
Syracuse University Syracuse University 

SURFACE SURFACE 

Physics - Dissertations College of Arts and Sciences 

6-2012 

Development of Spect and Ct Tomographic Image Reconstruction Development of Spect and Ct Tomographic Image Reconstruction 

Levon Orion Vogelsang 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/phy_etd 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Vogelsang, Levon Orion, "Development of Spect and Ct Tomographic Image Reconstruction" (2012). 
Physics - Dissertations. 124. 
https://surface.syr.edu/phy_etd/124 

This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has 
been accepted for inclusion in Physics - Dissertations by an authorized administrator of SURFACE. For more 
information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/phy_etd
https://surface.syr.edu/cas
https://surface.syr.edu/phy_etd?utm_source=surface.syr.edu%2Fphy_etd%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=surface.syr.edu%2Fphy_etd%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/phy_etd/124?utm_source=surface.syr.edu%2Fphy_etd%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Abstract 

 The purpose of this study was to contribute to the advancement of statistically-based 

iterative reconstruction algorithms and protocols for both SPECT and micro CT data. Major 

contributions of this work to SPECT reconstruction include formulation and implementation of 

fully three-dimensional voxel-based system matrix in parallel-beam, fan-beam, and cone-beam 

collimator geometries while modeling the process of attenuation, system resolution and 

sensitivity. This is achieved by casting rays through a volume of voxels and using ray-voxel 

intersection lengths to determine approximate volume contributions.  Qualitative and quantitative 

analysis of reconstructed Monte Carlo data sets show that this is a very effective and efficient 

method. Using this method, three SPECT studies were conducted.  

 First, the reconstruction performance was studied for a triple-head cone-beam SPECT 

system using a helical orbit acquisition. We looked at various subset groupings for the ordered-

subsets expectation maximization (OSEM) algorithm. We also examined how rotational and 

translational sampling affects reconstructed image quality when constrained by total injected 

dose and scan time. We conclude the following:  When reconstructing noiseless datasets, varying 

the rotational sampling from 90 views to 360 views over 360 degrees does not affect the 

reconstructed activity regardless of the object size in terms of both convergence and accuracy. 

When using ordered subsets, the subset group arrangement is important in terms of both image 

quality and accuracy. The smaller the object is that is being reconstructed, the rate of 

convergence decreases, the spatial resolution decreases, and accuracy decreases. 

 Second, we examined a system composed of three, possibly different, converging 

collimators using a circular orbit. We conclude the following:  When reconstructing noiseless 

datasets, using a triple-cone beam system resulted in distortion artifacts along the axial direction 



and diminished resolution along the transaxial direction. Using a triple-fan beam system resulted 

in the best reconstructed image quality in terms of bias, noise, and contrast. When noisy datasets 

were reconstructed, a cone-cone-fan beam system resulted in best reconstructed image quality in 

terms of mean-to-actual ratio for small lesions and a triple-fan beam system for large lesions. 

 Finally, a two-dimensional mesh-based system matrix for parallel-beam collimation with 

attenuation and resolution modeling was designed, implemented, and studied.  We conclude that 

no more than two divisions per detector bin width are needed for satisfactory reconstruction.  

 Also, using more than two divisions per detector bin does not significantly improve 

reconstructed images. A chapter on iterative micro-CT reconstruction is also included. Our 

contribution to micro-CT reconstruction is the formulation and implementation of a cone-beam 

system matrix that reduces ring artifacts associated with sampling of the reconstruction space. 

This new approach reduces the common 3-D ray-tracing technique into 2-D, making it very 

efficient. The images obtained using our approach are compared to images reconstructed by 

means of analytical techniques. We observe significant improvement in image quality for the 

images reconstructed using our iterative method. 
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Chapter 1.  Introduction 

 Tomography is a non-invasive imaging technique allowing for the visualization of the 

internal structure of an object. The early deterministic framework for tomographic imaging was 

formulated by the Austrian mathematician, Johann Radon in 1917 [1]. The method is used in 

many fields such as radiology, archeology, biology, geophysics, oceanography, materials 

science, astrophysics, and many other sciences [2]. We focus on its application to radiology, in 

particular to Single Photon Emission Computed Tomography (SPECT) and Computed 

Tomography (CT).  

 

1.1 Single Photon Emission Computed Tomography (SPECT) 

 Emission Tomography (ET) uses radioactive tracers to image various aspects of 

physiology and is categorized as a functional imaging modality as opposed to CT, which if used 

without imaging contrast agents yields anatomical information. SPECT and Positron Emission 

Tomography (PET) are the two main techniques within this branch of medical imaging. Both 

PET and SPECT are fundamentally based on the tracer principle [2]. This principle was 

introduced in the early 1900's by George de Hevesy (Noble Prize in Chemistry in 1943) and is 

based on the fact that radioactive compounds are indistinguishable from nonradioactive in terms 

of their participation in physiological processes. The emission of gamma rays from radioactive 

materials can be detected, thus allowing a means to track the flow and distribution of targeted 

substances in the body. Due to radiation safety concerns, the amount of radiopharmaceutical that 

can be administered to the patient is limited. Gamma-ray emission rates are relatively low and 

are typically ~10
4
 emissions s

-1
 ml

-1
 of tissue. Data acquisition usually takes 15-20 minutes. 
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Application of radioactive materials as markers, or tracers, is the foundation of modern day 

SPECT. Radiopharmaceuticals or radiotracers are imaging agents that can be engineered for a 

variety of substances that naturally participate in biological functions. 

 Every SPECT study requires radiopharmaceutical specifically designed for imaging a 

particular disease. The image quality increases with the amount of the radiotracer delivered to 

the patient. After the radiopharmaceutical has been administered, the data acquisition process 

begins. This entails the collection and counting of the photons emitted from the patient’s body at 

all acquisition angles. A typical triple-head SPECT imaging system is shown in Fig. 1.1. Only 

photons within a predefined energy window corresponding to a specific isotope photopeak are 

recorded. The collected photon counts data are stored in discrete detector bins (each with known 

spatial location) and are organized into projections. Once the projection data have been collected, 

through tomographic image reconstruction, the distribution of the activity within the patient can 

be estimated. The final step is the reconstructed image analysis that consists of visual inspection 

complemented by computerized analysis.   

 The most common uses of SPECT in clinical practice include regional cerebral blood 

flow brain studies, bone scan, and myocardial perfusion imaging. The following is a general 

summary of each of these. 

 For brain imaging, SPECT can look directly at cerebral blood flow and indirectly at 

metabolic activity [2]. Two of the most common radiopharmaceuticals used in brain perfusion 

are 
99m

Tc-HMPAO (hexamethylpropylene amine oxime) and 
99m

Tc-ECD (ethylcysteinate dimer). 

These agents can cross the blood-brain barrier and distribute in the brain in proportion to blood 

flow. Typical reasons that warrant a SPECT brain study include cerebrovascular disease, 

dementia, or seizure. The possibility of disease would be indicated by hypoperfusion in 
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conjunction with information that led to the request of the study. The process begins with 

injection of approximately 1100 MBq of the radiopharmaceutical that is transported by the blood 

stream and is utilized by receptor sites within the brain. Imaging begins 1 hour after injection; 

the gamma detector slowly rotates around the patient's head and acquires projection images 

called “views” in a step-and-shoot fashion. Typically, 120 to 128 total views (3
°
 per step) are 

acquired within a total acquisition time of 20 minutes. These projections are then reconstructed 

into 3-D images of the brain activity distribution resulting in a map of regional cerebral blood 

flow. It is through these reconstructions that physicians are able to identify certain brain activity 

patterns that correlate with psychiatric and neurological disease.  

