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Abstract

This thesis explores geometric aspects of soft matter systems. The top-

ics covered fall into three categories: (i) geometric frustrations, including

the interplay of geometry and topological defects in two dimensional sys-

tems, and the frustration of a planar sheet attached to a curved surface;

(ii) geometries of liquid droplets, including the curvature driven instabil-

ities of toroidal liquid droplets and the self-propulsion of droplets on a

spatially varying surface topography; (iii) the study of the electric dou-

ble layer structure around charged spherical interfaces by a geometric

method. In (i), we study the crystalline order on capillary bridges with

varying Gaussian curvature. Energy requires the appearance of topologi-

cal defects on the surface, which are natural spots for biological activity

and chemical functionalization. We further study how liquid crystalline

order deforms flexible structured vesicles. In particular we find faceted

tetrahedral vesicle as the ground state, which may lead to the design of

supra-molecular structures with tetrahedral symmetry and new classes of

nano-carriers. Furthermore, by a simple paper model we explore the geo-

metric frustration on a planar sheet when brought to a negative curvature

surface in a designed elasto-capillary system. In (ii), motivated by the

idea of realizing crystalline order on a stable toroidal droplet and a beau-

tiful experiment on toroidal droplets, we study the Rayleigh instability

and the shrinking instability of thin and fat toroidal droplets, where the

toroidal geometry plays an essential role. In (iii), by a geometric mapping

we construct an approximate analytic spherical solution to the nonlinear

Poisson-Boltzmann equation, and identify the applicability regime of the

solution. The derived geometric solution enables further analytical study

of spherical electrostatic systems such as colloidal suspensions.
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Chapter 1

Introduction

Geometry is an important concept and tool in understanding physics as stated by

d’Alembert: “geometry, which should only obey physics, when united with it some-

times commands it” [1]. The geometric approach has the advantage of intuitiveness,

while the algebraic approach is more precise [2, 3, 4, 5, 6, 7]. Hua Lo-keng, a Chinese

mathematician (1910-1985), once said, “numbers without shapes lack intuitiveness,

shapes without numbers lose subtlety”. Physicists have the tradition of applying

the geometric approach to physical systems. Newton used Euclidean geometry as

the mathematical foundation of the Mathematical Principles of Natural Philosophy.

Einstein constructed general relativity on the mathematical grounds of non-Euclidean

geometry. The elegance of the geometric approach has attracted generations of physi-

cists to apply it to various systems. As a classic example, gravity can be elegantly

understood as the curvature of space according to the Einstein field equation. In the

community of soft matter physics, many examples demonstrate the major role played

by geometry, and various geometric models are proposed to understand the proper-

ties of condensed matter. In water-oil microemulsions, for example, a rich variety of

geometric phases form, including spongelike phases of minimal surfaces and bicon-

tinuous phases, where spontaneous curvature is a crucial parameter [8]. The Bernal

model of random-close-packing of hard spheres is a useful model for understanding
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the structure of a liquid (or an amorphous solid or glass) which is characterized by

radial distribution functions [9].

In this thesis, we study several geometric aspects of soft matter. The topics covered

can be classified into three parts. The first part deals with the geometric frustration

in 2-dimensional condensed matter. We study crystalline and liquid crystalline order

on curved surfaces and the geometric frustration of a planar sheet meeting a negative

curvature surface. In the second part, we study the stability of toroidal liquid droplets

where the geometry plays a crucial role. We also study how to realize the self-

propulsion of liquid droplets on substrates by pure geometric patterning. In the third

part, we study the electric double layer structures of charged spherical interfaces by

constructing a geometric solution to the nonlinear Poisson-Boltzmann equation, which

enables further analytical study of spherical electrostatic systems such as colloidal

suspensions.

1.1 Geometric frustration in two-dimensional systems†
The physics of 2D condensed matter systems is a rich and mature subject [3, 9].

In the study of metallic glass, the fundamental concept of geometric frustration has

been proposed [12, 13]. Geometric frustration refers to the geometric impossibility

of establishing a preferred local order everywhere in space. Farges and coworkers

were the first to show in experiments and computer simulations that long range

translational order is forbidden in the structure of the aggregation of icosahedral

building blocks, because icosahedra don’t fill the three-dimensional Euclidean space

[14, 15, 16]. How to describe the spatial disorder? Inspired by the fact that regular

tetrahedra can regularly tile the three-dimensional sphere S3 (they don’t fill the three-

dimensional Euclidean space though), Sadoc and Kleman first observed that a number

† In preparing for this part, we refer to the review paper [10] and the doctoral theses of L. Giomi

[1] and H. Shin [11].
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of continuous random lattices can be regarded as mappings of ordered lattices into

spaces of constant curvature onto R3 [17]. This idea finally leads to a new approach

to spatial disorder based on the interplay between order and geometry in the work of

Sadoc and Mosseri [18], Steinhardt et al. [19], Nelson [20] and Kleman [21]. Recent

simulation in three dimensional systems reveals the strong coupling between defect

structure and dynamics (see the systematic study in Ref.[22]).

In-plane order on two-dimensional manifolds has been subject of extensive re-

search since the discovery of the ordered phases Lβ and Pβ of phospholipidic mem-

branes [4]. Much work has been done in elucidating the intimate relation between

in-plane order and the geometry of the underlying substrate in the pioneering pa-

pers of Nelson and Peliti [23], Berezinskii [24], Kosterlitz and Thouless [25, 26, 27].

Gaussian curvature introduces topological defects that are energetically prohibitive in

planar systems. Order on curved surfaces has been extensively studied theoretically

and experimentally, including spherical crystals [28, 29, 30], paraboloidal crystals

[31], toroidal hexatics [32], crystalline order over a Gaussian bump [33, 34] and a

capillary bridge [35, 36], spherical nematics [37, 38] and columnar/smectic textures

on curved substrates [39, 40, 41]. In Chapter 2, we will study theoretically crystalline

order on capillary bridges. These studies suggest a promising strategy for designing

mesomolecules whose valencies can be controlled by functionalization of defect sites

or by engineering the underlying substrate curvature itself [42, 43, 44, 45, 46, 47, 48].

On the other hand, both experiments and theory show that topological defects on a

flexible substrate can significantly deform their shapes. For example, a rich variety of

morphologies of liquid crystal vesicles formed from diblock copolymers are observed

in a recent experiments [49, 50, 51]. The origin of these shapes can be understood in

terms of the in-plane crystalline and liquid crystal orders. For example, it has been

theoretically shown that defects in nematic membranes can buckle into pseudospheres

[52], and a vortex or anti-vortex defect in the phase of the quantum order distorts the

membrane metric into a negative conical singularity surface [53]. In Chapter 3, we
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will study theoretically the morphology of the nematic and smectic vesicles that have

been recently synthesized [49, 54]. These studies deepen our understanding of the

origin of shapes of living and manufactured membranes and other condensed matter

systems.

Figure 1.1: The spherical image of a surface (left) is obtained by parallel moving all unit normal

vectors on that surface (left) onto the unit sphere (right).

In the above discussion of the interplay of order and geometry, Gaussian curvature

can be regarded as equivalent to topological charges. An alternative interpretation of

Gaussian curvature is the redefinition of metric. This may be seen from the geometric

interpretation of Gaussian curvature: KG = lim∆A→0
∆As

∆A
. ∆As and ∆A are the area

elements on the spherical image and on the surface. The spherical image of a surface

is illustrated in Fig.1.1. Around a hyperbolic point where the Gaussian curvature is

negative, the contour of ∆As is traversed in a direction opposite to that of ∆A. For

convenience in calculation, the above expression for Gaussian curvature can also be

written as the limiting difference between the area of a geodesic disk of radius r and

a disk in the plane KG = limr→0+ 12πr2−A(r)
πr4 .

According to the geometric meaning of Gaussian curvature, geometric frustration

occurs in attaching a planar sheet onto a surface of nonzero Gaussian curvature.

The geometric incompatibility of a planar sheet and a curved substrate leads to the

emergence of ridges. It is a process of the spontaneous condensation of energy into

a small subset of the available volume in order to reduce the energy of the system



1.2 Geometry in liquid droplets 5

[55]. Recently the frustration of a thin circular elastic sheet of ∼ 100 nm size covering

the tip of a spherical droplet has been studied [56]. Fine radial wrinkles at the edge

of the sheet become unstable to a few localized folds as the radius of the spherical

droplet decreases. The wrinkle-fold transition is analogous to the dislocation (or

pleat)-disclination (or scar) transition in crystalline order on a capillary bridge as the

curvature is increased [35, 57, 58]. The structure of topological defects on positive and

negative curvature surfaces are fundamentally different [59]. This suggests a distinct

wrinkle/fold structure on a flat sheet when attached to a negative curvature surface;

the edge of the sheet is stretched as opposed to being compressed on a spherical

geometry. A completely different frustration pattern on the planar sheet is thus

expected. In Chapter 4, we study what happens when a planar sheet is placed on a

negative curvature surface.

1.2 Geometry in liquid droplets

Liquid droplets are ubiquitous and are multidisciplinary research objects studied in

physics, chemistry, biology, pharmacy, food and meteorology [60]. The rich behavior

of a liquid droplet in various circumstances is fascinating and intriguing. For example,

the problem of the formation of drops, as first mentioned in a book by Mariotte (1686),

remains far from exhausted after more then 300 years of scientific research [61]. There

are various methods to generate droplets [62] that can be divided into two classes:

condensation of vapor and disintegration of bulk fluids. The mechanism of the latter

method is the Rayleigh instability, although other methods are used, such as cutting

a liquid jet by air bubbles for a better control of the size of droplets [63]. The size of

the generated droplets ranges from micro to millimeters. The typical size of droplets

in a spray ranges from 10− 100 µm, and the size of a rain drop is about 5− 6 mm.

The study of liquid droplets is of tremendous technological importance in mixing,

spraying and chemical processing which leads to applications such as ink-jet printing,
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fiber spinning, and microfluidic technology (e.g., miniature bio-chemical reactions on

a chip) and self-assembly technology [62, 64, 65, 66]. It is interesting to mention a

liquid droplet’s capability of self-assembly. The idea originates from a spilled drop of

coffee drying on a solid table [67, 68]. The evaporation induces a outward flow inside

a coffee droplet sitting on a solid table. The flow brings virtually all the dispersed

coffee solids to the edge. The self-assembly technology based on the coffee ring effect

has been used for the assembly of nanoparticles, diblock copolymers and even DNA

chains [69]. Liquid droplets also attract theorists’ attention. For example, the local

singular behavior at the initial stage of the snap-off has been intensively studied as

a classical finite-time singularity problem [70, 71, 72, 73, 74, 75, 76]. The study of

liquid droplets can shed light on other physical and biological systems. For example,

the snap-off of liquid droplet is used to understand atom fission [77], while the fusion

of cells and the self-assembly of immiscible tissues in embryonic morphogenesis can be

analogous to the coalescence of droplets [78]. Furthermore, the study of the impact

of liquid droplets may also provide insights into the formation of planets as a result

of collision of smaller clusters according to the prevailing protoplanet theory [79].

Our understanding of the liquid droplet system benefits greatly from the concept

of surface tension introduced two hundred years by Johann Andreas von Segner, a

Hungarian mathematician [80]. In terms of surface tension, much of the behavior

of liquid droplets, including statics and dynamics, in different environments, is well

understood [60, 65, 81]. Due to surface tension, the surface of a droplet is like an

elastic skin and a liquid droplet is perfectly spherical in its free state. The geometry

influences the physics of liquid droplets via the Laplace pressure ∆P = 2σH, where

the mean curvature 2H = 1
R1

+ 1
R2

. R1 and R2 are the two principal radii of curvature.

∆P is the pressure difference across the liquid interface due to surface tension and

mean curvature. For small droplets measured by the capillary length
√

σ
ρg

which is of

interest for us, the surface tension dominates over gravity. According to the Navier-

Stokes equation, the uneven distribution of Laplace pressure (without other forces)
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will induce a flow. The problem of flows in liquid droplets represents the class of free

boundary problems in fluid mechanics [82]. In Chapter 5 and 6, we show that the

surface tension driven flow is responsible for the Rayleigh and shrinking instabilities

of toroidal liquid droplets [83]∗. We also demonstrate in Chapter 7 that this flow can

be used to drive a liquid droplet on a substrate with pure spatially varying topography

[84].

1.3 Poisson-Boltzmann theory and beyond

Colloidal particles, polymers and membranes all carry charges in an aqueous envi-

ronment [85, 86]. For example, DNA can carry a linear charge density of as high

as one unit charge every 0.17 nm [87]. Note that the persistence length of DNA is

about 30 − 50 nm [87]. Colloidal particles in solution can be charged as highly as

0.1− 1 e/nm2 by chemically decorating their surfaces with dissociable groups such as

sulfate or carboxyl groups which easily release ions upon contact with water [88]. The

electrostatic interactions can be both attractive, leading to association, and repulsive

resulting in dispersion. They provide one of the basic organizing principles in both

colloidal suspensions and living biological systems. On the other hand, thermal fluc-

tuations influence the distribution of free ions in solution. The behavior of charged

matter is therefore dominated by the interplay of thermal fluctuations and long-range

electrostatic effects on different length and time scales, leading to complicated phase

diagrams [89].

Solutions of charged objects are tremendously complicated physical systems. Even

the standard solvent itself - water- already poses formidable problems. In order

to make some predictions about such systems, one may utilize the fact that many

interesting features of electrolytes are ultimately a consequence of the presence of

charges. Therefore, a good treatment of the electrostatics and crude approximations

∗ It is interesting to note that dolphins can make toroidal bubbles in water.
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for other factors are expected to unveil the behavior of these systems [89] (the lecture

by Deserno and Holm). Any quantum mechanical effects are ignored and the solvent

is treated as a dielectric continuum. The “dielectric approximation” actually works

surprisingly well [89] (the lecture by Jonsson and Wennerstrom).

The Poisson-Boltzmann (PB) equation is an important tool for understanding

charged objects in solution. Despite its mean field nature and its limitation in dealing

with multivalent ionic solution where ion-ion correlations are important, it has all the

length and energy scales, and provides a first step and qualitative picture of electro-

static phenomena in solutions. The derivation of the PB equation is rather straight-

forward [90]. Consider a solution in contact with an electrolyte reservoir of fixed

concentration n0. The coions and counterions are in thermal equilibrium with the

reservoir. For simplicity we assume only one type of coion and one type of counterion

with number densities n±(~r). The total charge density is ρ(~r) = ez+n+(~r)+ez−n−(~r)

where z+ (z−) is the valence of the coions (counterions) and the elementary charge

e > 0. The PB equation is derived from the following two equations. On one hand,

the potential ψ(~r) is determined by the charge distribution, i.e.,

∆ψ(~r) = −4π

ε
ρ(~r), (1.1)

where ε is the dielectric constant of the aqueous solution. On the other hand, thermal

equilibrium requires that the chemical potential µi of the i-th ion µi = eziψ + T ln ni

is constant [91]. This leads to the Boltzmann distribution

ni = ni
0e
− eziψ

kBT . (1.2)

Combining Eq.(1.2) and (1.1), we obtain the Poisson-Boltzmann equation which de-

termines the potential ψ self-consistently:

∆ψ(~r) = −4π

ε
(z+n

(+)
0 e

− ez+ψ(~r)

kBT + z−n
(−)
0 e

− ez−ψ(~r)

kBT ). (1.3)

In particular, for a 1:1 electrolyte reservoir (e.g., Na+Cl−), n
(±)
0 = n0 and the PB

equation becomes

∆ψ(~r) = −8πen0

ε
sinh(

eψ(~r)

kBT
). (1.4)
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Working in the natural units of potential kBT/q (q is the absolute value of the charge

of ions) and Debye length κ−1 =
√

εkBT/(8πnq2), the dimensionless Eq.(1.4) becomes

∆ψ = sinh ψ. (1.5)

There is a subtlety regarding the potential in the derivation for the PB equa-

tion. In the electrostatic Poisson equation, the potential ψ(~r) is due to all ions in

the system, while in the Boltzmann distribution, the ψ(~r) is the potential at ~r due

to all other ions except the one at ~r. In the mean field level, they are treated as

equal. Furthermore, it is worth mentioning that the PB equation is compatible with

the principle of linear superposition in electrostatics, although it is nonlinear in the

potential. An inconsistency does appear when the PB equation is applied to a system

where the macroion is identical to some small ion. The consequence of this incon-

sistency is eliminated when the PB equation is linearized (see the lecture of Jonsson

and Wennerstrom in Ref.[89]and the textbook [92]).

In the derivation of the PB equation we make the following assumptions [93]: (i)

electrolyte ions are treated as point charges in the electrostatic Poisson equation;

(ii) ion-ion correlations are neglected in the Boltzmann equation; (iii) the solvent is

treated as a structureless dielectric continuum carrying a uniform dielectric permit-

tivity ε; and (iv) charges on the particle surface are smeared out to give a continuum

distribution. An alternative derivation of the PB equation from variational mean

field clearly shows that the neglect of ion-ion correlations leads to the PB equation

[89] (the lecture by Deserno and Holm and that by Moreira and Nets). The crucial

assumption is to replace the N -particle distribution function by a product of N iden-

tical one-particle distribution functions. There actually exists a density functional

which gives the correct free energy according to an important theorem originally due

to Hohenberg and Kohn, although it does not specify it. Various local [94, 95, 96, 97]

and nonlocal [98, 99, 100] corrections to the PB functional have been suggested.

Despite these assumptions, it has been shown in numerous studies that the Poisson-

Boltzmann theory is actually quite reliable, especially when applied to problems of
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electrostatic interaction of colloidal particles when the surface charge is low [85] and

to electrokinetic phenomena [86].

By linearizing the PB equation, Debye and Hückel showed the electrostatic energy

of a 1:1 electrolyte solution to go as E ∼ n3/2 and derived the osmotic pressure [101].

The power 3/2 explains why a virial expansion must fail. An alternative derivation of

the electrostatic energy of an electrolyte solution in terms of the correlation function

is given in [91]. One significance of the work of Debye and Hückel is the introduction

of the Debye length in place of the length scale (V/N)1/3, where V is the volume of

the system and N is the number of ions. The Debye length takes into consideration

thermal fluctuations and can characterize the screening effect of free ions in solution.

It has become an important (qualitative) analysis tool since its proposal. In addi-

tion, the DH approximation is suitable for the study of flexible molecules due to its

simplicity [87].

Debye-Hückel theory works very well for 1:1 electrolytes. However, perceptible

deviations occurs for asymmetric electrolytes (the lecture by Kjellander in [89]). The

cell model has been proposed to attempt to turn this situation into an advantage. In

the highly asymmetric case, a charged macromolecule is surrounded by small coun-

terions. The total solution is therefore partitioned into cells, each containing one

macroion. These cells have the same volume and are neutral in charge. Therefore

the electrostatic interaction between cells may be ignored. The cell model reduces a

many-body system to a one-body problem; the macroions are decoupled. The lecture

by Deserno and Holm in Ref.[89] gives detailed introduction to the cell model.

By solving the potential for a planar system from the PB equation, it is found

that the counter-ion density is much bigger than the co-ions near the wall. An electric

double layer (EDL) is created, one layer is represented by the charged diffuse surface

and the other by the excess of the opposite charge extending into the solution (Ref.

[102, 103, 104]. See also p6 of Ref.[105] for the history of the EDL theory). Within

the Gouy-Chapman model the finite dimensions of the ions are neglected. In more
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concentrated electrolyte solutions theory leads to unrealistically high concentrations

of counterions near the surface [85]. Therefore Stern [105] tried to alter the model

with the division of ions into two populations. One population is considered as a layer

of ions adsorbed on the surface and resides close to the charged surface (Stern-layer),

while the other population is described as in Gouy-Chapman model. One may refer to

Ref.[106] and [107] for recent development of the PB theory taking into consideration

ion size.

The ion-ion correlation leads to electrostatic phenomena that is beyond the PB

theory. It is quite often observed that multi-valent atomic ions have disastrous effects

on living species. This is related to the fact that the ion-ion correlation effect is more

prominent in di- and tri-valent ions, which can cause precipitation and coagulation

in many colloidal systems. One example is the precipitation of soap by calcium and

magnesium ions. As another example, divalent ions like Ca++ in some cases induce

an attractive interaction between membranes, which may be attributed to the formed

structure of ions in the proximity of the charge surfaces (up to a few angstroms away)

[90]. Another curious finding is that the electrophoretic mobility of a highly charged

colloidal particle can be reversed, if the suspension contains multivalent counterions

[108]. The lecture by Jonsson and Wennerstrom in Ref. [89] gives a nice introduction

to the ion-ion correlation from theory to experiment. The first clear experimental

demonstration of ion-ion correlation was reported in Ref.[109, 110]. Ion-ion correla-

tion can induce like-charge attraction. Its physical origins can be the bridging effect

by polyelectrolytes (the lecture by Jonsson and Wennerstrom in [89]) and the fluctua-

tion of ions [111, 112, 113]. The ion-ion induced attraction is typically bigger than the

van der Waals interaction, and is independent of chemical details (e.g., the chemical

nature of ions). Experimentally it is hard to measure the ion-ion correlation attrac-

tion force. The ion-ion correlation effect can be characterized by two dimensionless

parameters [114]: K1 = a
lB

= aεT
z2e2 and K2 = lB

λGC
= σz3e3

(εT )2
, where a is the size of the

system, the Bjerrum length lB = (ze)2/ε
T

, the Gouy-Chapman length lGC = e
zσlB

and σ
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is the surface charge density. The ion-ion correlation effect becomes more significant

for smaller K1 and bigger K2.

In recent years, theories taking into account the discreteness of the charges and

correlations have been developed [115, 116]. A common approach to deal with the

nonlinearity, while retaining the simplicity of Debye-Hückel theory, is to apply Man-

ning theory [87]. Despite theoretical objections, Manning theory has proved useful

as a simple way to calculate certain ionic effects, for example, colligative properties,

at least in specific cases (see a series papers by Manning [117, 118] and a comment

paper by [119]). The lecture by Deserno and Holm in Ref. [89] gives an outlook going

beyond PB theory by the methods of field theories, integral equation theories and

scaling theory and simulation.

In Chapter 8, we study the electric double layer structure about charged spherical

interfaces using the PB equation. We derive a formally simple approximate analytical

solution to the Poisson-Boltzmann equation for the spherical system via a geometric

mapping. Its regime of applicability in the parameter space of the spherical radius and

the surface potential is determined, and its superiority over the linearized solution

is demonstrated. In comparison to the algebraic method, the derivation of the ψG

solution via the geometric mapping not only reduces the complexity of algebraic

calculations, but also reveals how the spherical geometry modifies the equipotential

surfaces of a planar system. In addition, the analogy between an electric double layer

system and capillary deformation is found [120]. It allows the use of well-developed

methods for the calculation of electrostatic interactions in DLVO (Derjaguin-Landau-

Verwey-Overbeek) theory in less well-studied lateral capillary interactions between

particles adsorbed at a liquid-fluid interface [120].



Chapter 2

Crystalline order on catenoidal

capillary bridges

2.1 Introduction

2.1.1 Crystalline order and Euler’s theorem

Two-dimensional crystalline order can be realized on a plane, as a plane can be

tesselated by hexagons. However, two dimensional spherical crystals composed of

pure hexagons can never be realized according to Euler’s theorem [2], which states

that

V − E + F = 2 (2.1)

for any polyhedron, where V, E and F are the number of vertices, edges and faces

of the polyhedron. One can check that twelve pentagons have to be introduced to

construct a 2-dimensional spherical crystal; a football is an excellent example. Here

the pentagons are defects (disclinations) in the hexagonal crystal lattice. One can

further examine that 5-7 pairs (dislocations) are allowed on a planar two-dimensional

crystal. From a planar to a spherical geometry, the crystalline order changes corre-

spondingly. Reversely, by introducing a pentagon or heptagon on a two-dimensional
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planar crystal, it will be buckled to reduce the in-plane strain energy and the Gaus-

sian curvature changes [3]. These facts imply the intimate relation between crystalline

order and geometry [3, 10].

The topology of the surface on which crystalline order lives imposes global con-

straint for the property of topological defects. A topological charge can be attributed

to a disclination whose value is defined as the departure from the ideal coordination

number of a two-dimensional planar crystal lattice qi = 6−zi, with zi the coordination

number of the lattice point i. So Euler’s theorem is written as

Q =
∑

i

qi = 6χ. (2.2)

χ is the Euler characteristic. χ = 0 for a cylinder and χ = 2 for a sphere. It explains

why we need twelve pentagons on a 2-dimensional spherical crystal. In fact, there can

be many defects on a sphere as long as their total topological charge is 12. In addition

to the topological constraint, the geometry of the surface can also influence crystalline

order. For example, by increasing the radius of a sphere, isolated disclinations in the

crystalline order evolves to scars with the total topological charge conserved [121].

2.1.2 Background

Two-dimensional ordered phases of matter on spatially curved surfaces have several

features not found in the corresponding phase for planar or flat space systems [10].

For crystalline order on surfaces of spherical topology where disclination defects are

required by the topology itself, Gaussian curvature can drive the sprouting of discli-

nation defects from point-like structures to linear grain boundary scars which freely

terminate in the crystal [28, 29, 121, 122]. Even for surfaces such as the torus which

admit completely defect-free crystalline lattices, the energetics in the presence of

Gaussian curvature can favor the appearance of isolated disclination defects in the

ground state [123, 124]. For the axisymmetric torus with aspect ratio between 4 and

10, isolated 5-fold disclinations appear near the line of maximal positive Gaussian cur-
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vature on the outside and isolated 7-fold disclinations appear near the line of maximal

negative Gaussian curvature on the inside [125]. The ground states in these systems

are thus distinguished by a defect structure that would be energetically prohibitive

in flat space. It is certainly worthwhile to explore as many settings as possible in

which there are qualitative changes in the fundamental structure of the ground state,

within a given class of order, purely as a consequence of spatial curvature.

The richest confluence of theoretical and experimental ideas in the area of curved

two-dimensional phases of matter has been in colloidal emulsion physics in which col-

loidal particles self-organize at the interface of two distinct liquids, either in particle-

stabilized (Pickering) emulsions [126, 127] or charge-stablized emulsions [128, 129].

Two-dimensional (thin-shell) spherical crystals form at the surface of droplets held

almost perfectly round by surface tension. The ordered configurations of particles

may be imaged with confocal microscopy and the particles manipulated with opti-

cal tweezers [121, 130, 131]. Macroscopic examples of crystalline order on variable

positive Gaussian curvature surfaces have been constructed by forming a soap bub-

ble raft on a spinning liquid [132] and the nature of the order has been analyzed

theoretically [133].

Glassy liquids on negative Gaussian curvature manifolds have also received con-

siderable attention [134, 135, 136, 137, 138]. The simplest such manifold conceptually

is the constant (negative) curvature hyperbolic plane H2 and it even appears that the

hyperbolic plane can be isometrically embedded as a complete subset of Euclidean

3-space, although not differentiably [139]. Physical realizations of negative Gaussian

curvature manifolds in condensed matter physics will almost always have variable

Gaussian curvature. The inner wall of the axisymmetric torus (S1 × S1) has inte-

grated Gaussian curvature equal to −4π, balancing an equal and opposite integrated

Guassian curvature on the outer wall. This is responsible for the novel ground states

noted above. Gaussian bumps have regions of both positive and negative Gaussian

curvature and the minimal-type surfaces found in bicontinuous phases of amphiphilic
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bilayers have spatially extended variable Gaussian curvature that is negative on av-

erage [140].

Recently crystalline particle arrays on variable Gaussian curvature surfaces has

been studied by assembling poly(methyl methacrylate) (PMMA) particles (∼ 2 µm)

on capillary bridges formed by glycerol in bulk oil spanning two flat parallel plates [35].

The particles interact via a repulsive screened Coulomb interaction. Configurations

may be imaged by confocal microscopy and even manipulated with laser tweezers.

The interface between the inner fluid of the capillary bridge and the outer bulk fluid

is a surface of revolution with a constant mean curvature (CMC) determined by

the pressure difference between the two fluids [60, 141]. Capillary bridges minimize

the surface area at fixed volume and perimeter and appear in the classical work of

Delaunay [142, 143]. The value of the mean curvature and hence the underlying

surface may be changed by varying the spacing between the plates.

In this Chapter, we analyze the geometry of capillary bridges observed in experi-

ment and theoretically study the crystalline order on capillary bridge in the frame of

continuum elasticity theory [23, 28]. The threshold aspect ratio for the appearance of

isolated disclinations is found and the optimal positions for dislocations determined.

We also discuss the transition from isolated disclinations to scars as particle number

and aspect ratio are varied.

2.2 Geometry of capillary bridges

A liquid droplet between two plates forms a capillary bridge by minimizing the surface

area if its size is smaller than capillary length lc =
√

σ
ρg

. A capillary bridge plays

essential role in adhesion, antifoaming, repelling coffee-ring effect, understanding the

attractive hydrophobic force and so on [68, 144, 145].
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2.2.1 A capillary bridge is a CMC surface

In what follows, we will prove that a capillary bridge is a constant mean curvature

(CMC) surface.

Consider a liquid droplet of fixed volume with arbitrary shape. Following [146],

we define a function φ(~x) in the three dimensional Euclidean space E3. Let the surface

of interest, Γ, be represented by the zero level set of φ(~x), i.e., φ(~x) = 0. The unit

normal vector is defined to be

~n =
∇φ

|∇φ| . (2.3)

φ(~x) = Vi gives contours of the same “electrostatic potential” Vi. The contour of

Vi = 0 is the shape of the surface concerned. The direction of the gradient of φ on

this contour (the direction of the “electric field”) is perpendicular to the contour,

which is the direction of the normal vector. Note that the definition of the normal

vector for an abstract surface requires extra information of how the surface is shaped

in the higher dimension space into which it is embedded.

The area of the surface A[φ(~x)] of fixed volume f [φ(~x)] = f0 can be minimized by

the method of Lagrange multipliers. The action is defined as

L = A[φ] + λ(f [φ]− f0). (2.4)

Its variations with respect to the field φ and λ lead to

δL = δA + λδf = 0 (2.5)

and

f [φ]− f0 = 0. (2.6)

In order to calculate Eq.(2.5), we need to calculate δA and δf respectively. By using

the equality

∫

Γ

p[φ]dS =

∫

Ω

δ[φ] p[φ] |∇φ| dV, (2.7)
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we finally have

δA = −
∫

Γ

∇ · ~n δφ

|∇φ|dS, (2.8)

and

δf = −
∫

Γ

δφ

|∇φ|dS. (2.9)

~n is the outward unit normal vector on surface Γ. δ[φ] and δφ are distinguished as

the Dirac delta function and the variation of φ. By inserting the expressions for δA

and δf into Eq.(2.4), we have

δL = −
∫

Γ

(∇ · ~n + λ)
δφ

|∇φ|dS + δλ(f [φ]− f0), (2.10)

which leads to the locally stable configurations satisfying

∇ · ~n + λ = 0 (2.11)

on the surface Γ and

f [φ]− f0 = 0. (2.12)

Since mean curvature 2H = ∇ · ~n, Eq.(2.11) states that all the locally stable con-

figurations are CMC surfaces. Minimal surfaces with vanishing mean curvature is a

special case.

