, quantum theory appears as a generalized

theory of stochastic processes characterized by the quantal measure µ, and this makes

feasible a “histories based” way of thinking about the dynamics that seems more suited

to the needs of quantum gravity than alternative accounts inspired by either the S-matrix

or the Schrödinger equation. For such an approach to succeed, however, one needs to

free the path integral from its conceptual dependence on objects like the wave function.

♭ Predictions about frequencies follow when one construes multiple repetitions of some

experiment as a single, combined experiment grouping all the repetitions together into

a single sample space. The event that the overall frequencies come out wrong will then

possess a tiny measure.
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That is, one needs a free-standing histories-based formulation of quantum theory. A priori,

such a formulation need not base itself on the path integral, but as things stand, no other

alternative has so far offered itself. In practice then we can (for now at least) vindicate

the histories-based viewpoint (also called the “spacetime” viewpoint) only by clarifying

the physical meaning of the quantal measure µ.

I have proposed above that the dynamical implications of µ are mediated by what it

tells us about the precluded events, the sets of histories of zero measure in Ω. Perhaps

there is more to it than this, but even if preclusion is not the full story, it is hard to see

how — without entirely abandoning the attempt to interpret µ as some sort of generalized

probability measure — one could avoid the implication that events of measure zero do

not happen. If this is correct, then acceptance of the preclusion principle is a minimal re-

quirement for re-conceiving quantum mechanics along lines suggested by the path-integral

formalism.

The problem then is that, thanks to interference, there are far too many sets of measure

zero, so many in fact that events which are in reality able to occur seem to be ruled out as

a logical consequence of the preclusion of other events that overlap them. (Remember that

event = subset of Ω.) Here I’m referring to the numerous “logical paradoxes” of quantum

theory, including the Kochen-Specker paradox, ⋆ the GHZ paradox, the Hardy paradox,

and the “three-slit paradox” that I’ll focus on in a moment. Each of these can be realized

in terms of sets of particle trajectories together with appropriate combinations of slits or

Stern-Gerlach-like devices (as in [13] or [14] for example), so that the relevant quantal

measure can be discerned. What then makes all these paradoxes paradoxical is that all or

part of the history space Ω is covered by precluded events. In the Kochen-Specker setup,

these overlapping preclusions cover the whole of Ω, implying, according to our customary

way of reasoning, that nothing at all can happen (cf. [15]). The other examples are similar,

but not quite as dramatic.

⋆ This comes in two versions, the original version referring to a single spin-1 system, and

the version of Allen Stairs [12] referring to an entangled pair of such systems. The latter

seems to have been the first example of an obstruction to locally causal theories based

purely on logic (as opposed to probability-based obstructions like the Bell inequalities).
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The contradictions in question can be illustrated with a diffraction experiment involv-

ing not two, but three “slits”. Consider then, an idealized arrangement as shown, with

source S, apertures a, b, c, and a designated location d to which the particle in question

might or might not travel. (The letter d is meant to suggest “detector”, but modeling one

explicitly would complicate our setup unnecessarily, without changing anything essential,

as long as we can assume that the detector would function properly.)

Figure 1. The three-slit paradox

To this setup belongs a history space Ω consisting of the various possible particle

trajectories, and a quantal measure µ assigning a nonnegative real number to each set of

trajectories. Let a be the event that the trajectory passes through slit a and similarly for

b and c, and let d be the event that it arrives at d. Consider further the event A that the

particle arrives at d after traversing a. (Notice here that a, b and c are all intrinsic events,

not measurement events. We are not placing detectors at any of the slits, either explicitly

or implicitly.) Writing the intersection X ∩ Y of two arbitrary events X and Y simply as

their product XY , we have then that

A = ad, B = bd, C = cd, d = A+B + C ,

where in the last equation a plus sign has been used to denote the union of disjoint subsets.

Now imagine the region d to be small enough that we can represent the path-integrals

for A, B, and C by single amplitudes whose squares yield the (un-normalized) measures
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of the corresponding events, and suppose further that these amplitudes are +1 for events

A and C and −1 for B. Then µ(d) = µ(A+B + C) = |1− 1 + 1|2 = 1, whereas

µ(A+B) = µ(B + C) = |1− 1|2 = 0 .

Therefore, the events A+B = d(a+ b) and B + C are precluded even though A+B + C

is not and can sometimes happen.

If we think classically, this is an outright contradiction. Suppose we look for the

particle at d and find it there. We can then infer that since it didn’t pass through a or b

(A+B being precluded) it must have arrived via c. But reasoning symmetrically, we can

infer by the same token that it must have arrived via a. Obviously, the two conclusions

contradict each other.