 The typical agents used for a bone SPECT are 
99m

Tc-MDP (methylene diphosphonate) or 

a similar compound [2]. The bone SPECT study is done in conjunction with and immediately 

follows a planar whole-body bone study. The goal is to better locate and assess possible 

abnormalities that were detected in the planar study. Probable disease is indicated by foci of 

increased uptake that are either above or below normal. Typical dose ranges from 740-1110 

MBq. The imaging commences 2-5 hours after injection. Like brain SPECT, 120 total views (3
°
 

per step) are acquired within a total acquisition time of 20 minutes. 

 The most common of all SPECT studies is myocardial perfusion rest/stress SPECT where 

a dual-isotope is used to examine the heart at rest and under stress [2]. Interpretation involves 

comparison of the reconstructed rest and stress images of the heart. Typical agents are 
201

Tl-TlCl 

and 
99m

Tc-sestambi. In dual-isotope protocol with the patient at rest, the study begins with 

injection of 148 MBq of 
201

Tl-TlCl IV. After a 15-minute delay, imaging begins. The detector 

consists of a dual-head system with the heads separated by 90°.  The total number of views is 60 

or 64 over 180°. Total acquisition time during the rest test is approximately 15 minutes. 
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Following the completion of the rest test, the patient is put under stress. After approximately 10 

minutes, injection of 925 MBq of 
99m

Tc-sestambi or tetrofosmin is administered. Imaging 

commences 30 minutes after injection. The total number of views is 60 or 64 over 180°.  Total 

acquisition time during the rest test is approximately 11 minutes. 

 

 

 

Figure 1.1.  TRIAD XLT triple-head gamma camera (Trionix Research Laboratory, Inc., Twinsburg, 

OH) in use at SUNY Upstate Medical University (courtesy of SUNY Upstate Medical University). 

 

1.1.1 Imaging System 

 During a SPECT scan, the detector moves along an orbit around a patient and acquires 

data via either a continuous or a stop-and-shoot technique. The mechanical axis of rotation must 

be fixed in space during the scan. The radius of rotation (ROR) can be fixed or variable. As a 

result, a series of planar images called projections is created. This projection set is reconstructed 

into the expected 3-D distribution of radiotracer or activity inside the patient.  
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 The function of the gamma camera system is to capture the gamma or x-ray radiation that 

has been emitted from the patient and convert it into useful information that can be reconstructed 

into the activity distribution. The basic operation of this system is as follow: First, the gamma 

and/or x-ray radiation emitted from the patient is mechanically directed by means of an aperture 

or a collimator towards a scintillation crystal. This is achieved by absorbing radiation that is 

propagating in directions other than that specified by the collimator. There are tradeoffs between 

collimator resolution and sensitivity that depend on its geometry. From the selected photons that 

reach the scintillation crystal, only a very small fraction (~10
-4

) interacts with it and converts its 

energy into scintillations and consequently into electronic pulses.  A basic SPECT gamma 

camera (Anger camera) system is shown in Fig. 1.2 and is composed of the following 

components [2]: 

 

 Collimator:  Gamma rays, unlike optical radiation, cannot be refracted and focused by 

conventional optical systems. Therefore, data sets generated by a by a SPECT system are 

formed by selective absorption. This is achieved by placing a collimator between the 

patient and the detector [2]. The collimator is a plate composed of lead or tungsten with a 

periodic lattice of holes conforming to a predefined geometry (parallel, converging, 

diverging, pinhole, etc.). This is necessary for gamma-ray and x-ray image formation. 

Gamma- or x-rays that interact with the collimator holes' walls, called septa, are mostly 

absorbed. Therefore, only the photons that are traveling sufficiently close to the direction 

parallel to the collimator hole axis contribute to the data sets (images). This is a very 

inefficient process. For a typical collimator, about one in ten thousand photons emitted 

from the patient reaches the detector. The collimator characteristics are the main 
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contributing factors for determining the system resolution and system sensitivity. 

Selected data on collimators used in the Division of Nuclear Medicine at SUNY Upstate 

Medical University are collected in Table A.1. The parameters that were used for 

simulated data for this dissertation are listed in Table A.2. The following are the 

components of a SPECT imaging system. 

 Scintillation crystal (NaI(T1)):  The scintillation crystal converts high energy gamma-

rays and x-rays into visible light photons (38,000 photons/MeV). 

 Position sensitive photomultiplier tubes (PS-PMT’s):  Position sensitive photomultiplier 

tubes consists of phototransducers that convert visible light pulses into a measurable 

current and provides information on the detected amount of current and its location. 

 Preamplifier:  The preamplifier converts current to voltage and matches the impedance of 

the PS-PMT and amplifier. 

 Amplifier:  Amplifies the voltage from preamplifier. 

 Pulse-height analyzer:  The pulse-height analyzer rejects pulses outside the allowed 

range (i.e. below the set lower limit and above the set upper limit). 

 Position logic unit:  The position logic unit computes the two-dimensional location of the 

scintillation events.  

 Recording device:  The location and number of scintillation events with energy within a 

preset energy window are recorded during the scan for each acquisition angle. The 

resulting noisy histograms represent the projections. 

 Data reconstruction and analysis system:  The raw projections are transformed into an 

estimate of the activity distribution by means of a reconstruction process. The image 

analysis system involves strategies for the extraction of qualitative and quantitative 
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information from the reconstructed images for the evaluation and decision-making 

process by physicians. 

 

 

 

Figure 1.2.  A basic SPECT 

gamma camera (Anger camera) 

system. 

 

 

1.1.2 Object Representation 

 When using iterative algorithms for reconstruction, it is necessary to represent the 

activity distribution function f(r), where r is a position in 3-D space, in terms of some finite set of 

basis functions bn(r) [3]. An N element column vector can then represent the weights associated 

with these functions 

 1 2, ,... ,...,n Nf f f ff  (1.1) 

with the n
th 

element denoted as fn. If we choose piecewise constant rect-functions as the basis 

functions, then fn is the expected average number of gamma-ray photons per unit volume emitted 

per second within voxel element n. Rect-functions are the most widely used due to their 
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attractive symmetry properties and ease of computation. Chapters 2, 3 and 4 use this 

representation. If we choose piecewise linear mesh elements, then fn is the expected average 

number of gamma-ray photons per unit volume emitted per second at node n. Chapter 5 explores 

this representation. In general, the expansion of  f(r) has the form   

 ( ) ( )
N

n n
n

f f br r  (1.2) 

where 

 ( )n nf f r . (1.3) 

Besides the two representations noted above, other basis functions have been studied. 

Some popular linear basis function choices include [4,5] Fourier series, wavelets, spherical 

harmonics, point masses, polar grids, and organ-based functions, and Kaiser-Bessel functions 

(blobs). Nonlinear basis functions include [4] spheres, ellipsoids, deformable templates, and 

polygons.  