The CMC shape of capillary bridges is also understood in terms of the Laplace

pressure. Since the Laplace pressure is proportional to mean curvature, the spa-

tially varying mean curvature will induce a flow inside a capillary bridge leading to a

constant mean curvature surface.

2.2.2 The solutions to the shape equation

The shape equation of a capillary bridge as a CMC surface represented by r(z) is

H ≡ 1

R1

+
1

R2

=
−r′′

(1 + r′2)3/2
+

1

r
√

1 + r′2
= const. (2.13)
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z-axis is the axial of rotational symmetry. Since

(
1√

1 + r′2
)′ = − r′r′′

(1 + r′2)3/2
, (2.14)

the first integration of Eq.(2.13) with respect to z yields

r√
1 + r′2

=
H

2
r2 + c. (2.15)

The solution of a minimal surface with vanishing mean curvature is immediately

obtained by letting H = 0 in Eq.(2.15):

r(z) = c cosh
z

c
. (2.16)

It is recognized as a catenoid. Its parameterized representation is

~x(u, v) =




c cosh(v
c
) cos u

c cosh(v
c
) sin u

v


 .

u ∈ [0, 2π) and v ∈ (−∞,∞). The single parameter c controls the shape of a catenoid.

The waist (minimum cross section) of a catenoid located on the z = 0 plane has radius

c. u = const defines the meridians of surface and v = const defines the latitude lines.

u ∈ [0, 2π), v ∈ [−vm, vm] for capillary bridge between two plates with reflection

symmetry about its waist. The basis vectors are ~e1 ≡ ~eu and ~e2 ≡ ~ev.

The metric of a catenoid is defined by

ds2 = c2 cosh2(
v

c
)du2 + cosh2(

v

c
)dv2, (2.17)

from which we have the nonzero components of the metric tensor as

guu = c2 cosh2(
v

c
), (2.18)

and

gvv = cosh2(
v

c
). (2.19)
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The Gaussian curvature of a catenoid is derived as

K = − r′′

r(1 + r′2)2
= − 1

c2
sech4(

v

c
) = −1

g
, (2.20)

from [147]

K ≡ 1

R1

1

R2

=
b

g
, (2.21)

in which

bij = ~ei,j · n̂, (2.22)

~ei =
∂~x

∂qi
. (2.23)

b is the determinant of bij. The metric completely determines the Gaussian curvature

as expected, because the Gaussian curvature is an intrinsic property of surface. For

the part of a catenoid between z ∈ [−vm, vm], the integral of the Gaussian curvature

is:
∫

KdA = −4π tanh(
vm

c
), (2.24)

and the surface area is

A = πc(2vm + c sinh(
2vm

c
)) =

2V

c
, (2.25)

where V is the volume. The nice relation between the area and the volume is seen

V = 1
2
Ac. For comparison, we give the volume-area relation of a cylinder V = 1

4π
A2

h

where h is the height of a cylinder. The former one is linear while the latter one is a

square law. The plot of A(c) is given in Fig.2.1. A(c) reaches maximum at c = 0.55.

For a general CMC surface with nonzero mean curvature, the solution to Eq.(2.15)

is [148]

x(t) = α + γ(E(θ, t) + F (θ, t)cosθ) (2.26)

and

y(t) = γ∆(θ, t), (2.27)
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Figure 2.1: The surface area of a catenoid versus its aspect ratio c. The radius of the boundary

circular section is R = 1.

where the x-axis is the axis of revolution, t is the parameter of the profile curve and

H = −λ.

λ = − 2

γ(1 + cos θ)
, (2.28)

E(θ, t) =

∫ t

0

∆(θ, t̃)dt̃, (2.29)

F (θ, t) =

∫ t

0

1

∆(θ, t̃)
dt̃ (2.30)

and

∆(θ, t) =
√

1− sin2 θ sin2 t. (2.31)

γ acts as a scale factor.

The profile curves generated are π periodic in t: having maxima at t = kπ and

minima at t = (k +1/2)π for integer k. The value of θ affects the shape of the profile

curve: it forms unduloid for θ ∈ [0, π/2); nodoid for θ ∈ (π/2, π); and semi-circle with

centers and cusps on x-axis for θ = π. The shape of either unduloid or nodoid can be

parameterized as

~x(u, t) =




γ4(θ, t) cos u

γ4(θ, t) sin u

α + γ(E(θ, t) + F (θ, t)cosθ)


 .



2.2 Geometry of capillary bridges 22

0 50 100 150
-0.90
-0.85
-0.80
-0.75
-0.70
-0.65
-0.60

i

K
G

Figure 2.2: The distribution of Gaussian curvature on the capillary bridge in Fig.4i in Ref. [35]

versus i. t = t0 + i ∗ dt, dt = 10−5π. i increases from 0 on the waist of the capillary bridge towards

its ends.

t ∈ [t0, t1]. u ∈ [0, 2π). The nonzero components of the metric tensor are

gtt = (
γ sin t cos t sin2 θ

4(θ, t)
)2 + γ2(4(θ, t) +

cos θ

4(θ, t)
)2, (2.32)

guu = γ24(θ, t)2 (2.33)

The Gaussian curvature can be calculated by using the parametric form of Eq.(2.20).

For the shape of Fig.4 i in Ref. [35], the distribution of Gaussian curvature is shown

Fig.2.2. We see that the magnitude of Gaussian curvature reaches maximum at the

waist.

In experiment [35], by pulling a capillary bridge, a series of shapes are obtained. In

what follows, we will show that these shapes are unduloids/nodoids. Since the waist

of the experimental profile is smaller than the contact disk, we consider interfaces that

are symmetric about the minimum point t = π/2. The free parameters are t0, γ, θ.

t0 is the value of the parameter t at the end of the profile. The latter two gives the

scale and the shape of the profile respectively. We need three constraints to fix these

three free parameters which are the volume of the capillary bridge vol, the radius R

of the contact disk and the distance h between the two plates. These constraints are
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formulated as:

V = 2π

∫ π/2

t0

y2(t)dx, (2.34)

R = γ4(θ, t0), (2.35)

and

h = 2γ(E(θ, π/2)− E(θ, t0) + cos θ(F (θ, π/2)− F (θ, t0))). (2.36)

We numerically solve these equations. Let the second and third constraints to

be satisfied strictly, and then by minimizing ε ≡ |V − πR2h0|/(πR2h0), in which h0

is the initial distance of two plates before stretching. The values of the three free

parameters can be obtained. The results in comparison with experiment (Fig.4 in

Ref. [35]) are as follows:

h(h0 = 0.55) H t0 θ c/cexp γ ε

0.56 0.56 1.50 1.169 0.986/n.a. 2.868 3.2 ∗ 10−6

0.63 -1.20 1.75 1.930 0.902/0.854 2.909 4.5 ∗ 10−6

0.82 -1.51 1.92 1.938 0.742/0.784 2.344 1.5 ∗ 10−8

0.92 -1.24 1.91 1.872 0.678/0.687 2.590 1.9 ∗ 10−9

The mean curvature in this table is scaled by that of a reference cylinder whose

radius is that of the contact disk. The values of h is measured from the images of

capillary bridges. From the change of the values of θ, the shape of capillary bridges

changes from cylinder to unduloid (θ ∈ [0, π/2)) to nodoid (θ ∈ (π/2, π)). And it is

expected that between unduloid and nodoid there must be a catenoid, because the

value of mean curvature cannot change from positive to negative suddenly. Since

|t0−π/2| < π/2, the capillary bridge in experiment is a fraction of a complete period.

2.3 Crystalline order on catenoid

Here we study crystalline order on the simplest case of a catenoidal capillary bridge

(H = 0) in the framework of continuum elasticity theory [23, 28, 59]. For simplicity,
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(a)

(b)

Figure 2.3: (a) The three dimensional shape of a catenoid of aspect ratio c = 0.85. (b) A catenoid

of aspect ratio c = 0.9 (green) deforms to c = 0.7 (blue).

we measure all lengths in units of the radius of the contact disk. We treat the

topological defects, including dislocations and disclinations, as degrees of freedom

rather than all the interacting particles. It greatly reduces the number of degrees of

freedom. Starting from the elastic free energy, we derive and discuss the interactions

of topological defects on catenoid capillary bridge.

2.3.1 The geometric approach

The topology of the capillary surfaces we study is that of the annulus, with Euler

characteristic zero, since the liquid bridge makes contact with the plates at the top

and bottom. Such a surface admits regular triangulations with all particles having

coordination number 6. Although defects (non 6-fold coordinated particles) are not

topologically required they may be preferred in the crystalline ground state for purely

energetic reasons since negative Gaussian curvature will favor the appearance of 7-

coordinated particles (-1 disclinations). To determine the preferred defect configura-

tion we map the microscopic interacting particle problem to the problem of discrete
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interacting defects in a continuum elastic background. The defect free energy Fel, in

the limit of vanishing core energies, is expressed in the form [31, 59, 133]:

Fel =
1

2
Y

∫

x,y

G2L(x, y)ρ(x)ρ(y), (2.37)

where Y is the Young’s modulus for the 2-dimensional crystal. x and y are position

vectors on 2-dimensional surface. The effective topological charge density is

ρ(x) =
π

3

∑
α

qαδ(x, xα)−
∑

β

γijbβ
i ∇jδ(x− xβ)−K(x) (2.38)

=
π

3
q(x)− γij∇jbi(x)−K(x).

xα and xβ are the positions of disclination qα and dislocation ~bβ on the 2-dimensional

surface. δ(x, xi) = g−1/2
∏

i δ(x − xi). K(x) is the Gaussian curvature. G2L(x, y) is

the Green’s function for the covariant biharmonic operator on curved surface.

44G2L(x, y) = δ(x, y). (2.39)

g is the determinant of metric of surface. γij = 1√
g
εij, εij is the antisymmetric tensor

in Cartesian coordinates. The first and second terms in Eq.(2.39) are the charge

densities of disclination and dislocation, respectively. So the Gaussian curvature

cannot only be screened by disclination (or scar) but also by dislocations (or pleats).

By introducing χ

44χ(x) = Y ρ(x) (2.40)

and using Eq.(2.39), Eq.(2.37) can be written in a more compact form

Fel =
1

2

∫

x,y

1

42
δ(x, y)42χ(x)ρ(y) =

1

2

∫

x

χ(x)ρ(x) (2.41)

=
1

2Y

∫

x

χ(x)4(4χ(x)) =
1

2Y

∫

x

(4χ(x))2,

where in the last step the Green’s second identity is used:
∫

V
(ψ4φ − φ4ψ) =

∫
∂V

(ψ∂nφ− φ∂nψ). ∂n = ~n · ∇. And the boundary conditions for χ are imposed:

χ|∂ = 0 (2.42)
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and

~n · ∇χ|∂ = 0. (2.43)

By introducing

Γ(x) = 4χ(x), (2.44)

we have

4Γ(x) = Y ρ(x). (2.45)

So

Γ(x)

Y
=

∫

y

GL(x, y)ρ(y) + U(x) =

∫

y

GL(x, y)(
π

3
q(y)− γij∇jbi(y))− Γs(x) + U(x),(2.46)

in which 4U(x) = 0.

Γs(x) =

∫

y

GL(x, y)K(y), (2.47)

which is the reflection of the screening effect of Gaussian curvature. GL satisfies

4GL(x, y) = δ(x, y), x ∈ M (2.48)

with the boundary condition

GL(x, y) = 0, x ∈ ∂M . (2.49)

In order to solve the Green’s function, we do coordinates transformation from {x, y ≡
(u, v)} to z = ρ(u, v)eiu, in which u, v are the parametrization of surface of revolu-

tion [31]. u = const defines the meridians of surface and v = const defines the latitude

lines. u ∈ [0, 2π), v ∈ [−vm, vm] for surface of revolution with reflection symmetry.

The mapping from {u, v} to the complex plane is conformal as the angle is preserved

in the mapping and z is an analytical function of u, v. Working in complex plane, the

Green’s function can be found as [31]

GL(~x, ~y) =
1

2π
ln | ρ−1

0 z(~x)− z(~y)

1− ρ−1
0 z(~x)z̄(~y)

|. (2.50)

where ρ0 is the radius of the outer circle of the annulus in the complex plane. For

a catenoid, the conformal mapping is given by ρ(u, v) = c exp(|v|/c) and ρ0 =

c exp(arcsech(c)) (see Appendix A).
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2.3.2 Effective disclination charge
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Figure 2.4: (a) A family of geodesics in {u, v} coordinates centered at a point on the waist of a

catenoid of c = 0.85. (b) The |K(0)|πr2 (dashed curve) and numerical result (solid curve) of the

integrated Gaussian curvature over a geodesic disk of radius r versus r. c = 1/2.

Disclinations are expected to appear in the crystalline ground state when the

Gaussian curvature is sufficient to support them. Consider therefore a putative iso-

lated disclination of strength q = −1 (coordination number 7) at the waist of a

catenoid. The curvature condition above requires that there exist a disk of geodesic

radius rc, centered on the 7-disclinaton, for which [35, 59]
∫

disk

KdA = −π

3
. (2.51)

Clearly rc must be less than the geodesic distance l from the waist to the bound-

ary [35]. For a given size catenoid c, we calculate l and the integral of the Gaussian

curvature over the geodesic disk of radius l. The value of c for which the integrated

curvature equals −π/3 is the critical value of c for the appearance of 7-disclinations.

We compute the integral of the Gaussian curvature numerically. We first construct a

family of geodesics radiating from the core 7-disclination (at u = 0, v = 0) by solving

the geodesic equation:

d2xµ

dλ2
+ Γµ

ρδ

dxρ

dλ

dxδ

dλ
= 0, (2.52)

in which x1 = u, x2 = v and Γµ
ρδ is the Christoffel symbol of the second kind. This sec-

ond order differential equation has a unique solution given an initial position and an
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initial velocity. The initial conditions are x1(0) = x2(0) = 0, (dx1/dλ)
∣∣
0 = (1/c) cos θ,

and (dx2/dλ)
∣∣
0 = sin θ, where θ is the angle of the initial velocity with respect to

~eu. Given a geodesic radius r, the coordinates of the end point of the geodesic curve

can be found. These end points form the boundary of a disk in {u, v} coordinates

(see Fig.2.4(a)). We then integrate the Gaussian curvature over the prescribed disk

numerically. The critical value of c is found to be c∗ = 0.85 and the corresponding

critical radius is rc = 0.53. Note that integrated Gaussian curvature for this crit-

ical catenoid is quite large [35]:
∫

KdA = −6.6. The critical value c∗ can also be

estimated as follows. By introducing Gaussian normal coordinates (r, θ) centered on

a 7-disclination at height z0 above or below the waist of the catenoid, the effective

(screened) disclination charge at distance r is given by [7, 28]

ρeff (r) = −π

3
−

∫ 2π

0

dθ

∫ r

0

dr′
√

gK(r′) (2.53)

= −π

3
+ π

r2

c2
sech4(

z0

c
) +O(r3).

The critical radius is reached when the effective disclination density vanishes: ρeff (rc) =

0. For a 7-disclnation on the waist (z0 = 0) this gives rc/c ≡ θc =
√

1/3 ≈
33◦. Now on the catenoid the geodesic length from the waist to the boundary is
∫ zm

0
dz

√
1 + (dρ

dz
)2 =

∫ zm

0
cosh(v/c)dv =

√
1− c2. The critical catenoid size c∗ is then

given by rc∗ =
√

1− c∗2. This yields c∗ =
√

3/2 ≈ 0.87. This estimate for c∗ is very

close to the numerical value 0.85. Why are these two values so close? In calculating

the effective disclination charge, we use K(0)πr2 to approximate the integral of the

Gaussian curvature over a geodesic disk of radius r. The Gaussian curvature is over-

estimated as its magnitude is maximum at r = 0 (on the waist). On the other hand,

since K(0) = limr→012(πr2 − A(r))/(πr4) < 0, the real area A(r) of the disk with

geodesic radius r is bigger than πr2, i.e., the disk area is underestimated in our ap-

proximation. These two approximations tend to cancel each other out. For a typical

value of c = 1/2, |K(0)|πr2 and the numerical result of the integral of the Gaussian

curvature versus r is plotted in Fig.2.4(b). As expected the flat space approximation
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K(0)πr2 is good for small r(r < 0.2).

2.3.3 Energetics of topological defects

The information of interactions among topological defects and geometric potential,

i.e., the interaction of Gaussian curvature and defects is encoded in Eq.(2.42). Unlike

a disclination, a dislocation has orientation. The Burgers vector ~bα describing a

dislocation at position xα is perpendicular to the 5-7 pair. Eq.(2.42) indicates that

the ~bα ‖ ~e1 orientation of dislocation is preferred in comparison to the orientation

~bα ‖ ~e2. Throughout this section, we focus on the dislocation with the Burgers vector

~bα ‖ ~e1.

The elastic free energy associated with the interaction of dislocations can be de-

rived from Eq.(2.42,2.46):

Fdd =
Y

2

∫

x,y,y′
ρb(y)GL(x, y)GL(x, y′)ρb(y

′). (2.54)

By inserting the expression for dislocation density

ρb = −
∑

β

γijbβ
i ∇jδ(x− xβ) (2.55)

from Eq.(2.39) and considering that all Burgers vectors are parallel to ~e1, we have

Fdd =
Y

2

∑

α,β

bβ
1b

α
1

∫

y1,y2,y′1,y′2,x

∂δ(y − yβ)

∂y2

GL(x, y)GL(x, y′)
∂δ(y′ − y′β)

∂y′2
. (2.56)

A dislocation can ”feel” a potential due to the Gaussian curvature, which is called

geometric potential. From Eq.(2.37), one may extract the interaction between a

dislocation and the Gaussian curvature:

FdG = Y
∑

β

bβ
1VdG(yβ), (2.57)

where

VdG(yβ) =

∫

x,y′

1
√

g(yβ
2 )

K(y′)GL(x, y′)
∂GL(x, y)

∂y2

|yβ
2
. (2.58)
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The geometric potential VdG only depends on the position of dislocation. The ”self-

energy” of dislocations, which is proportional to Y b2, is neglected, since it is much

smaller than FdG ∼ Y b. Note that the magnitude of Burgers vector b ∼ a, the lattice

spacing, which is dimensionless as we define the radius of the end cross section of

capillary bridge as unit length. By comparing the dislocation-dislocation interaction

and geometric potential, we have

FdG

Fdd

∼ Y bVdG

Y b2Vdd

∼ Y b2(VdG/b)

Y b2Vdd

∼ (VdG)

Vdd

1

b
À 1, (2.59)

where the last step due to the comparability of Vdd and VdG. Y b2 is of the dimen-

sion of energy. Therefore, the magnitude of geometric potential is much bigger than

the dislocation-dislocation interaction. Similarly the disclination-dislocation, and ge-

ometric potential of disclination can also be derived from Eq.(2.42). The geometric

potential of disclination at yD on capillary bridge is

FDG(yD) =
πY

3
VDG. (2.60)

VDG =
π

6

∫

x

GL(x, yD)GL(x, yD) +

∫

x,y′
GL(x, yD)GL(x, y′)K(y′). (2.61)

The disclination-dislocation interaction can be derived from Eq.(2.42,2.46):

FDd = −πY

3
b1

∫

x

1√
g(yd)

∂GL(x, yd
1 , y

′
2)

∂y′2
|y′2=yd

2
GL(x, yD) ≡ −πY

3
b1VDd. (2.62)

We study the behavior of topological defects on catenoid capillary bridge by applying

the above formalisms about energetics of topological defects Eq.(2.56,2.57,2.60,2.62).

First of all, we show that the critical waist size c∗ can also be estimated from

energetic arguments. From the free energy of Eq.(2.42) one can analyze the geometric

potential describing the interaction between disclinations and the intrinsic Gaussian

curvature of the surface. The result is shown in Fig.2.5). We see that the optimal

position of a disclination shifts from the boundary to the waist as c decreases. The

transition point for the emergence of a disclination in the interior of a catenoidal
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Figure 2.5: (a) The geometric potential of an isolated disclination for three different values of c:

c = 0.8 (red), c = 0.75 (green) and c = 0.7 (blue). The optimal position of an isolated disclination

moves from the boundary to the waist of the catenoid in the rather narrow window c between 0.8

and 0.75. (b) The geometric potential of an isolated disclination for catenoids with c = 0.5 (red)

and c = 0.6 (green).

capillary bridge is c∗ ≈ 0.8, again consistent with the value obtained above based on

geometrical arguments.

Net disclination charges may appear either in the form of point-like isolated discli-

nations or extended linear grain boundary scars. Scars result from the screening of

an isolated disclination by chains of dislocations and typically arise when the num-

ber of particles exceeds a threshold value beyond which the energy gained exceeds

the cost of creating excess defects [59]. Here we semi-quantitatively construct the

phase diagram for isolated disclinations versus scars on a catenoidal capillary bridge

characterized by the number of particles and the aspect ratio of the catenoid c.
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c

200

400

600

800

1000

1200

1400
V

Scars

Isolated
Disclinations

Figure 2.6: The phase diagram in the particle number-aspect ratio plane for isolated disclinations

versus scars for c < c∗.
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Consider a disclination on a capillary bridge (for c < 0.85) radiating m grain

boundaries (scars). The spacing of neighboring dislocations is l = a m/seff [28],

where a is the lattice spacing. As seff → 0, the dislocation spacing within a scar

diverges and the grain boundary terminates. If the disclination can be completely

screened by Gaussian curvature within a circle of radius r ≈ 3a, then grain boundaries

will not form around the core disclination. The condition for isolated disclinations

is therefore |Kmaxπ(3a)2| ∼ π/3, where |Kmax| = 1/c2 is the Gaussian curvature at

the waist of the bridge. On the other hand, the number of particles N is related

to the surface area A between z ∈ [−zm, zm] via A(c) = (
√

3/2)a2N . The curve

separating isolated disclinations from scars is thus given by N = 18
√

3 A(c)/c2, as

plotted in Fig.2.6(a). The phase boundary reveals two basic types of transition in the

topological structure of the ground state as the particle number and the geometry

(aspect ratio) of the capillary bridge are varies. For a fixed catenoid aspect ratio

below the critical value for the appearance of excess 7s in the interior there is a

transition from isolated 7s to linear grain boundary scars with one excess 7 as the

number of particles increases. For a fixed number of particles above a threshold value

(Nc ≈ 300) there is a transition from isolated disclinations to scars as the capillary

bridge gets fatter and the decreasing Gaussian curvature is insufficient to support

isolated 7-disclinations.

Disclinations and anti-disclinations attract and may form dipole bound states (7-5

pairs). Such dipole configurations are themselves another type of point-like topolog-

ical defect in two-dimensional crystals - dislocations. Dislocations on a triangular

lattice correspond to two semi-infinite Bragg rows 60◦ apart both terminating at a

common point - the location of the dislocation. Since they are tightly bound states of

disclinations the energetics of dislocations may be derived from the governing ener-

getics of disclinations on a curved geometry - Eq.(2.42). Dislocations, unlike disclina-

tions, are oriented. The Burgers vector ~bα characterizing a dislocation at position xα

is perpendicular to the 5-7 bond. An analysis of Eq.(2.42) shows that the preferred
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Figure 2.7: (a) The geometric potential of isolated dislocations as a function of height for four

different values of c: c = 0.7 (black), c = 0.68 (red), c = 0.66 (blue) and c = 0.65 (green). The

optimal position moves from near the boundary towards the waist as c decreases. (b) is an enlarged

view of the blue curve to show the transition from the red to the green curve.
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Figure 2.8: The interactions of defects. (a) The dislocation-dislocation interaction Vdd of two

dislocations along ~eu at the same height. z = 0.5 zm (black), z = 0.3 zm (red) and z = 0.1 zm (green).

(b) The disclination-dislocation interaction VDd as a function of their longitudinal separation. The

disclination is fixed on the waist (c = 1/2).
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orientation of the Burgers vector is along ~eu. This is clear from the fact that the

7-disclination has minimum energy when located at the waist with the accompanying

5-disclination in the direction of the boundary where the negative Gaussian curva-

ture drops most rapidly. Thus the 7-5 bond should along a meridian and the Burgers

vector along a line of latitude. From here on we restrict ourselves to this case.

The variable Gaussian curvature of a catenoidal capillary bridge also leads to op-

timal positions for isolated dislocations. Fig.2.7 shows the geometric potential for

isolated dislocations as a function of height above the waist. As the waist radius c de-

creases the optimal position of an isolated dislocation moves from the boundary to the

interior of the capillary bridge since the increasing maximal negative Gaussian cur-

vature increasingly attracts 7-disclinations with their tightly bound 5-disclinations.

The boundary-to-interior transition occurs for c∗∗ ≈ 0.68. The corresponding inte-

grated Gaussian curvature
∫

KdA ≈ −9.0 [35]. This detachment transition is also

observed in experiments with capillary bridges [35] - in the experimental case the

capillary bridges are generally nodoids with non-vanishing mean curvature and the

analysis is corresponding more elaborate. The optimal position of a single dislocation

for small c, say c = 0.3, is z(c = 0.3) = 0.25zm. Thus the optimal position of a

single dislocation is far from the waist, even for a strongly curved catenoidal capil-

lary bridge, in contrast to the case of disclinations. This result can be understood

in terms of the Peach-Koehler forces acting on the individual positive and negative

disclinations that make up a dislocation [35, 149]. While the 7-disclination prefers to

be at the waist the 5 prefers to be at the boundary - the competition results in an

optimal dislocation position somewhere in between the two extremes. Here we treat

only single dislocations but it is possible for chains of dislocations to appear in the

form of pleats, as elegantly discussed in Ref.[35].

Finally we turn to the interaction between defects themselves. Fig.2.8 (a) shows

the dislocation-dislocation interaction along ~eu. Two dislocations at the same height

feel a short-range repulsion. Note that near the waist shallow local minima appear.



2.A Conformal mapping of catenoid onto complex plane 35

This differs from the interaction in flat space where parallel dislocations always repel

to each other with a logarithmic potential [150]. The attractive interaction between

a disclination and a nearby dislocation is shown in Fig.2.8(b) with the disclination

fixed on the waist.

The influence of spatial curvature and topology on two-dimensional phases of mat-

ter continues to yield surprises. The presence of 7-disclinations in negative curvature

crystals may offer unique opportunities for functionalization of micron-scale crystal-

lized ”superatoms” via chemistry that recognizes the unique crowded environment of

a 7-disclination [59, 151].

Appendix 2.A Conformal mapping of catenoid onto

complex plane

Any 2-dimensional smooth Riemannian manifold can be equipped with a set of local

isothermal (or conformal) coordinates (x, y) s.t., the metric is expressed as

ds2 = w(x, y)(dx2 + dy2). (2.63)

One the complex plane with z = ρeiφ, the new metric will be

ds2 = w(z)(dρ2 + ρ2dφ2). (2.64)

The conformal factor w(z) can be found by equating the above metric to the original

one. For catenoid,

ds2 = cosh2(
v

c
)(dv2 + c2du2). (2.65)

By equating Eq.(2.64) and (2.65), we have

w(z) = (
c cosh(v/c)

ρ
)2, (2.66)

φ = u (2.67)
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and

dρ

dv
= ±ρ

c
. (2.68)

The solution to the last equation is

ρ = e±v/c. (2.69)

By mapping the surface of catenoid onto a 2-dim torus with inner radius c (equal

to the radius of waist of catenoid) and imposing the reflection symmetry of catenoid

about its waist, we have

ρ = c e|v|/c. (2.70)



Chapter 3

Morphology of nematic and

smectic vesicles

3.1 Introduction

Recent experiments on vesicles formed from block copolymers with liquid-crystalline

side-chains reveal a rich variety of vesicle morphologies. The additional internal or-

der (“structure”) developed by these self-assembled block copolymer vesicles can lead

to significantly deformed vesicles as a result of the delicate interplay between two-

dimensional ordering and vesicle shape. The inevitable topological defects in struc-

tured vesicles of spherical topology also play an essential role in controlling the final

vesicle morphology. Here we develop a minimal theoretical model for the morphology

of the membrane structure with internal nematic/smectic order [54]. Using both ana-

lytic and numerical approaches, we show that the possible low free energy morpholo-

gies include nano-size cylindrical micelles (nano-fibers), faceted tetrahedral vesicles,

and ellipsoidal vesicles, as well as cylindrical vesicles. The tetrahedral vesicle is a

particularly fascinating example of a faceted liquid-crystalline membrane. Faceted

liquid vesicles may lead to the design of supra-molecular structures with tetrahedral

symmetry and new classes of nano-carriers.
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Amphiphilic block copolymers in water, like natural phospholipids, can self-assemble

into various monolayer or bilayer structures, such as micelles and vesicles [152, 153].

In particular, rod-coil block copolymers, with a flexible hydrophilic chain and one

or more rod-like hydrophobic blocks, exhibit a rich morphology of structures, and

therefore have significant potential to advance fundamental science and drive tech-

nological innovations [154, 155, 156, 157, 158, 159, 160, 161, 162, 163]. Among these

rod-coil block copolymers, we are especially interested in liquid crystalline (LC) block

copolymers in which the hydrophobic block is a nematic or smectic liquid crystal poly-

mer [49, 50, 51, 164, 165, 166, 167, 168]. The in-plane LC order that results from

molecular pair interactions in these systems, and the associated defect structure, play

very important roles in determining the preferred intermediate and final shapes of

vesicles. The tailor-design of both material properties and vesicle morphology by

controlling the molecular structures of the block polymers is state-of-the-art research

in the fields of polymer science, materials science and chemical engineering.

Some of the structures formed by these LC side-chain block copolymers in aqueous

solution are rather counterintuitive, such as faceted vesicles, nanotubes and compact

vesicles with tiny inner space [51, 165]. In all these structures, the in-plane smectic

order is clearly visible under Cryo-TEM. In this article we develop a theoretical expla-

nation of the geometric structures of vesicles with in-plane nematic or smectic order.