In the language of coevents, we can express the situation in formulas as

φ(A+B) = 0, φ(C +B) = 0, φ(d) = φ(A+B + C) = 1,

where the first two equations follow from the preclusion rule and the third expresses that

the particle did arrive at d. Formally a contradiction can be derived from these three

equations by Boolean manipulations following the classical rules of inference. If one asks

which rules were used (see the Appendix), one comes up with the following list, where A

and B represent arbitrary events and ¬A = Ω\A is the complementary event to A.

From φ(A) = φ(B) = 1 conclude φ(AB) = 1.

From φ(A) 6= 1 conclude φ(A) = 0.

From φ(A) = 0 conclude φ(¬A) = 1.

From A ⊆ B and φ(A) = 1 conclude φ(B) = 1.

These formal relationships are instructive, but one can also see the root of the in-

consistency informally in a way that indicates how one might think to escape it. What

the formal rules really express is the ingrained belief that reality is described by a single

trajectory γ such that an event A happens (the corresponding predicate is true) if and

only if γ ∈ A. We might therefore be able to extricate ourselves from the contradiction

if reality were given not by a single trajectory but by some more subtle combination of
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trajectories, for which — in some sense — both A and C could happen simultaneously, or

alternatively for which A+ C could happen without either A or C happening separately.

We will see that the so called “multiplicative scheme” realizes the latter alternative.

5. Freeing the coevent

Which came first, the history or the event? To the extent that an event is nothing but

a set of histories, it might seem that the history came first, and this would be in accord

with the classical worldview, where only a single history is in some sense actual. † On the

other hand when we consult our experience, what we meet with are events. Individual

histories we experience — if at all — only as idealized limits of events. One might argue

on this basis that it is the event that should come first, and this would be consistent with

a more “holistic” or “dialectical” attitude toward the history space Ω (cf. category theory,

toposes, etc.)

Be that as it may, the practical needs of probabilistic theories, I think, force us to

accord events an independent status, for it is only they which have nontrivial measures

in general. For quantal measures this argument becomes more convincing, because the

measure of an event no longer reduces, even formally to the measures of its constituent

histories. (At best, it reduces to the measures of pairs of histories.) It seems clear in

particular that the concept of preclusion makes no sense at all except in relation to events.

Once events are dignified in this manner, the rules governing coevents also acquire a certain

freedom, and I am proposing to use this freedom in order to overcome the logical conflict

between preclusion and the doctrine that reality can be described fully by a single history.

More concretely, I am proposing to describe reality, not by an individual history but by

an individual coevent, which mathematically is a kind of “polynomial in histories”. The

rules governing which coevents are dynamically possible can then change in such a way

as to accommodate the preclusion principle without engendering an inconsistency. In the

simplest case the polynomial is just a monomial, meaning in effect just a subset S of the

† I’m leaving aside here questions of “temporality”: is the past “actual”, or the past and

the future, or only the present, or . . . ? I hope that the neglect of such questions will not

unduly prejudice the rest of this discussion.
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history space. This simplest case, that of the multiplicative scheme, is the only one I will

discuss herein. Other schemes are described in [16], [17] and [18].

I am tempted at this point just to present the multiplicative scheme and discuss some

of its applications, but I’m afraid that without further background, it would appear far less

natural than it will if its intimate connection with deductive logic is brought out. On the

other hand, I know that for some people, any hint of tampering with classical logic raises a

barricade between them and the slightest sympathy with whatever comes next. For them

I should emphasize that the type of scheme I am proposing can stand as a self-contained

framework, whether or not one accepts a logical way of looking at it. With this caveat,

let me embark on some remarks relating logic to physics that will lead in a natural way to

the multiplicative scheme in the next section.

For a scientist, logical inference is — or I believe should be — a special case of

dynamics. Think for example of forecasting the motion of mars using Kepler’s laws. Here

we begin with certain events, the locations of mars at certain earlier times, and from them

we infer certain other events, namely its locations at certain later times. In other cases,

we may draw conclusions from the non-occurrence of an event. Thus, from the fact that

the event “sighting of the new moon” did not happen last night, we might conclude that

it will happen tomorrow night (and in consequence a new month of the Islamic calendar

will begin). This second example illustrates, I hope, how inferences from dynamical laws

can shade gradually into inferences from logic alone, for example the inference that if my

keys are not in my pocket they must be in my jacket (which I left locked in my house).

In the extreme case of simple abstract deductions like “if ‘A’ is true and ‘B’ is true then

‘A and B’ is also true”, the inference feels so obvious that we hardly recognize it as an

inference at all, but this feeling goes away for more complicated rules like “Peirce’s law”. ♭

Or think of the logical puzzles like, “the green house is to the right of the white house,

coffee is drunk in the green house,. . . ”.