 

1.1.3 Imaging Equation and Statistical Model 

We assume that the continuous distribution of radiopharmaceuticals f(r) within the 

patient is square-integrable and supported within the region Ωf in three-dimensional space. The 

SPECT data vector g, which is formed from the discrete projections revealed by the imaging 

system, is a finite set of M finite values with the m
th 

component denoted gm. The index m 

specifies a particular detector element and projection angle combination.  

When stochastic components are ignored, the deterministic transformation from the 

continuous distribution of radiotracer inside the patient’s body to the discrete projections 

recorded by the detector can be given by the following linear integral equation: 
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3( ) ( )

f
m mg h f d rr r . (1.4) 

 The function hm(r) is the point response function that relates the response of the m
th

 

detector pixel to radiation originating from location r within the reconstruction space. The 

physics, geometry and other components of the imaging system (e.g. electronics) can be 

described by the point response function.  

 The true projections gm follows a Poisson statistical model where Eq. (1.4) describes the 

mean [4]. The assumptions that allow us to use such a model are as follows: 

 The binomial distribution closely approaches the Poisson distribution. 

 The spatial locations of individual radionuclei at any moment are independent 

random variables, which are all identically distributed according to a common 

probability function. 

 The number of administered radionuclei has a Poisson distribution over any given 

volume of the object. 

 The radionuclide decay process is a Poisson process [6]. 

 Each emitted gamma photon can only be recorded by at most one detector bin, and 

the location of where the photon is measured in the detector is independent of all 

other photons [6]. 

 Background radiation and crosstalk are independently distributed [6]. 

Under these assumptions, we can represent the Poisson model of the counted photons as: 

 m m m
g Poisson g r , (1.5) 
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where rm is a vector that represents the noise such as background and cosmic radiation, which is 

not modeled by the imaging equation. For many practical purposes this noise vector can be set to 

zero.       

1.1.4 System Physical Modeling 

 Using the parameterized object representation, the continuous-to-discrete transformation 

given in eq. (1.4) now becomes a discrete-to-discrete transformation and has the form 

 
3( ) ( ) .

f

N

m n m n

n

g f h b d rr r  (1.6) 

We can now define the discrete projection operation 

 
N

m mn n

n

g a f  (1.7) 

with the system matrix, also called the projection operator, defined as  

 
3( ) ( ) .

f
mn m na h b d rr r  (1.8) 

An element of the system matrix amn is proportional to the probability that a radioactive decay 

event located within the volume defined by the n
th

 voxel is recorded by the m
th

 detector unit. The 

system matrix can describe all physical phenomena. Scan geometry, attenuation, detector 

response, detector efficiency, object scatter, and collimator scatter are some of the main 

contributors. Improvements in modeling the physical system through the system matrix can 

greatly improve reconstructed image quality. Other factors to consider when formulating the 

system matrix are computation time and storage requirements. The main focus of this 

dissertation is improvement of the system matrix represented in both the voxel and mesh 

domains in terms of physical modeling and computational efficiency. 
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1.1.5 Attenuation 

 Consider a monochromatic beam of photons in good geometry transported through a 

homogeneous slab of material. If n(x) photons remain at a depth x within the material, then dn 

photons are removed or diverted from the beam after traveling a small distance dx [6]. This can 

be described by the differential equation 

 ( )
dn

n x
dx

. (1.9) 

Each photon is influenced neither by neighboring photons nor by its own history. The interaction 

between the photons and material in this manner follows a Poisson process. The factor μ in Eq. 

(1.9) is the linear attenuation coefficient of the material.  It is a function of the material's density 

ρ and effective atomic number Z as well as the energy E of the photon beam, and so we denote it 

as μ(ρ,Z,E). The dependence of μ on ρ has been shown to be proportional within a reasonable 

range and can be written as 

 
( , )

( , , )
Z E

Z E  (1.10) 

where the term μm = [μ(Z,E)/ρ] is called the mass attenuation coefficient. 

 The emitted gamma- and x-ray photons interact with matter on their way to the detector. 

This process of attenuation alters the photon flux and diminishes spatial resolution [6]. The 

interaction between photons and matter for the energy range of interest in nuclear medicine [20-

600 keV] are mainly described by photoelectric absorption cross-section (τ), incoherent or 

Compton scattering cross-section (σ) and coherent scattering cross-section (υ). The partitioning 

of μ into the different types of interactions mentioned above can be formally expressed as [6] 

 , (1.11) 
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and like μ, all cross-sections are linear in the density. As Figure 1.3 indicates, for the energy 

range used in SPECT [20- 400 keV], incoherent scattering dominates the photon-matter 

interactions in water.  For such an energy range, tissue has radiological properties very similar to 

water. 

 

  

(a) (b) 

Figure 1.3.  Mass attenuation coefficient as a function of photon energy for photoelectric absorption τm, 

incoherent scatter σm, and coherent scatter υm and their sum μm [7] for (a) water and (b) bone. 

 

 The dependence of μ on Z and E varies accordingly to the type of interaction being 

considered. Photoelectric absorption is the process where nearly all of the photon energy is 

transferred to the atomic electron. A small fraction of the energy goes into overcoming the 

electron's attachment to its nucleus and thereby freeing the electron. The rest is converted into 

kinetic energy of the free electron. For nearly all materials of radiological interest, experiments 

show that τm increases approximately with the third power of the effective atomic number. It is 
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also observed that τm decreases with the third power of photon energy. Putting these together 

yields 

 
3

3
( , ) ~ .m

Z
Z E

E
 (1.12)  

 Incoherent scattering is the process where some of the photon's energy is given to the 

recoil electron with the rest of the energy creating the Compton scatter photon. At lower 

energies, the attenuation process is generally dominated by photoelectric absorption and at 

higher energies by incoherent scattering. Also, σm only slightly varies across the energy range 

being considered and can be approximated as constant for practical purposes. For a more detailed 

description as to how σ varies with energy, the well-known Klein-Nishina formula should be 

used [6]. The manner in which σm varies with Z can be explained as follows: The photon energy 

is relatively much higher than the binding energies of the electrons. Therefore, the electrons can 

be considered a gas of free independent particles. The probability for an interaction would 

depend on the electron density. Bring this all together, the manner in which the electron density 

is influenced by the effective atomic number determines how σm depends on Z. The electron 

density per Z stays fairly constant for most materials except hydrogen where the electron density 

is twice that of other materials. This can be summarized as [6] 

 
2

2
0.02 / (most materials, falls off at higher )
0.04 / (hydrogen)

( , ) ~m
cm g Z
cm g

Z E . (1.13) 

 Coherent scattering is the process in which almost no energy is lost in the photon- 

electron interaction. The photons are, however, collectively deflected into a new direction. It has 

been shown that the mass attenuation coefficient for coherent scatter increases slowly with the 

effective atomic number and falls off inversely with the square of the photon energy, 
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2

( , ) ~ .m

Z
Z E

E
 (1.14) 

1.1.6 System Resolution and Sensitivity 

 Collimator efficiency or sensitivity can be defined as the fraction of γ rays passing 

through the collimator per γ ray emitted by the source [2]. System resolution can be defined as 

the full width at half-maximum (FWHM) of the count profile of a point source of radiation 

projected by the collimator onto the detector [8]. Both depend on the location of the source 

relative to the detector. 

 The system resolution Rs of the gamma camera is influenced by several factors, including 

intrinsic resolution Ri, collimator resolution Rc, scattered radiation, and septal penetration. 