We present a simple model free energy as a functional of both the membrane geome-

try and the in-plane nematic order. Using both analytic and numerical methods, we

then analyze the low free energy morphologies in various parameter regimes.

3.2 Model

3.2.1 Free energy

Focusing on their overall shape we first perform a mean-field analysis of the model

free energy of a self-assembled monolayer as a functional of their shape and nematic
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order parameters [39, 52]:

Hm =
1

2

∫ √
g d2x

[
K ( ~Dn̂)2 + κ (H −H0)

2
]

(3.1)

Here K is the Frank constant in the one-constant approximation, while ~D denotes

the covariant derivative. H is the mean curvature and H0 is the spontaneous curva-

ture, which is determined by the asymmetry in the sizes of the hydrophobic and the

hydrophilic parts of the LC block copolymers. We shall choose the normal vector of

the monolayer to point from the hydrophobic side to the hydrophilic side. Therefore

H > 0 means that the hydrophilic side is bending outwards.

All three parameters K, κ,H0 depend on the chemical structures of the block

copolymers as well as their interaction with the solvent in a complicated way. Fur-

thermore, strictly speaking, a nematic membrane is locally anisotropic. Therefore its

Frank free energy is characterized by two constants: one for splay (K1) and one for

bend (K3). Likewise, the bending energy as well as the spontaneous curvature should

also be generically anisotropic, characterized by three bending constants and three

spontaneous curvature components. Such a model is characterized by 8 independent

parameters and is extremely complicated to analyze. For the sake of simplicity, we

shall focus on the greatly simplified toy model Eq. (3.1), which captures the essential

physics of nematic vesicles which is the competition between the extrinsic bending

energy and the two-dimensional Frank free energy.

A more important, conceptual issue is the following: In what sense can the vesicle

morphology be understood in terms of minimization of elastic free energy Eq. (3.1)?

As is well known, the formation of vesicles is a complicated nonequilibrium process.

Whether a certain property of a vesicle is distributed according to Gibbs-Boltzmann

depends on the relevant experimental time scale, and on the time scale at which the

given property equilibrates. At the stage of vesicle formation, individual molecules

on the membrane can diffuse quite efficiently. Motion of liquid crystalline defects,

however, requires coherent movement of all polymers on the vesicle, and is usually

very slow. Hence we expect that the vesicle morphology achieves a local thermal equi-
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librium, where the shape and LC order minimizes the elastic free energy Eq. (3.1)

(with appropriate parameters corresponding to the physical conditions under which

the self-assembly takes place), subject to global constraints of given vesicle topology

and LC defects distribution. We shall then enumerate all possible vesicle topologies

and compare these free energy minima. It is interesting to note that in recent ex-

periments by Jia et. al. [164], multiple vesicle topologies were often observed using

a given preparation method, suggesting that kinetics of self-assembly also played an

important role in the selection of vesicle morphology.

Smectic vesicles can also be viewed as nematic vesicles with bending constant

much larger than splay constant. On a membrane with in-plane smectic order, there-

fore, the bending deformation of the nematic director field should vanish everywhere.

Mathematically this is equivalent to n̂ ·Dn̂ = 0, that is, the nematic director locally

follows the geodesics. This is always possible, for an arbitrary but prescribed mem-

brane shape, except at the core of nematic disclinations. For these configurations,

the Frank free energy becomes independent of the bending constant. Hence Eq. (3.1)

is also a toy model for membranes with in-plane smectic order, with the understand-

ing that K is the splay constant and the nematic director strictly follows the local

geodesics.

Minimization of the Frank free energy in Eq. (3.1) requires that the covariant

derivatives of the nematic director field vanish everywhere on the surface. As is well

known in differential geometry, this is possible only if the Gaussian curvature van-

ishes everywhere, i.e. the surface is a developable surface. The family of developable

surfaces includes planes, cylinders, cones, and tangent developable surfaces∗. On the

other hand, minimization of the bending energy in Eq. (3.1) leads to a constant mean

curvature H0. It is clear that the only geometry minimizing both terms in the free

∗ Surfaces spanned by tangent lines of a spatial curve: a generic tangent developable surface

that is topologically identical to plane is however not expect to be observed in experiments, because

it can easily relax to a plane which has bending energy. It is not clear to us whether there exists a

tangent developable surface that is topologically different from all the aforementioned structures.
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energy in Eq. (3.1) is a cylindrical monolayer with a given radius 1/H0. In the recent

example of Jia et. al. [164], for example, where only aqueous solvent is present at the

final stage of assembly, monolayer cylinders with very small radius (nanofibers) are

observed. The inner space of the cylinders is completely filled by the hydrophobic

parts of the polymers. In order to form monolayer cylinders with larger radius, the

inner space has to be filled by solvent (or other polymers) that are friendly to LC

blocks. If there is only aqueous solvent, and if 1/H0 is not small, monolayer cylindri-

cal structures with favorable spontaneous curvatures cannot pack space and therefore

the system should form certain kinds of bilayer structures, where two monolayers with

opposite orientation stack together.

The free energy of a symmetric bilayer membrane can be obtained by adding up

the free energies for two monolayers on both sides of the bilayer:

Hm =

∫ √
g d2x

[
K ( ~Dn̂)2 + κH2

]
(3.2)

We shall focus on the morphology of symmetric bilayers in the remainder of this

article. Note that area differences between the inner and outer layer can lead to

non- vanishing spontaneous curvature [169, 170]. These effects will not qualitatively

change our conclusions.

3.2.2 Lattice model

To implement a deformable lattice model with spherical topology, we first introduce

a reference sphere and tessellate it with a triangular mesh along with 12 requisite 5-

disclinations. Afterward a dual lattice of the triangular mesh is constructed, each dual

site being the center of mass of each plaquette formed by the original triangular lattice.

The details of the lattice geometry are illustrated in the supplementary information.

Let m̂α to be the unit vector normal to the plaquette α. A director n̂α and a projection

operator N̂α = n̂αn̂α are defined on each dual site with a constraint that it must be

perpendicular to the plaquette normal: N̂α · m̂α = 0.
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Let dαβ be the bond length connecting two neighboring dual sites α and β, and

Sαβ be the area spanned by the bond αβ. The discretized Frank free energy is then

given by

FFrank = K
∑

<αβ>

Sαβd−2
αβTr [(N̂β − N̂α)2] (3.3)

The bond lengths dαβ and the areas Sαβ are introduced to ensure that the lattice

model is a proper discretization of the continuum model Eq.(3.2). They insure that,

up to errors which scale with the plaquette area Sαβ, the lattice free energy is invariant

under change of triangulation. The discrete reparametrization invariance is necessary

so that the free energy depends only on vesicle shape and not on the specific structure

of the mesh. This is implemented for each shape as the vertices are deformed.

The discretized bending energy is given by

Fbending = κ
∑

α

SαTrK2
α, (3.4)

where Kα is the extrinsic curvature tensor at site α, whilst Sα is the area of the

plaquette α. The curvature tensor Kα of each plaquette α can be calculated from the

following three equations:

e
||
αβ =

1

2
~e⊥αβ ·Kα · ~e⊥αβ (3.5)

e||αγ =
1

2
~e⊥αγ ·Kα · ~e⊥αγ

e
||
αδ =

1

2
~e⊥αδ ·Kα · ~e⊥αδ,

where ~eαβ is the vector pointing from vertex α to vertex β, and e
||
αβ and e⊥αβ are its

components parallel and perpendicular to the plaquette normal m̂α.

In the MC simulations, the deformable surface consists of 300 vertices, correspond-

ing to 596 directors in all. The initial shape of the surface is a unit sphere and the

initial director orientations are random. Each MC sweep consists of trial attempts to

rotate each director and to move each vertex. The acceptance or rejection of a MC

trial is determined by the standard Metropolis algorithm. All vertices are allowed to
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move along the radial direction with the angular positions of the vertices fixed. In

order to preserve the total area upon surface deformation, any vertex moves making

a total area change larger than 1% are rejected. Finally, once the surface is deformed

by vertex moves, the orientations of directors are corrected by projecting them onto

the newly deformed plaquette before the new free energy is calculated.

Finally we remark that we have checked carefully that the location of nematic de-

fects is not influenced by the inevitable lattice disclinations associated with spherical

topology and present in our meshes as described above.

3.3 Ground state morphologies

3.3.1 Analytical analysis

Without considering the boundary effects, a flat bilayer with uniform nematic or-

der clearly minimizes both terms in Eq. (3.2). The energy cost associated with the

boundary, however, increases with the system size, and exceeds that associated with

a closed vesicle with nonzero curvature, for sufficiently large systems [171]. Close

vesicles therefore must form for sufficiently large bilayer membranes.

The morphology of a bilayer is controlled by the competition between the extrinsic

bending energy and the Frank free energy. We shall first limit the discussion to closed

vesicles of spherical topology. Since the total Gaussian curvature is nonvanishing, the

system is frustrated and the Frank free energy competes with the bending energy.

First consider the limiting case K ¿ κ. The dominant contribution to the total

energy is then the bending energy: minimizing this leads to a round spherical shape.

For a more realistic model where the bending energy is not isotropic, however, the

shape will reflect the anisotropy of the bending moduli, leading to ellipsoidal shapes.

The exact form of the shape as a function of the bending moduli is rather difficult

to calculate, however, and will not be treated in this article. Ellipsoidal vesicles are

frequently observed in the experiments of Jia et. al. [49], with the smectic layers all
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perpendicular to the long axis of the ellipsoid. It can be inferred from this observation

that the bending rigidity is higher along the nematic director than perpendicular to

the director.

Let us now consider the opposite regime where K À κ. In this case, the system

should first minimize the Frank free energy, which leads to developable surfaces with

vanishing Gaussian curvature everywhere. This is clearly not possible due to Gauss’

Theorem Egregium, which states that the total integrated Gaussian curvature of a

surface with spherical topology is a topological invariant and equal to 4π. There

are faceted polyhedral surfaces, however, for which the Gaussian curvature vanishes

everywhere but at a discrete number of (singular) vertices. These vertices are the ideal

locations for orientational defects of the LC order (misery loves company) [40]. The

total defect strength on a closed surface is also a topological invariant, according to the

Gauss-Bonnet theorem. For nematic and smectic orders, this theorem dictates that on

a sphere (or any other surface with the same topology), there are three possibilities for

the structure of defects: 1) four disclinations each with strength +1/2; 2) two defects

each with strength +1; 3) one strength +1 defect and two strength +1/2 defects. Now

one needs at least four points to span a non-degenerate polyhedron; a tetrahedron

in the minimal case. We conclude that in the limiting case K À κ, the ground

state morphology of a vesicle with spherical topology is a faceted tetrahedron, with a

strength 1/2 disclination located at each of the four corners. This structure is indeed

observed in recent experiments [51, 165], as well as in our simulation, to be discussed

in detail below. Note that the faceting observed here has a completely different origin

to the well-known buckling of elastic shells where buckling occurs above a critical size

R ∼
√

κ/Y , with Y the Young’s modulus. The free energy Eq.(3.2), on the other

hand, is scale free - the ground states are determined solely by the dimensionless ratio

K/κ.

It is important to note that not all tetrahedra support a suitable nematic defect

configuration. To ensure that the director field has vanishing covariant derivative
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Figure 3.1: Top: A tetrahedron compatible with +1/2 disclination on each vertex can be con-

structed using a parallelogram, by folding along the dashed lines. A constant nematic director field

in the unfold parallelogram is shown by the array of parallel straight lines. After folding up, the an-

gles with same color circle around the same vertex. Bottom: The tetrahedron obtained via folding.

There is exactly one +1/2 disclination on each vertex of the tetrahedron.

everywhere except at the four vertices, but including the six edges, the sum of the

three angles surrounding every vertex of the tetrahedron must be 180◦. This imposes

three constraints on the geometry of the tetrahedron†. Since the set of all tetrahedral

shapes (up to scaling the overall size) forms a five dimensional space, we see that

the set of all fixed-size tetrahedra with vanishing covariant derivative everywhere

except the vertices forms a two dimensional manifold. Fig.3.1 illustrates how these

tetrahedra, together with a nematic director field with vanishing covariant derivative,

† Naively we see there are four constraints but the condition for one vertex follows automatically

from the constraints for the other three.
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can be constructed by folding a parallelogram. These tetrahedra have the special

property that all four triangular facets are identical. All these structured smectic

vesicles have vanishing Frank free energy. The degeneracy is lifted by different bending

energies. The total free energy of the system is given by the sum of the bending

energies localized on the six edges and the defect core energies localized at the four

vertices. It is rather easy to see that for a given total surface area, the regular

tetrahedron has a minimal value for the sum of all edge lengths. Thus the ground

state morphology of a smectic vesicle with spherical topology is a regular tetrahedron

when the bending rigidity is vanishingly small. The transition between different shapes

is probably extremely slow, however, as it requires coherent motion of all four nematic

disclinations together with the overall smectic layer texture.

The edges and corners cannot be infinitely sharp in a realistic system. They are

rounded by either the membrane thickness, the core size of a nematic defect or the

small bending rigidity κ. Likewise, the bending energy on the edges must be finite. In

a realistic self-assembly process, the bending energy may also be partially relieved by

preferential aggregation of large polymers on the outside and smaller polymers on the

inside of the membrane near the ridges and corners. Faceted surface structures were

studied previously in large viral capsids [172, 173], which are formed by crystalline

packing of proteins. There the faceting is energetically favorable because it reduces

the in-plane strain energy of the crystalline order formed by the constituent proteins.

What we have shown here is that a similar faceting can also be driven by the Frank

free energy of LC order, despite their liquid nature.

Another candidate for a low free energy morphology is a long cylinder of double

layers (nanotube), for which the Frank free energy also vanishes. The bending energy

is approximately given by

Hnanotube = κA/a2, (3.6)

where a is the radius of the cylinder. The total bending free energy is therefore linear

in the membrane area. The faceted tetrahedron, on the other hand, has the total free
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energy

Htetrahedron = 4κL/b, (3.7)

where L is the length of ridges and b is the radius of curvature of rounded out ridges.

Since the area of a tetrahedron grows quadratically in L, it follows that the total

bending energy for a tetrahedron scales as the square root of the membrane area.

Large faceted tetrahedral vesicles thus have lower free energy than nanotubes. Both

morphologies, however, have been observed experimentally [49, 51, 165]. Selection of

vesicle morphology is also affected by kinetics of self-assembly, as we discussed above.

3.3.2 Monte Carlo simulation

In order to quantitatively investigate the ground state morphology of nematic vesicles,

we develop a lattice nematic model on a deformable surface with spherical topology

and perform energy minimization by the method of simulated annealing Monte Carlo

(MC). Details of the discretized form of the free energy, whose continuum limit is

given by eq. (3.2), can be found in ref. [174] and the Methods section.

The simulation results for nematic vesicles at various bending rigidities show re-

markable morphological transitions, as displayed in Fig.3.2. For convenience we set

K = 1. This does not change any essential physics since the vesicle morphology de-

pends only on the dimensionless ratio κ/K. As the bending rigidity κ decreases, the

vesicles with an isotropic Frank elastic constant undergo substantial shape deforma-

tion: 1) the almost spherical morphology is found to be stable at large κ (Fig.3.2a,

d); 2) ridges connecting four defects develop as κ becomes smaller than 1 (Fig.3.2b,

e); 3) a tetrahedral vesicle forms at a vanishingly small κ = 0.05 (Fig.3.2c, f). The

faceting transition occurs near κ ' 1 ‡. The stable morphologies are determined

by a delicate balance between the in-plane Frank energy and the bending energy as

‡ We emphasize, however, that these morphological changes are smooth crossovers. There is no

real phase transition in the thermodynamic sense.
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Figure 3.2: Morphology of nematic vesicles at different bending rigidities. Left: The local Frank

(a)–(c), (g) and bending (d)–(f), (h) energy contour plots; for a case of K1 = K3 = 1, (a) and

(d), κ = 100.0; (b) and (e), κ = 0.3; (c) and (f), κ = 0.05; for a case of K1 6= K3, (g) and

(h), κ = 0.04. The total Frank free energies (in units of kBT ) are 62.83, 59.06, 57.1, and 65.27,

respectively. The normalized total bending energies (in units of kBT ) are 12.55, 16.0, 18.58, and

50.34, respectively. Right: Calculated asphericities of nematic vesicles as a function of the inverse

bending rigidity of 1/κ. The inverse triangles are for a case of K1 = K3 and the triangles are

for a case of K1 6= K3(K3/K1 ≈ 2.0). The empty circles represent locations corresponding to the

morphologies of (a)(d), (b)(e), (c)(f), and (g)(h).

the surface deforms away from round. Indeed, as κ decreases from 100.0 to 0.05, the

Frank free energy falls from 62.83 to 57.1 at the expense of bending energy which

increases from 12.55 to 18.58. The Frank energy is localized near the four defects,

which consequently induce deformation around the vertices. Our simulations are

therefore entirely consistent with our prediction that spherical vesicles are stable in

the regime of K ¿ κ, whereas the faceted tetrahedral vesicles become stable in the

other extreme K À κ.

We also explore the effect of anisotropy in the Frank elastic constants by study-

ing the regime in which splay dominates over bend. The smectic regime, as noted
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earlier, corresponds to the limit K3 À K1. In the current simulation, the anisotropy

is estimated to be K3/K1 ' 2.0 (see supplementary information). Although the

shape transition trends are qualitatively similar for both the one-Frank constant and

anisotropic cases, the anisotropy leads to a more dramatic shape transition, result-

ing in a considerably more faceted tetrahedral vesicle at a very small κ = 0.04, as

displayed in Figs.3.2g and h. In fact, the splay dominant nematic texture enhances

the faceting more than the isotropic case does. This is clearly understood by con-

sidering two membranes which possess a +1 disclination defect with pure splay and

pure bending nematic textures, respectively. The pure splay always decreases the

Frank energy by buckling out-of plane, because it allows the defect to escape into

the third dimension and thus better align the nematic directors. On the other hand,

such out-of-plane deformation of the pure bending does not alter the Frank energy

and therefore, the faceting of pure bending membranes is not favorable upon defor-

mation. Note that we are restricting ourselves here to the case of isotropic bending

rigidity.

More prominent shape changes for vesicles with the anisotropic Frank elastic con-

stants are clearly confirmed from a quantitative measurement of the asphericity (i.e.,

degree of deviation from the reference unit sphere geometry), which is defined as

follows:

〈∆R2〉
R2

ref

=
1

N

N∑
α

(Rα −Rref)
2

R2
ref

, (3.8)

where Rα is the radial distance of vertex α, Rref is the radius of the reference unit

sphere, and N is the total number of vertices. The asphericities are averaged over

10 simulation runs for each κ and plotted in Fig.3.2 as a function of 1/κ. The plot

exhibits relatively large deviations from its average values, especially at low bending

rigidity. This is mainly attributable to the differences in the asphericity between the

three possible ground state morphologies. Although faceted tetrahedral vesicles are

expected to be the ground state for large system sizes, we have observed in our simu-

lation three different ground state morphologies, presumably due to its finite system
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Figure 3.3: Comparison between experimental observations (a)–(c) and computer simulations (d)–

(f). Left: Experimental results, (a) a tetrahedron-shape smectic vesicle [51]; (b) a fat tetrahedron-

shape smectic vesicle [165]; (c) an ellipsoidal smectic vesicle [49]. Right: Simulation results for a

case of K3/K1 ≈ 2.0, (d) κ = 0.04; (e) κ = 0.1; (f) κ = 0.5. The contour plots show the distribution

of the local Frank free energy.

size: i) an ellipsoidal vesicle with two closely bounded disclination pairs; ii) a flattened

(square cushion-shape) vesicle with four +1/2 disclinations located approximately in

one plane; and iii) a tetrahedral vesicle with four well separated +1/2 defects (see

supplementary information). These three morphologies seem degenerate as the dif-

ferences in their total free energies are within 0.5%. These vesicle shapes can be

viewed as the precursors of the extreme morphologies at κ → 0, such as long fibrous

cylinders, double layer sheets, and sharply faceted tetrahedrons, respectively. Finally,

we briefly compare our simulation results with our recent experimental observations

in Fig.3.3.

Complex shape phase diagrams are also possible for fluid vesicles with fixed in-

ternal volume [175]. A feature of these morphologies is their non-convex shape. Such

non-convexity has not been seen experimentally in the block copolymer systems stud-

ied here, leading us to believe that during the formation process solvent can freely

enter and leave the system so that the internal volume is not conserved.
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In conclusion, we have studied the fascinating morphology of nematic/smectic

vesicles, such as the faceted tetrahedron, nanofibers, and ellipsoids using a simple toy

model free energy§. Our theoretical and numerical studies provide the fundamental

understanding of formation of these novel structured vesicles and elucidate the shape-

selective mechanisms. It could also pave the way for formulating guiding principles in

designing nanocarriers with specific shapes, particularly utilizing the two-dimensional

nematic order and the topological defects, which are ubiquitous in closed vesicles.

Appendix 3.A Buckling of a LC membrane

We calculate the energy of a flat LC membrane with radial nematic configuration and

a buckled one (a cone with cone angle π − 2θ).

The Frank free energy is FFrank = 1
2
K

∫
(∇ · ~n)2d2~x. The bending energy is

Fbending = 1
2
κ

∫
H2d2~x.

The energy of a flat nematic disk with radius R is:

Fflat = FFrank = πK ln(R/a). (3.9)

The energy of a buckled nematic disk is

Fbuckled = FFrank + Fbending = πK ln(R/a) cos θ +
π

4
κ

sin2 θ

cos θ
ln(R/a). (3.10)

By buckling, the Frank free energy decreases by cos θ at the price of the bending

energy.

From d(δF )
dθ

= 0 with δF ≡ Fbuckled − Fflat, we get the optimal value for θ as

cos2 θopt =
κ

4K − 2κ
. (3.11)

Some calculation shows that only K > 3κ/4 (or, the bending rigidity is small enough

in comparison with K) s.t., buckling is possible. Note: cos2 θopt < 0 for K < κ/2

§ We note that other more complicated shapes may arise if we consider a more general model

free energy where both bending rigidities and Frank constants are anisotropic.
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and cos2 θopt > 1 for K ∈ (κ/2, 3κ/4). These are unphysical solutions, indicating that

weak K is insufficient to buckle a nematic disk?

One difference between a crystalline membrane and a nematic membrane is that

the functional forms of the energy for flat case are different. The former one is

proportional to R2, while the latter case is proportional to ln(R/a). In the forme

case, there exists a critical R, while there is no in the latter case. The ratio of K/κ

controls the buckling in a nematic disk.

Appendix 3.B Discrete Frank free energy

of 2-dimensional nematic

The free energy density associated with the nematic order in 2-dimensional texture

can be written as [11]

f =
K

4s2
[∂kQij∂kQij +

2ε

s
Qij∂iQkl∂jQkl], (3.12)

where the order parameter tensor for 2-dim nematics is Qij = s(ninj − 1/2δij) and

ε = (K3 − K1)/(K3 + K1). K1 and K3 are the in-plane splay (∇ · ~n) and bend

(~n× (∇× ~n)) rigidities. i, j = 1, 2. ~n2 = 1.

Eq.(3.12) can be written in terms of the director ~n. By making use of ni∂kni = 0,

nini = 1 and the expression for Qij, we have

1

s2
∂kQij∂kQij = 2(∂knj∂knj) = 2(∇~n)2 = 2[(∇× ~n)2 + (∇ · ~n)2]. (3.13)

The last step can be proved by expanding ∂knj∂knj and using the expression ∂in2 =

−n1

n2
∂in1 due to ~n2 = 1. The first term is the bend deformation (as twist vanishes in

2-dim case) and the second one is the splay. This is the one-parameter Frank free

energy.

Similarly, we have

1

s3
[Qij∂iQkl∂jQkl] = 2ninj∂inl∂jnl − ∂inl∂inl (3.14)

= 2(~n · ∇~n)2 − [(∇× ~n)2 + (∇ · ~n)2].
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For 3-dim nematics, we have

~n× (∇× ~n) = εijkni(εjlm∂lnm) = −~n · ∇~n. (3.15)

The 2-dim nematics may be regarded as a special 3-dim nematics with n3 = 0. So

Eq.(3.15) holds for 2-dim nematics. Note that the LHS of Eq.(3.15) is the bending of

directors, and the RHS is the parallel transport of the director along the curve whose

tangent is the director. A nicer derivation for Eq.(3.15): on 2-dim geometry, there is

no twisting (~n ·(∇×~n) = 0). If there is no bending (~n×(∇×~n) = 0), then ∇×~n = 0,

i.e., Danb = Dbna. By using this property, we have ~n · ∇~n = naDanb = naDbna = 0

since D(n2) = 0. The independent number of components of the director ~n reduces

to zero by the constraints of n2 = 1, ~n · (∇ × ~n) = 0, ~n × (∇ × ~n) = 0. The final

configuration of directors free of bending on 2-dim geometry is always along the

geodesics.

Eq.(3.15) becomes

1

s3
[Qij∂iQkl∂jQkl] = (∇× ~n)2 − (∇ · ~n)2. (3.16)

By inserting Eq.(3.13,3.16) int Eq.(3.12), we have

f =
K

4
[(2− 2ε)(∇ · ~n)2 + (2 + 2ε)(∇× ~n)2]. (3.17)

It can be checked that ε = (K3 − K1)/(K3 + K1). For K1 = K3 (one parameter

Frank free energy), the ground state of nematics on sphere is that the four +1/2

defects are equally spaced on the sphere, at the vertices of tetrahedron [40]. For

K3 À K1 (smectic regime), the splay deformation will dominate over bending, s.t.,

the four +1/2 defects will be on the equator of sphere [176]. For K3 < 0, the bending

deformation will lower the energy, and the ground state would be expected as that

the directors compose a hexatic structure.

We will derive the discrete version of the Frank free energy Eq.(3.12). The surface

can be represented by N random points Mi(i = 1, 2...N) composing the simplical

lattice. To each point Mi, we can associate the closed cell Ci of those points which
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are nearer to Mi than to any Mj(i 6= j) [177]. The vertices of cells are denoted

as a, b, c... composing the dual lattice. Point a lives on the plaquette Mi,Mj,Mk

(2-simplex) composing a triangle 4ijk. Triangle 4ijk is the approximation of the

tangent plane at site a where the directors live.

The local coordinates at site a is defined as {~e1 = êab, ~e2 = êac}. êab is along

~X(b)− ~X(a), in which ~X(a) is the position vector of site a.

1

s
∂1Qij =

Qb
ij −Qa

ij

dab

. (3.18)

1

s
∂2Qij =

Qc
ij −Qa

ij

dac

. (3.19)

1

s2
(∂kQij)

2 =
1

d2
ab

(nb
in

b
j − na

i n
a
j )

2 +
1

d2
ac

(nc
in

c
j − na

i n
a
j )

2 (3.20)

=
1

a2
[(N b

ij −Na
ij)

2 + (N c
ij −Na

ij)
2]

=
1

a2
[(N b

ij −Na
ij)(N

b
ji −Na

ji) + (b → c)]

=
1

a2
(Tr[(N b −Na)(N b −Na)] + (b → c))

⇒ 2

a2

∑

<a,b>

Tr[(N b −Na)(N b −Na)].

The sum is over neighboring sites a, b. Tr is over i, j. In the derivation, dab and dac

are replaced by the average distance a between neighboring sites. It will be recovered

later. Nij = ninj(i, j = 1, 2) is a tensor of second order defined on surface.

For i = 1, j = 2,

1

s3
Qij∂iQkl∂jQkl =

1

s3
Q12∂1Qkl∂1Qkl = Na

12a
−1(N b

kl −Na
kl)a

−1(N c
kl −Na

kl) (3.21)

= a−2Tr[(N b −Na)(N c −Na)].

So the sum over i, j gives rise to:

1

s3
Qij∂iQkl∂jQkl = a−2{(Na

11 −
1

2
+ Na

22 −
1

2
)]Tr[(N b −Na)2] + (b → c) (3.22)

+2Na
12Tr[(N b −Na)(N c −Na)]}

⇒ 1

2
× 2

a2

∑

<a,b,c>

Na
12Tr[(N b −Na)(N c −Na)].
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In the last step, we use 1
s
Tr[Q] = N11 + N22 − 1 = 0, so the first two terms vanish.

Na
12 = êab ·Na · êac. The prefactor 1/2 in the last expression is due to the double sum

of < a, b, c > and < a, c, b >.

Eq.(3.12) can finally be written as a discrete form

∫
dAf =

K

4
Sa{d−2

ab

∑

<a,b>

Tr[(N b −Na)(N b −Na)] + (3.23)

ε
∑

<a,b,c>

d−1
ab d−1

ac (êab ·Na · êac)Tr[(N b −Na)(N c −Na)]}.

Sa is the area of plaquette a. The integral of free energy density over the whole

surface is converted into the sum of energies associated with plaquette.

For both 2-dimensional and 3-dimensional smectics, we have no twist deformation

[178]. The free energy of 2-dim smectics includes two parts: a nematics contribution

and a 1-dim solid contribution (the compression/dilation term). The second part will

dominate over the first one for large-scaled system (R >> a) by dimensional analysis.

So we may forbid compression/dilation of layers (curves in 2-dim case) by requiring

that the layer spacing as constant. On the other hand, the “incompressibility” of

layers, i.e.,
∮

~n · d~l = 0 (the total number of traversed layers by the closed loop is

zero) leads to the vanishment of the bending deformation (see Chandrasekhar p310

or Kleman et al p145). Therefore, the Frank free energy of smectics only includes the

splay term. In the real calculation, we may let K3 = ∞, s.t., the directors will splay

to avoid the bending deformation. By substituting K3 = ∞ into the expression for ε,

we have ε = 1. Note that the splay energy vanishes for ε = 1 (see Eq.(3.17)).

Appendix 3.C Discrete bending energy of isotropic

vesicles

At high temperature, no order (nematics and smectics) is formed on vesicles and the

elasticity of vesicles is isotropic.
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The bending energy for isotropic vesicle is

Eb = k

∫
dA(2H)2, (3.24)

where the mean curvature 2HN̂ = Tr ~Kαβ. The curvature tensor on the surface

~Kαβ = DαDβ
~X = Dα

~tβ, which is proved to be parallel to the normal vector N̂ and is

a symmetric tensor. Note that ~X is a vector in E3, while it is a scalar for the surface.

(2H)2 = (K α
α )2 = (DαDα ~X)2 = (4 ~X)2. (3.25)

Note that in the last expression, the Laplacian defined on surface applies on a scalar.