Notice here that the logic I’m speaking of concerns physical events, not strings of words

and not propositions in a formal language. It is a “logic of nature”, not a logic of language

or thought or mathematical truth. This logic, I contend, is not prior to experience. Rather

♭ ((A→B)→A)→A
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it codifies certain relations among events that, until recently, have been so ubiquitous in

human experience that they have been ossified and condensed into a scheme that seems as

if it were unchangeable. What we do when we predict where mars will appear next week is

exactly what the rules of logical inference do in a limited way, but also in an absolute and

universal manner reminiscent of how geometry was once treated as prior to physics. But

just as a better understanding of gravity forced geometry back into touch with physics,

so also a better understanding of the microworld can do the same for logic. The resulting

inferential scheme will not be universal but will depend (at least in part) on the particular

physical system to which it is adapted. This, at any rate, will be true for the type of logic

exemplified by the multiplicative scheme.

For present purposes, it helps to view a logic as a threefold structure or “triad”, whose

outlines tend to be obscured when formal logicians write about their subject. The first

component of the triad is the event algebra A, a Boolean algebra whose members can be

thought of as questions about the world, as described above. If we adopt this imagery then

the second component of the triad is the space Z2 of possible answers (or “truth values”),

and the third (and most neglected) is the “answering map” or coevent φ : A→Z2. In

any given physical theory, A and Z2 will be fixed but φ will vary in the same way that

the solutions to Maxwell’s equations vary. Each dynamically allowed φ describes then, a

possible reality (or “quantal history” as one might term it). In this context, dynamical

“laws of motion” in the traditional sense and rules of logical inference both take the form

of conditions on φ. The classical rules of inference can be stated very simply if we view

them in this manner. In fact, we can give them in three equivalent forms, one “deductive”,

one “algebraic” and one with a topological or order-theoretic flavor. ⋆

Before stating these rules however, I ought to highlight another aspect of anhomo-

morphic logic that removes it from the more traditional milieu. Namely, it pays equal

attention to both “poles” of Z2, both 1 (happening, truth) and 0 (not-happening, false-

hood). Whether you know that an event has happened or that it has not (as with the

⋆ I have not brought the quantifiers ∀ and ∃ into the discussion because they seem to

be irrelevant. One will implicitly use them in formulating the questions in A, but not in

inferring relations among the possible answers.
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moon-sighting), you have learned something from which consequences can be drawn. Per-

haps the reasons why falsehood has nevertheless tended to be ignored in favor of truth are

first, that most logicians are mathematicians interested in deducing theorems from other

propositions taken to be true; and second that they implicitly or explicitly adopt the rule

that A is true if and only if ¬A is false. In the context of physics and physical events,

this rule is not as self-evident as it might appear to be in a mathematical context, because

answering “no” to the question “is the particle here?” need not commit you to answering

“yes” to the question “is the particle over there?”. Precisely this distinction will feature

prominently in the multiplicative scheme. There is also evidence that logicians in early

Buddhist times took note of it. [19].

What then are the classical rules of inference expressed as conditions on φ? (I will as-

sume in advance that φ is preclusive.) In deductive form they can, as shown by Fay Dowker

[20], be condensed into three conditions (where the symbol ⇒ indicates deducibility):

(1a) φ(A) = φ(A→B) = 1 ⇒ φ(B) = 1 (“modus ponens”)

(1b) φ(A) = 0 ⇒ φ(¬A) = 1

(1c) φ(0) = 0

In algebraic form they are the condition:

(2) φ is a homomorphism of unital Boolean algebras ,

which says equivalently that φ preserves & (and) and ¬ (not). And expressed as a condition

on the events φ−1(1) affirmed by φ they say simply that

(3) φ−1(1) is a maximal preclusive filter in Ω .

Here, following the usual definitions, a filter is a nonempty family Φ of events (elements of

A, hence subsets of Ω) closed under intersection and passing to supersets. It is preclusive

if it contains no precluded events (whence it cannot contain the empty subset 0), and it

is maximal if it cannot be enlarged without ceasing to be preclusive. Poetically expressed,

such a φ “maximizes being”: it affirms as many events as it can, subject to fulfilling the

other conditions.