However, Rc and Ri dominate. Intrinsic resolution is due to the uncertainty in position estimation 

in the gamma camera and decreases with increasing energy and detector crystal thickness [8,9]. 

The intrinsic resolution for a typical gamma camera is in the range of 2.9 to 4.5 mm FWHM for 

99m
Tc [8]. The collimator performance is the primary limiting factor for the system resolution. It 

is a function of the collimator geometry and the source location [2,6,8]. 

 The sensitivity is affected by several factors including geometric efficiency, intrinsic 

efficiency, energy binning, and attenuation [8]. The photopeak detection efficiency of a gamma 

camera is close to 100% for photon energies up to 100 keV and increases with increasing 

NaI(T1) crystal thickness [6]. The sensitivity is of the order of 10
-4

 for a typical parallel-beam 

SPECT system. 

 In order to obtain accurate reconstructed images, the system resolution and sensitivity 

must be modeled and incorporated into the reconstruction algorithm. One way is to 

experimentally measure the detector response function (DRF) for a point source placed at 

various locations relative to the collimator [10]. Examples of this for simulated data are shown in 
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the Appendix. The DRF is then created by fitting the data to a function such as a Gaussian. The 

Gaussian's parameters then define the dependence of resolution and sensitivity on source 

location. This method is used throughout this dissertation. Using the amplitude version of the 

Gaussian peak function as a model, the DRF is 

 

2 2
1

2 2 2( ) ( )
( , ; ) ( , ; ) e ,u v

u v

w d w d
R u v d A u v d  (1.15) 

where the resolution is defined by the Gaussian spread w and the sensitivity is defined by the 

amplitude A. The detector variables u and v refer, respectively, to horizontal and vertical 

locations on the count image created by the detector. The object space variable d refers to the 

shortest distance from the point source to the collimator face. We used 3
rd 

degree polynomials to 

model the amplitude and spread as a function of source-to-collimator distance 

 
2 3

0 1 2 3( ) ,A d a a d a d a d  (1.16) 

 
2 3

0 1 2 3( ) .w d b b d b d b d  (1.17) 

The coefficients, ai and bi (i = 0,1,2,3), were obtained by curve fitting and are listed in the 

Appendix: Tables A.4 and A.5 for parallel-beam, Tables A.7 and A.8 for fan-beam, and Tables 

A.10 and A.11 for cone-beam collimation. 

 Besides the method of experimental fitting for determining the DRF, another method is to 

use an analytical formulation [11,12,13]. This method is especially useful when the DRF cannot 

be explicitly measured, such as the design or simulation of a new collimator [12]. 

 

1.2 SPECT Image Reconstruction 

 As mentioned above, a gamma camera system acquires two-dimensional projections from 

a finite set of angles g.  Projection counts are Poisson distributed. The projections themselves 
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have little if any value to the physician. What one wishes to obtain from these is the three-

dimensional distribution of radiopharmaceutical f(r) that was administered to the patient. The 

estimation of f(r) from g, or tomographic reconstruction, is achieved by solving the integral 

equation, Eq. (1.4). This is an ill-posed inverse problem and there are many reconstruction 

methods available for obtaining the solution for emission tomography.  The two major classes of 

tomographic reconstruction are analytical and iterative [4]. 

 

1.2.1 Analytical Reconstruction Methods 

 Analytical methods typically neglect data noise and complicating physical factors. This is 

done in order to attempt to achieve direct inversion formulas. Most approaches to SPECT image 

reconstruction are based on Filtered Back Projection (FBP) methods, which belong to the class 

of analytical methods. They are attractive due to their excellent computational speed. This 

technique is based on a simplified model of the SPECT data acquisition process that neglects 

many significant features [2]. 

 FBP usually handles the data noise by pre-smoothing the projection prior to 

reconstruction or by post smoothing the reconstructed image. The necessity of using a ramp filter 

to prevent the star artifact in FBP reconstruction results in amplification of high frequency noise 

component and needs to be remedied by an apodizing filter with the cutoff frequency matching 

the noise structure. 
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1.2.2 Iterative Reconstruction Methods 

 Iterative reconstruction methods approach the inverse problem by solving a system of 

simultaneous linear equations. They allow for easy modeling of pertinent physical phenomena 

(e.g. attenuation or detector resolution) in the reconstruction process. They could be classified as 

algebraic approaches (ART, MART, SMART) and statistical approaches that include weighted 

least squares (CG, CD, ISRA), maximum likelihood (OSEM-MAP, SAGE, CG) [4]. In general, 

the statistical methods tend to generate superior reconstructions in terms of image quality as 

compared to analytical methods [4]. The main disadvantage of these methods relative to 

analytical methods is their relatively large computational burden. However, as processing speeds 

of modern computers continue to increase and algorithms continue to be developed, this is 

becoming less of an issue. 

 Using the Bayesian framework, the a posteriori probability distribution of the unknown 

activity distribution vector λ is given by Bayes' theorem, 

 | |
P

P g P g
P g

. (1.18) 

Where P(λ) defines any prior knowledge about λ and P(g) defines the prior probability 

distribution of the measurements g, which are given by measurements [14]. The likelihood 

function, P(g|λ), is the conditional probability of observing a fixed g for a variable vector  λ . If 

we take the natural logarithm of Eq. (1.18), this relation becomes 

 ; ln | ln | ln lnl g P g P g P P g . (1.19) 

Using a Poisson statistical model, the natural logarithm of the likelihood function is  
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where mg  is the projection operator acting on the vector λ 

 
N

m mn n

n

g a . (1.21) 

For SPECT reconstruction, a common Bayesian prior P(λ) that allows for local smoothness is the 

Gibbs prior distribution [15]  

 
ln ln

ln

U
P Ce

U C
 (1.22) 

where U(λ) is the energy function and β controls the strength of the prior. The constant C is the 

normalizing factor. Inserting the above into Eq. (1.19) yields 

 ( ) ln
M

m m m

m

l g g g U K , (1.23) 

where ln ln ( ) ln !mK C P g g  is a constant independent of λ. Using Newton's dot 

notation to represent the derivatives with respect to λn, we have 

 ( )
M M

m
mn mn

m m m

g
l a a U

g
. (1.24) 

Rearranging and multiplying both sides by λn leads to 
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M
m
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. (1.25) 
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Setting β to zero and using an iterative update scheme with k representing the k
th 

iteration, results 

in the one-step-late [16] MLEM algorithm laid out by Shepp and Vardi [17] and Lange and 

Carson [18]: 

 
1

M
m

mnk
mk k m

n n M

mn

m

g
a

g

a

 (1.26) 

where 
N

k k

m mn n

n

g a . This is the MLEM algorithm and it contains four primary operations: one 

projection, two back-projections, and an estimate update.  Using these operations arranged in this 

special manner, the goal is to converge to a general solution of the best estimate of  f  (mean 

number of disintegrations per volume) with the hope that as k  → ∞, λ → f. 

 

1.2.3 OSEM-MAP 

 In order to accelerate the convergence of the MLEM algorithm, Hudson and Larkin [19] 

proposed a general procedure for processing emission data. With this method, Ordered-Subset 

Expectation Maximization (OS-EM), the projection data is grouped into ordered subsets where 

the OS level defines the number of these subsets. As mentioned above, the EM algorithm 

contains three primary operations, projection, back-projection, and estimate update.  The OS-EM 

algorithm computes a subset of projections and back-projections. An estimate is then created 

based on these subsets. This estimate is then used to compute the next subset of projections and 

back-projections. The modified algorithm has the form    
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t
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a
 (1.27) 
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where St = {S1, S2, ..., ST} is the t
th

 subset out of a total of T.  