(4 ~X)2 can be expressed in a discretized surface. In what follows, we will derive for

the discrete version of the Laplacian applying on a scalar [177]

1

2d
(−4ϕ)i =

∑

j(i)

pj,i
ϕi − ϕj

l2ij
, (3.26)

where pj,i = 1
2d

σij lij
σi

, ϕ ∈ F0, the 0-form (scalar function space) defined on sites Mi

(i = 1, 2...N). lij is the length of bond ij. σi is the area of cell Ci. σij is the length

of edge perpendicular to the link ij. d is the dimension of surface.

A general definition for the Laplacian acting on a p-form is (In Ref.[179] the

symbol for d∗ is δ; see also Ref.[177])

−4p = (d∗)d + d(d∗), (3.27)

in which d is the exterior differential operator and its “hermitian adjoint” d∗ trans-

form a p-form into (p+1)-form and (p-1)-form respectively. 40 is the ordinary Lapla-

cian acting on scalar functions. For example, for ϕ ∈ F0, (dϕ)ij =
ϕi−ϕj

lij
, which

is just the discrete version of derivative. For ϕ ∈ F1, (d∗ϕ)i = 1
σi

∑
j(i) σijϕij. In

deriving this equation, we use the duality of Fp and F̃d−p, which is defined on the

dual lattice (the cells as mentioned above) of the simplical lattice composed of points

Mi,Mj,Mk.... The dual counterpart d̃ of the exterior differential operator d is defined

via. < ϕ|d̃ψ >=< dϕ|ψ >, where ψ ∈ F̃d−p. After some calculation, we get

(−4ϕ)i =
1

σi

∑

j(i)

σij

lij
(ϕi − ϕj). (3.28)
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By inserting the expression for pj,i we get the more compact expression for (−4ϕ)i

as in Eq.(3.26).

By Eq.(3.26), we can write the bending energy in terms of ~X in discrete form

easily (p384 of Ref.[4]):

Eb =
κ

2

∫
dA(4 ~X)2 =

κ

2

∑
i

1

Ωi

[
∑

j(i)

( ~Xi − ~Xj)]
2, (3.29)

where Ωi is the sum of the areas of the surface triangles adjacent to site i. j are the

neighbor sites of the site i. We use N = 72 (regular) sites to represent the sphere.

The discrete bending energy formula gives Eb = 26.5, while the analytical result is

Eb = 8π = 24.8 for κ = 1.

In what follows, we express the bending energy in terms of the normal vector N̂ .

(2H)2 = (K α
α )2 = [~tα · (∂αN̂)]2. (3.30)

The last step is due to the Weingarten equation [4]

∂αN̂ = Kαβ
~tβ. (3.31)

The projection of the Weingarten equation on ~tγ gives

~tγ · ∂αN̂ = Kαβ
~tβ · ~tγ = Kαβgβγ = K γ

α . (3.32)

Eq.(3.30) can be written as a discrete form

[~tα · (∂αN̂)]2 = [~tα(a) · N̂(b)− N̂(a)

δuα
]2, (3.33)

where point b is near point a in the ~tα direction, i.e.,

∂αN̂ = lim
δuα→0

N̂(b)− N̂(a)

δuα
. (3.34)

The magnitude of N̂(b) − N̂(a) should be small s.t., the limit converges to a finite

quantity. Therefore, the dihedral angle θ of plaquette a and b should be big enough,

or else the limit will diverge. Since N̂(b) · N̂(b) = − cos θ, the bending energy is

proportional to sin2 θ, which should be a small quantity. Due to the observation that
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the bending energy of the discrete version Eq.(3.33) is invariant for θ → θ + π, it can

only describe mild bending deformation of discrete vesicle.

In order to characterize the large bending of discrete vesicle, we may directly

consider a discrete vesicle instead of discretizing a smooth vesicle. Considering that

the bending deformation is the tilt (in three dimensional Euclidean space E3) of

normal vectors, the ansatz bending energy of discrete vesicle may be suggested as

proportional to [N̂(a) − N̂(b)]2 ∝ 1 − N̂(a) · N̂(b). Such an ansatz satisfies the

following requirements: (1)N̂(b) → −N̂(b) leads to different bending energies, (2) the

bending energy vanishes as N̂(a) ‖ N̂(b). Therefore, it could describe large bending

deformation. In fact, its relation with the mean curvature can be found as follows.

By the Weingarten equation Eq.(3.31), we have

gαβ∂αN̂ · ∂βN̂ = gαβ(Kαγ
~tγ) · (Kβδ

~tδ) = gαβgγδKαγKβδ (3.35)

= (gαγgβδ + γαδγρλg
ρβgλγ)KαγKβδ

= (gαγKαγ)
2 + γαδγρλK

ρ
δK

λ
α

= (2H)2 − 2KG.

In the last step, we use KG = det(Kαβ) = 1
2
γδαγρλK

ρ
δK

λ
α . γαβ = 1√

g
εαβ. The discrete

version of gαβ∂αN̂ · ∂βN̂ is:

(
N̂(b)− N̂(a)

dab

)2 = 2(dab)
−2(1− N̂(b) · N̂(a)). (3.36)



Chapter 4

Planar sheets meet negative

curvature liquid interfaces

In this chapter, we analyze the geometric frustration arising in elasto-capillary sys-

tems when planar inextensible elastic sheets are wrapped on negative curvature sub-

strates. We also propose a design for generating negative curvature liquid interfaces.

Both concentric wrinkles and eye-like folds are shown to be compatible with negative

curvatures. We discuss both types of geometric frustration and the phase diagram

controlling their appearance.

4.1 Introduction

Geometric frustration occurs in wrapping a spherical Mozartkugel (“Mozart sphere”)

with a planar foil [180, 181, 182]. The geometric incompatibility of a planar sheet

and a curved substrate gives rise to ridges in a process whereby energy is lowered

by spontaneous condensation into a small region of the total available volume [55].

Recently the frustration of a thin circular elastic sheet of ∼ 1 mm size covering the

tip of a spherical droplet has been studied [56]. Fine radial wrinkles at the edge

of the sheet become unstable to a few localized folds when the size of the spherical
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droplet is reduced. The wrinkle-fold transition is analogous to the dislocation/pleat

or disclination/scar transition in crystalline order on a capillary bridge as the cur-

vature is increased [35, 57, 58]. The structure of topological defects on positive and

negative curvature surfaces are fundamentally different [59]. This suggests a distinct

wrinkle/fold structure on a flat sheet when attached to a negative curvature surface;

the edge of the sheet is stretched tangentially as opposed to being compressed on

spherical geometry. A completely different frustration pattern on the planar sheet is

thus expected. In this chapter, we study the wrinkle/fold structure on a flat sheet

attached to a negative curvature geometry in an elasto-capillary system.

The system we treat has two parts: a thin elastic hydrophilic sheet and a saddle-

like fluid interface with negative curvature. The size of the elastic sheet is taken

to be much bigger than the elasto-capillary length
√

κ/σ, so that surface tension σ

dominates over the bending rigidity κ [183]. The thickness of the elastic sheet is taken

to be much smaller than
√

κ/Y , where Y is the 2-dimensional Young’s modulus, in

which case it can be regarded as inextensible [184]. Note that a standard sheet of

paper has this property and can be used to demonstrate the bending of a thin elastic

sheet [185]. When such an inextensible elastic sheet is placed on a negative curvature

liquid interface the capillary force pulls the planar sheet into full contact with the

liquid interface. In this chapter we first propose a scheme to design a saddle-like

fluid interface in a capillary tube and then discuss the possible wrinkle/fold patterns

compatible with negative curvature.

4.2 Design a negative curvature surface in a cap-

illary tube

A wetting liquid rises inside a capillary tube, as first observed and recorded by

Leonardo da Vinci [60]. The liquid meniscus curves up (down) in a hydrophilic

(hydrophobic) capillary tube, respectively. For both cases the curvature of the liquid
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Figure 4.1: A wall made of hydrophilic and hydrophobic materials is immersed in a liquid. The

liquid interface curves up in the hydrophilic part and down in the hydrophobic part. In the transition

region, the liquid profile on the wall changes smoothly.

Figure 4.2: The total energy Eq.(4.1) versus the parameter a and the dimensionless quantity Γ.

The parameter a indicates the steepness of the liquid profile on the wall in the transition region. Γ

controls the competition between the contact energy and the gravitational potential energy.
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interface is always positive. We will show that a saddle-like fluid interface can be

realized on a capillary tube made of four alternating hydrophilic and hydrophobic

slices. In order to illustrate the idea, we first consider a flat Janus wall made of two

materials, one hydrophilic and one hydrophobic, immersed in a liquid. Far away from

the connecting region the liquid interface will curve up (down) on the hydrophilic (hy-

drophobic) material, respectively. In the transition region, the liquid profile on the

wall changes smoothly as schematically shown in Fig.4.1. The competition between

the contact energy of the liquid and the wall and the gravitational potential energy

determines the equilibrium shape of the liquid profile. We calculate these energies

in the coordinate system indicated in Fig.4.1. The wall is on the x = 0 plane; the

y > 0 (y < 0) region is hydrophilic (hydrophobic). The bulk liquid is in the x > 0

region, and the asymptotic plane of the liquid is the z = 0 plane. The liquid profile

on the wall is denoted by f(y) and that away from the wall along the x-direction

is denoted by gy(x) as it is y-dependent. For simplicity, we consider the symmetric

case of θ−E + θ+
E = π, where θ±E are the contact angles far way from the transition

region, as shown in Fig.4.1. The total energy with respect to the reference state of

a flat fluid interface is Etot = E+ + E−, the sum of the energies in the regions of

y > 0 (E+) and y < 0 (E−). E± = −I±A± + W±, where I± = ±γ cos θ±E are the

imbibition parameters, A is the contact area, and W is the gravitational potential en-

ergy. A+ =
∫∞

0
f(y)dy, A− =

∫ 0

−∞(h + f(y))dy, W+ = 1
2
ρg

∫∞
0

dx
∫∞

0
dy gy(x)2, and

W− = −1
2
ρg

∫∞
0

dx
∫ 0

−∞ dy [h2 − gy(x)2]. Since the liquid profile decays exponentially

away from the wall [60], we may try an ansatz for gy(x): gy(x) = f(y) exp(−αx/λc),

with the parameter α of order one. Here λc is the capillary length [60]. By inserting

this ansatz into the expression for the total energy and dropping constant terms, we

arrive at

Etot = −
∫ ∞

0

f̃(y)dy +
Γ

h

∫ ∞

0

f̃(y)2dy, (4.1)

where f̃(y) = f(y)/h. The dimensionless parameter Γ ≡ ρgλch/(4Iα) controls the

competition between the contact energy and the gravitational potential energy. The
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Figure 4.3: Design for generating constant mean curvature liquid menisci by controlling the pres-

sure difference across the liquid interface through adjusting the heights hA and hB . Two shapes of

liquid interface with vanishing mean curvature (above) and constant mean curvature (below) are

shown. These shapes are generated with Surface Evolver [186].

desired f(y) should not only minimize Eq.(4.1) but also smoothly connect the lines

z = ±h and f(y = 0) = 0. The ansatz f(y) = h tanh(ay) nicely satisfies these

requirements. The parameter a describes the steepness of the liquid profile on the

wall; the profile is steeper for bigger a. Inserting the ansatz for f(y) into Eq.(4.1)

gives Etot in terms of a and Γ, as plotted in Fig.4.2. The parameter Γ controls the

shape of the liquid interface. For small Γ where the surface energy dominates aoptimal

is large and so the profile f(y) is very steep. For large Γ where the gravitational

potential energy dominates the profile f(y) varies slowly as aoptimal is small.

Now consider a capillary tube made of four alternating hydrophilic and hydropho-

bic slices azimuthally. The liquid profile around the inner wall of such an inhomoge-

neous capillary tube will curve up, down, up and down in sequence by contacting with

the alternating hydrophilic and hydrophobic materials. By tuning the parameter Γ,

a saddle-like shaped liquid meniscus with negative curvature can be formed in the

capillary tube. Since the heights of points on the curved fluid interface are different,

however, the pressure difference across the fluid interface ∆p(~x) = −ρgh(~x) = 2σH(~x)

and thus the mean curvature H(~x) over the fluid interface are spatially dependent

[60]. The shape of the fluid interface cannot therefore be precisely controlled.

We propose a method to make constant mean curvature (CMC) liquid interfaces
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in capillary tubes, so their shapes can be finely controlled. The idea is illustrated

in the schematic plot Fig.4.3. Consider two immiscible fluids of identical density in

a capillary tube, so the change of the interface shape does not influence the grav-

itational potential energy. The boundary of the liquid-liquid interface is anchored

by pinning points on the capillary tube [60]. The pressure difference across the in-

terface can be adjusted by tuning the heights hA and hB as indicated in Fig.4.3:

∆p = ρg(hB − hA) = ρg∆h. It is a constant for all points over the liquid-liquid

interface. Therefore, the mean curvature over the interface is constant. A variety of

CMC liquid interfaces (including minimal surfaces with vanishing mean curvature)

can be formed by adjusting the pressure difference across the fluid interface (via.

∆h) and the anchoring profile on the capillary tube. Two typical shapes of H = 0

and H 6= 0 fluid interfaces with the boundary profile f(θ) ∼ cos 2θ are shown in

Fig.4.3. In particular, the shape of a minimal surface is uniquely determined by a

spatial loop Γ ≡ ~x(ρ = 1, θ) [187]: ~x(ρ, θ) =
∫ 2π

0
K(ρ, φ − θ)~x(ρ = 1, φ)dφ, where

the Poisson kernel K(ρ, α) = 1
2π

1−ρ2

1−2ρ cos α+ρ2 . In comparison to relatively evanescent

soap films, the liquid interface made from solid liquids is rather stable [66]. It is

therefore an ideal liquid substrate for studying the geometric frustration associated

with sheets wrapped on curved surfaces. In addition, pre-designed negative curvature

liquid interfaces may have extensive applications in studying the influence of negative

curvature on crystalline/liquid crystal order [59], particle interactions [188, 189] and

diffusion processes [190].

4.3 Patterns on sheets

4.3.1 Concentric wrinkles

Complete contact between a planar sheet and a curved fluid substrate by capillary

forces introduces a wrinkle/fold pattern, which redefines the metric of the planar

sheet according to the curvature of the background geometry. The modification of
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(a) (b)

Figure 4.4: Wrinkles of alternating peaks and valleys on a piece of paper redefine the metric,

automatically bringing the flat paper to a saddle-like shape. (a) is excerpted from Ref.[191], and (b)

is from Ref.[192] where the method to make it is described in detail.

the metric leads to the change of shapes. This concept has been utilized to design

responsive buckled surfaces [193]. The curved surface endows its metric to the flat

sheet via their full contact. The inherited metric on the flat sheet as well as its

elasticity determines the wrinkle/fold structure. Which wrinkle/fold patterns are

compatible with negative curvatures? The art of origami provides some inspiration.

It is shown in origami that regular concentric or square wrinkles with alternating peaks

and valleys on a piece of paper can induce a negative curvature as demonstrated in

Fig.4.4.

In what follows, we will prove that the effect of concentric wrinkles is equivalent

to inserting a wedge of some angle. The wavelength and amplitude of the concentric

wrinkles determine the angle of the wedge. The wrinkled sheet is parameterized as

~x(r, θ) = {r cos θ, r sin θ, ak cos(kr)}, where ak is the amplitude of the wrinkles and

k is the wavenumber k = 2π/λ. The nonzero components of the metric tensor are

g11 = 1 + x2 sin2(kr) and g22 = r2, where x = akk. The imposed wrinkles transform

the original wrinkled shell into a new surface denoted by Σ that we take coincident

with the curved substrate. On this new surface the metric is redefined such that the

geodesic distance (denoted as r) from the center of the disk to the first peak is r0 = λ.

The corresponding real distance on the original sheet is l0 =
∫ λ

0

√
g11dr = 1

k
E(x),
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where E(x) =
∫ 2π

0
dy

√
1 + x2 sin2 y. As ak → 0, l0 → λ, as expected. Due to

the in-extensibility of the paper model, the mapping from the originally flat sheet

to a wrinkled shape is isometric and thus length-preserving. The perimeter of the

circle with radius r in the new surface Σ is thus C(r) = 2πl(r) ≡ 2πr + rα, where

l(r) = l0kr/(2π). The angle of the inserted wedge α is:

α = (
l0
λ
− 1)2π > 0. (4.2)

The positive sign of α indicates that concentric wrinkles are equivalent to inserting

a wedge. The inserted wedge buckles a flat disk to a saddle-like shape with negative

curvature in 3-dimensional Euclidean space [184], as do concentric wrinkles. These

two ways of introducing negative curvature - either inserting material or imposing

concentric wrinkles - are related via the expression for C(r). The first method changes

the perimeter without changing the radius, while it is the converse for the second

method. By expanding the expression for l0 in terms of small x, one finds C(r) =

2πr + π
3
k2x2r3 + O(x). By inserting this into KG = limr→0 3[2πr − C(r)]/(πr3) [6],

the curvature at the center of the surface Σ is found to be

KG = −a2
kk

4. (4.3)

Eq.(4.3) shows that increasing the amplitude or the frequency of the concentric wrin-

kles results in greater curvature of the surface, with greater sensitivity to the fre-

quency. The curvature of the background geometry determines the amplitude and

wavelength of the concentric wrinkles according to the product a2
kk

4.

It is worth mentioning that by increasing (“growing”) the radius of a flat disk while

keeping the perimeter invariant, we get a positive curvature surface, which may buckle

to various patterns depending on its elasticity. This elasticity paradigm explains

the phyllotactic patterns of Fibonacci-like sequences on plants [194]. Wrinkles of

concentric squares can also buckle a square piece of paper to a beautiful hyperbolic

parabola with negative curvature as shown in Fig.4.4(b). Prescribed metrics via the
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design of wrinkles transforms a flat piece of paper into a rich variety of structures,

including the DNA double helix [195].

4.3.2 Eye-like folds

Figure 4.5: A branch-like fold pattern appears on a flat paper disk by wrapping it on a negative

curvature surface (left figures). The folds in the red rectangles are equivalent to removing eye-like

areas as shown in the upper right figure. The buckled shape (the lower right figure; the leaf-like

object therein is the removed material) of a flat disk due to an isolated fold is obtained by “closing

the eye”.

In addition to wrinkles, localized folds can also change the metric [57]. By attach-

ing a paper disk onto a negative curvature surface, typical branch-like fold patterns

are found as in Fig.4.5 (the left two photos are the same deformed paper disk from

different perspectives). A light beam directly illuminates the paper disk from above,

so the folds are seen clearly as black curves. The folds on the sheet can be roughly

classified as principal ones (in the red rectangles) and fine ones (barely seen above

the red rectangle in the left below figure). Their roles in “screening” curvature are

similar to disclinations and dislocations in crystalline order on a curved surface, re-

spectively [59]. The feature of the observed folds is that the amount of the folded

material decreases towards their ends. Similar folds are also found in the interior side

of a bent tube where the curvature is negative [196]. We analyze an isolated fold

for illustrating that it is compatible with a negative curvature geometry. The effect
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of such folds is to remove an eye-like area from a flat disk. The buckled shape (see

the lower right figure in Fig.4.5) due to the fold, or equivalently the removal of an

eye-like area, is obtained by “closing the eye”. The curvature of the buckled shape

is negative; the disk curves up along the fold and curves down along the orthogonal

direction. The removal of an eye-like area is equivalent to inserting a wedge, because

more material is removed at the center than on the edge. The profile of the eye-like

fold can be determined by the curvature of the background geometry. The perimeter

of a circle with geodesic radius r on a disk with an eye-like area removed is estimated

as C(r) ≈ 2πr + 4(h(0)− h(r)), where 2h(r) is the width of a fold. For a small-sized

fold (in comparison with
√

1/|KG|), h(r) = h(0) + π
12

KGr3 by inserting C(r) into the

expression for the Gaussian curvature. From h(r = L/2) = 0, we derive the length of

the fold L = 2(12h(0)
π|KG| )

1/3 as controlled by the curvature. In contrast, it is interesting

to notice that reversed eye-like folds are found in one’s palms. It seems that the

two main lines - head line and heart line following the terminology of palmistry -

are compatible with positive curvatures as the width of these lines increases from the

center to the edge of a palm.

4.3.3 Phase diagram

In what follows, we study the transition between the wrinkle and fold solutions. In

the regime of large surface tension (in comparison with the bending rigidity), the

ground state of an elasto-capillary system is dominated by the surface energy dif-

ference before and after a planar sheet is attached to the liquid interface: F =

σLAAsheet + σLSAcoverage − σLAAsubstrate = −σLSAcoverage + const. σIJ is the surface

tension between phases I and J with L,A and S standing for liquid, air and elas-

tic sheet respectively. Acoverage is the area of the liquid substrate occupied by the

elastic sheet, which is smaller than the area of the sheet Asheet due to its deforma-

tion. Asubstrate is the sum of the occupied and unoccupied substrate areas, which is

a constant. The surface energy turns out to depend only on Acoverage; the larger it
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is, the smaller the energy is. Unlike a planar sheet on a positive curvature surface,

the deformation at the edge of a planar sheet on a negative curvature surface may

be ignored. Therefore, the optimal contour shape of a deformed sheet on the liquid

substrate is the one that maximizes the coverage area while keeping the perimeter

fixed. This is exactly the classical isoperimeter problem, on a negative curvature sur-

face in this case. For constant curvature surfaces, the classical isoperimetric solution

in the Euclidean plane is also valid with the circle in E2 being replaced by a geodesic

circle [197]. On a general surface with varying negative curvature, there is no exact

mathematical result available. The physical picture, however, is rather interesting: a

deformed sheet fully attached on a curved liquid substrate will migrate to the region

where it can extend as far as possible to maximize the contact area; the driving forces

are the capillary force and the release of the bending energy in this curvature-driven

migration process. We resort to numerical methods to solve the isoperimetric prob-

lem on a general slightly curved surface which is represented by z(x, y) = αx2 − βy2.

The solution space of the isoperimetric problem consists of contours of deformed in-

extensible sheets on the liquid substrate. These contour shapes can be generated

by projecting planar loops in the x-y plane onto the surface z(x, y). For the slightly

curved liquid substrate, the planar generating loops are slightly deviated from a circle,

which is represented by ellipses x2/a2 + y2/b2 = 1. The solution to the isoperimetric

problem is therefore characterized by the parameters {a, b} for given {α, β} which

characterize the shape of the liquid substrate. Note that a and b are not independent

due to the isoperimetric constraint; the solution space is therefore one-dimensional

for a given substrate geometry.

The two distinct deformed states, folds and wrinkles, on a sheet can be distin-

guished by the isometry condition as follows. The in-extensibility of a sheet sets an

upper limit 2R, the diameter of the planar sheet, as the maximal geodesic distance

between two arbitrary points on a sheet contour. If the determined sheet contour

has the maximum geodesic diameter equal to (smaller than) 2R, then the sheet is
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Figure 4.6: The phase diagram of a deformed sheet on a negative curvature surface. Wrinkles on

the sheet occur near the isotropic region (α/β ≈ 1) while folds are found in the highly anisotropic

regions (α/β far from unity). The smallness of α and β as measured by the radius of the sheet

guarantees that the surface is only slightly curved.

recognized as having folds (wrinkles) on it. An isotropic Gaussian curvature (α = β,

since KG = f(αx2+βy2) [6]) imposes either isotropic tangential stretching or isotropic

radial compression on the sheet, which is expected to result in wrinkles. As the Gaus-

sian curvature grows increasingly anisotropic (the ratio α/β deviates from unity), the

imposed anisotropic stretching and compression on the sheet are expected to generate

folds which are themselves anisotropic objects. These expectations are verified in the

numerical calculation which is summarized in the phase diagram in Fig.4.6. This

shows that wrinkles occur near the isotropic region while folds arise in the highly

anisotropic regions.

4.4 Conclusion

In conclusion, we study the curvature-driven wrinkle/fold pattern on a flat sheet.

We analyze the geometric feature of concentric wrinkles and eye-like folds on planar

sheets that are compatible with negative curvature liquid substrates, and discuss the

transition of these two states driven by the anisotropy of the background geometry.

The ability of wrinkles/folds to deform a plane to a curved surface may find potential
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applications. Consider a flat sheet with a pre-designed wrinkle/fold pattern like lines

on a palm. By controlling the on/off status of the wrinkles/folds, a planar sheet can

be programmed to buckle to a desired shape. It may lead to potential applications

in maximizing the sunshine harvest by designing the shape of ultrathin flexible solar

cells [198]. Our study also sheds light on the reverse problem of attaching a curved

shell onto a flat substrate, e.g., the adhesion of a cell onto a flat substrate [199].



Chapter 5

The instabilities of toroidal

droplets. I: Rayleigh instability

Motivated by the recent beautiful experiment on toroidal liquid droplets [200], we

theoretically study the instabilities of toroidal droplets. In that experiment, toroidal

liquid droplets of different aspect ratios are made which are immersed into another

distinct liquid. It is observed that, about 10 seconds after being prepared, fat toroidal

liquid droplets shrink to a single spherical bead, while thin toroidal droplets are

divided into a certain number of evenly distributed beads, which is determined by

the aspect ratio, before shrinking to a single bead. The latter phenomenon can be well

understood as Rayleigh instability, since the local geometry of thin torus approaches

that of cylinder [201] [202]. In this chapter, we discuss the Rayleigh instability for

thin tori and in the next chapter we discuss the shrinking mode.

5.1 Introduction

Liquid droplets are ubiquitous in nature and technology: rain, clouds, paint, lubricant,

ink, dye, oil and so on [60, 203]. Our understanding of the liquid droplet system

benefits greatly from the concept of surface tension introduced two hundred years by
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Johann Andreas von Segner, a Hungarian mathematician [80]. In terms of surface

tension, much of the behavior of liquid droplets, including statics and dynamics in

different environments, is well understood [60, 65, 81]. The existence of surface

tension not only minimizes the area of liquid droplet to reduce the surface energy,

but also supports the propagation of an elastic mode: capillary wave [81]. External

perturbations excite capillary waves propagating on the liquid surface. For example,

a breeze or a toss of a stone ripple a water surface. The excited capillary wave will

either grow or decay with time. The system becomes unstable for the former case.

The underlying mechanism of such capillary instability originates from the surface

tension-driven flow. If the flow amplifies the amplitude of the excited capillary wave,

then the system becomes unstable [204]. For small perturbations, the excited capillary

wave can be linearly decomposed into Fourier modes. The fastest growing mode of the

capillary wave is exactly the most unstable one. The capillary instability of a liquid

droplet has been of great scientific interest [61, 77], and it has extensive applications

in industry [205].

Many factors influence the capillary instability of liquid droplet. For example, the

wavelength of capillary wave, the viscosity of bulk liquid, the geometry of interface

and so on. Experience tells us that the ripples on a flat surface will fade away sooner or

later. In contrast, ripples on a curved surface may divide the bulk liquid droplet into

sections. For example, water streams on the shield window of a car are observed to

be broken into many droplets. One may wonder: how do different modes of capillary

wave grow in time? What is the surface tension-driven flow like? How does the

viscosity of fluid get involved in? In what way the geometry of interface plays a role?

We will address these questions in this chapter and the following one.

The capillary instability of liquid droplets has attracted physicists’ interest dating

back to the beginning of the 19th century [61]. For experimental development and

numerical simulation about the capillary instability, one may refer to Ref. [61, 205,

206, 207, 208]. The instability phenomenon of liquid droplet was distinctly noticed by
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Savart. Later, following the earlier work by Plateau who showed that a long cylindri-

cal liquid is unstable to disturbances with wavelengths greater than its circumference,

Rayleigh explored theoretically the instability of a long cylindrical column of an in-

compressible fluid of both ideal and viscous without surrounding fluids based on a

linearized stability analysis [201, 209]. Rayleigh solved for the dispersion relation,

from which the fastest growing mode was predicted. Rayleigh’s theory is linear that

is applicable for perturbation of very small amplitude. And both the inertial effect

of liquid and the external fluid are ignored. The more general case of a perturbed

cylindrical liquid droplet immersed in another viscous liquid was studied by Tomotika

by adopting the same scheme as Rayleigh: solving the Navier-Stokes equation under

boundary conditions of velocities and forces [202]. The relation of fastest growing

mode and the ratio of viscosities of the two fluids is obtained. The prediction for

the fastest growing mode agrees with experiment very well, although it is based on

linear theory which works near the onset of instability. This fact implies that the

most unstable mode has been locked by the system from the very beginning of the

occurrence of instabilities.

Although the fastest growing mode of the cylindrical interface separating two

viscous fluids has been found by Tomotika, more detailed information about the dy-

namics of the system is not available in Tomotika’s theory, such as the flow pattern

in two fluids, the structure of vorticity field, and the information of how different

processes (undulation of interface and shear dissipations in two fluids) compete to

give rise to the fastest growing mode. While, for example, the information of flow

pattern in fluids is important theoretically and practically. Theoretically, with the

knowledge of flow in fluids one can calculate relevant physical quantities (for exam-

ple, the vorticity field) and better understand how the system responds to external

perturbations. Practically, with the velocity field known, one can better control the

system. It is of vital importance for the design of microfluidic devices [210].

In this chapter, we propose a new scheme based on the principle of energy con-
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servation to address the surface tension-driven instability of liquid droplets. Due to

the approved validity of linear theory in the instability analysis of liquid droplets, we

only concern perturbations of small amplitude. In order to simplify the problem, we

work in the Stokes flow regime, which will be discussed later. According to the new

scheme, the system gains energy from the unstable modes which is converted into

kinetic energy and heat (due to shear dissipation). In the Stokes flow regime, the rate

of change of the kinetic energy can be ignored. By equating the change rate of surface

energy and the dissipation rate, we obtain the dispersion relation of the system and

the most unstable mode. We will see that the principle of energy conservation will

guide the system to evolve along the trajectory of maximum gain of surface energy

and minimum dissipation.

5.2 Free energy

The thermodynamic property of the interface of two two immiscible fluids is com-

pletely characterized by the surface tension σ. The increase of the free energy of an

interface is

∆F (k) = σ∆A, (5.1)

where ∆A = A − A0 is the difference of the area of perturbed and unperturbed

interfaces, and k is the wavenumber of the perturbation. If ∆F (k) is positive, then

the corresponding mode is stable: the perturbed interface prefers to recovering its

original unperturbed shape. Or else the mode is unstable. In order to obtain the

change of the area of an interface, we will examine its geometry.