In view of formulation (2), a classical coevent may be called “homomorphic”, and a

coevent that breaks any of the classical rules may be called anhomomorphic.
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6. The multiplicative scheme: an example of anhomomorphic coevents

We have granted ourselves the freedom to change the rules (“of inference”) governing

coevents, but how to do so? Numerous avenues open up, but of the large number that

have been explored by those of us working on the question (for some of them see [16]), only

a handful have seemed promising, in the sense of permitting enough events to happen on

one hand, but restricting the coevents sufficiently to reproduce the predictive apparatus

of standard quantum theory on the other hand. The current favorite seems to be the

multiplicative scheme, which not only is among the simplest to apply, but also represents

perhaps the mildest change to the classical rules. The change is so mild, in fact, that it is

non-existent if we express the classical rules in the form (3) of the previous section! The

difference then springs solely from the different meaning of “preclusive”, or rather (because

its meaning as such has not changed) from the new patterns of preclusion (patterns of

precluded events) that become possible under the influence of quantal interference.

More formally, let us make the following definitions. Recall that a coevent φ is preclu-

sive when it honors the preclusion principle, that is when φ(A) = 0 for every precluded

event A ∈ A. Call such a φ primitive when it follows whatever further rules of inference

we have set up. The collection of all primitive coevents, I will denote by Â, since it is

analogous in some ways to the spectrum of the event algebra A. The elements of Â are

then (the descriptions of) the dynamically allowed “realities” or “possible worlds”.

To arrive at the multiplicative scheme, we can retain condition (3) word for word as

the definition of a primitive preclusive multiplicative coevent, or for short just “primitive

coevent”. Sorting out the definitions then shows that rules (1) and (2) do not survive

intact. Of the first set, (1a) and (1c) survive but (1b) does not. Of condition (2), what

survives is unitality and the preservation of the and operation (this being the origin of

the name “multiplicative”, since algebraically, & is multiplication). All of condition (3)

survives, of course, but its meaning is probably easier to grasp when it is expressed in

“dual” form.

To formulate it this way let us define first a map from sets F of histories to coevents

φ = F ∗ by specifying that F ∗(A) = 1 iff A ⊆ F . To put this in words, let’s say that

a coevent φ affirms an event A when φ(A) = 1 and denies it when φ(A) = 0. Our

definition then says that F ∗ affirms precisely those events that contain F (as illustrated
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in the diagram, where F ∗ affirms A but denies both B and C). When φ = F ∗, I will say

that F is the support of φ. Now, in the case where Ω is a finite set (which we are always

assuming herein), one can check that a multiplicative coevent necessarily takes the form

F ∗ for some support F ⊆ Ω. The condition (3) for primitivity then says precisely that

F is as small as possible consistent with φ remaining preclusive. Given the definition of

F ∗, the condition for primitivity thus boils down to a rather simple criterion: the support

should shrink down as much as possible without withdrawing into any precluded event.

Figure 2. Three events and the coevent φ = F ∗

As remarked above, “truth” or “happening” is in this context a “collective property”,

since it pertains to events rather then to individual histories. A multiplicative coevent is

also collective in nature, since it corresponds to a subset of Ω rather than an individual

element.

A first test of any scheme of the present sort is that it should reproduce the classical

notion of reality (namely reality as a single history) when the pattern of preclusions is itself

classical. (We can take the latter to mean that an arbitrary event is precluded if and only

if it is covered by precluded events. In particular, every subevent of a precluded event must

be precluded.) In particular, this should happen when the quantal measure µ reduces to

an ordinary measure, and also in the case of deterministic theories like classical mechanics

where the dynamics reduces simply to the preclusion of an entire class of histories — those

which fail to satisfy the equations of motion. It is not too difficult to verify that the

multiplicative scheme passes the test in both cases. (See the theorems in Section 7.)
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Resolution of the 3-slit paradox

It is a feature of the multiplicative scheme that any event E can find a primitive coevent to

affirm it, as long as it is not included in some other event of zero measure. That is, there

will be at least one φ ∈ Â such that φ(E) = 1. In our three-slit example, the events A+C

and A + B + C = d are both of this type, so we can see already that the multiplicative

scheme will avoid the false prediction that d can never occur.

To simplify things, let’s imagine that there is nothing in existence but this particular

experiment and let us further ignore all histories not in d and all fine structure of the

histories that are in d. Then Ω = d consists of only three elements, identifiable with the

three “atoms”, A, B, and C, of the event algebra A. With such a small history space it

is easy to enumerate all the possible (multiplicative) coevents, and one sees by inspection

that only two are preclusive, namely φ = (A + C)∗ and φ = (A + B + C)∗. The latter,

however, is not primitive, since the former has smaller support. There is thus a unique

primitive coevent, φ = (A + C)∗ = A∗C∗. With respect to this coevent, two of the eight

events in A happen, namely A+C and d itself, and the other six do not, namely A, B, C,

0, and of course A+B and B+C (0 being the empty subset of Ω). In particular φ(d) = 1,

so the paradox is removed.