 The configuration of projection angles within a subset can take many different patterns.  

It has been shown that convergence speed and reconstructed image quality is optimal when each 

subset contains equally distributed projections [20]. 

 

1.2.4 Cost Functions and regularization 

 Both the MLEM and OSEM algorithms try to match the estimated projection with the 

true data. In reality, the measured data are riddled with Poisson noise. As convergence is 

approached, this noise propagates to the emission distribution estimate. Methods developed to 

deal with this noise propagation can be divided into two categories. The first is noise reduction 

techniques [4], which include pre-filtering the noisy dataset, halting the iteration process before 

convergence [21], filtering the reconstructed estimate during each iteration [22], and post-

filtering the final reconstructed estimate [23].  

 The second category for dealing with noise propagation includes true regularization 

methods [4].  True regularization methods are known to possess superior attributes such as 

algorithm stability, fast convergence, and edge preservation. Incorporating regularization into the 

EM algorithm is achieved by including a posteriori information as was shown above and 

resulted in the following equation  [24], 
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 (1.28) 
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1.3 SIMIND SPECT Data Monte Carlo Simulation 

 Simulated SPECT data sets were created using SIMIND simulation software. SIMIND 

uses Monte Carlo techniques to simulate almost any type of calculation or measurement 

encountered in SPECT imaging. It was developed by Professor Michael Ljungberg from Lund 

University, Sweden [25]. The code, written in FORTRAN 90, was implemented on a Windows 

x86 system. There are two primary programs named CHANGE and SIMIND that are required to 

set up and execute a simulation. The CHANGE program is used to define the imaging system, 

object parameters, and outputs. The SIMIND program reads the input files created by CHANGE, 

executes the Monte Carlo simulation, and outputs results to the screen and to data files. The 

output projection set is in units of counts (injected dose [MBq])/(scan time per view [s]). Once a 

projection set is created and scaled by an appropriate injected dose and scan time, Poisson noise 

can be added. The software also allows for a dataset to be separated into total photons and 

scattered photons where the user can define the scatter order and energy window. 

 

1.4 Image Quality Assessment 

 Two factors will need to be considered when comparing the advantages and 

disadvantages among reconstruction methods. The first is the performance of the reconstruction 

algorithm. This is usually done by looking at properties such as convergence rate, calculation 

speed, complexity, simplicity, and memory requirements.  In the context of the EM algorithm, 

convergence is usually measured by the behavior of the log-likelihood function versus iteration. 

More in-depth proofs of convergence for different EM algorithms have been studied [4,14,17,26] 

and will not be considered here. 
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 The second measure or performance is the reconstructed image. Ultimately, this is what 

is diagnostically important. The quality assessment of the reconstructed images can be 

categorized as an estimation task or detection task [9,27]. An estimation task is defined as the 

measure of some value such as noise or bias. The goal of a detection task is to decide among 

several possible states of truth. This could be the presence or absence of a lesion. In this 

dissertation, we use estimation task for evaluating the reconstructed image. 

 We define an image artifact as an artificial image feature that persists for different noise 

realizations. Therefore, a distinction is made between random noise effects and image artifacts. 

The image quality measures are as follows: 

 Mean activity distribution within region l 

 
1

,
l

N

l j

j RN
 (1.29) 

where Rl is the subset of voxels associated with the l
th

 region-of -interest that contains N voxels.  

 Standard deviation of activity distribution, which is a measure of noise, within region l is 

defined as 
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 The signal-to-noise ratio is defined as 

 l

l

SNR . (1.31) 

 Uniformity is defined as 

 max min

max min

f f
uniformity

f f
 (1.32) 

where fmax and fmin are the maximum and minimum values, respectively, within a ROI. 
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 Relative contrast is defined as the difference in mean activity distribution within a region 

l and the background region b, divided by the mean activity distribution within a region b, 

 .l b

b

C  (1.33) 

 Lesion detectability takes into account both contrast and noise and is defined as the 

difference in mean activity distribution within a region l and the background region b, divided by 

the noise of the activity concentration in the background noise σb and is defined by the following 

equation: 

 l b

b

D . (1.34) 

 Mean to actual ratio (MAR) is ratio between the reconstructed mean activity distribution 

and the true mean activity distribution fl reference within region l, and is defined as 

 .l

l

MAR
f

 (1.35) 

An MAR close to unity would mean that the reconstruction is very accurate. 

 In addition to the image analysis measures mentioned above, we also use the normalized 

mean square error which is defined as [28,29] 
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, (1.36) 

where pj is the value of the phantom within the j
th

 pixel. 
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1.5 Aim and Structure of Dissertation 

 The focus of this dissertation is the advancement of both emission and transmission 

tomographic iterative reconstruction, though slanted towards emission tomography. The first five 

chapters are focused on SPECT tomography, while the last chapter addresses transmission 

tomography. The dissertation is structured in the following manner. Chapter 1 (this chapter) 

introduces SPECT imaging and SPECT tomographic reconstruction. Chapter 2 explains the 

SPECT system matrix for various collimator geometries. Chapter 3 examines cone-beam helical 

acquisition, while Chapter 4 looks at combinations of converging collimators with circular 

acquisition. Chapter 5 examines the system matrix for parallel-beam, mesh-domain 

reconstruction. Chapter 6 is devoted to the development of system matrix for iterative 

transmission tomographic reconstruction. 
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Chapter 2. System Matrix in Voxel Domain 

2.1 Introduction 

 A primary goal when using the MLEM algorithm, or any projector-based reconstruction 

algorithm, is to create a projector that is both physically realistic and computationally efficient. 

Physically realistic translates into effectively modeling the physics that describes the 

transformation from the activity distribution within the object to the digital output created by the 

detection system. This all should be achieved with a relatively basic algorithm that can be 

computed within a reasonable time frame.  In, 1988, Lo [30] proposed a strip-area system 

model for a parallel-beam collimator. A triangle subtraction technique was use to calculate the 

intersected area between a voxel and detector bin tube-of-response. This method calculates the 

exact volume-of-intersection. Other analytical volumes-of-intersection methods for parallel-

beam and converging collimator geometries have also been proposed [31]. Also, approximate 

volumes-of-intersection methods [30,32,33,34] have been studied . However, it can become 

cumbersome when one tries to incorporate the attenuation contribution into these algorithms. A 

common approach to include attenuation is to use ray-tracing techniques to determine the 

lengths-of-intersection and match up a given volume contribution with its nearest length-of-

intersection [35]. To alleviate this problem, we have coupled the length-of-intersection directly 

with an associated approximate volume-of-intersection. The volumes-of-intersection are 

determined along a ray that is projected from a location on the detector face to the collimator’s 

focal point. The length-of-intersection is then used to compute an approximate volume-of-

intersection. The geometry of the elements used to create an approximate volume-of-intersection 

depends on the collimator geometry. 