5.2.1 Geometry of toroidal interfaces

The 3-dimensional toroid is characterized by {u1 = α, u2 = θ, u3 = r}. α is the angle

around the tube, θ is the angle around z-axis, and R2 is the radial length. A point in
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Figure 5.1: The geometric characterization of torus. A torus is produced by rotating the circle

around the vertical axis.

Figure 5.2: A perturbed torus.

3-dimensional space is

~x(α, θ, r) =




(R1 + r cos α) cos θ

(R1 + r cos α) sin θ

r sin α


 .

Fig.5.1 shows the x-z plane. θ = 0 for the half x > 0 plane. The non-zero components

of metric tensor of torus are

g11 = r2, g22 = (R1 + rcosα)2, g33 = 1, (5.2)

based on which the surface area and volume of the toroid can be derived.
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For generality, we consider a toroidal interface with non-circular cross-section, so

R20 becomes α dependent. With the metric of torus given, we can calculate the

volume of toroid

V =

∫
R2(R1 + R2 cos α)dαdθdR2 = 2πR1

∫
1

2
R2

20(α)dα +
2π

3

∫
R3

20(α) cos αdα.(5.3)

Note that the integration interval for R2 is from R2 = 0 to R2 = R20(α). The surface

area of the torus surface is

A =

∫
R2(R1 + R2 cos α)dαdθ = 2πR1

∫
R20(α) dα + 2π

∫
R2

20(α) cos α dα.(5.4)

The first terms for V and A are the corresponding volume and surface area of cylinder

of length 2πR1. The second terms arise due to distinct geometry of torus. For circular

cross section R20(α) = R20, V = 2π2R1R
2
20 and A = 4π2R1R20.

An axial perturbation about z-axis of small amplitude uk (uk ¿ a) can be repre-

sented by

R2(α) = a + uk cos(nα), (5.5)

where n is an integer due to the toroidal geometry (see Fig.5.2). The wavenumber is

k ≡ n/R. Note that the value of a differs from the radius of the tube for unperturbed

torus R20. The volume of the perturbed torus is V =
∫ √

gdrdθdφ = (2a2 + u2
k)π

2R,

where g is the determinant of the metric tensor gij (i, j = 1, 2, 3) of the volume. The

volume of the unperturbed torus is V0 = 2π2R1 R2
20. The conservation of volume

during the deformation of torus modifies a: a = R20(1 − u2
k

4R2
20

). The surface area of

perturbed torus is A =
∫ √

gdθdα, in which g is the determinant of metric tensor gij

(i, j = 1, 2) of the interface. We expand
√

g with respect to the small perturbation

amplitude uk as
√

g = c0 + c1uk/R20 + c2u
2
k/R

2
20 +O(u3

k/R
3
20). The integration of the

first three terms gives 4π2R/R20, 0 and u2
k(−1 + k2RR20√

(R/R20)2−1
)π2R/R3

20, respectively.

Since the area of unperturbed torus is A0 = 4π2R R20, the change of surface area

4A = A− A0 of torus due to the perturbation uk by Eq.(5.5) is

4A = π2 R1

R20

(−1 +
k2R1R20√

(R1/R20)2 − 1
)u2

k +O(u4
k). (5.6)
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For comparison, we will also discuss the geometry of a cylindrical surface. Note

that as R1/R2 → ∞, a toroidal surface becomes cylindrical locally. From the cylin-

drical coordinates {u1 = r, u2 = θ, u3 = z}, we have the non-zero components of the

metric tensor:

g11 = 1, g22 = r2, g33 = 1, (5.7)

from which the surface area and the volume can be derived. The change of surface

area for a cylinder with length L which is subject to perturbation r(z) = a+uk cos(kz)

is

4A =
π

2

L

r0

(−1 + k2 r2
0)u

2
k +O(u4

k). (5.8)

It is shown that as R1/R2 →∞ Eq.(5.6) becomes Eq.(5.8) by inserting L = 2πR.

In the shrinking process, R1 decreases from R1 to R′
1 by ∆R2, while R20 increases

from R20 to R′
20. Due to volume conservation,

R′
20 = R20

√
R1

R1 −∆R2

> R20. (5.9)

The reduction of free energy can be calculated as

∆F = σ∆A = 4π2σ(R′
1R

′
20 −R1R20) = 4π2σR1R20(

R20

R′
20

− 1) < 0, (5.10)

since R20/R
′
20 < 1. Therefore, the toroidal liquid droplet with circular cross section

always tends to shrink to reduce the free energy.

5.2.2 Limitation of the free energy argument

The static analysis of the toroidal liquid droplet indicates the existence of the Rayleigh

modes and the shrinking mode. However, the free energy argument is inadequate of

giving the fastest growing Rayleigh mode, the shrinking speed and so on, since there

is no time scale in the free energy. For example, by letting ∆F (k) > 0 in Eq.(5.1),

we get all the unstable modes that satisfy

kR20 < (
R2

1 − 1

R2
1

)1/4. (5.11)
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The R.H.S. is approaching one as R1/R20 approaches infinity, which is the cylinder

case. Eq.(5.11) indicates that all long wavelength perturbations are unstable. In order

to identify the most unstable Rayleigh mode, we will have to employ the Navier-Stokes

equation to analyze the hydrodynamics involving in these instabilities.

5.3 Rayleigh instability of thin toroidal droplets

5.3.1 A new scheme in the Stokes flow regime

The most unstable mode for a cylindrical liquid thread immersed in another viscous

liquid has been studied [202]. In Ref. [202] the velocity fields of the inside and outside

fluids are obtained by solving the Navier-Stokes equation. By matching the boundary

condition on the interfacial surface, the dispersion relation is obtained and the most

unstable mode is found. However, more detailed information about the dynamics

of the system is not available in Tomotika’s theory, such as the flow pattern in two

fluids, the structure of vorticity field, and the information of how different processes

(undulation of interface and shear dissipations in two fluids) compete to give rise to

the fastest growing mode. The lack of these pieces of information prevents us from

further understanding how the system reacts to perturbation via. surface tension-

driven flow.

Therefore, we turn to another scheme which is based on energy conservation. The

principle of energy conservation must be obeyed in the process of perturbation. From

the unstable mode the system gains surface energy which is converted into kinetic

energy and heat due to shear dissipation. In the regime of ρ → 0 (its meaning

will be elaborated immediately), the kinetic energy can be ignored since it scales as

∼ ρv2. It will be seen that the rate of change of the surface energy is proportional

to uku̇k, while the shear dissipation is proportional to u2
k, in which uk stands for the

amplitude of the perturbation with wavenumber k. By equating the rate of change

of the surface energy and the shear dissipation rate, one can get the growth rate
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of the amplitude of the perturbation u̇k/uk, by which the most unstable mode can

be obtained [211]. The principle of energy conservation will guide the system to

evolve along the trajectory with maximum gain rate of surface energy and minimum

dissipation rate for maximizing the growth rate.

The surface energy can be obtained from the form of the perturbed interface. For

example, they are Eq.(5.6,5.8) for toroidal and cylindrical interfaces respectively. On

the other hand, the shear dissipation rate is [81]

Ėvisc = −
∫

dV σ′ij∇ivj, (5.12)

which is an integral about the gradient of velocity field. σ′ij is the viscous stress. The

velocity field must be calculated to compute the shear dissipation rate.

We solve the Navier-Stokes equation for the velocity field in bulk fluids driven by

perturbation of the interface. The Navier-Stokes equation is

ρ(∂t~v + ~v · 5~v) = −∇p + η∆~v. (5.13)

In the regime of small Reynolds number where we have interest, the convective term

~v · 5~v can be ignored, and the Navier-Stokes equation becomes linear:

ρ∂t~v = −∇p + η∆~v. (5.14)

The requirement of ρ → 0 such that the kinetic energy can be ignored is equivalent

to large Ohnesorge number Oh−2 ≡ ρLσ
η2 << 1. Note that the value of Oh−2 in

the experiment performed by E.Pairam and A.Fernández-Nieves [200] is very small,

around 5× 10−4 (for silicone oil). It can be shown that

Ėkin

Ėvisc

∝ ρLσ

η2
. (5.15)

The rate of change of the kinetic energy scales as Ėkin ∼ ρV 2L3/tp, where tp ∼
ηL/σ is the time scale for the system to be obviously disturbed originating from the

competition of the surface tension σ and the viscosity η. On the other hand, the

dissipation rate scales as Ėvisc ∼ η(V/L)2L3 = ηV 2L by referring to Eq.(5.12). Now
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it becomes clear that the more precise statement of ρ → 0 is that Oh−2 ≡ ρLσ
η2 << 1.

In the regime of large Ohnesorge number, it can be further shown that the inertial

term in Navier-Stokes equation can also be ignored. By checking the ratio of the

inertial term to the viscous term, we have

ρ∂tv

η∆v
∝ ρLσ

η2
<< 1 (5.16)

by inserting tp. Furthermore, we also have

ρ~v · 5~v

η∆v
∝ ρLσ

η2
<< 1 (5.17)

by inserting tp. Therefore, in the regime of large Ohnesorge number, what is really

small is the density instead of the velocity.

Before trying to solve the Navier-Stoke equation for velocity field, we may first do

a scaling analysis of the time scales of processes in the system. The time scale for the

interface being significantly disturbed has been introduced above as tp. Vortices will

emerge near the perturbed interface [211]. And the time scale for a vortex to diffuse

a distance L, is denoted as tdiff . The diffusion equation for the motion of vorticity

can be derived by taking curl on both sides of Eq.(5.14):

∂t
~Ω =

η

ρ
4~Ω, (5.18)

from which we have tdiff ∼ ρL2/η. The vorticity field ~Ω = ∇ × ~v. The ratio of the

diffusion time scale tdiff to the perturbation time scale tp is

tdiff

tp
∝ ρLσ

η2
¿ 1. (5.19)

Since vortices moves together with flow [212], the above relation shows that the

velocity field in bulk fluid responds to the interface dynamics almost instantaneously.

In this sense, we can ignore the inertial term in Navier–Stokes equation. We may also

compare the times scales in inviscid and viscous fluids. In the regime of small viscosity

such that the dissipation of kinetic energy is much slower than its propagation, the

viscous term in Navier-Stokes equation drops out of the problem but the convective
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term is retained. One relevant time scale emerges in this regime tconv ∼
√

ρL3

σ
. Its

physical meaning is the time scale for the interface to be substantially deformed in

an inviscid liquid. We may compare the perturbation time in inviscid liquid tconv to

that in viscous liquid tp:

tconv

tp
∼

√
ρLσ

η2
<< 1. (5.20)

It indicates that the relevant time scale in viscous fluid is longer than that in inviscid

liquid. The dynamic process slows down due to viscosity.

Let us go back to the Navier-Stokes equation, by removing the inertial term in

the regime of large Ohnesorge number, we obtain the Stokes equation

∇p = η∆~v, (5.21)

which describes Stoke flow. The Stokes equation is symmetric under time reversion.

The dynamics of the system is brought by the temporally varying boundary. If we

time-reverse the boundary condition, the velocity field induced in the bulk is also

time-reversed. By taking curl on both sides of Eq.(5.21), we have

∆(∇× ~v) = 0, (5.22)

in which we have switched ∆ and curl since they commute. For incompressible fluid,

we have

∇ · ~v = −∂tρ = 0, (5.23)

from which we can introduce a vector potential ~ψ, such that ~v = ∇× ~ψ. We can fix

~ψ by imposing the transverse gauge ∇· ~ψ = 0. By replacing ~v for ∇× ~ψ in Eq.(5.22),

we have

∆[∇× (∇× ~ψ)] = −∆2 ~ψ = 0. (5.24)

The calculation of the velocity field is thus reduced to solving the bi-harmonic equa-

tion of vector potential ~ψ.
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According to the vorticity field

~Ω = ∇× ~v = ∇× (∇× ~ψ) = −∆~ψ, (5.25)

the solutions to the bi-harmonic equation Eq.(6.33) can be classified into irrotational

(∆~ψ = 0) and rotational (∆2 ~ψ = 0, but ∆~ψ 6= 0) types. For irrotational solution,

∇p = η∆(4× ~ψ) = η4× (∆~ψ) = 0, (5.26)

and the viscous force on unit volume of fluid η4~v = 0 for the irrotational solution.

As has been shown that in the regime of Stoke flow (i.e., in the large Ohnesorge

number regime), the dynamics of the interface completely determines both the rate

of change of surface energy and the velocity field in the bulk liquid, from which the

shear dissipation can be computed by Eq.(5.12). By equaling the rate of change of

surface energy to the shear dissipation rate, we can obtain the dispersion relation,

from which the most unstable mode can be deduced. Such a formalism applies for

interfaces of general geometries. Consider an arbitrary interface separating two bulk

fluids which is characterized by ~R(t). Given ~R(~x, t) and its time derivative ~̇R(~x, t) (~x

is the coordinates of points on the interface), the velocity field is obtained by solving

the Stokes equation. Since the Stokes equation is linear, the dissipation rate can be

written as

Ėvisc[~R, ~̇R] = −1

2

∫

~x,~y

~̇R(~x, t) ·K(~x, ~y; ~R) · ~̇R(~y, t), (5.27)

in which K is a second order tensor. The surface energy is

Eσ[~R] = σ

∫

~x

dA[~R, ~x]. (5.28)

The Laplace force acted on the boundary surface is

FL = −δEσ[~R]

δ ~R
. (5.29)

And the viscous force is

FV = −δEvisc[~R, ~̇R]

δ ~R
= −δĖvisc[~R, ~̇R]

δ ~̇R
=

∫

~y

K(~x, ~y; ~R) · ~̇R(~y, t). (5.30)
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Their balance leads to

δEσ[~R]

δ ~R
=

∫

~y

K(~x, ~y; ~R) · ~̇R(~y, t), (5.31)

from which we can get the dispersion relation. Note that the equation is of first order

in time. Since this equation is derived from the principle of force balance, it applies

to arbitrary geometry, including those being strongly perturbed. For example, it can

be applied to do analysis on the pinch-off process of a liquid column. Note that in

the above analysis of force balance the acceleration term is ignored, because on one

hand the boundary surface, as a geometry surface, has no thickness and on the other

hand we concern the regime ρ → 0.

There is another representation of the dissipation rate Eq.(5.12), which is related

to the velocity field. It should be equal to Eq.(5.27), i.e.,

− Ėvisc =

∫
dV σ′ij∇ivj =

1

2

∫

~x,~y

~̇R(~x, t) ·K(~x, ~y; ~R) · ~̇R(~y, t). (5.32)

So the kernel K is also determined by the velocity field. In fact, since the velocity

field for Stokes flow is determined by the dynamics of boundary surface, K is essential

dependent on ~R(~x, t).

In the linear regime where the deformation of the interface is small, the surface

area A[~R] can be approximated as quadratic:

A[~R] =

∫

~x

√
1 + (∇~R(~x, t))2 ≈ A0 +

1

2

∫

~x

(∇~R(~x, t))2. (5.33)

By putting Eq.(5.33) into Eq.(5.31) and, to the leading order approximation, setting

~R in the kernal K to the unperturbed shape ~R0, we obtain a linear integro-differential

equation for the evolution of the interface:

− σ∆~R(~x, t) =

∫

~y

K(~x, ~y; ~R0) · ~̇R(~y, t) (5.34)

5.3.2 Velocity and vorticity fields

In this section, we will solve the Navier-Stokes equation for a very thin toroidal liquid

droplet system. In the limit of large aspect ratio R1/R2 →∞, a torus can be treated
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as a cylinder locally. The interfacial surface of the two fluids is disturbed like

r(z, t) = r0 + u(z, t) + o(u2), (5.35)

in which we only keep up to the linear term of u(z, t) in our linear theory. Note that

the radius of the cylinder is defined to be one. u(k, t) =
∑

k uk(t)e
ikz. Since the

perturbation depends on z in the form eikz, the velocity field and the pressure also

depend on z in the same way. The problem is to find out how the growth rate gr = u̇k

uk

depends on the wavenumber k, i.e., the dispersion relation of the system.

We will solve the biharmonic equation Eq.(6.33) for the vector potential. Due to

the symmetry of the system, the velocity field is ~v = vi ~ei = {vr, vθ = 0, vz}. The

velocity field is related to the vector potential by ~v = ∇× ~ψ. It is explicitly written

in cylindrical coordinates

vr =
1

r
∂zψ, (5.36)

and

vz = −1

r
∂rψ. (5.37)

It can be checked that ∇ ·~v = 0. For the cylindrical geometry, the form of the vector

potential ~ψ is

~ψ = −ψ(r)

r
eikz êθ. (5.38)

So ∆~ψ = −1
r
Dψ(r)eikz êθ. ψ(r) is the stream function, êθ is a unit vector and D ≡

∂2
r − k2 − 1

r
∂r. With this ansatz for the vector potential, the biharmonic equation

Eq.(6.33) becomes

DDψ(r) = 0. (5.39)

The corresponding vorticity field in cylindrical coordinates is

~Ω =
1

r
Dψ(r)eikz êθ. (5.40)
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The boundary conditions are:

vr(r = r+
0 ) = vr(r = r−0 ) = u̇(z, t), (5.41)

vz(r = r+
0 ) = vz(r = r−0 ), (5.42)

~v(r = ∞) = 0, (5.43)

vr(r = 0) = 0, (5.44)

σrz(r = r+
0 ) = σrz(r = r−0 ). (5.45)

The first boundary condition is due to the assumption that fluid particles on the

interfacial surface move together with the surface. And the non-slip boundary con-

dition in Eq.(5.42) for vz is applied [211]. The Eq.(5.44) is due to the symmetry of

system. The last boundary condition is the continuity of the tangential stress across

the boundary.

By integrating over a contour on the boundary, the non-slip boundary conditions

of velocities can be obtained by the integral forms of ∇× ~v = ~Ω and ∇ · ~v = 0. We

may invoke an analogy of a velocity field to an electric field. For the electric field,

∇ × ~E = −iw ~B and ∇ · ~E = 0. The source term −iw ~B is the counterpart of the

vorticity field ~Ω. One difference between the electric field and the velocity field is:

velocity gradient will induce a stress field due to the viscous nature of bulk fluid,

while no stress field exists in an electric medium since there is no induced charges.

In what follows, we will derive the velocity field by solving the biharmonic equation

in cylindrical coordinates Eq.(5.39) under the boundary conditions Eqs.(5.41)-(5.45).

Eq.(5.39) is a fourth order differential equation, so there are four independent solu-

tions, two of them are irrotational type and the other two are rotational type. We

will first find the two irrotational solutions by solving the homogeneous second order

differential equation Dψ = 0. By writing ψ = rf(r) (the time-dependence is ignored
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without any misunderstanding since D is time-irrelevant), we get the differential

equation for f(r):

r2∂2
rf + r∂rf − (1 + k2r2)f = 0, (5.46)

which is recognized as the Modified Bessel equation of order one. The solution is the

linear superposition of the modified Bessel function of the first kind I1(kr) and that

of the second kind K1(kr). So the solution to Dψ = 0 is ψ = axI1(x) + bxK1(x), in

which x = kr. We can derive the other two solutions of rotational type to Eq.(5.39)

by the recurrence relations of Modified Bessel function. With x ≡ kr, the operator

D becomes D = k2(∂2
x − 1/x∂x − 1). If we try ψ = xnIn(x), then

Dψ = k2(∂2
x −

1

x
∂x − 1)(xnIn(x)) = k2((2n− 1)In−1(x)− 2n

x
In(x)− In+1(x)),(5.47)

where we have used the following recurrence relations of Modifies Bessel functions:

∂xIn(x) =
n

x
In(x) + In+1(x), (5.48)

and

In(x) =
2(n + 1)

x
In+1(x) + In+2(x). (5.49)

For n = 1, the RHS of Eq.(5.47) equals to zero by Eq.(5.49). For n = 2, the RHS of

Eq.(5.47) equals to 2k2xI1(x) by Eq.(5.49). It has been shown that D(xI1(x)) = 0.

So two solutions to Eq.(5.39) are found to be ψ = {xI1(x), x2I2(x)}. The first solution

has been found by solving Dψ = 0. The second solution is one rotational solution.

We can also try ψ = xnKn(x). By using the recurrence relations of Modified Bessel

functions of the second kind, we find that Dψ = 0 if n = 1 and Dψ = −2k2xK1(x) if

n = 2. Since D(xK1(x)) = 0, DDψ = 0 if n = 2. So we get the other two independent

solutions to Eq.(5.39): ψ = {xK1(x), x2K2(x)}. The second solution is a rotational

solution. Therefore the general solution to Eq.(5.39) is the linear combination of the

four independent solutions

ψ = axI1(x) + bxK1(x) + cx2I2(x) + dx2K2(x). (5.50)
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The first two terms (axI1(x), bxK1(x)) are corresponding to the irrotational flow

while the last two (cx2I2(x), dx2K2(x)) describe the rotational component of the

flow.

We construct a proper solution for inside and outside fluids by boundary condi-

tions: ψ/r for inside fluid must be finite at r = 0 and ψ/r for outside fluid must

vanish as r →∞. Therefore, stream functions for inside and outside fluids are:

ψin = axI1(x) + cx2I2(x), (5.51)

and

ψout = bxK1(x) + dx2K2(x). (5.52)

The velocities can be derived from the stream functions by Eqs.(5.36,5.37). The

velocity field in inside fluid is:

vr(r; a, c) = ik2(aI1(kr) + ckrI2(kr)), (5.53)

vz(r; a, c) = −k2(aI0(kr) + ckrI1(kr)). (5.54)

And the velocity field in outside fluid is:

vr(r; b, d) = ik2(bK1(kr) + dkrK2(kr)), (5.55)

vz(r; b, d) = k2(bK0(kr) + dkrK1(kr)). (5.56)

The tangential stress [81]

σrz(r) = η(∂rvz + ∂zvr) (5.57)

in inside fluid is

σrz(r; a, c) = 2ηik
3(−c k r I0(kr) + (c− a)I1(kr)), (5.58)

and in outside fluid is

σrz(r; b, d) = −2ηok
3(d k r K0(kr) + (b + d)K1(kr)). (5.59)
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The four indefinite coefficients a, b, c, d can be determined by the four boundary con-

ditions, i.e., by solving the linear equation Ax = B, where

A =



I1(kr0) 0 kr0I2(kr0) 0

0 K1(kr0) 0 kr0K2(kr0)

I0(kr0) K0(kr0) kr0I1(kr0) kr0K1(kr0)

−2ηi(kr0)
3I1(kr0) 2ηo(kr0)

3K1(kr0) [−(kr0)
4ηi(I1(kr0) [2(kr0)

3ηo(kr0K0(kr0)

+I2(kr0))] +K1(kr0))]




,

x =
(

a b c d
)−1

,

B =
(

u̇k

i(kr0)2
u̇k

i(kr0)2
0 0

)−1

.

The four coefficients a, b, c, d are:

a =
Na(k)

D(k)
, (5.60)

b =
Nb(k)

D(k)
, (5.61)

c =
Nc(k)

D(k)
, (5.62)

d =
Nd(k)

D(k)
, (5.63)

where

Na(k)

−ikr0u̇k

= [kr0(
ηi

ηo

− 1)I0(kr0)− (
ηi

ηo

− 2)I1(kr0)]K
2
0(kr0) + [kr0(2

ηi

ηo

− 1)I0(kr0)

+2(1− ηi

ηo

)I1(kr0)]K0(kr0)K1(kr0) + kr0(
ηi

ηo

− 1)[−kr0I0(kr0) + I1(kr0)]K
2
1(kr0),
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Nb(k)

−ikr0u̇k

= [kr0(
ηi

ηo

− 1)I2
1 (kr0)(kr0K0(kr0) + K1(kr0)) + I0(kr0)I1(kr0)[kr0(

ηi

ηo

− 2)K0(kr0)

+2(
ηi

ηo

− 1)K1(kr0)] + kr0I
2
0 (kr0)[kr0(1− ηi

ηo

)K0(kr0) + (1− 2
ηi

ηo

)K1(kr0)],

Nc(k)

iu̇k

= I0(kr0)K1(kr0)
2 + I1(kr0)[kr0(

ηi

ηo

− 1)K0(kr0)
2 + (2

ηi

ηo

− 1)K0(kr0)K1(kr0)

+kr0(1− ηi

ηo

)K1(kr0)
2],

Nd(k)

−ikr0u̇k

= (
ηi

ηo

− 1)I0(kr0)
2K1(kr0)− (

ηi

ηo

− 2)I0(kr0)I1(kr0)K1(kr0) + I2
1 (kr0)[

ηi

ηo

K0(kr0)

+kr0(1− ηi

ηo

)K1(kr0)],

D(k)

(kr0)2
= −kr0I

2
0 (kr0)K

2
1(kr0) + 2I0(kr0)I1(kr0)K

2
1(kr0) + I2

1 (kr0)[
ηi

ηo

kr0K
2
0(kr0) +

2
ηi

ηo

K0(kr0)K1(kr0) + kr0(1− ηi

ηo

)K2
1(kr0)].

We see from the above expressions for velocities that only the ratio of viscosities

enters into the formalism. And the dynamics is brought by the time derivative of

uk(t), the perturbation amplitude, as expected for Stokes flow. In order to get a

picture of how the flow looks like, we give the stream plot of the velocity field for

inside and outside fluids in Fig.5.3 with ηi/ηo = 1. We can clearly how the surface

tension-driven flow breaks the cylindrical liquid droplet. The vortices are shown in

Fig.5.3(b). For comparison, we only take the irrotational part of the velocity field in

outside fluid by letting d = 0 in Eq.(5.55,5.56). The stream plot of the irrotational

velocity field in outside fluid is shown in Fig.5.3(c).

Since the cylindrical interface can be approximated as flat locally in the small

wavelength limit, we expect that the large k behavior of the cylindrical interface

system will be approaching that of flat interface. The evolution of perturbed flat

interface separating two fluids of different viscosities is studied in Appendix A. Two

features of a flat interface system are: (1) vanishing of σrz on boundary; (2) vanishing

of vz on boundary. It is expected that these two features for flat geometry will emerge
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Figure 5.3: (a, b) The plot of velocity field in inside and outside fluids. (c) is the irrotational

component of the velocity field in outside fluid. ηi

ηo
= 1.k = 1/(2r0). The horizontal coordinate is r,

and the vertical is z. The plot range of r for inside fluid is r = [0, 1] and for outside fluid r = [1, 20].

z = [0, 20] for both fluids.

for the cylindrical interface system with the wavenumber k approaching infinity. For

simplicity, we consider the case of ηi/ηo = 1. The asymptotic expression for vz(r = r−0 )

as k →∞ is

vz(r = r−0 ) =
1

2kr0

+O((kr0)
−5). (5.64)

And that for σrz(r = r−0 ) at k →∞ is

σrz(r = r−0 ) =
3

2kr0

+O((kr0)
−3/2). (5.65)

It is seen that both vz(r = r−0 ) and σrz(r = r−0 ) decays to zero in power law ∼ 1/(kr0)

as kr0 → ∞. Note that such asymptotic behavior holds for any values of ηi and ηo,

since these viscosities only determine the numerical factors. Therefore, our solution

is connected to that of flat boundary surface.

We may further examine the velocity field vz and tangential stress σrz near the

boundary on the inside fluid side as kr0 → ∞. We first expand vz(r) and σrz(r) at

kr0 →∞, and then take the leading terms. After some calculation, it is found that

vz(r; kr0 →∞) ∼ ek(r−r0), (5.66)
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and

σrz(r; kr0 →∞) ∼ r/r0 − 1√
r/r0

ek(r−r0) ∼ (r/r0 − 1)ek(r−r0). (5.67)

These asymptotic expressions for k → ∞ hold near r . r0. It shows that short

wavelength modes decay exponentially away from the boundary. Alternatively, the

longer wavelength modes can propagate further. Such asymptotic behavior of vz and

σrz are well connected to that of the flat boundary surface.

Vortices emerge near the interface when it is perturbed (see the photos of evolution

of vorticity in jets in [213]). Mathematically, as an indispensable part of the general

solution to the bi-harmonic Eq.(5.39), the rotational part of the stream function can

guarantee the consistency of the number of boundary conditions and that of indefinite

coefficients in Eqs.(5.53-5.56). We may check the flat interface case in Appendix A.

It is found that irrotational flow does not exist, i.e., the boundary conditions require

the indefinite coefficients in Eq.(5.117,5.118) to be zero if we remove the rotational

solution.

Now we will show that the tangential stress on the boundary can be related to

the vorticity field. The vectorial vorticity field ~Ω is along ~eθ direction by Eq.(5.40),

so

Ωθ = (∇× ~v)θ = ∂zvr − ∂rvz, (5.68)

from which we get

∂rvz = ∂zvr − Ωθ. (5.69)

By putting Eq.(5.69) into the expression for tangential stress Eq.(5.57), we have

σrz = η(2∂zvr − Ωθ) = η(2ikvr − Ωθ). (5.70)

We see from Eq.(5.70) that the tangential stress is completely determined by the

radial velocity field and the vorticity field. In fact, the viscous tangential stress

emerges due to the relative motion of fluid particles. In Eq.(5.70), the first term (∼
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∂zvr) describes the relative translational motion, while the second term (∼ Ωθ) is the

relative rotational motion, since vorticity is proportional to the angular velocity [212].

From Eq.(5.70) and employing the non-slip boundary condition of vr Eq.(5.41),

we have

σt(
1

ηo

− 1

ηi

) = Ωθ(r = r−0 )− Ωθ(r = r+
0 ), (5.71)

in which σt is the tangential stress on boundary σt = σrz(r = r+
0 ) = σrz(r = r−0 ). For

ηi = ηo, Ωθ(r = r−0 ) = Ωθ(r = r+
0 ). We will see that as kr0 → ∞, σt vanishes as in

the flat interface case.

From Eq.(5.51,5.52), we get the vorticity field in inside and outside fluids

Ωin = 2(kr0)
3cI1(x), (5.72)

and

Ωout = −2(kr0)
3dK1(x). (5.73)

By inserting Eq.(5.62,5.63) into the above two equations, we get

∆Ωθ = {2i( ηi

ηo

− 1)[−kr0I0(kr0)K1(kr0) + I1(kr0)(kr0K0(kr0)

+K1(kr0))]}/{−kr0I
2
0 (kr0)K

2
1(kr0) + 2I0(kr0)I1(kr0)K

2
1(kr0)

+I2
1 (kr0)(

ηi

ηo

kr0K
2
0(kr0) + 2

ηi

ηo

K0(kr0)K1(kr0) + (1− ηi

ηo

)kr0K
2
1(kr0))}, (5.74)

in which ∆Ωθ ≡ Ω(r = r−0 ) − Ω(r = r+
0 ). By Taylor expanding Eq.(5.74), we find

that ∆Ωθ vanishes as ∼ 1/(kr0) as kr0 → ∞. So σt vanishes by Eq.(5.71), which is

the case of flat interface. Also we see that ∆Ωθ = 0 for ηi

ηo
= 1, which is consistent

with Eq.(5.70).