This is satisfactory as far as it goes, but in one respect this 3-slit example is mis-

leadingly simple. As the cardinality N of the history space grows, it becomes increasingly

difficult in practice to work out the primitive coevents (in the multiplicative scheme there

are 2N potential supports to consider), but when the dynamics is simple enough it is pos-

sible to count them or at least to estimate their number. Typically one finds that this

number also grows rapidly with N , just as one might have expected. The fact that φ is

unique for the 3-slit setup is thus very much of an exception.

There is also another respect in which our example has been overly idealized. We

have cut the experiment off at the point where the particle reaches (or does not reach, as

the case may be) the location d, thereby ignoring, not only the future, but also whatever

else is going on in the world besides this experiment. Both of these omissions could have

serious repercussions which I’ll return to briefly in the concluding section.
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7. Preclusive separability and the “measurement problem”

Within the framework we have arrived at, individual histories are replaced in a certain

sense by sets of histories while “laws of motion” are expressed via preclusion and the

requirement of primitivity. In this way dynamics merges with logic to some extent, and we

are able to speak directly about microscopic processes without succumbing to paradoxes of

the Kochen Specker sort — at least in simple examples. Because of its “realistic” nature, I

hope that this framework will prove useful in connection with quantum gravity, specifically

in the quest for a causal set dynamics of quantal sequential growth. But a more immediate

challenge is posed by the so called “measurement problem”. If the multiplicative scheme

cannot solve this problem, it will be hard to take it seriously as a potential basis for

unifying quantum field theory with general relativity.

Of course there is no single, well posed “measurement problem”. Rather this phrase

refers to a complex of issues concerning the relationship of quantal processes to the macro-

scopic realm of classical events and “observers”. Nevertheless, I think one would not be

oversimplifying unduly to pose the problem as that of accounting for measurements with-

out resorting to the notion of external agents who are not explicable in microscopic terms.

In the context of the multiplicative scheme (or any of the other schemes based on anho-

momorphic coevents) this problem acquires a precise formulation. One must show that

the primitive coevents become classical (i.e. homomorphic) when they are restricted to a

suitable subalgebra A
macro of “instrument events”.

To appreciate that this is what is needed, recall why there is a problem in the first

place. Quantum mechanics as ordinarily presented either declines to describe the measure-

ment process or it gives a manifestly false description, depending on whether or not one

assumes that the state-vector “collapses” during the measurement. In the former case one

is positing a phenomenon that the theory leaves in the dark, in the latter case the theory

serves up a superposition of macroscopically distinct outcomes that contradicts our most

elementary experiences. Now let us return to the coevent framework, where measurements

are no different in principle from other quantal processes (and like other processes are to be

described in terms of histories rather than evolving state-vectors.) In a measurement-like

situation, the theory will yield a definite set of primitive coevents to describe the different

possible outcomes. For example let events A and B be two alternative “pointer readings”

in some experiment. Each of these events will correspond to a particular collection of
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configurations of the “pointer molecule worldlines”, and will be macroscopic in the sense

that the corresponding histories will involve large numbers of particles, relatively great

masses, etc. If a given coevent φ ∈ Â affirms A and denies B then A is the outcome in

the world described by φ, in the contrary case it is B. (Both types of coevent can be

viable in general, since the theory is not deterministic.) † However, one can also construct

“Schrödinger cat”-like coevents which deny both A and B, as in the 3-slit example above.

Such a coevent would not be in accord with experience, which always (or almost always?)

presents us with a unique outcome that does happen. Consistency with experience thus

requires that no (or almost no) coevent φ ∈ Â be of this ambiguous type, and this in turn is

equivalent to φ|Amacro (the restriction of φ to A
macro) being classical, since when classical

logic reigns, precisely one history occurs.

Formally, we can define a subalgebra A
macro ⊆ A of macroscopic events ♭ such that

disjoint elements A and B of Amacro correspond to macroscopically distinct events in A.

Such a subalgebra induces a partition of Ω whose equivalence classes (sets of histories

distinguished by no element of Amacro) define a quotient or “coarse-graining” Ωmacro of

Ω into “macroscopic histories”. Our condition that φ map A
macro homomorphically into

Z2 is then trying to say that φ is supported within a single coarse-grained history (the

translation being literally correct when |Ω| < ∞ ). Put differently, the support F of such

a φ must not overlap macroscopically distinct events. When this condition is satisfied F ∗

will look to A
macro like a single coarse-grained history and will be classical in that sense.