 



26 

 

2.2  Definitions and Framework 

 In this chapter we describe our method for efficient and accurate calculation of a system 

matrix, defined by Eq. (1.8), that includes the effects of photoelectric attenuation, detector 

response and sensitivity, and collimator geometry. This is accomplished using preexisting ray-

tracing techniques [36,37]. In order to achieve balance between system model accuracy and 

efficiency, we will make the following approximations: (1) only photon transit paths that lie 

within a detector bin's tube-of-response (TOR) are included. With this approximation, second
 

order and higher scatter is not modeled directly. This method has been shown to reduce 

computing time dramatically with a negligible loss of reconstruction accuracy [38]. Also, the 

loss of resolution due to the collimator is not directly modeled through ray tracing. This 

operation is applied to the projector and back-projector iteratively. This means that first order 

scatter (photoelectric attenuation) is not properly modeled for photons that are not traveling 

exclusively within a TOR. (2) The integration over the detector response function multiplied by 

the basis functions is discretized. This means that the probability that a photon from the n
th

 voxel 

to be recorded by the m
th

 detector unit is approximated. Three collimator geometries are studied: 

parallel-beam, fan-beam, and cone-beam.  

 We define the r
th 

ray associated with the m
th 

detector bin as the rm
th 

ray. The total 

approximated volume contribution of the n
th

 voxel to the m
th

 detector bin is the sum sub-

volumes-of-intersection and is given by 

 

RS

mn rmn

r

v v , (2.1) 

where RS is the total number of rays per detector bin. Figure 2.1 shows an example of volumes-

of-intersection for parallel-beam collimator. We define the axial direction as the direction along 

the axis-of-rotation and transaxial direction as the direction that is perpendicular to the axial. 
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 If the attenuation factor from each sub-volume to the detector face is included, the system 

matrix element becomes  

 
1

exp
2

rmnSRS

mn rmn n rmn k rmk

r k n

a v l l , (2.2) 

where Srmn is the set of voxels between the n
th 

voxel and m
th 

detector bin that the r
th 

ray passes 

through. The factor μn  is the average attenuation coefficient within the n
th

 voxel and lrmn is the 

intersection length of the rm
th 

ray passing through the n
th 

voxel. The determination of an accurate, 

patient specific, attenuation map is essential to incorporating attenuation compensation (AC) into 

the reconstruction algorithm [39]. Methods for obtaining accurate attenuation maps for this 

purpose include registration of an attenuation map from another modality, estimation of the 

transmission map using a SPECT/CT system, SPECT with radioisotope-based transmission 

system, and estimation of the attenuation map from solely the emission data [40]. Such 

anatomical information can be obtained from a transmission computed tomography (TCT) scan 

or MRI. 

 

 

 

Figure 2.1.  Approximate 

volumes-of-intersection for 

parallel-beam collimator. 

This example shows four 

rays per detector bin. Only 

the transaxial plane is 

displayed for clarity.  
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Regardless of the collimator geometry, the general algorithm for calculating the system matrix is 

given by the following pseudocode: 

 Loop over projection angle θ 

 Get coordinates of center of detector and focal point 

 Loop over detector bins 

 Get bin index 

 Loop over rays per bin 

 Get coordinates of point where ray intersects detector 

 Input coordinates into ray-tracing algorithm 

 For each voxel intersected by ray, generate intersection length, volume contribution, and 

shortest distance to detector face 

 Loop over subset of voxels intersected by ray starting from voxel closest to detector 

 Multiply volume element and attenuation 

 If current voxel has a contribution then sum 

 

2.2.1 Normalized Sensitivity Patterns versus Number of Rays 

 We use the normalized sensitivity pattern (NSP) for determining the optimal number of 

rays per detector bin for a given scan geometry and reconstruction resolution. The NSP can be 

viewed as an image with the same number of elements as the reconstruction grid and is defined 

as 

 
1 M

n mn

m

s v , (2.3) 
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where vmn is the approximated intersected volume of the n
th

 voxel and the m
th

 convex polyhedron 

defined by the focal point at its apex and detector pixel at its base. The constant η is the volume 

of a voxel and α represent the total number of angular views. Notice that if all errors of any 

nature could be corrected, sn would equal 1 for all n that are projected completely for all α. For a 

128
3
 grid, the average time required to cast a ray through the reconstruction space and calculate 

the approximate volume-of-intersections was found to be 8.3 µs per ray. Examples of NSP’s 

along with the associated statistics for parallel-, fan-, and cone-beam geometries are given within 

the following sections. 

 

2.3 Parallel-Beam Collimator 

 A parallel-beam collimator contains channels that are both parallel to one another and at 

right angles with respect to the collimator face. Parallel-beam collimation offers a good 

compromise between resolution and sensitivity. The reconstruction is relatively straightforward 

relative to that for converging collimators. For these reasons, parallel-beam is widely used 

clinically. 

 

2.3.1 Parallel-Beam Collimator Geometry 

 The sub-volume-of-intersection used for the parallel-beam system matrix is defined as a 

rectangular cuboid with two faces parallel to the detector.  The volume-of-intersection 

contribution associated with the rm
th

 ray passing through the n
th

 voxel for parallel-beam 

collimator is 

 .rmn rmn

PQ
v l

RS
 (2.4) 
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where lrmn is the intersection length between the rm
th

 ray and the n
th 

voxel. The constants P and Q 

are the horizontal and vertical lengths of a detector bin respectively. The factor R is the number 

of rays per bin along the horizontal and S is the number of rays per bin along the vertical. The 

geometry for a parallel-beam volume-of-intersection is displayed in Fig. 2.2. The voxel that is 

being intersected is not displayed in the figure. 

 

 

 

Figure 2.2.  Approximate volume contributions for parallel-beam geometry. The voxel is not displayed. 

 

2.3.2 Parallel-Beam NSP Results 

 The NSP for a parallel-beam collimator are displayed in Fig. 2.3. The rays were 

distributed uniformly and horizontally across the detector pixel and ranged from 1 to 22 rays per 

bin. The reconstruction space was 128
3 

and the dimension of a detector bin was equal to that of a 

voxel which was 0.48 cm in this case. The plots shown in Fig. 2.4 show the statistics for the 
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NSP’s depicted in Fig. 2.3. The statistics included the standard deviation of all the pixels within 

the NSP, and the maximum and minimum of the NSP. 

 

 

    

a b c d 

    

e f g h 

Figure 2.3.  Sensitivity patterns versus number of rays per bin for a parallel-beam collimator. Rays per 

bin: (a) 1, (b) 2, (c) 3, (d) 5, (e) 7, (f) 10, (g) 15, and (h) 22. 
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a b 

 

 

c  

Figure 2.4.  Statistics of NSP for parallel-beam versus number of rays per detector bin. The mean NSP 

was very close to 1 and independent of the number of rays per bin. Shown are (a) maximum and (b) 

minimum of the NSP across reconstruction space and (c) standard deviation of NSP. 

  

 For a parallel-beam collimator with the detector and reconstruction space parameters 

above, the mean NSP taken across the reconstruction space was very close to 1 when using at 

least one ray per bin. A standard deviation of the NSP less than 0.1 % was achieved when five or 

more rays per bin were required. To achieve a ±0.5 % or less maximum/minimum fluctuation 

about the mean, five rays per bin were required. 