Intuitively, the vorticity field is corresponding to the relative rotational motion

of fluid particles, heat will be produced in a viscous fluid. In this sense, vortices

seem like serving as a mechanism of dissipating energy. However, by checking the

expression for viscous dissipation rate Eq.(5.12), we find that

Ėvisc = −
∫

dV σ′ij∇ivj = −2η

∫
dV [(∇ivj)

2 − A2
ij] = −2η

∫
dV S2

ij, (5.75)
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in which Aij and Sij are the antisymmetric and symmetric part of ∇ivj respectively.

Aij = 1/2(∇ivj −∇jvi), which is recognized as the vorticity field. Sij = 1/2(∇ivj +

∇jvi). In the derivation, we use the fact that the product of anti-symmetric and

symmetric tensors of the second order is zero. Note that the velocity field is completely

determined by boundary conditions, so is the vorticity. From Eq.(5.75), we see that

only the symmetric part of ∇ivj contributes to viscous dissipation. And the vorticity,

which is the anti-symmetric part of ∇ivj, has no contribution to dissipation. It is

very similar to that the free energy of elasticity is independent of the anti-symmetric

part of ∇iuj, in which uj is the deformation field.

We will calculate the proportion of vorticity field by comparing the ratio of the

rotational component of the stream function (cx2I2(x)) to the full stream function

Eq.(5.51) in the inside fluid

ri ≡| cx2I2(x)

axI1(x) + cx2I2(x)
| (5.76)

and in the outside fluid

ro ≡ | dx2K2(x)

bxK1(x) + dx2K2(x)
|. (5.77)

Note that ri approaches zero as r → 0 by the expansion of In(x) in small x. ro

approaches one as r → ∞, since asymptotically Kn(x) ∼ ex as x → ∞ for n ∈ Z.

The plot of ri and ro versus r is given in Fig.5.4 for different values of ηi

ηo
. It shows that

in outside fluid the proportion of rotational component decreases with the increase of

its viscosity. In inside fluid the rotational flow is ignorable for high ηi

ηo
. It indicates that

the rotational flow mainly occurs in the less viscous fluid. In fact, the conclusion that

”vorticity favor less viscous fluid” is in agreement with the experimental observation

of flow past a cylinder for various Reynolds numbers [212]. In that experiment,

vortices appear behind the cylinder only if the Reynolds number, which is inversely

proportional to the viscosity, exceeds some threshold value, i.e., if the viscosity is

small enough.
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Figure 5.4: The ratio of the rotational part to the full of stream functions for inside (a) and outside

(b) fluids for different viscosity ratios. kr0 = 1/5. Green curve: ηi

ηo
= 0.001; red curve: ηi

ηo
= 1;

black curve: ηi

ηo
= 1000. It clearly shows that vorticity field locates in the less viscous fluid. Note

that the green curve in (b) is approaching one if the plot along r is extended.

The velocity field for ηi

ηo
= 1 plotted in Fig.5.3 can be understood by Fig.5.4. For

ηi

ηo
= 1, Fig.5.4 indicates that the vorticity field in outside fluid is much stronger than

that in inside fluid. Such a picture is vividly shown in Fig.5.3: we can see obvious

vortices in outside fluid. In addition, we also see from Fig.5.4 that the vorticity

field decays away from the boundary. It is consistent with Fig.5.3, which shows that

vortices only appear near the boundary.

5.3.3 The fastest growing mode via energy conservation

With the obtained velocity field, we can derive the shear dissipation rate by Eq.(5.12),

which is duplicated as

Ėvisc = −
∫

dV σ′ij∇ivj, (5.78)

σ′ij is the viscous stress tensor [81] and ∇ivj is the contravariant derivative of the

velocity field. Under the approximation of very thin torus, the dissipation rate in a

toroidal interface system can be approximated by that for the cylindrical interface.
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The expression for shear dissipation rate in cylindrical coordinates is (see Appendix)

Ėvisc = −2η

∫
dV [(∂rvr)

2 + (∂zvz)
2 +

1

2
(∂rvz + ∂zvr)

2 + (
vr

r
)2]. (5.79)

We can use Eq.(5.79) to calculate the dissipation rate per unit length along the

z-direction. Since the z-dependence of the integrand in Eq.(5.79) is like cos2(kz), the

integration with respect to z from z = 0 to z = λ is
∫ λ
0 cos2(kz)dz

λ
= 1/2. λ = 2π/k.

So the integration of z in Eq.(5.79) only provides a constant. By further integrating

over r from zero to one, we finally get an analytical expression for dissipation rate in

inside fluid per unit length as

Ėi = −2πηi(kr0)
4{[2c(c− a)(kr0)

2I2
0 (kr0)− 2kr0[a

2 − 3ac

+c2(3 + (kr0)
2)]I0(kr0)I1(kr0) + [(a− 2c)2 + c(kr0)

2(−2a + 3c)]I2
1 (kr0)}, (5.80)

in which a, b, c, d are given in Eq.(5.60-5.63). Since these four coefficients are pro-

portional to u̇k, Ėi is proportional to u̇2
k. The expression for the dissipation rate in

outside fluid Ėo can also be obtained, which is expressed in terms of the Meijer G

functions. It is much more complicated than the expression for Ėi. So we will solve

for the most unstable mode by numerical method except some limiting cases.

The rate of change of the surface energy for a toroidal interface is obtained by

taking the time derivative of Eq.(5.8)

Ėsurf = 2π2 R1

R20

(−1 +
k2R1R20√

(R1/R20)2 − 1
)uk(t)u̇k(t). (5.81)

In comparison, the rate of change of the surface energy for a cylindrical interface per

unit length is obtained by taking time derivative of Eq.(5.8)

Ėsurf = π(−1 + (kR20)
2)uk(t)u̇k(t). (5.82)

Notice that the rate of change of the surface energy is proportional to uku̇k and

the dissipation rate is proportional to u̇2
k. So the rate of change of the surface energy

and the dissipation rate can be formally written as

Ėsurf = σS(k)uku̇k (5.83)
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and

Ėvis = −[ηiVi(k) + ηoVo(k)]u̇2
k. (5.84)

By equating the rate of change of the surface energy Ėσ and the shear dissipation

rate Ėvis, we have

σS(k)uku̇k = [ηiVi(k) + ηoVo(k)]u̇2
k, (5.85)

from which the growth rate of the perturbation amplitude is obtained as

gr(k;
ηi

ηo

) =
u̇k(t)

uk(t)
=

σS(k)

ηiVi(k) + ηoVo(k)
. (5.86)

uk(t) is the perturbation amplitude of wavenumber k. The dispersion relation for

both cylindrical and toroidal interfaces can be written uniformly like Eq.(5.86). We

see from Eq.(5.86) that the effect of viscosity reduces the growth rate while the surface

tension accelerates the growth rate. The geometry of the interface is encoded in the

S(k) function. Eq.(5.86) also shows that the competition of shear dissipation and

surface energy leads to the fastest growing mode. In order to maximize the growth

rate of the perturbation amplitude, the system selects a mode that can reduce both

the surface energy and the dissipation rate as much as possible. We also see from

Eq.(5.86) that it is the ratio ηi

ηo
, instead of individual ηi or ηo, that determines the

most unstable mode.

In order to get a picture of how the denominator in Eq.(5.86) changes with k,

we give the plot of Vi and Vo versus k with ηi

ηo
= 1 in Fig.5.5. The existence of the

minimum points in the curves can be traced back to the competition of the (vr/r)
2

term and gradient terms (the first three terms in Eq.(5.79)). For smaller k mode,

the flow can propagate further, and the further the velocity field extends, the bigger

the (vr/r)
2 term in Eq.(5.79) can contribute to the dissipation and the smaller the

gradient term can contribute to it. Conversely, the gradient term would dominate.

These two terms cannot be minimized simultaneously. Their competition leads to the

minimum points in Fig.5.5.
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Figure 5.5: Vi(k) and Vo(k) versus k for inside (a) and outside (b) fluid. ηi

ηo
= 1. Minimum points

exist for these two functions.

In what follows, we will discuss some limiting cases. Taking ηi

ηo
= 1, Vi prefers

kR20 ≈ 1.5 and Vo prefers kR20 ≈ 1.8 for maximizing the growth rate. On the other

hand, by Eq.(5.82), the surface energy term in the numerator of Eq.(5.86) always

prefers k = 0 to guarantee the largest energy gain. Their mutual competition leads

to the fastest growing mode kmaxR20 = 0.56 (to be shown later), which is a number

between.

In the limit ηi

ηo
>> 1, the dissipation in the outside fluid can be ignored, and the

expressions for the coefficients a and c in Eq.(5.53,5.54) are simplified

a = −iu̇k
kR20I0(kR20)− I1(kR20)

(kR20)2I2
1 (kR20)

, (5.87)

and

c = iu̇k
1

(kR20)2I1(kR20)
. (5.88)

By Eq.(5.80) and Eq.(5.82), we get analytical expression for the growth rate

gr(k) =
σ

ηi

·
(1− (kR20)2R1

R20

√
(R/R20)2−1

)

2[1 + (kR20)2 − (kR20)2( I0(kR20)
I1(kR20)

)2]
(5.89)

=
σ

2ηi

·
(1− (kR20)2R1

R20

√
(R/R20)2−1

)

3 + (kR20)4/48 +O((kR20)6)
.
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The last equality is obtained by expanding ( I0(kR20)
I1(kR20)

)2 in small kR20. It clearly shows

that the mode kmax = 0 has the maximum growth rate in the limit ηi

ηo
>> 1. This

result is consistent with the expansion of ( I0(kR20)
I1(kR20)

)2 in terms of small kR20. Note that

Eq.(5.90), the expression for growth rate in the limit of ηi

ηo
>> 1, is exactly the same

as in Tomotika’s paper [202] (Eq.36 therein).

For ηi

ηo
<< 1, the dissipation in the inside fluid can be ignored, and the coefficients

in Eq.(5.55,5.56) are simplified as

b = iu̇k
kR20K0(kR20) + K1(kR20)

(kR20)2K2
1(kR20)

, (5.90)

and

d = −iu̇k
1

(kR20)2K1(kR20)
. (5.91)

We obtain an analytical expression for the dissipation rate in outside fluid per unit

length as

Ėo = −2πηo[1 + (kR20)
2 − (kR20)

2(
K0(kR20)

K1(kR20)
)2]. (5.92)

By Eq.(5.82,5.92), we get an analytical expression for the growth rate in the limit

ηi

ηo
<< 1

gr(k) =
σ

ηo

·
(1− (kR20)2R

R20

√
(R/R20)2−1

)

2[1 + (kR20)2 − (kR20)2(K0(kR20)
K1(kR20)

)2]
(5.93)

∼
(1− (kR20)2R

R20

√
(R/R20)2−1

)

1 + (kR20)2 + o((kR20)4)
.

The last equality is obtained by expanding (K0(kR20)
K1(kR20)

)2 in small kR20. It shows that

kR20 = 0 mode has the fastest growing rate. This result is also consistent with the

expansion in small kR20 since kmax = 0. Also Eq.(5.94) is exactly the same as in

Tomotika’s paper [202] (Eq.37 therein).

Now we study the general case for arbitrary values of ηi

ηo
. The plot of kmaxR20

versus ηi

ηo
is given in Fig.5.3.3. The blue curve is for the cylindrical case, while the



5.3 Rayleigh instability of thin toroidal droplets 100

red curve is for the toroidal case with R1/R20 = 10. They are almost overlapped,

because a torus with aspect ration 10 is a rather thin one. Fig.5.3.3 shows that

kmax = 0 in the two limiting cases ηi

ηo
>> 1 and ηi

ηo
<< 1. For ηi/ηo = 1/30 as in the

experiment [200], the plot of gr(k; ηi/ηo) versus kR20 is shown in Fig.5.7. It is found

that kmaxR20 = 0.5. This result is close to the experimental value kmaxR20 = 0.57.

For ηi/ηo = 1/30000, we predict kmaxR20 = 0.10, from which we get the number of

resultant spherical droplets n = kmaxR = 1, which agrees with experiment. Note

that this mode is distinguishable with the shrinkage mode although the number of

resultant spherical droplets is the same (see Fig.4 in [200]).
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Figure 5.6: The growth rate of perturbation amplitude versus wavenumber kR20. kR20 = 2π/λ.

The radius of the torus is R1/R20 = 10. ηi

ηo
= 1/30 as in experiment [200]. The competition

of dissipation rate and surface energy gives rise to the most unstable mode kR20 = 0.5, which is

comparable to experimental value kR20 = 0.57.

5.3.4 Discussion

In deriving for the dissipation rate, we essentially treat a thin toroidal liquid droplet

as a cylinder. The toroidal geometry, however, will restrict the possible modes by

imposing the quantization condition 2πR = nλ, where R is the radius of a ring. In

solving for the number of beads a toroidal droplet will finally break up, the value of

n = kmaxR cannot be guaranteed to be an integer unless the quantization condition
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Figure 5.7: The most unstable mode versus log(ηi/ηo)
10 . The theoretical predictions for the most

unstable modes are the dots in the figure, who are fit by smooth curves for cylindrical and toroidal

cases respectively. The blue curve: for cylindrical droplets. The red curve: for toroidal droplet with

R1/R20 = 10. They are almost overlapped. The curve for the case of cylindrical liquid droplet is

identical to Tomotika’s [202]. Note that for toroidal interface kR20 can only take discrete values,

since the allowed wavelengths of capillary waves on torus are quantized (see Eq.(5.5)).

is satisfied. The way for a toroidal droplet to meet the quantization condition is

to shrink a little bit before the Rayleigh instability occurs such that the value of n

reaches an integer. This effect is observed in the experiment[200] and will be discussed

in detail in the next chapter.

By comparing our result which is summarized in Fig.5.3.3 and that of Ref. [202]

(see Fig.2 based on Eq.(38) therein), it is found that these two results are exactly the

same. We will show the equivalence of the two approaches.

In order to obtain the velocity field, Ref. [202] and we start from different differ-

ential equations for the stream function. We start from Stokes equation without the

inertial term, while Tomotika keeps the inertial term in the Navier-Stokes equation,

although it is removed later. So we solve DDψ = 0 and Ref. [202] solves DD1ψ = 0

for stream function. D1 = D − inρ
µ

. Note that in [202], the stream function is named

as the current function.
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In fact, according to the scheme Ref. [202] adopts to solve for the most unstable

mode, the inertial term cannot be removed from the beginning, or else the number of

indefinite coefficients and that of boundary conditions becomes inconsistent.

In what follows, we will show that Tomotika’ solutions are essentially identical to

ours at the small density limit. By employing the commutation of the operators D

and D1, Tomotika solves the fourth order differential equation DD1ψ = 0 for its four

independent solutions, which are

{rI1(kr), rK1(kr), rI1(r

√
k2 + (

inρ

µ
)2), rK1(r

√
k2 + (

inρ

µ
)2)}. (5.94)

Because

D


 rI1(kr)

rK1(kr)


 = (∂2

r −
1

r
∂r − k2)


 rI1(kr)

rK1(kr)


 = 0,

[∂2
r −

1

r
∂r − (k2 + (

inρ

µ
)2)]


 rI1(r

√
k2 + ( inρ

µ
)2)

rK1(r
√

k2 + ( inρ
µ

)2)


 = 0.

Let ( inρ
µ

)2 ≡ α. Expanding the above equation with respect to α, we have

[∂2
r −

1

r
∂r − k2 − α]


 rI1(kr) + rI ′1(kr)αr

2k
+ o(α2)

rK1(kr) + rK ′
1(kr)αr

2k
+ o(α2)


 = 0.

By taking derivative with respect to α, and then let α to be zero, we have

(∂2
r −

1

r
∂r − k2)


 r2I ′1(kr)

r2K ′
1(kr)


 =


 2krI1(kr)

2krK1(kr)


 .

If we act the operator D on the RHS of the above equation, it becomes zero. So under

ρ → 0 limit the linear superposition {r2I ′1(kr), r2K ′
1(kr)} can satisfy the differential

equation DD1ψ = 0. Therefore, the solution to DD1ψ = 0 under the limit ρ → 0 is
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found to be the linear combination of {rI1(kr), rK1(kr), r2I ′1(kr), r2K ′
1(kr)}. In ad-

dition, by applying the recurrence relation of the Modified Bessel function Eq.(5.48),

we have

 x2I ′1(x)

x2K ′
1(x)


 =


 x2I2(kr) + xI1(x)

x2K2(kr) + xK1(x)


 .

Therefore, under the limit ρ → 0, the solution for stream function found by Tomotika

is identical to ours.

Although both Tomotika and we can predict exactly the same most unstable

mode for a cylindrical system, our approach has its advantage. For example, in

our representation for the stream function, we can distinguish its rotational and

irrotational components. And by the expression for the growth rate via the energy

conservation, we can clearly see how various processes (the change of the interfacial

surface and the dissipation in bulk fluids) compete to give rise to the most unstable

mode.

The most severe problem in Tomotika’s paper may be the action of taking limit

ρ → 0 (from Eq.(33) to (34) in [202]). Problems emerge if we take such a limit on

the stream function.

The stream functions for inside and outside fluid are given in Eq.(16,19) in [202].

They are copied as

ψin = [A1rI1(kr) + A2rI1(k
′
1r)]e

i(nt+kz), (5.95)

and

ψout = [B1rK1(kr) + B2rK1(k1r)]e
i(nt+kz), (5.96)

in which k2
1 = k2 + inρ

µ
, k′21 = k2 + inρ′

µ′ . Note that µ′ ≡ ηi and µ ≡ ηo. ρ and ρ′ are

for outside and inside fluid respectively. If we set ρ, ρ′ to be zero, then the stream

functions for inside and outside fluid in Tomotika’s paper becomes

ψin = A1rI1(kr) + A2rI1(k
′
1r) = ArI1(kr), (5.97)
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and

ψout = B1rK1(kr) + B2rK1(k1r) = BrK1(kr), (5.98)

in which A = A1 + A2 and B = B1 + B2. The z and t dependence of stream function

is ignored. On the other hand, under the limit ρ, ρ′ → 0 the boundary condition for

continuous velocity (the first two equations in Eq.31 in Tomotika’s paper) becomes

AI1(ka)−BK1(ka) = 0, (5.99)

and

AI0(ka) + BK0(ka) = 0. (5.100)

The solution for these two equation is A = 0, B = 0. It means that if ρ, ρ′ = 0, then

the stream function vanishes. In fact, the leading term in stream function is linear

in density which can be seen from Eq.(5.97,5.98) by Taylor expanding I1(k
′
1r) and

K1(k1r) in terms of the density.

Another problem is that the vorticity field is greatly suppressed in [202] in the

limit ρ, ρ′ → 0. It is shown as follows. The vorticity fields calculated from the stream

functions Eq.(5.95,5.96) are

Ωin =
1

r
Dψin = 2A2kI1(kr)δk′, (5.101)

and

Ωout =
1

r
Dψout = 0, (5.102)

in which δk′ = inρ′
2kµ′ , and it is up to the linear term of the density. If we input the

experimental values, δk′ = inρ′
2kµ′ ∼ 10−6 [200]. By comparing the vorticity field in

inside fluid Eq.(5.101) in [202] and that from our method denoted as Ω, we have

Ωin/Ω ∼ δk′ ∼ 10−6. (5.103)

Therefore, the effect of vorticity is greatly suppressed in [202].
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5.4 Rayleigh instability of fat toroidal droplets

The unstable modes of the Rayleigh instability of a cylindrical liquid column can be

found by free energy argument [8]. However, we cannot find the most unstable mode

from the pure free energy argument. We will have to resort to the hydrodynamics

of the bulk fluid to identify the most unstable mode by applying either the force

balance condition [202] or energy conservation. In both schemes, we get both the most

unstable mode and the velocity field in bulk fluids. However, for fat toroidal droplets,

no analytical solution is available for the Stokes equation until now. If we only concern

about identifying the most unstable mode, can we simplify the calculation without

solving for the velocity field? In this section, we propose a method in terms of the

Laplace pressure to identify the most unstable Rayleigh mode of fat toroidal droplets.

The Rayleigh instability can be understood in terms of the Laplace pressure.

Across a liquid interface with surface tension σ, the pressure difference ∆P = 2σH,

where the mean curvature 2H = 1
R1

+ 1
R1

. R1 and R2 are the two radii of principal

curvatures. On a cylindrical liquid droplet, a perturbation uk induces a distribution

of the Laplace pressure P = P0 + ∆P , where the pressure outside is assumed to be a

constant P0. For a perturbation of long wavelength, the mean curvature is dominated

by the local radius of the cylinder. The pressure where the local radius of cylinder

is minimum (valleys of the perturbation) is bigger than the pressure where the local

radius is maximum (peaks of the perturbation). The pressure gradient drives the

fluid to flow from the thin section to the thick section of the cylindrical droplet,

amplifying the original perturbation. Similar analysis indicates that a perturbation

of short wavelength can be diminished by the induced pressure gradient.

Since the pressure drives the flow, we propose a conjecture that the variation of

the Laplace pressure near a peak of the perturbation should be maximum for the most

unstable mode. We check this conjecture on a cylindrical liquid column. In the linear
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regime, we pick up a mode k from the perturbation

R2(z) = a + uk cos(kz). (5.104)

The mean curvature can be derived as

H =
1

2a
− (1− x2) cos(kz)

2a2
uk +O(u2

k), (5.105)

where x = ka. The difference of the Laplace pressure at the peak z = 0 and a point

nearby at z = δz is

δp = σuk
(1− x2)

2a2

k2δz2

2
+O(u2

k) ∝ x2(1− x2). (5.106)

For an unstable mode, δp must be positive to drive the flow towards the peak thinning

the neck. It is equivalent to |x| < 1, a same result from the free energy argument.

The plot of δp vs ka is in Fig.5.8. We suggest that the most unstable mode is the one

with the maximum pressure variation near the peak δp. It can be easily identified

from Eq.(5.106) as

xc =
√

2/2 ≈ 0.71. (5.107)

It is close to the result by Rayleigh x = 0.69 by solving the NS equation[201]. Thus

we identify the most unstable mode by only taking into consideration the shape of

interfaces. The simplicity of our method should come from the neglect of solving for

the velocity field.

We will use this method to find the most unstable Rayleigh mode of fat toroidal

liquid droplet. The form of perturbation is assumed to be

R2(θ) = a + uk cos(nθ), (5.108)

where n is the number of beads the toroidal liquid droplet will finally break up. After

some calculation, we get the expression for the difference of the Laplace pressure near

the peak of a perturbed solid torus as

δp = p(θ = δθ)− p(θ = 0) ∝ n2(1− n2 + φ2 + 2φ cos α + cos(2α)), (5.109)
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Figure 5.8: The Laplace pressure drop versus ka. The most unstable mode occurs at the peaks.

The region of |x| > 1 is stable.

where φ = R1/a is the aspect ratio of the torus. Considering that a Rayleigh in-

stability mode must be accommodated by the inner circle of a torus with radius

2π(R1−R2), we specify α = π in Eq.(5.109). By taking derivative of Eq.(5.109) with

respect to n, we have the most unstable mode

nc =

√
(φ− 1)2 + 1

2
. (5.110)

As φ →∞, nc → φ/
√

2, which is the cylindrical case. (nc)min = 1 when φ = 2. Note

that nc must be an integer due to the periodic condition of toroidal geometry. φ will

be adjusted to produce an integer nc by the shrinking mode that is always there for

both fat and thin torus. The shrinking mode will be discussed in the next chapter.

Note that by inserting the instability condition δp > 0 into Eq.(5.109), we have

φ >
√

n2 − 1 + 1 ≥ 1, (5.111)

since n ≥ 1 for Rayleigh instability. It is compatible with the geometric constraint

φ ≥ 1.
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Appendix 5.A Velocity field in flat interface sys-

tem

We will solve the biharmonic equation of stream function Eq.(6.41) for the velocity

field in the flat interface system.

Consider two liquids separated by a flat interface at z = 0. The slightly perturbed

interface is characterized by u(x, t) =
∑

k uk(t)e
ikx. The motion of the interface

induces flow in the bulk fluids. Due to the symmetry of the system, the y component

of the velocity field vanishes, and the velocity field is independent of y. The ansatz

for the vector potential is

~ψ = φ(z)eikxŷ. (5.112)

φ(z) is the stream function. Obviously, ∇ · ~ψ = 0. By substituting Eq.(5.112) into

the biharmonic equation of stream function Eq.(6.41), we have

D2
fφ(z) = 0, (5.113)

in which Df = ∂2
z − k2. The four linearly independent solutions to the fourth order

differential equation Eq.(5.113) can be easily found.

In the upper half fluid z > 0, only two of them are relevant due to boundary

conditions at infinity:

φ1(z) = k−1e−kz, φ2(z) = ze−kz. (5.114)

φ1(z) is corresponding to the irrotational type of solution, while φ2(z) is the rotational

type.

The velocity field in the bulk fluid can be obtained by solving ~v = ∇× ~ψ. In the

upper half fluid, the irrotational component of the velocity field is

v1x = e−kz+ikx, v1z = ie−kz+ikx, (5.115)

and the rotational component is

v2x = (−1 + kz)e−kz+ikx, v2z = ikze−kz+ikx. (5.116)



5.A Velocity field in flat interface system 109

So the complete velocity field in the upper half fluid is the linear combination of these

two components:

~v = C1~v1 + C2~v2. (5.117)

Similarly, we can derive the velocity field in the lower half fluid as

~v′ = C ′
1~v
′
1 + C ′

2~v
′
2, (5.118)

in which ~v′ is given by

v′1x = −ekz+ikx, v′1z = iekz+ikx, (5.119)

v′2x = −(1 + kz)ekz+ikx, v′2z = ikzekz+ikx. (5.120)

We can fix the four indefinite coefficients C1, C2, C
′
1 and C ′

2 by imposing the fol-

lowing boundary conditions:

vz(x, 0, t) = v′z(x, 0, t), vx(x, 0, t) = v′x(x, 0, t), (5.121)

and

η(∂xvz + ∂zvx)|z=0 = η′(∂xv
′
z + ∂zv

′
x)|z=0. (5.122)

The first two boundary conditions represent the continuity of velocities, and the last

boundary condition is the continuity of tangential stress across the boundary. Note

that in Cartesian coordinates, the stress tensor is given by σij = −pδij +η(∂ivj +∂jvi).

By matching the velocity field Eq.(5.117,5.118) to these boundary conditions, we have

C1 = C2 = C ′
1 = −C ′

2. (5.123)

It is found that the boundary conditions impose so strong constraint on the ve-

locity field that the tangential velocity vanishes on the interface. In addition, the

tangential stress also vanishes on the interface. On the basis of adiabatic continuity,

it is expected that these two features of flat interface also applies to the case of curved

interface when considering the short wavelength behavior.
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Appendix 5.B Derivation of the dissipation rate in

cylindrical coordinates

The general expression for shear dissipation rate is [81]

Ėvisc = −
∫

dV σ′ij∇ivj, (5.124)

which is an integral about the gradient of velocity field. σ′ij is the viscous stress. We

will derive the expression for shear dissipation rate in cylindrical coordinates.

We work in the non-unit basis, i.e., {~er, ~eθ, ~ez}. ~ei ≡ ∂~x
∂ui . Ref. [81] gives expres-

sions for the viscous stress tensor in cylindrical coordinates under the unit basis, i.e.,

{êr, êθ, êz}. The expressions for viscous stress in [81] can be converted into the ones

in the non-unit basis. They are

σ′θθ = 2η(∂θvθ + rvr), (5.125)

σ′rz = η(∂rvz + ∂zvr), (5.126)

σ′rr = 2η∂rvr, (5.127)

σ′zz = 2η∂zvz. (5.128)

In the system concerned, vθ = 0 and the velocity field is independent of θ, so both

σ′zθ and σ′rθ vanish. The components σ′rr, σ′rz and σ′zz in the non-unit basis are the

same as in [81], because grr = gzz = 1 and gθθ = r2.

∇ivj can also be expressed in cylindrical coordinates. In general,

∇ivj = gligmj∇lvm = gligmj(∂lvm − Γk
lmvk). (5.129)

The components of ~v are defined by ~v = vi~e
i = vi~ei. Note that the components of

~v here are different from those in [81], which are expressed in the unit basis. The



5.B Derivation of the dissipation rate in cylindrical coordinates 111

Christoffel symbol is Γm
ij = 1

2
gkm[(∂jgik)+(∂igjk)−(∂kgij)]. The non-zero components

of the Christoffel symbol are

Γr
θz = −r, (5.130)

Γθ
rθ = Γθ

θr = 1/r. (5.131)

Finally we obtain the expression for the shear dissipate rate in cylindrical coordi-

nates:

Ėvisc = −
∫

dV σ′ij∇ivj = −2η

∫
dV [(∂rvr)

2 + (∂zvz)
2 (5.132)

+
1

2
(∂rvz + ∂zvr)

2 + (
vr

r
)2].



Chapter 6

The instabilities of toroidal

droplets. II: Shrinking instability

In addition to the Rayleigh instabilities akin to those of a thin toroidal droplet there

is a shrinking instability that is unique to the topology of the torus and dominates

in the limit that the aspect ratio is near one (fat tori)[200]. Unlike the Rayleigh

instability which is due to external perturbations, the shrinking mode of toroidal

liquid droplet is a pure geometric, and thus an intrinsic effect. It can be seen by

checking the variation of the free energy in the shrinking process:

dF

dR1

= 2π2σR2 > 0, (6.1)

where R1 and R2 are the two radii of a torus as in Fig.5.1. Eq.(6.1) shows that

toroidal liquid droplets shrink to reduce the free energy and the shrinking mode

exists for toroidal liquid droplet of arbitrary aspect ratio. It explains the shrinking

of a thin toroidal droplet before the Rayleigh instability occurs as discussed in the

previous chapter. Although this static analysis reveals the shrinking mode, the free

energy alone does not provide a complete description of the system. In particular,

determining the shrinking rate requires a study of droplet hydrodynamics.

In this chapter, we will study the shrinking instability in the Stokes flow regime.

We first find an analytic expression for the pressure distribution inside the droplet.