Given the measurement problem rendered in this manner, we can solve it if we can

find a sufficient condition for φ to behave classically and if in addition we can give reasons

why the events of our macroscopic experience (almost) always fulfill the condition. To

illustrate how this can work, I will quote two theorems that furnish sufficient conditions

of the type we need. It should be clear from the preceding discussion that when either

† Having written this however, I should add that in simple examples, the theory turns out

to be much closer to deterministic than one might have expected. (See the next section.)

♭ For the events comprising A
macro to be well defined, we might have first to condition on

the happening of certain other events that are prerequisite to the existence of macroscopic

objects, i.e. to the existence of what is sometimes called a “quasiclassical realm”.
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theorem applies, primitive coevents will behave classically as far as instrument events are

concerned. One can also see the same thing by translating the conclusion of the theorems

into the statement that rule (1b) above is respected. Since the multiplicative scheme

validates the rest of rule (1) by construction, (1b) suffices to return us to the classical case.

The first theorem below furnishes a sufficient condition that is easy to state but more

restrictive than it needs to be. The condition in the second theorem is less transparent in

statement, but arguably more likely to hold in practice. (A proof of the first theorem in

the finite case can be found in [16]. Proofs of the second theorem and the infinite case of

the first theorem exist as well, but remain unpublished. )

Theorem 1. Let Ω = Ω′ +Ω′′ be a partition of Ω such that an arbitrary event A ⊆ Ω is

precluded iff its intersections with Ω′ and Ω′′ are both precluded, and let φ be any primitive

preclusive coevent in the multiplicative scheme. Then φ is supported within either Ω′ or

Ω′′. That is, φ = F ∗ with F ⊆ Ω′ or F ⊆ Ω′′.

Theorem 2. The conclusion of theorem 1 persists if both Ω′ and Ω′′ satisfy the following

weaker condition on subsets S of Ω: If any event A ⊆ S lies within any precluded event B

at all then it lies within a precluded event C ⊆ S.

As we have seen, the important consequence of these theorems is that, when either of

the respective conditions is satisfied, and with respect to any primitive coevent φ, either Ω′

or Ω′′ happens but not both. The important question then becomes whether macroscopic

events are in fact “preclusively separable” in this way. This would follow immediately from

the still stronger condition that: No event in Ω′ interferes with any event in Ω′′. However

this condition represents a very strict type of “decoherence” closely related to idea of a

record. ⋆ To the extent that one is willing to posit the existence of sufficiently permanent

records of macroscopic events, one can therefore regard the measurement problem as solved.

To the extent that one finds this assumption implausibly strong one can still hope to prove

⋆ In the context of unitary quantum mechanics, the condition is satisfied for records be-

cause different versions of a given record correspond to disjoint regions in configuration

space. The weaker type of decoherence usually contemplated by “decoherent historians”

requires only that Ω′ and Ω′′ (belong to A and) decohere, not that their arbitrary subevents

decohere as well.
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that macroscopic events fulfill the conditions of one of the theorems. In this sense, the

measurement problem reduces to a calculation.

8. Open questions and further work

Before the framework presented above can be considered complete, further work will be

needed on some of the questions raised by the above discussion. Foremost among these

is probably the question whether one can demonstrate by examples or general arguments

that the events of our macroscopic experience really are preclusively separable in the sense

of the above theorems. Assuming that they are, can one explain on this basis why the

textbook paradigm involving the wave function and its “collapse” works as well as it does,

and if so can one quantify the deviations that one should expect from this paradigm? Here

much of the way forward is clear. There exists a sketch of a derivation of the collapse rule,

but it needs to be followed out in more detail. In the same direction, we of course need

to recover Born’s rule for probabilities, either by appeal to approximate preclusion and

the Cournot principle (cf. [11]) or in some better manner. And finally, the definition of

primitive coevent needs to be extended to infinite event algebras, since the most important

examples of quantal dynamics (atomic physics, quantum field theory, etc.) are of this type,

at least in current idealizations. Here again, there is much that could be said about work

already done.