0 5 10 15 20 25

1.00

1.02

1.04

1.06

 

 

m
a

x
im

u
m

rays per bin

0 5 10 15 20 25
0.94

0.96

0.98

1.00

 

 

m
in

im
u
m

rays per bin

0 5 10 15 20 25

0.000

0.006

0.012

 

 

s
ta

n
d

a
rd

 d
e

v
ia

ti
o
n

rays per bin



33 

 

2.4 Fan Beam Collimator 

 Fan-beam collimation is within the realm of focusing or converging collimators. Fan-

beam offers a gain in sensitivity along the transaxial direction compared to parallel- beam. The 

trade-off with the gain in sensitivity is a loss in the field-of-view (FOV). Therefore, convergent 

collimators are useful when imaging smaller organs such as the brain or heart. 

 

2.4.1 Fan-Beam Collimator Geometry 

 The holes in a fan-beam collimator focus along a focal line. The focal length is the 

distance from the patient side of the collimator to the focal line. This defines the focusing power 

of the collimator. The sub-volume-of-intersection used for the fan-beam system matrix is 

determined as follows: A wedge is formed by the sub-pixel on the detector as the base square 

and the focal line as the apex edge. The two triangles that define the wedge are parallel to one 

another. A ray is cast form the center of the sub-pixel to the focal line and is parallel to the 

triangles. The two intersection points of this ray with a voxel are determined as well as the 

volume of a wedge from each intersection-point to the focal line. The sub-volume-of-intersection 

is the difference in the volume of the polyhedron from each intersection-point. The volume-of-

intersection contribution associated with the rm
th

 ray passing through the n
th

 voxel for a fan-

beam collimator is 

 

1 2

1
2

2

rmn rmnrmn
rmn

rm rm

a alPQ
v F T

RS w w
,

 (2.5) 

where F is the focal length and T the thickness of the collimator. The factor wrm is the length of 

the rm
th 

ray that is cast from the focal line to the detector.  The factors 
1
armn and 

2
armn are the 
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distances along wrm from the detector to the first and second, respectively, intersection points 

with n
th

 voxel. The geometry for a fan-beam sub-volume-of-intersection is displayed in Fig. 2.5. 

 

 

Figure 2.5.  Approximate volume contributions for fan-beam geometry. The voxel is not 

displayed. 

 

2.4.2 Fan-Beam NSP Results 

 Figure 2.6 displays an example of the sensitivity artifacts versus the number of rays per 

detector bin associated with fan-beam geometry. The rays were distributed uniformly 

horizontally across the detector pixel and ranged from 1 to 22 rays per bin. The reconstruction 

space grid was 128
3
 and the reconstruction voxel size was half that of the detector pixel size. The 

plots shown in Fig. 2.7 show the statistics for the NSP’s depicted in Fig. 2.6. The statistics 

included the standard deviation of all the pixels within the NSP, and the maximum and minimum 

of the NSP. 
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a b c d 

    

e f g h 

Figure 2.6.  Sensitivity patterns versus number of rays per bin for fan-beam collimator when detector size 

equals 2 times reconstruction size. Rays per bin: (a) 1, (b) 2, (c) 3, (d) 5, (e) 7, (f) 10, (g) 15, and (h) 22. 
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a b 

 

 

c  

 

Figure 2.7.  Statistics of NSP for fan-beam versus number of rays per detector bin. The mean NSP was 

very close to 1 and independent of the number of rays per bin. Shown are (a) maximum and (b) minimum 

of the NSP across reconstruction space and (c) standard deviation of NSP. 

 

 For a fan-beam collimator with the detector and reconstruction space parameters above, 

the mean NSP taken across the reconstruction space was very close to 1 when using at least one 

ray per bin. A standard deviation of the NSP less than 1 % was achieved when five or more rays 

per bin were required. To achieve a ±2% or less maximum/minimum fluctuation about the mean, 

five rays per bin were required. 
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2.5 Cone Beam Collimator 

 When compared to conventional collimator geometries, cone-beam collimation increases 

the number of detected photons [41]. This increased count density leads to improved overall 

diagnostic accuracy without loss in resolution. Like fan-beam, with this gain in sensitivity comes 

a loss in the FOV size. This improved sensitivity, or efficiency, is within both the transaxial and 

axial directions, whereas for fan-beam it is only along the transaxial. Li et. al. [42] demonstrated, 

through continuous receiver operating characteristic (CROC) curves, that cold lesions in the 

posterior portion of the thalamus are best detected using cone-beam collimation, compared to 

fan-beam and parallel-beam. However, the cone-beam collimator has not yet been put into use 

clinically. Major drawbacks are the artifacts caused by problems with sampling [43]. Researchers 

have tried various methods to fix this problem such as combined imaging with parallel-beam 

collimator, helical detector orbit, etc. We explore application of helical orbits in Chapter 3 and 

combinations of converging collimators in Chapter 4. Also, since the cone-beam reconstruction 

problem is truly 3-D, one should expect higher complexity, longer reconstruction times, and 

slower convergence. 

 

2.5.1 Cone-Beam Collimator Geometry 

 The sub-volumes-of-intersection used for the cone-beam system matrix are determined as 

follows. A polyhedron is formed by the square detector sub-pixel as the base and the focal point 

as the apex. A ray is cast form the center of the sub-pixel to the focal point. The two intersection 

points of this ray with a voxel are determined. The volume of the polyhedron from each 

intersection-point to the focal point is determined. The sub-volume-of-intersection is the 

difference in the volume of the polyhedron from each intersection-point. The volume-of-
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intersection contribution associated with the rm
th

 ray passing through the n
th

 voxel for a cone-

beam collimator is 

 

3 3
1 2

1
1 1

3

rmn rmn
rmn

rm rm

a aPQ
v F T

RS w w
 (2.6) 

where all symbols are defined above. The geometry for a cone-beam sub-volume-of-intersection 

is displayed in Fig. 2.8. 

 

 

Figure 2.8.  Approximate volume contributions for cone-beam geometry. The voxel is not displayed. 

 

2.5.2 Cone-Beam NSP Results 

 The plots in Figs. 2.9, 2.10, and 2.11 show the statistics for the NSP’s versus the number 

of rays per detector bin for cone-beam geometry. The rays were distributed uniformly throughout 

the detector pixel. The statistics included the standard deviation of all the pixels within the NSP, 

and the maximum and minimum of the NSP. The reconstruction space grid was 128
3
 and the 
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reconstruction voxel size was half that of the detector pixel size. Five slices were chosen ranging 

from the furthest from center slice to the center slice. 

 

 

  

a b 

 

 

c  

Figure 2.9.  Statistics for cone-beam normalized sensitivity patterns NSP within the central slice versus 

number of rays per detector bin. Shown are (a) maximum and (b) minimum of the NSP across the 

reconstruction space and (c) standard deviation of NSP. 
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a b 

 

 

c  

Figure 2.10.  Statistics for cone-beam normalized sensitivity patterns NSP within a slice between the 

central slice and the slice furthest from the central versus number of rays per detector bin. Shown are (a) 

maximum and (b) minimum of the NSP across the reconstruction space and (c) standard deviation of 

NSP. 
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a b 

 

 

c  

Figure 2.11.  Statistics for cone-beam normalized sensitivity patterns NSP within the slice furthest from 

the central slice versus number of rays per detector bin. Shown are (a) maximum and (b) minimum of the 

NSP across the reconstruction space and (c) standard deviation of NSP. 