6.1 Pressure driving the flow 113

We then determine the velocity field in the bulk fluid, in the Stokes flow regime, by

solving the biharmonic equation for the stream function. The flow pattern in the

external fluid is analyzed qualitatively by exploiting symmetries. This elucidates the

detailed nature of the shrinking mode and the swelling of the cross-section following

from incompressibility. Finally the shrinking rate of fat toroidal droplets is derived

by energy conservation.

6.1 Pressure driving the flow

6.1.1 Laplace pressure

The distribution of Laplace pressure on the interface between the inner and outer

fluids

p− p0 = σH, (6.2)

where H is the mean curvature H = R1+2R2 cos α
R2(R1+R2 cos α)

. For simplicity, we first consider the

external pressure p0 as constant. The Laplace pressure drop from the exterior (α = 0)

to the interior (α = π) of the torus is given by P (α = 0) − P (α = π) = 2σ 1
R2

φ
φ2−1

and is a measure of the asymmetry of the torus. Since φ > 1, the Laplace pressure

on the exterior of the toroid is always bigger than on the interior. One also sees that

the asymmetry is more pronounced for a fat torus with aspect ratio φ approaching

one. In the limit φ → ∞, a toroid approaches a solid cylinder and the asymmetry

as well as the shrinking mode disappear. The presence of the rotational symmetry

about the cross section of a cylindrical liquid droplet prohibits the shrinking mode.

Note that for the opposite case of constant pressure in the inner fluid, the pressure

in the outer fluid will fall from the interior to the exterior of the torus. The outer

fluid will therefore flow outward and the inner fluid will correspondingly flow inward,

shrinking the droplet. Shrinking is thus a universal feature of one toroidal fluid inside

another.
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6.1.2 Pressure in bulk fluid

The typical speed in the system concerned is much smaller than that of sound, so we

regard the fluid as incompressible [81], i.e.,

∇ · ~v = −∂tρ = 0. (6.3)

Taking the divergence of the Navier-Stokes equation for an incompressible fluid shows

that the pressure must be harmonic

∆p(r, α) = 0 . (6.4)

The boundary condition is given by the distribution of Laplace pressure on the in-

terface between the inner and outer fluids. The problem of solving for the pressure

distribution in the bulk fluid is then reduced to solving Laplace’s equation, Eq.(6.4),

with the specified boundary condition. Due to the rotational symmetry, the pres-

sure is independent of θ, the angle about z-axis. Laplace’s equation for the pressure

Eq.(6.4) separates in the coordinates {ρ, ϕ, θ}[214, 215] defined by

~x(ρ, ϕ, θ) =




a sinh ρ cos θ
cosh ρ−cos ϕ

a sinh ρ sin θ
cosh ρ−cos ϕ

a sin ϕ
cosh ρ−cos ϕ


 ,

where a = r sinh ρ. {ϕ, θ} characterizes a conformally flat 2-dim surface. {ρ, ϕ, θ}
are defined as follows: θ is the angle around the ring; ϕ is defined via

cos α =
φ(r) cos ϕ− 1

φ(r)− cos ϕ
(6.5)

and

cos ϕ =
φ(r) cos α + 1

φ(r) + cos α
, (6.6)

where φ(r) is the aspect ratio R1/r. ϕ ∈ [0, 2π]. ρ is defined as

cosh ρ = φ(r), (6.7)
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such that ρ = ln(φ+
√

φ2 − 1). In the new toroidal coordinates {ρ, ϕ, θ}, by inserting

p = p1

√
cosh ρ− cos ϕ (6.8)

into the Laplace’s equation for pressure, we have the general solution [215]:

p =
√

cosh ρ− cos ϕ
∑

p,q∈Z
{P q

p−1/2(cosh ρ), Qq
p−1/2(cosh ρ)} (6.9)

×{sin pϕ, cos pϕ} × {sin qθ, cos qθ}.

The expressions in the curly bracket denotes the linear combination. P q
p−1/2(x) and

Qq
p−1/2(x) are the Associated Legendre functions of the first and the second kinds

respectively. The parameters p and q are integers due to the periodicity of system

with respect to ϕ and θ. Note that another ansatz for pressure is [216]

p = p2/

√
a sinh ρ

cosh ρ− cos ϕ
. (6.10)

This form of ansatz is convenient for situations where the boundary conditions do

not involve ϕ. In our system, the boundary condition is ϕ-dependent, so we adopt

the ansatz Eq.(6.8). In what follows, we will identify the particular solution to our

problem from the general solution by imposing the constraints of symmetry, boundary

conditions and asymptotic behaviors near the reference circle (the central circle of

torus).

Due to the rotational symmetry around the torus, we can immediately set q = 0.

The Associated Legendre functions degenerate to Legendre functions. The reflection

symmetry of torus selects the cos pϕ in the general solution. Physically it is required

that the pressure near the reference circle must be finite. In order to satisfy this

asymptotic condition, we will examine the asymptotic behavior of Legendre functions

as r → 0 or equivalently ρ → ∞ by Eq.(6.7). As x → ∞ only
√

xRe[Qp−1/2(x)]

(p ∈ Z) converges. It converges to π/
√

2 if p = 0 and zero if p 6= 0. And we can

exclude the Legendre function of the first kind from the general solution, because it

diverges as ρ →∞.
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Figure 6.1: Determine the values of Ap in Eq.(6.12) by fitting the boundary condition f(ϕ) in

Eq.(6.13). The black solid curve is f(ϕ), which is the boundary condition. The dashed curve is for

p1 defined in Eq.(6.8).

By taking into consideration of the above constraints, we finally obtain the phys-

ically acceptable solution:

p(ρ, ϕ) =
√

cosh ρ− cos ϕ
∑

p∈Z
αp Re[Qp−1/2(cosh ρ)] cos(pϕ)

≡
√

cosh ρ− cos ϕ[
A0(ρ)

2
+

∑

p6=0

Ap(ρ) cos(pϕ)]. (6.11)

This form of solution satisfies the Laplace’s equation, and both the rotational and

reflection symmetries of system, and it guarantees that the pressure near the reference

circle is finite. We proceed to determine the coefficients Ap by fitting the boundary

condition Eq.(6.2). On the boundary (r = R2),

A0

2
+

∑

p6=0

Ap cos(pϕ) = f(ϕ), (6.12)

in which f(ϕ) is related to the mean curvature:

f(ϕ) =
c1 + c2 cos ϕ√
φ(R2)− cos ϕ

. (6.13)

So

πA0 =

∫ 2π

0

f(ϕ)dϕ. (6.14)



6.1 Pressure driving the flow 117

πAp =

∫ 2π

0

f(ϕ) cos(pϕ)dϕ. (6.15)

Note that both c1 and c2 have contribution to A0 (i.e., α0) due to the denominator

in Eq.(6.13).

0 Π 2 Π
-2

-1

0

1

2

ΑHradL

p
-

p 0
HPaL

Figure 6.2: The pressure p(r, α) vs. angle α at different radial distances away from the reference

circle for R1 = 5 mm and aspect ratio φ = R1/R2 = 1.5. The solid black curve is the pressure

distribution on the boundary p = σH. Green curve: r = R1/1.5 (boundary). Blue curve: r = R1/3.

Red curve: r = R1/10. Dashed Black curve: r = R1/100. The green curve fits the exact pressure

on the boundary very well.

Numerical calculation shows that cutting the value of p at pmax = 3 is sufficient

to fit the boundary condition as shown in Fig.6.1). The values of parameters are:

φ(R2) = 1.5, σ = 4× 10−3 N/m, and R1 = 5 mm. σ and R1 are the experimental val-

ues [200]. The values of Ap with p from zero to 3 are: {0.94597, 1.4671, 0.30283, 0.089182}.
The values of αp can be calculated from the values of Ap:

α0 =
A0/2

Re[Q0−1/2(φ(R2) = 1.5)]
, (6.16)

and for p = 1, 2, 3,

αp =
Ap

Re[Qp−1/2(φ(R2) = 1.5)]
. (6.17)
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The pressure distribution is finally obtained

p(ρ, ϕ) =
√

cosh ρ− cos ϕ[α0 Re[Q0−1/2(cosh ρ)] (6.18)

+
3∑

p=1

αp Re[Qp−1/2(cosh ρ)] cos(pϕ)],

where α0 = 0.23427, α1 = 3.7315, α2 = 2.6709, α3 = 2.4628. Note that we only

take positive p because cos(pϕ) = cos(−pϕ) and Re[Qp−1/2(z)] = Re[Q−p−1/2(z)]. By

expressing Eq.(6.6, 6.7) and Eq.(6.19) in terms of r and α, we plot the distribution

of the pressure over the cross section of a toroidal droplet in Fig.6.2. The pressure

clearly drops from the exterior (α = 0, 2π) to the interior (α = π). This pressure

gradient drives the fluid towards the center of the toroid. As r decreases the pressure

distribution becomes more isotropic (α-independent). The symmetric function curve

about α = π in Fig.6.2 is due to the reflection symmetry of the system.

Now we will discuss the pressure distribution near the reference circle. It has been

pointed out that only the p = 0 mode in Eq.(6.11) does not vanish as r → 0, i.e.,

only this mode contributes to the pressure on the reference circle. This enables us to

study the behavior of the fluid near the reference circle analytically.

The pressure near the reference circle has the asymptotic form

p(r → 0) =
√

cosh ρ− cos ϕ [α0 Re[Q0−1/2(cosh ρ)]. (6.19)

α0 is determined by the boundary condition. By inserting Eq.(6.19) into the Stokes

equation

−∇× ~Ω = 4~v =
1

η
∇p, (6.20)

we have

∂αΩθ = −
√

g

η
∂rp(ρ, α) = −

√
g

η
∂rp(ρ, α)∂rρ =

α0πr

2
√

2η
cos α, (6.21)

and

∂rΩθ =

√
g

ηR2
∂αp(ρ, α) =

α0π

2
√

2η
sin α, (6.22)
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in which
√

g = r(R1 + r cos α). In the last equalities of the above two equations, the

limit r → 0 is imposed. The solution for vorticity can be found:

Ωθ =
α0πr

2
√

2η
sin α + c, (6.23)

in which c is a constant. The reflection symmetry requires c = 0. Therefore, vorticity

vanishes near the reference circle. So a potential theory is sufficient to describe the

behavior of fluid in this region. Furthermore, since r < R2 << R1, we can work in

cylindrical coordinates {u1 = α, u2 = z = R1θ, u
3 = r}, after some calculation we

have

Ω2 =
g22√

g
[∂3(− g11√

g
∂3ψ2)− ∂1(

g33√
g
∂1ψ2)], (6.24)

in which the stream function ~ψ = ψ2~e
2 and the vorticity ~Ω = Ω2~e

2. By letting Ω2 = 0

in the region of r ∼ 0, we have

∂rψ2 + R∂2
rψ2 +

1

r
∂2

αψ2 = 0. (6.25)

Solving it by variable separation, we have the physically acceptable solution

ψ2 =
∑

k∈Z+

ckr
keikα. (6.26)

The velocity field (in the unit basis) near the reference circle can thus derived via.

~v = ∇× ~ψ as

vα = −
∑

k∈Z+

ckkrk−1eikα, (6.27)

and

vr =
∑

k∈Z+

ikckr
k−1eikα. (6.28)

By taking into the physical consideration that the velocity field near the reference

circle should be finite and non-vanishing and the reflection symmetry for vr and the

mirror symmetry for vα, we finally have

vα = c sin α, (6.29)
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and

vr = −c cos α. (6.30)

In the {x, z} coordinates (see Fig.5.1), the velocity field near the reference circle is

expressed as

vx = vα sin α− vr cos α = c (6.31)

and

vz = vα cos α + vr sin α = 0. (6.32)

Therefore, the velocity field near the reference circle is uniform towards the center of

torus.

6.2 Velocity field

We now turn to the velocity distribution in a viscous toroidal liquid droplet. The

complete velocity field can be obtained by solving the biharmonic vectorial equation

∆2 ~ψ = 0. (6.33)

Due to the rotational symmetry of the torus system, only the θ-direction component

of the vector potential ~ψ does not vanish, i.e., ~ψ = ψθ~e
θ. Without confusion with ~ψ,

we define the stream function ψ ≡ ψθ. The vectorial biharmonic equation Eq.(6.33)

is simplified to a scalar differential equation which is expressed in the new toroidal

coordinates {ρ, ϕ, θ} [217]

E2(E2ψ) = 0, (6.34)

where ψ, the stream function, is the only non-zero component ψθ of the vector po-

tential ~ψ and the second-order partial differential operator E is given by

E2 = wh2[∂ρ(
1

w
∂ρ) + ∂ϕ(

1

w
∂ϕ)], (6.35)
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w =
a sinh(ρ)

cosh(ρ)− cos(ϕ)
, (6.36)

and

h =
cosh(ρ)− cos(ϕ)

a
. (6.37)

The general solution to Eq.(6.34) is found by variables separation [217]

ψ =
a sinh ρ

(cosh ρ− cos ϕ)3/2

∑

ν∈Z
{cos (νϕ), sin (νϕ)} {P 1

ν−3/2(cosh ρ), (6.38)

P 1
ν+1/2(cosh ρ), Q1

ν−3/2(cosh ρ), Q1
ν+1/2(cosh ρ)}.

P µ
ν (x) and Qµ

ν (x) are the Associated Legendre functions of the first and second kind.

For ν = 0, the four independent solutions to the fourth order differential equation

Eq.(6.34) degenerate to two, since P 1
−3/2(x) = P 1

1/2(x) and Q1
−3/2(x) = Q1

1/2(x). In

addition, because

P 1
−ν+1/2(x) = P 1

ν−3/2(x), (6.39)

and

Q1
ν+1/2(x) = Q1

−ν−3/2(x) (6.40)

for ν ∈ Z, we only need to consider Q1
ν−3/2(x) and P 1

ν+1/2(x) with ν ∈ Z.

In what follows, we construct a physically acceptable solution inside a toroidal

liquid droplet.

First of all, by making use of the reflection symmetry of vorticity field, which is

related to stream function via

~Ω ≡ ∇× ~v = ∇× (∇× ~ψ) = −∆~ψ, (6.41)

we should select the sin νϕ from the general solution and exclude the ν = 0 mode.

It is also required that approaching the reference circle (ρ →∞) vx → a finite value

and vz → 0. So we will examine the asymptotic behavior of both vx and vz, which

can be derived from the stream function ψ by

vρ = − gρρ√
g
∂ϕψ, (6.42)
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vϕ =
gϕϕ√

g
∂ρψ, (6.43)

vx = vρg
ρρ~eρ · ~ex + vϕgϕϕ~eϕ · ~ex, (6.44)

vz = vρg
ρρ~eρ · ~ez + vϕgϕϕ~eϕ · ~ez. (6.45)

After some calculation, it is found that only the Associated Legendre function of

the second kind in the general solution is acceptable, and P 1
ν+1/2(r) can be excluded

since it leads to divergence of velocity field near the reference circle. Imposing the

physical requirements that approaching the reference circle vx tends to a finite value

and vz → 0 (reflection symmetry) yields the complete solution

ψ(ρ, ϕ) =
a sinh ρ

(cosh ρ− cos ϕ)3/2

+∞∑
ν=−∞

cν sin(νϕ)Q1
ν−3/2(cosh ρ) (6.46)

Note that vx → − πc1
2
√

2
and vz → 0 as ρ → ∞ (r → 0). Thus only the ν = 1 mode

contributes to the flow near the reference circle. The coefficients cν in Eq.(6.46) can

be determined by matching to the velocity field on the interface. Assuming that high

viscosity fixes the fluid particles on the interface to move with the interface as it

shrinks, the boundary conditions are found to be vx0 = V (1− x0

2 R1
) and vz0 = −V z0

2 R1
,

where x0 and z0 denote spatial points on the boundary and V ≡ dR1/dt. The point

(x = 0, z = 0) is the center of the cross section.

We will show that the ν = 1 mode is sufficient to fit this boundary condition. Since

the solution for stream function Eq.(6.46) is expressed in the {ϕ, ρ} coordinates, for

comparison we also express the boundary condition in terms of vϕ and vρ via. the

transformation relation:

vρ = vx~eρ · ~ex + vz~eρ · ~ez, (6.47)

and

vϕ = vx~eϕ · ~ex + vz~eϕ · ~ez. (6.48)
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Figure 6.3: Determine the coefficient Cν in Eq.(6.46) by fitting the boundary condition. The solid

curves are the velocity field on the boundary, and the dashed curves are the velocity field derived

from the stream function with Cν/V = −4. ν = 1. R1 = 5 mm, R20 = 2 mm.

On the other hand, the velocity field can be derived from the stream function Eq.(6.46)

as

vρ = −
∑

ν

Cν
cosh ρ− cos ϕ

sinh ρ
[− 3 sinh ρ sin ϕ

2(cosh ρ− cos ϕ)5/2
(sin νϕ)

+
sinh ρ

(cosh ρ− cos ϕ)3/2
(ν cos νϕ) ] Q1

v−3/2(cosh ρ), (6.49)

and

vϕ =
∑

ν

Cν
cosh ρ− cos ϕ

sinh ρ
[−−5 + 4 cos ϕ cosh ρ + cosh 2ρ

4(cosh ρ− cos ϕ)5/2
Q1

v−3/2(cosh ρ)

+
sinh ρ

(cosh ρ− cos ϕ)3/2
∂ρQ

1
v−3/2(cosh ρ)] sin νϕ.(6.50)

We numerically determine the indefinite coefficients Cν in Eq.(6.46).

We plot the mode ν of vϕ and vρ in Eq.(6.49) on the boundary (ρ = ρ0 = R1/R2)

versus ϕ in Fig.6.3 (the dashed curve). By comparing them to the boundary condition

(the solid curve in Fig.6.3), we can determine the value of Cν/V as well as the mode ν.

It is found that when ν = 1, Cν/V = −4, the boundary condition can be well fitted.

In Fig.6.3, the values of R1 and R2 are specified. In the shrinking process, both R1

and R2 change. In order to satisfy the boundary condition in the whole process,
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the value of Cν/V need to change correspondingly. It means that the velocity field

inside toroidal droplet, which is specified by Cν , is changing in the shrinking process.

However, numerical experiments show that the ν = 1 is always the principal one; we

can always change the value of Cν/V instead of that of ν to fit the boundary condition

well. Note that the ν = 1 mode is the only mode contributing to the flow near the

reference circle.

Figure 6.4: The velocity field inside and outside a cross-section of a toroidal liquid droplet. The

dashed semi-circle is the interface of two distinct fluids. The velocity field inside the droplet is

calculated by solving the biharmonic equation. The external flow pattern is schematically plotted

by imposing boundary conditions and exploiting symmetry. The mode number ν = 1, R1 = 5 mm

and R20 = 2 mm.
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Figure 6.5: The velocity field inside the toroidal droplet of Fig.6.4 in a comoving reference frame

shrinking with the droplet. The swelling of the cross section is readily inferred.

We may solve for the velocity field in the external fluid in the same way as we do
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for inside toroidal droplet. However, the toroidal coordinates {ρ, ϕ, θ} cannot cover

the whole space outside a toroid. For example, in region of r > R1, we have

R1

r
= cosh ρ < 1, (6.51)

in which ρ is not well defined in the real domain. In addition, not all points on the

circle with r = R1 cannot be distinguished (except the center of torus locating at

α = 0) by the toroidal coordinates, because

cos ϕ =
r cos α + 1

r + cos α
→ cos α + 1

1 + cos α
= 1, (6.52)

as r → 1. All these points are described by a single point in the toroidal coordinates

{ρ = 0, ϕ = 0}. For the center of torus, cos ϕ = (−r + 1)/(r − 1) = −1, so it

is described by {ρ = 0, ϕ = π}. Therefore, we turn to qualitative analysis of the

external velocity field based on symmetry and the boundary condition. The external

flow must satisfy the reflection and rotational symmetries and it should continuously

connect the velocity field inside. The schematic plot of external flow is given in

Fig.6.4. The velocity on x and z axis is parallel to them due to reflection symmetry

about the x-y plane and the rotational symmetry about the z-axis, respectively. The

velocity vanishes at the O point. From Fig.6.4 we see that the fluid in the hole of

toroid is squeezed out in the shrinking process.

The velocity field inside the droplet in the laboratory frame is plotted in Fig.6.4.

The shrinking of the droplet is clearly indicated by the inward directed flow inside

the droplet. One also sees that outer fluid within the toroidal hole is squeezed out.

Further insight is provided by plotting the velocity field (see Fig.6.5) inside the droplet

in a reference frame comoving with the shrinking of the droplet. The swelling of the

cross section resulting from volume conservation is clearly visible.

The vorticity field, ~Ω ≡ ∇× ~v = −∆~ψ is plotted in Fig.6.6 which shows its only

non-zero component Ωθ as a function of r and α respectively. Fig.6.6(a) shows that

the vorticity field is only significant near the boundary – it decays rapidly as one

approaches the reference circle. Fig.6.6(b) shows Ωθ versus α for ν ∈ [−3, 3]. The
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Figure 6.6: (a) The vorticity Ωθ(r)/Ωθ(r = R) versus r. Parameters: ν = 1, c1 = 1, α = 1 rad,

R1 = 5 mm and R = 4mm . The vorticity field falls to zero at the reference circle. (b) Ωθ versus

angle α for modes ν in the range (−3, 3). The vorticity Ωθ is rescaled to show different modes in the

same figure. Parameters: φ = 5, a = 1. Blue curve: ν = 0 (vorticity vanishes). Black curve: ν = 1.

Brown curve: ν = 2. Gray curve: ν = 3. Green curve: ν = −1. Red curve: ν = −2. Pink curve:

ν = −3. Note that the number of peaks or valleys is determined by the mode number ν.

vorticity field vanishes at α = 0 and π due to its odd parity. The sign of Ωθ reflects

the chiral property of vortices. The number of peaks and valleys on the z > 0 plane

(i.e., α ∈ [0, π]) is

n =





−ν, ν < 0

ν − 1, ν > 1

1, ν = 1,

and is therefore completely determined by the mode ν.

6.3 Shrinking speed

For the shrinkage mode, the shrinking speed is the physically interesting quantity,

because on one hand it is measurable [200] and on the other hand it reflects the

competition of free energy and viscous dissipation.

In the process of shrinking the free energy gained is dissipated in viscous damping.

By equating the rate of change of the free energy, Eq.(6.1), to the viscous dissipation
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rate we can obtain the shrinking speed. We focus here on the experimentally explored

case of a low viscosity (ηi) inner fluid immersed in a viscous (ηo) outer bath [200]. In

this case the dissipation occurs almost entirely in the outer fluid. Applying Stokes’

equation for an incompressible fluid the dissipation rate can be separated into two

parts

Ėvis = −
∫

dV σ′ij∂ivj = −
∫

dfiσ
′
ijvj +

∫
dV vj∂iσ

′
ij . (6.53)

Here dfi is the i component of the area element of the interface. The first term

is the heat flux on the fluid boundary and the second term is the dissipation rate

inside the bulk fluid. The second term can be related to the vorticity:
∫

vj∂iσ
′
ijdV =

η
∫

vj∆vjdV = −η
∫

~v · (∇ × ~Ω)dV . Since the Reynolds number of the external

fluid is very small in the experimental setup (Re ≈ 10−4 [200]), we may take the

external flow to be as irrotational (vanishing vorticity) by recalling the experiment

of flow through a cylindrical solid: an irrotational-rotational flow transition occurs

at Re ∼ 1, below which the flow is irrotational [212]. In the shrinking process, the

toroidal droplet moves in the external fluid. This is equivalent to flow through the

toroidal droplet. Since the viscosity of the internal fluid is very small in this case,

the internal dissipation can be neglected. Thus we need to calculate only the surface

integral in Eq.(10) to obtain the dissipation rate. We need the viscous stress on the

boundary to evaluate the surface integral. Rotational symmetry and the limiting

condition ηi/ηo ¿ 1 imply both σ′rθ and σ′rα vanish at the interface. To determine

σ′rr = 2ηo∂rvr we need the gradient of vr at the interface. Assuming that the fluid

particles near the boundary move together with the interface during shrinking, as a

result of the viscous external fluid, we have

∂rvr|interface =
6R1

R2
Ṙ cos α. (6.54)

Inserting Eq.(11) along with the velocity field on the interface into the surface term

of Eq.(10) yields

Ėvis = −24π2ηo((
R1

R
)2 − 1

2
)RṘ1Ṙ2 . (6.55)
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Figure 6.7: The time evolution of the normalized inner droplet radius Rin(t)/Rin(0) for initial

aspect ratio 1.4. The theoretical result is the solid curve and the experimental data points are taken

from Ref.[200]. Parameters: R1(0)= 3 mm; vs = σ/ηo = 133 µm/s.

By equating the rate of change of the free energy from Eq.(6.1) and the dissipation

rate Eq.(6.55), we have

Ṙ2(t) =
vs

12

1

φ2(t)− 1/2
(6.56)

and the interior hole of the droplet decreases in size according to

Ṙin(t) = − vs

12

2 φ(t) + 1

φ2(t)− 1/2
, (6.57)

where φ(t) = R1(t)/R(t) and vs = σ/ηo. The shrinking speed is controlled by the

aspect ratio of the droplet, in accord with experimental observations [200]. In the

limit of infinite aspect ratio (the cylinder) the shrinking speed vanishes, as required.

The constant 1/2 in the denominator of Eq.(6.56) plays an important role in the limit

that the aspect ratio approaches one (fat tori). The plot of Rin(t)/Rin(0) versus t

is shown in Fig.6.7 for an initial aspect ratio R1(0)/R(0) = 1.4, ηi/ηo = 1/30, 000,

σ = 4 mN/m, R1(0) ≈ 3 mm and ηi = 10−3 kg/(m · s). For these parameters

vs = σ/ηo ≈ 133 µm/s. Fig.6.7 shows that droplets shrink with roughly constant

speed, as found in [200]. Our results predict that it would take about 21 s (aspect

ratio 1.4) and 50 s (aspect ratio 1.9) for a toroidal droplet to shrink to close the

inner hole of toroid, in qualitative agreement with the experimental values of 25 s
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and 38 s respectively. Thus thinner toroidal droplets shrink more slowly, consistent

with experimental observations [200].

Our energy conservation approach to determining the shrinking speed can also

be applied to a 2-dimensional system where it yields an analytical result. Consider

a shrinking hole on a liquid film. The limiting case of a shrinking toroidal liquid

droplet with Rin → 0 and ηi/ηo >> 1 can be modelled as such a 2-dimensional

system, since the dynamics of the hole becomes independent of the fluid far away

from the hole. As the hole shrinks, a flow will be induced outside the hole on the

film. In the Stokes flow regime, the velocity field can be derived analytically in the

polar coordinates {ρ, θ} as vρ = 1
ρ
r(t)ṙ(t) and vθ = 0. By energy conservation, the

shrinking speed of the hole can also be derived analytically. By equating the rate

of change of the line energy Ės = dEs

dt
= 2πγ ṙ and the viscous dissipation rate

Ėvis = − ∫
ρdρdθ(σ′ρρ∂ρvρ) = −2πη ṙ2, we have ṙ = γ

η
, where η is the viscosity of

fluid and γ is the line tension.

We expect that the formalism employed here will have a variety of applications to

the dynamics of fluid interfaces. It may also be extended to liquid crystalline droplets

where the interplay of liquid crystalline order and the shape of the droplet should be

very rich.

Appendix 6.A The shape of the cross section

So far we have assumed that droplets remain perfectly circular in cross-section as

they shrink. Here we show that this assumption is well justified.

The shape of a toroidal liquid droplet is characterized by the radii R1 and R which

may in general vary with α and θ. Retaining azimuthal symmetry we consider the

following ansatz for R at a fixed time:

R(α) = a + c2P2(cos α) + c3P3(cos α). (6.58)

The second term describes an ellipse which is symmetric about z axis, while the third
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Figure 6.8: Minimum energy cross-sectional shapes within a two parameter family of possible

shapes (see Eq.(6.58)). The dashed curves are the unperturbed circular shapes: (a) aspect ratio 10

(thin torus) and (b) aspect ratio 2 (fat torus).

term describes a shape with three round corners, which is asymmetric about the z-

axis (we are ignoring the shrinking mode here, described by a P1(cos α) term). The

shape of the droplet is specified by points in the {c2, c3|c2, c3 ∈ [−b, b]} space.

We numerically search for the ground state in the {c2, c3|c2, c3 ∈ [−b, b]} space for

which

L = A− A0 + λ|V − V0| (6.59)

is minimized, where V0 and A0 are the volume and surface area of the unperturbed

droplet. λ is set to be large to impose volume conservation. We take a = 1 and

b = 0.2.

For tori with typical aspect ratios R1/R = 10 and 2, we find the ground states in

the {c2, c3|c2, c3 ∈ [−b, b]} space shown in Fig.6.8. The cross-sections are very close

to circular. In the experimental work of [200] this is also true.
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Appendix 6.B Rayleigh instability vs. shrinking

mode

It is observed experimentally[200] that the Rayleigh instability disappears for suf-

ficiently fat solid tori (R1(t = 0)/R(t = 0) . 2) whereas the shrinking mode is

present for all aspect ratios. Here we derive a lower bound on the aspect ratio for the

emergence of the Rayleigh instability.

Two conditions must be satisfied for the Rayleigh instability: (1) modes with

wavelength λ > λc, where λc is the minimum wavelength of the Rayleigh instability

mode and (2):

uk(t = t1) & R(t = 0), (6.60)

where uk is the perturbation amplitude and t1 is the lifetime of the shrinking droplet

(Rin(t = t1) = 0). It is well known [201, 209] that uk grows exponentially:

uk(t) = uk(0)evst/R(0), (6.61)

where vs = σ/η is the characteristic speed and R(0) the characteristic length scale of

the system. We assume that uk grows exponentially all the way until breakup of the

droplet. On the other hand we have shown that Rin(t) decreases almost linearly in

time. So formally, we have

Rin(t) = Rin(t = 0)− vct, (6.62)

from which we have t1 = Rin(t=0)
vc

. By inserting Eq.(6.61,6.62) into Eq.(6.60), we

obtain

R1(0)

R(0)
& 1 + c ln(

R(0)

uk(0)
), (6.63)

where c = vc/vs is an aspect ratio factor of order one that tends to 1/2 for aspect

ratio one by Eq.(6.57). Thus the Rayleigh instability is dominant for sufficiently thin

tori.
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It can be checked that for aspect ratios satisfying Eq.(6.63) even the perimeter of

the interior of the torus (2π(R1(0)−R(0))) can accommodate the Rayleigh instability

mode, i.e.,

2π(R1(0)−R(0))

R(0)
& 2π ln(

R(0)

uk(0)
) > 2π. (6.64)



Chapter 7

Self-propulsion of droplets by

spatially-varying surface

topography

Under partial wetting conditions, making a substrate uniformly rougher enhances the

wetting characteristics of the corresponding smooth substrate – hydrophilic systems

become even more hydrophilic and hydrophobic systems even more hydrophobic. In

this chapter we show theoretically that spatial texturing of the substrate topography

may lead to spontaneous propulsion of droplets. Individual droplets tend to be driven

toward regions of maximal roughness for intrinsically hydrophilic systems and toward

regions of minimal roughness for intrinsically hydrophobic systems. Spatial texturing

can be achieved by patterning the substrate with sinusoidal wrinkles whose wave-

length varies in one direction (inhomogeneous wrinkling) or lithographically etching

a radial pattern of fractal (Koch curve) grooves on the substrate. Richer energy

landscapes for droplet trajectories can be designed by combining texturing of spatial

topography with chemical or material patterning of the substrate.