Even in its partly finished state, the coevent framework, like the Bohmian version of

quantum mechanics, lets us pose questions that we would not have been able to formulate

from a “Copenhagen” standpoint. Thus for example, one can ask for the primitive coevents

that describe the ground state of a Hydrogen atom, or of a particle in a harmonic oscillator

potential. The Bohmian particle in these cases just sits still wherever it happens to find

itself. One wouldn’t know by following its motion what kind of force was binding it, nor

could one even know its energy in many cases. It’s therefore of particular interest to ask of

the multiplicative scheme what sets of trajectories comprise the supports of the primitive

coevents in these cases. Could one deduce from these sets of trajectories what the potential

was and would the energy show up clearly? Currently such questions seem nearly beyond

reach, in the first place because of the mathematical difficulties in defining the continuum

path integral itself on a sufficiently large domain of events. (cf. [21])
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More accessible, though no less interesting, are questions about experiments of the

Kochen-Specker type, or about entangled pairs of particles passing through successive

Stern-Gerlach analyzers. For a few gedankenexperiments of this type people have been able

to find some or all of the primitive coevents, and in some cases to study causal relationships

between the coevents at earlier and later stages of the process [22] [23]. Such examples

can serve as laboratories to explore possible meanings for relativistic causality, locality,

and determinism within the coevent framework. For example, in a simple extension of

the Hardy experiment, one finds 286 coevents φ of which 280 behave deterministically in

the sense that the restriction of φ to the subalgebra of past events uniquely determines φ

globally (cp. a similar effect found in [24]). One can also formulate different conditions

of relativistic causality (“screening off”) for such systems and study to what extent, and

in what circumstances they hold. If a suitable condition could be found, it could then be

carried over to the causal set situation and used as a guide to formulating a quantal analog

of the classical sequential growth models (cf. [14]).

If one regards the coevent schemes in logical terms, it’s natural to try to bring them

into relation with other non-classical logics to which anhomomorphic inference seems to

bear some resemblance, such as intuitionistic, dialectical or paraconsistent logic. With

dialectics, anhomomorphic logic shares a certain tolerance of contradiction, or of what

classically would be regarded as self contradictory. With intuitionism it shares a non-

classical understanding of negation, not however at the level of the event algebra, which

remains strictly Boolean so that ¬¬A = A for all A ∈ A, but at the level of inference,

where φ(A) becomes independent of φ(¬A). On the other hand, whereas intuitionistic

logic simply drops certain rules of inference like proof by contradiction, anhomomorphic

logic adds crucially the new requirement of primitivity. Thus it cannot be characterized

simply as either weaker or stronger than classical logic.

Returning to the coevent framework per se, I’d like to allude briefly some of its more

radical consequences, and the risks (or possibly opportunities) they hold out for this way

of conceiving quantal reality. Each of these consequences is visible in simple examples.

In the Hardy example referred to just above, one potentially encounters what could be

called “premonitions”. To be confident of their occurrence one would have to incorporate

“instrument setting events” into the model, and this has not been done. Yet it looks as if the

past of the coevent can determine not only events involving the particles in question, but
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also to some extent the settings themselves. Such an effect could be called a premonition

on the part of the particles, but it could also be called a cause of the later setting-event,

in which case there would be no suggestion of “retro-causality”. In the simple example of

a particle hopping unitarily between the nodes of a two-site lattice (“two site hopper”),

one encounters a potential danger that also shows up in much the same form in connection

with composite systems. In both cases it can happen that the restriction of the coevent

to the subalgebra of early-time events (respectively events in one of the two subsystems)

trivializes in the sense that its support becomes the whole space of partial histories. This

means that only correlations between early and late times (resp. between one subsystem

and the other) happen nontrivially. None of this is a problem unless carried to extremes.

If for example, the relevant time scale for this type of trivialization in realistic systems

were to be comparable with the Poincaré recurrence time, then there would be little to

worry about.

Finally, let me conclude with a possibility that for now is merely a dream, but which,

if it came to pass, would bring with it a striking historical irony. One might discover

laws that governed the pattern of preclusions without referring, directly or indirectly, to

the quantal measure µ. If that happened, it would provide a more radical revision of

classical dynamics (stochastic or deterministic) than that represented by the path integral.

Or in the process of working out the primitive coevents in various examples, one might

even discover laws expressed directly for the coevents themselves, without even needing to

derive them from preclusions. If that happened, the whole superstructure of amplitudes

and generalized measures would fall away, and quantum theory would have led back to

something resembling classical equations of motion, but at a higher “structural” level than

occupied by our old theories that identified reality with a single history.

The ideas presented above have grown out of extensive joint work with Fay Dowker,

Cohl Furey, Yousef Ghazi-Tabatabai, Joe Henson, David Rideout, and Petros Wallden.

Research at Perimeter Institute for Theoretical Physics is supported in part by the Gov-

ernment of Canada through NSERC and by the Province of Ontario through MRI.
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Appendix. Formal deduction of the three-slit contradiction

We are given the preclusions φ((a + b)d) = φ((b + c)d) = 0 and wish to deduce that

φ(d) = 0, assuming that φ follows the classical rules of inference.

step 0: Suppose that φ(d) = 1.

step 1: if also φ(a+ b) = 1 then φ((a+ b)d) = 1 contrary to what was given,

hence φ(a+ b) = 0.

step 2: φ(b+ c) = 0 by symmetry.

step 3: φ(a+ b) = 0 implies φ(c) = 1 since c = ¬(a+ b), the complement of a+ b.

step 4: From φ(c) = 1 follows φ(b+ c) = 1, contradicting step 2.

step 5: Therefore our supposition was false and φ(d) = 0.

What conditions on φ did we use?

In step 1: If φ(A) = φ(B) = 1 then φ(AB) = 1; if φ(A) 6= 1 then φ(A) = 0.

In step 3: If φ(A) = 0 then φ(¬A) = 1

In step 4: If A ⊆ B and φ(A) = 1 then φ(B) = 1

In the multiplicative scheme, only step 3 would fail. Notice that in reasoning about φ we

have also employed classical logic, in particular proof by contradiction in steps 1 and 5.
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son, S. Stenholm, American Institute of Physics Conference Proceedings, Vol. 1101, pp.
200-207 (New-York 2009) (e-print: arXiv:0811.2068 [quant-ph])

[10] Yousef Ghazi-Tabatabai and Petros Wallden, “Dynamics & Predictions in the Co-
Event Interpretation”, Journal-ref: J. Phys. A: Math. Theor. 42 (2009), 235303
http://arXiv.org/abs/0901.3675

[11] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, von A. Kolmogo-
roff (Berlin, Springer 1933). translated as:

A.N. Kolmogorov, Foundations of the Theory of Probability (New York, Chelsea Pub.
Co. 1956)

[12] Allen Stairs, Phil. Sci. 50 : 578 (1983); and private communication

25



[13] Sukanya Sinha and Rafael D. Sorkin, “A Sum-over-histories Account of an EPR(B)
Experiment”, Found. of Phys. Lett. 4 : 303-335 (1991)

[14] David Craig, Fay Dowker, Joe Henson, Seth Major, David Rideout and Rafael
D. Sorkin, “A Bell Inequality Analog in Quantum Measure Theory”, J. Phys. A: Math.
Theor. 40 : 501-523 (2007), quant-ph/0605008,
http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/

[15] Sumati Surya and Petros Wallden, “Quantum Covers in Quantum Measure Theory”,
http://arXiv.org/abs/0809.1951

[16] Yousef Ghazi-Tabatabai, Quantum Measure Theory: A New Interpretation
http://arXiv.org/abs/0906.0294 (quant-ph)

[17] Rafael D. Sorkin, “An exercise in ‘anhomomorphic logic’ ”, Journal of Physics: Con-
ference Series (JPCS) 67 : 012018 (2007), a special volume edited by L. Diosi, H-T
Elze, and G. Vitiello, and devoted to the Proceedings of the DICE-2006 meeting, held
September 2006, in Piombino, Italia. arxiv quant-ph/0703276 ,
http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/

[18] Stan Gudder, “An anhomomorphic logic for quantum mechanics”
http://arXiv.org/abs/0910.3253 (quant-ph)

[19] Rafael D. Sorkin, “To What Type of Logic Does the “Tetralemma” Belong?”,
http://arXiv.org/abs/10035735 (math:logic)

http://www.perimeterinstitute.ca/personal/rsorkin/some.papers/

[20] Fay Dowker and Petros Wallden, “Modus Ponens and the Interpretation of Quantum
Mechanics” (in preparation)

[21] Stan Gudder, “Quantum measure and integration theory”, J. Math. Phys. 50 : 123509
(2009) http://arXiv.org/abs/0909.2203 (quant-ph)

[22] Fay Dowker and Yousef Ghazi-Tabatabai, “The Kochen-Specker Theorem Revisited
in Quantum Measure Theory”, J.Phys.A 41 : 105301 (2008)
http://arXiv.org/abs/0711.0894 (quant-ph)

[23] Cohl Furey and Rafael D. Sorkin, “Anhomomorphic Co-events and the Hardy Thought
Experiment” (in preparation)

[24] Fay Dowker and Isabelle Herbauts, “Simulating causal collapse models”, Classical and
Quantum Gravity 21 : 2963-2980 (2004) http://arXiv.org/abs/quant-ph/0401075

[25] Yousef Ghazi-Tabatabai and Petros Wallden, “The emergence of probabilities in an-
homomorphic logic” Journal of Physics: Conf. Ser. 174 : 012054 (2009)
http://arXiv.org/abs/0907.0754 (quant-ph)

26


	Logic is to the Quantum as Geometry is to Gravity
	Recommended Citation

	arXiv:1004.1226v1  [quant-ph]  8 Apr 2010