7.1 Introduction 134

7.1 Introduction

Consider a liquid droplet partially wetting a solid substrate such as glass in contact

with a gas such as air. Broadly speaking a substrate may wet easily (hydrophilic) or

poorly (hydrophobic) depending on the nature of the substrate, the liquid and the

gas. More specifically the three relevant interfacial surface tensions determine the

contact angle made by the liquid-gas contact line meeting the plane of the substrate.

The contact angle is less than 90◦ for hydrophilic systems and greater than 90◦ for

hydrophobic systems. A totally wetting thin film corresponds to vanishing contact

angle and a complete spherical drop balanced at a point on the substrate corresponds

to the superhydrophobic limit with a 180◦ contact angle.

Uniform surface roughness amplifies the basic wetting characteristics of the cor-

responding planar system. For hydrophilic/hydrophobic systems the greater sub-

strate area, for a given planar projection, available on the rough substrate makes

the wetting more/less favorable and lowers/raises the contact angle. What about

surfaces with spatially inhomogeneous properties? Although it is known theoret-

ically and experimentally that variable chemical patterning [218] and Leidenfrost

droplets contacting hot surfaces with asymmetric sawtooth patterns [219, 220] can

lead to spontaneous propulsion of droplets, we show theoretically that pure inho-

mogeneous spatial topography of the surface with no other variability is sufficient

to drive droplet motion. Droplets are expected to spontaneously move around in

the landscape of the surface topography maximizing or minimizing the roughness for

naturally hydrophilic/hydrophobic systems respectively. Thus self-propelled droplets

can be engineered to follow prescribed paths without external drive by appropriately

designing the surface topography. We also propose specific experimentally geometries

that could be engineered to observe this phenomenon.

In addition, one may also vary the chemical composition of the surface so that the

intrinsic surface tensions are spatially dependent. The combination of chemical and

surface topography offers a richer variety of potential structures to obtain desired
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(a) (b)

Figure 7.1: (a) A liquid droplet sitting on a rough substrate has more contact area with the

substrate (Ac > A0) than the same droplet on an otherwise identical flat substrate. (b) A liquid

droplet partially wetting a hydrophilic substrate with inhomogeneous roughness has a smaller contact

angle at the rougher end (θA) than at the smoother end (θB).

flow patterns. The African beetle Stenocara fog-basks by tilting forward into the

early morning fog-laden wind of the Namib desert and collecting micron-sized water

droplets on the smooth hydrophilic peaks of its fused overwings (elytra)[221]. Once

a sufficiently massive droplet is formed it rolls downhill against the wind to pool

in textured waxy hydrophobic troughs and from there the drop flows to the beetles

mouth. Surface structures modeled on the Stenocara wings have been synthesized by

creating hydrophilic patterns on superhydrophobic surfaces with water/2-propanol

solutions of a polyelectrolyte[222].

7.2 Method

The principle of driving liquid droplets via roughness gradients is simple. The free

energy of a liquid droplet on a substrate on length scales well below the capillary

length, where surface tension dominates over gravity, is F = −IAc+σSV At+σLV ALV ,

where I = σSV − σSL is the imbibition parameter [60], σSL, σSV and σLV are the

respective surface tensions between the three phases (Solid/Liquid/Vapor). For water

under 1 atm and at room temperature, σLV = 72 mN/m. For water on substrates
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made of molecular crystals or plastics, σSV ≈ 10−50 mN/m and σSL = σSO−σLV cos θ

by Young’s relation [60]. Ac is the contact area between the droplet and substrate,

At is the (constant) total area of a substrate and ALV is the area of the liquid-vapor

interface, which is taken to be constant even when a droplet moves. The system

of a liquid droplet on a rough substrate may also be viewed as a droplet on a flat

substrate with an effective imbibition parameter Ieff resulting from the roughness.

Ieff is defined by IAc ≡ IeffA0, where A0 is the planar projection of the actual contact

area. For rough surfaces, Ac > A0, as shown in Fig.7.1(a), and therefore Ieff/I > 1.

Up to irrelevant constants, the free energy of a droplet on a rough substrate is

F = −Ieff (~x)A0, (7.1)

where Ieff varies from place to place when the spatial roughness is inhomogeneous.

The wetting characteristics of a substrate/liquid composite system determines the

sign of I and therefore Ieff . A hydrophilic system is characterized by I > 0 and an

acute contact angle θ = arccos(I/σLV ). A hydrophobic system is characterized by

I < 0 and an obtuse contact angle [60]. When I, and so Ieff , is positive (negative)

a substrate lowers (increases) its free energy when covered by a liquid. This spon-

taneously drives droplets on hydrophilic (hydrophobic) substrates towards rougher

(smoother) regions respectively. Eq.(7.1) can also be used to understand the move-

ment of droplets on a chemically heterogeneous substrates where Ieff (~x) depends on

the wetting characteristics of the chemical composition at the corresponding position

on the substrate. Chemical methods that drive droplets by directly modifying the

physical imbibition parameter are known [218]. Here we propose that liquid droplets

will spontaneously move on substrates with suitable spatially varying topography

alone, with no change in the physical imbibition parameter.

The self-propulsion of liquid droplets on substrates with inhomogeneous rough-

ness can also be understood in terms of the uneven distribution of the Laplace pres-

sure across the droplet. The contact angle for a rough substrate (θr) is given by

cos θr = r cos θ, with r = Ac/A0 [223]. Thus surface roughness amplifies the intrinsic
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wetting properties of the corresponding planar substrate. Take a droplet spanning

a hydrophilic surface that is rougher on the left than on the right, as illustrated in

Fig.7.1 (b). The contact angle is then smaller on the left than on the right: θA < θB.

The mean curvature H at the B end thus exceeds that at the A end, leading to a

Laplace over-pressure (P = 2σLV H) gradient from right to left driving the droplet

to the rougher part of the surface. The reverse argument applies to a hydrophobic

substrate, leading to motion towards the smoother part of the substrate. The self-

propulsion of a droplet on a substrate with spatially varying roughness clearly requires

the size of the contact disk between the droplet and the substrate to be larger than

the typical size over which the roughness varies significantly.

7.3 Results and discussion

Figure 7.2: Left: a liquid droplet partially wetting a substrate with a uniaxial sinusoidally mod-

ulated roughness. Right: Schematic plot of sinusoidal grooves with wavenumber monotonically

increasing in the direction orthogonal to the sinusoidal height profile.

To be specific, consider a droplet on a uniaxial sinusoidal substrate, as shown in

Fig.7.2, experimentally realizable via wrinkled membranes [224]. The height of the

substrate is represented by z(x) = ak cos(kx), with translational invariance along the

y-direction. The roughness amplitude ak will be taken much smaller than the maxi-

mum height of the droplet so that the shape of the liquid-air interface is unaffected
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Figure 7.3: The ratio of the effective imbibition parameter to the physical imbibition parameter

versus Γ = a2
kk2 for a liquid droplet partially wetting a sinusoidally modulated substrate.

by the shape of the substrate. For small amplitude roughness liquid droplets can be

in complete contact with the substrate, since air pockets do not form underneath the

liquid [60, 223]. The effective imbibition parameter is given by

Ieff

I
=

4

π

∫ 1

0

dy
√

1− y2

√
1 + Γ sin2(k̃y), (7.2)

where k̃ = kR is the dimensionless wavenumber and Γ = a2
kk

2. Clearly Γ, arising

from the gradient of the substrate height, is the parameter controlling the effective

imbibition. For R >> 2π
k

, Eq.(2) simplifies to [225]

Ieff

I
=

2

π
R(Γ), (7.3)

where R(x) =
∫ π/2

0
dθ
√

1 + x sin2 θ. In this limit the effective imbibition parameter

is dependent only on the product of the amplitude and the wavenumber of the sinu-

soidal substrate. Fig.7.3 is a numerical plot of the monotonic growth of Ieff/I vs. Γ.

Ieff/I is doubled for Γ ≈ 8. A simple gradient of the effective imbibition parameter

over the substrate can be achieved by varying the wavenumber k along the groove

axis (y), as shown in the schematic Fig.7.2. Droplets are expected to migrate to

maximize/minimize the contact area for intrinsically hydrophilic/hydrophobic sub-

strates. The magnitude of the driving force along the groove axis is proportional to
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Figure 7.4: A substrate etched by fractal grooves. The cross-sectional shape of the grooves is the

lower half of the Koch curve, as shown in the inset.

the gradient of the effective imbibition parameter:

∇yIeff =
2I

π
[R(Γ)− S(Γ)]

d ln k̃(y)

dy
, (7.4)

where S(x) =
∫ π/2

0
dθ√

1+x sin2 θ
, and R(x) − S(x) = πx

4
− 3πx2

32
+ O (x3). The driving

force thus depends rather weakly on k̃(y) and vanishes as Γ approaches zero.

Rough substrates may also be designed based on fractals [226]. Consider a sub-

strate with etched grooves whose cross section is the lower half of the Koch curve, as

illustrated in Fig.7.4 [227]. The Koch curve may be constructed by starting with an

equilateral triangle of side length a0 and perimeter L0 = 3a0, then recursively adding

equilateral triangles symmetrically on each line segment. After n steps, the perimeter

of the new graph becomes Ln = L0(4/3)n with the length of each elementary line seg-

ment being an = a0(1/3)n. The Hausdorff, or self-similarity, dimension of the Koch

curve is dH = ln 4/ ln 3 ≈ 1.26 [228]. The order of a physically realizable Koch curve

has an upper limit for the order nmax = ln(a0/an)
ln 3

∼ 8 by specifying an ∼ 10 nm and

a0 ∼ 0.1 mm [229]. Now consider a set of close-packed evenly aligned straight grooves

constructed from an n-th order Koch curve. The distance between two neighboring

grooves is twice the breadth of a groove. The contact area between a droplet of radius

R and the fractal substrate, in the limit R much bigger than the breadth of a groove,

is Ac = πR2[1 + q(n)], where q(n = 0) = 3/4 and q(n > 0) = 2(4/3)n−2 − 1/2. Since
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q(n) is always positive, Ac/A0 > 1. The effective imbibition parameter is

Ieff

I
= 1 + q(n). (7.5)

Thus the effective imbibition parameter depends only on the order of the Koch curve

n and is independent of the seed side length a0. Ieff/I is two for n = 1 and exceeds

10 for n = 8. Note that the extra volume of liquid inside the finer structure of the

fractal grooves is negligible in the limit of large n as the area An of the n-th order

Koch curve converges: limn→∞An = 2
√

3a2
0/5 ∼ a2

0 << a0h, where h is the droplet

thickness.

An effective roughness gradient can be made by etching a radial array of grooves

with Koch cross-section, as sketched in Fig.7.4. We take an intrinsically hydrophobic

surface inclined at an angle α to the horizontal. A droplet sitting near the origin

(O) of the radial array is expected to move upward to reduce the contact energy

provided the gradient of the effective imbibition parameter is sufficient to overcome

gravity. The number of grooves covered by a droplet of size R is N = 2R/(Lδθ),

where δθ is the angular distance between neighboring grooves and L is the distance

of the droplet from the origin. For simplicity, consider the “far-field” limit in which

the droplet is sufficiently far from the origin that all the grooves under the droplet

are effectively parallel. The change in contact area due to the roughness is ∆A =

Ac − A0 = 1
2
Nπ(bn − l0)R, where bn is the area of a groove of unit length with

bn(n > 0) = 3a0

2
(4

3
)n and bn(n = 0) = 5a0/3, and l0 = 2a0/3 is the groove breadth.

This results in an effective imbibition parameter

Ieff

I
= 1 +

bn − l0
Lδθ

. (7.6)

A droplet rising up a distance δL increases its gravitational potential energy by

δW = mgδL sin α, where m ∼ ρR2h is the mass of the droplet. Meanwhile the surface

energy decreases by δF = A0δIeff , where δIeff = Ieff (L+δL)−Ieff (L). Spontaneous

climb therefore requires δIeff/δL > mg sin α/A0. Inserting Eq.(7.6) for the effective
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imbibition parameter yields

bn − l0
l0

>
L2δθ mg sin α

A0Il0
. (7.7)

This condition can be satisfied for large droplets near the origin on substrates with

dense grooves. The right hand side of Eq.(7.7) is of order 10 sin α for L ∼ cm, R ∼
mm, I ∼ mN/m, δθ ∼ a0/L and h ∼ 0.1R. Since (bn − l0)/l0 ∼ 10 for n = 5,

radially carved grooves made of the 5-th order Koch curves would generate sufficient

roughness gradient to drive droplets uphill.

There are several points in our analysis that may ultimately call for a more thor-

ough treatment. Sharp substrate edges impede the motion of droplets via pinning of

the triple line [230]. Adhesion hysteresis may also arise from the microscopic interac-

tions between a droplet and the substrate [231]. These two effects are the main source

of frictional energy dissipation [232]. We have neglected entirely viscous dissipation

due to internal fluid flow within moving droplets [60, 81]. The contact angle hystere-

sis may also impede the motion of a droplet on a rough hydrophilic surface, while

there is no contact angle hysteresis on a rough hydrophobic surface due to strong

thermal fluctuations at the liquid-solid interface on the nanoscale [233]. In addition,

in response to the roughness gradient of a substrate, the originally circular contact

profile of a liquid droplet may distort towards the more wettable region to reduce the

contact energy.

The geometry-driven propulsion of droplets in a system with axial symmetry is

found in both nature and the lab either in a tapered tube or along a spider silk fiber

with a conic spindleknots structure [234, 235]. In this chapter, we show theoretically

that liquid droplets on substrates can be driven by pure inhomogeneous spatial to-

pography. The size of a droplet is required to be smaller than the capillary length

such that gravity can be ignored, but big enough to sense the gradient of roughness.

In addition to chemical, electrical and thermal methods, the geometric patterning

method provides a new way of controlling droplet flow on substrates which we expect

to find application in a variety of areas of wetting research.



Chapter 8

The electric double layer structure

around charged spherical interfaces

8.1 Introduction

Charged objects in electrolyte solutions are surrounded by electric double layers

(EDL) [93]. One ionic layer is due to a host of chemical interactions, and the sec-

ond layer is formed by the excess of oppositely charged ions in the solution, screen-

ing the charged objects. The EDL structure is responsible for the stability of col-

loidal dispersions [85] and various electrostatic phenomena in biophysical systems

[86]. The distribution of the screening potential in EDL is characterized by the

Poisson-Boltzmann (PB) equation. In this chapter, we will study the EDL structure

around charged spherical interfaces, which are ubiquitous in colloidal and biophysical

systems [236, 237].

Largely due to its nonlinear nature, analytical solutions to the PB equation are

available only for planar [238] and cylindrical [239] systems. For a spherical sys-

tem, the analytical solution to the linearized PB equation is available [85]. Despite

a recently proposed analytical series solution [240], a formally simple approximate

solution is still in demand for studying analytical problems that are based on the



8.2 Approximate spherical solution to the PB equation 143

Figure 8.1: The mapping from the z > 0 bulk space to the space outside a sphere with radius a

(represented by the blue circle) via. consecutive stereographic projections from a plane to a sphere.

A deviation d(z) is introduced to guarantee the equality of the potential on the blue spherical shell

and the potential at the plane located at z.

screening potential in EDL. Numerical techniques[241] and the Debye-Huckel lin-

earized approximations have long been the only available basic methods to solve the

PB equation. Various perturbative solutions have been proposed based on the planar

solution [242], or the linearized solution [243], as the zeroth order approximation.

Perturbative methods that start with the planar solution are limited to the regime of

large spherical radius, while those which start with the linearized solution work in the

weak potential regime. The geometric construction of a formally simple approximate

analytical solution that can match both the planar and the linearized solutions is one

concern of this letter.

8.2 Approximate spherical solution to the PB equa-

tion

In q:-q symmetric electrolytes, the dimensionless Poisson-Boltzmann equation is [85]

∆ψ = sinh ψ, (8.1)

in the natural units kBT/q and the Debye length κ−1 =
√

εkBT/(8πnq2). q is the

absolute value of the charge of ions. We propose an analytic scheme to yield an ap-
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proximate solution to the Poisson-Boltzmann equation in a spherical system from the

known analytical solution to the planar problem. The planar and spherical systems

are connected by a geometric mapping defined in Fig. 8.1. Both the planar and spher-

ical systems are schematically plotted in Fig. 8.1. The planar system is composed of a

charged plate locating on the x-y plane with the solution in the z > 0 bulk space; and

the corresponding spherical system consists of a charged sphere of radius a centered

at the origin, which is immersed in the solution in the r > a bulk space. The surface

potential in both systems is denoted as ψ0. The potential in the planar system is

known as ψ(z), while that around the corresponding spherical system is ψ(r). These

two potentials can be related by a geometric mapping which is defined as follows. By

moving an arbitrary equipotential plane at z in the planar system by d(z) followed

by a stereographic projection as shown in Fig. 8.1, the equipotential plane ψ(z) in

the plate system is geometrically mapped to the equipotential spherical shell ψ(r(z))

in the corresponding spherical system. The charged plate on the x-y plane is mapped

to the spherical interface at r = a, so d(z = 0) = 0. The whole z > 0 bulk space in

the planar system can be mapped to the bulk space outside the spherical interface by

repeating the mapping defined above for all equipotential planes below the x-y plane.

The displacement field d(z) is introduced to guarantee that

ψ(z) = ψ(r) (8.2)

with r = a + z − d(z). d(z) encodes all information of the potential about the

spherical interface. Geometrically d(z) describes how the equipotential planes in the

planar system squeeze to form the equipotential spherical shells in the corresponding

spherical system. The problem for solving the PB equation in a spherical system is

now converted to solving for the geometric deviation d(z). The form of d(z) can be

found in the weak potential regime where both ψL(z) of a planar system and ψL(r)

of a spherical system are known:

ψL(z) = ψ0e
−z, (8.3)
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Figure 8.2: (a) The plot of the displacement field d(z) for various spherical radii: a = 0.1 (green),

a = 1 (red), a = 10 (blue), a = 100 (black). As a →∞, d(z) is expected to vanish. (b) The plot of

the strain fields d′(z) for the corresponding displacement fields d(z) in (a).

and

ψL(r) = ψ0
a

r
ea−r, (8.4)

where a is the radius of the spherical interface and the subscript L stands for linearized

solution. Inserting Eq. (8.3, 8.4) into Eq. (8.2) leads to a/(a+z−d(z)) = exp(−d(z)),

from which we have

d(z) = a + z −W (aea+z), (8.5)

where W (x) is the Lambert’s W function defined by x = W (x) exp(W (x)) [244]. It is

checked that d(z → 0) = 0 and d(z) → 0 as a →∞. And d(z →∞) ∼ ln(z/a), since

asymptotically W (x → ∞) ∼ ln x − ln(ln x) (Ref. [12]). The Lambert’s W function

is also found in other physical systems, such as the fringe field of a capacitor and

Wiens displacement law in black body radiation [245]. Eq. (8.5) shows that d(z) is

independent of ψ0 in the weak potential limit, since ψ0 appears as a prefactor in both

ψ(z) and ψ(r) in the weak potential limit as shown in Eq. (8.3, 8.4).

The plot of d(z) for various spherical radii is given in Fig. 8.2 (a). The squeezing of

equipotential surfaces near a spherical interface with smaller radius is seen to be larger.

It is expected that the displacement vanishes for an infinitely large spherical interface

that approaches a plate. Fig. 8.2 (a) also shows the behaviors of d(z) in two regions –
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steep slope for small z and much smaller slope for large z where d(z →∞) ∼ ln(z/a).

It gives the qualitative picture of forming equipotential spherical shells from the

corresponding equipotential planar slices. Near the charged spherical interface each

slice moves more than the slice ahead of it that is closer to the interface. In the

region far away from the interface, the squeezing is much more uniform. The relative

squeezing of equipotential surfaces is better demonstrated in terms of the “strain” field

d′(z). The strain field plotted in Fig. 8.2 (b) shows that the strain is concentrated near

the spherical interface and the strain concentration is more significant near spherical

interfaces of smaller radii.

We suggest that the form of d(z) for arbitrary ψ0 be approximated by Eq. (8.5)

under the assumption of weak dependence of d(z) on ψ0. This assumption is to be

substantiated later. We can then construct the analytical approximate solution to

the PB equation for a spherical system from the known analytical solution to a planar

system, which is

ψ = 2 ln
1 + γe−z

1− γe−z
, (8.6)

where γ = (exp(ψ0/2)−1)/(exp(ψ0/2)+1). On the other hand, r(z) = W (a exp(a+z))

and W (a exp(a + z)) exp(W (a exp(a + z))) = a exp(a + z) yield

z(r) = r − a + ln(r/a). (8.7)

The approximate solution denoted as ψG(r) for the spherical system is thus derived

as

ψG(r) = 2 ln[
1 + γ exp(−(r − a + ln(r/a)))

1− γ exp(−(r − a + ln(r/a)))
], (8.8)

where the RHS is the potential in the corresponding plate system with z replaced by

z(r). Near a spherical interface of large radius, i.e., (r−a)/a << 1 and a >> 1, the ψG

solution approaches the planar solution, as required. In the region far away from the

interface (r >> a), Eq. (8.8) becomes ψG(r) = 4γa exp(−(r−a))/r, which reduces to

the linear spherical solution Eq. (8.4) in the weak potential limit. Note that the ψG
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Figure 8.3: The potential around a charged spherical interface of unit radius in a q:q solution.

The surface potentials in (a)-(d) are respectively 0.1, 1, 5, 10 measured by q/(kBT ). The curves give

the numerical solution to the Poisson-Boltzmann equation (black), analytical solution for weak ψ0

(green dashed) and the solution constructed by the our method (red dots).

solution may be derived algebraically by a variable substitution s = a/r exp(−(r−a))

in Eq. (8.1) and more accurate results can be obtained by perturbation analysis

[246, 247]. In comparison to the algebraic method, the derivation of the ψG solution

via the geometric mapping not only reduces the complexity of algebraic calculations,

but also shows how the spherical geometry modifies the equipotential surfaces of a

planar system as encoded by the geometric deviation d(z). The relation between

the ψG solution and both the linearized and planar solutions is also revealed in the

geometric derivation.
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8.3 Applicability of the geometric solution

Eq. (8.8) is derived from the planar and the linearized spherical solution, so at the

very least it is expected to work for either a >> 1 or ψ0 << 1. It is therefore superior

to the linear solution, which only works in the weak potential limit. The region of

validity of the ψG solution can be derived algebraically. By introducing x = 1/r, the

PB equation for a spherical system becomes [248]

C(x)
∂2

∂x2
ψ = sinh ψ, (8.9)

where C(x) = x4. Inspired by the functional form of the planar and the linearized

spherical solutions Eqs.(8.3, 8.4), we use ψ(x) = 2 ln((1 + g(x))/(1− g(x))) as a trial

solution. Depending on the sign of ψ(x), g(x) = ± exp(−f(x)) and g(x) ∈ (−1, 1)

corresponding to ψ ∈ (−∞,∞). Inserting the ansatz into Eq. (8.9) yields

g(x)[C(x)(f ′2 − f ′′)− 1] + g3[C(x)(f ′2 + f ′′)− 1] = 0. (8.10)

For |g| << 1, by dropping the g3 term, the solution to Eq. (8.10) is f(x) = 1/x −
ln x + c1, with an integration constant c1. Inserting f(x) into the ansatz ψ yields

the ψG solution. An alternative condition for dropping the g3 term in Eq. (8.10)

is C(x)(f ′2 + f ′′) − 1 << 1, which is equivalent to x = 1/r << 1 by inserting the

expressions for f(x) and C(x). Therefore, for either |g| << 1 or x = 1/r << 1,

the solution to Eq. (8.10) coincides with the ψG solution. Note that |g| << 1

is equivalent to the weak potential limit, and x = 1/r << 1 holds for a >> 1

since r > a. An important case falls in this region of validity of the ψG solution.

Consider colloids of size R in a solution of ion strength I (in mol/L). The Debye

length is κ−1(nm) = 0.304/
√

I(mol/L) which is at the order of nm for I ∼ 1 mol/L

[111]. For R ∼ µm, a = R/κ−1 >> 1. Therefore, the approximate analytical

ψG solution is suitable for typical colloidal dispersions. In comparison to the series

solution [240], the formal simplicity of the ψG solution enables further analytical study

of the electrostatics of colloidal systems.
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The ψG solution turns out to have a larger region of validity. Fig. 8.3 shows

comparisons of the ψG solution (red dots), the linearized solution (green dashed) and

the numerical solution (black) to the PB equation for a spherical system for different

potentials. For weak potential (ψ0 = 0.1(a), 1(b)), the three solutions fall on the same

curve. The linearized solution works well at least up to ψ0 = 5 without qualitatively

deviating from the numerical solution. So the linearized theory applies for moderate

values of surface potential [249]. As ψ0 exceeds 5, the linearized solution starts to

deviate from the numerical solution, while ψG conforms to the numerical solution up

to ψ0 = 10, where the linearized solution deviates significantly the numerical solution.

This indicates that the dependence of d(z) on ψ0 is weak for a = 1 up to ψ0 = 10.
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Figure 8.4: The ψG solution is applicable below the red curve in the parameter space {a, ψ0}. On

the red curve, δ = ε = 10−3.

The quality of the ψG solution can be systematically studied by defining a ratio

δ = maxr{|(∆ψ− sinh ψ)/ sinh ψ|}. The smaller the ratio δ is, the better the solution

is. For a given precision ε = 10−3, the applicable region of the ψG solution is found

to be below the red curve in the parameter space {a, ψ0}, as shown in Fig. 8.4. For

a & 5, the ψG solution applies even for large potentials. There exists, however, a cut-

off value for the surface potential. High potential, or equivalently low temperature,

may lead to correlation of counter-ions near the charged interface that is ignored in the

mean field PB equation [86]. In addition, high potential leads to high concentration

of ions so that the finite dimension of ions must be taken into consideration [85]. The

advantage of the ψG solution over the planar solution is shown explicitly in Fig. 8.5.
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The ψG solution works better than the planar solution even for large spherical radius.
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Figure 8.5: The comparison of the ψG solution (black) and the planar solution (blue) in terms of

the ratio of the LHS to RHS of Eq. (8.1). The radii of the spherical interface are a = 5(a) and

20(b). ψ0 = 1.
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Figure 8.6: The potential distributions (exp(αx + βy)) in the double layer corresponding to the

periodic (a) and aperiodic (b) boundary conditions. ka = kp = 0.5.

8.4 Analogy between an EDL system and capillary

deformation

We proceed to study how the nonuniform surface potential on a charged spherical

interface influences the EDL structure. For simplicity, we work in the regime of
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weak potential and large spherical radius, so the system is regarded as locally planar,

located on the y-z plane. The solution to the linearized PB equation is

ψ(x, y) =
∑

β

Aβeα(β)xeβy, (8.11)

where α2 + β2 = 1, and Aβ is determined by the boundary condition ψ0(y) via

ψ0(y) =
∑

β Aβ exp(βy). Since α is a function of β, the potential distributions along

the x and y-directions are correlated. Now consider two typical boundary conditions

- periodic with β = ikp and aperiodic with β = ka. For the first case, α = −√
1 + k2

p.

For the second case, ka << 1 is required to guarantee the weak potential condi-

tion, and α = −√
1− k2

a. Therefore, the decay length of the potential in the EDL

decreases/increases for a periodic/aperiodic distribution of the surface potential.

The plot of the potential distributions for periodic/aperiodic boundary conditions

are shown in Fig. 8.6. The profile resembles the capillary deformation near a plate

with varying wetting properties. The underlying analogy between an electric double

layer and capillary deformation is seen clearly from the following equations. For weak

potential the PB Equation is linearized

ψ = κ−2∆ψ =





κ−2[ψ′′(r) + 1
r
ψ′(r)], cylinder

κ−2[∂2
xψ(x, y) + ∂2

yψ(x, y)], plane

And the capillary deformation z(r) near an immersed object is governed by the shape

equation [60]:

z(~x) = 2λ2
cH(~x) =





λ2
c [z

′′(r) + 1
r
z′(r)], cylinder

λ2
c [∂

2
xz(x, y) + ∂2

yz(x, y)], plane

which holds for weak deformation. 2H(~x) = 1/R1+1/R2 is the mean curvature at the

point ~x on the liquid interface, and λc =
√

σ/(ρg) is the capillary length comparing

the competition between surface tension and gravity. The analogy between an EDL

system and capillary deformation allows the use of well-developed methods for the

calculation of electrostatic interactions in DLVO theory in less well-studied lateral

capillary interactions between particles adsorbed at a liquid-fluid interface [120].
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8.5 Conclusion

In conclusion, we have studied the EDL structure around charged spherical interfaces

by analysis of the Poisson-Boltzmann equation. Despite the point charge assumption

of electrolyte ions and the neglect of ion-ion corrections, the PB equation generally

works well especially for problems of electrostatic interaction of colloidal particles [93].

In this chapter, we have derived an approximate analytical solution to the Poisson-

Boltzmann equation for the spherical system by a geometric mapping. The formal

simplicity of the ψG solution enables further analytical study of spherical systems.

The regime of applicability includes not only the weak potential regime where the

linearized solution also works well, but also the regime of large spherical radius.

Typical colloidal dispersions with the size of colloids much bigger than the Debye

length fall in the latter regime.
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[49] L. Jia, A. Cao, D. Lévy, B. Xu, P. Albouy, X. Xing, M. Bowick, and M. Li, Soft

Matter 5, 3446 (2009).

[50] L. Jia, P. Albouy, A. Di-Cicco, A. Cao, and M. Li, Polymer 52, 2565 (2011).
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