 

 For a cone-beam collimator with the detector and reconstruction space parameters above, 

5×5 rays per bin are required to achieve a mean NSP very close to unity. A standard deviation of 

the NSP less than 1 % was obtained when 10×10 or more rays per bin were used. A 

maximum/minimum of ±5% was obtained when 10×10 or more rays per bin were used. 
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2.6 Conclusions 

 In this section, we have introduced the formulation of fully three-dimensional, voxel-

based system matrix in parallel-beam, fan-beam, and cone-beam collimator geometries while 

modeling the process of attenuation, system resolution, and sensitivity. This was achieved by 

casting rays through a volume of voxels and using ray-voxel intersection lengths to determine 

approximate volume contributions. The NSP was used to determine the optimum number of rays 

to be used per detector bin for a given geometry and sampling. 
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Chapter 3. Cone-Beam Collimator with Helical Orbit 

3.1 Objective 

  The objective of this study was to investigate reconstructed image quality for datasets 

that used helical orbits under the constraint of fixed total acquisition time and fixed 

radiopharmaceutical dose using a system matrix described in Chapter 2. Also, we investigated 

using either a staggered OS grouping or an in-plane grouping. 

 

3.2 Introduction 

 It is well know that cone-beam collimators allow for higher sensitivity and resolution 

relative to fan-beam and parallel-beam collimators. However, when single-circular orbits are 

used, transaxial and axial distortion artifacts result due to insufficient sampling of the projection 

data. Tuy [44] and later Smith [45] formulated the required conditions for sufficiently sampling 

the datasets in the context of inversion-based reconstruction. 

 In this section, we consider a triple-head gamma camera and examine how sampling, 

using a helical orbit and constrained by total scan time and administered dose, affects image 

quality. Sampling is described by both rotation and translation. Since we are considering helical 

orbits with a fixed translational length and 360° rotation, rotational sampling and translational 

sampling are coupled. Under the constraint of fixed total acquisition time and fixed 

radiopharmaceutical dose, higher rotational sampling yields noisier projections due to less 

information being collected per projection. This allows for a tradeoff between sampling and the 

signal-to-noise ratio (SNR) for a projection. 
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3.3 Methods 

 The simulated object consists of five “hot” (radioactive) cylinders embedded within a 

large cold cylinder and is shown in Fig. 3.1. The small cylinders were simulated as polymethyl 

methacrylate (PMMA) and the large cylinder in which they are embedded as water. The 

diameters of the five small cylinders ranged from 2.2 cm to 0.44 cm. The activity concentration 

ratio between the small and large cylinders is 3:1. The total activity was fixed at 3000 MBq for 

this phantom and the total scan time was constrained to 1,800 s. 

  A triple-head SPECT detection system with cone-beam collimators was used. We 

investigated reconstruction performance based on various rotational and translational sampling 

and corresponding single-to-noise ratios (SNRs). The rotational sampling considered consisted 

of 90, 120, 180, and 360 views over 2π radians, which translates to 30, 40, 60, 120 views per 

detector head over π radians. Application of a triple-head detection system allows for sampling 

the reconstruction space from three angles separated by π radians per camera rotation versus a 

single-head system that allows for only one view per camera rotation. In this case, pitch is 

defined as the axial distance between locations of the focal point before and after a π rotation of 

a single detector head. The total translational distance covered was 6.6 cm. 

 Three low-energy ultrahigh-resolution (LEUR) cone-beam collimators were considered. 

The detector and collimator parameters are given in the Appendix, Table A.2. The radius-of-

rotation (ROR) was 14.08 cm.  

 One noiseless and four noisy datasets were considered. The noiseless dataset was created 

using the same projector that was used for reconstruction. This allowed for analyzing 

reconstruction artifacts that might be masked or hidden otherwise. The noisy datasets were 

simulated using the Monte Carlo-based SIMIND software. This allows for analyzing how the 
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noise propagation from the data to the reconstructed image is handled. Examples of selected 

projections are shown in Fig. 3.2. 

 An ordered-subset version of the EM algorithm (OSEM) was used for reconstruction 

[19]. An OS number of 6 was used. We investigated using either a staggered OS grouping or an 

in-plane grouping. Ordered subsets, In-plane groupings are sets of projections in which the focal 

points for the three detectors are in the same plane and staggered groupings are ones in which the 

focal points are not in the same plane. The reconstructed voxel size was (0.22 cm)
3
 and the space 

resolution was 128 × 128 × 64.
 
An exact attenuation map was used. Resolution and sensitivity 

compensation was implemented according to the method described in Chapter 1.1.6 and the 

parameters of which are listed in the Appendix. Neither post smoothing nor regularization were 

used. The system matrix was created using 16 rays per detector bin. 

 

 

Cylinder Diameter (cm) 

 

1 2.20 

2 1.76 

3 1.32 

4 0.88 

5 0.44 

water 17.6 

Figure 3.1.  Digital phantom used for cone-beam collimator with helical orbit SPECT study. Five 

cylindrical rods are shown embedded in a large cylinder. The ratio of activity between the small cylinder 

and background is 3:1. 
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a b 

  

c d 
Figure 3.2.  Illustration of helical cone-beam noisy datasets created using SIMIND. Shown are line 

profiles through the noisy datasets superimposed over line profiles through the noiseless dataset. 

Underneath each plot is a sample of the corresponding dataset. Datasets were created using various 

numbers of views per projection: (a) 90, (b) 120, (c) 180, and (d) 360. Notice that as the number of views 

per projection increases, the noise per projection increases as well as the rotational and translational 

sampling. 
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3.4 Results 

Noiseless Dataset 

 The reconstructed image quality was assessed using the mean-to-actual ratio (MAR), 

defined in Chapter 1.4, within hot cylinders of various sizes. Also, line profiles across various 

regions were used to assess spatial resolution and accuracy.  Figure 3.3 shows plots of the MAR 

within various sized cylinders versus iteration for staggered and in-plane OS-groupings.  

Datasets did not contain Poisson noise. From Fig. 3.2 we see that: 1) convergence is slower for 

smaller sized hot cylinders, 2) In-plane OS grouping outperforms staggered grouping for all 

sized cylinders, and that 3) the MAR approaches unity as the cylinder size increases. 
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a b 

  

c d 

  

e f 
Figure 3.3.  MAR vs. iteration within various sized cylinders using two OS grouping methods. Cylinder 

diameters are; (a) 0.44 cm, (b) 0.88 cm, (c) 1.32 cm,  (d) 1.76 cm, (e) 2.20 cm, and (f) is the background 
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(Figure 3.2 continued) which the smaller cylinders are imbedded. Datasets were noiseless. Each graph 

displays two curves. The curve using blue squares is an ordered-subset which consists of projections in 

which the focal points for the three detector heads are located within the same plane along the transaxial 

direction (in-plane OS) and the red triangles represent a group where the focal points are out of plane 

(staggered OS). 

 

 Transaxial line profiles across the 2.2 cm diameter cylinder and a line profile through the 

uniform region along the axial direction are shown in Fig. 3.4. Datasets did not contain Poisson 

noise. By analyzing Fig. 3.4 we conclude that: 1) in-plane and staggered OS groupings were 

comparable in terms of resolution and noise for slices close to the central slice, and 2) in-plane 

OS outperformed staggered OS grouping in terms of resolution and noise for slices further from 

the central slice. 

 

 
 

a 
 

b 

Figure 3.4.  (a) Line profile within center slice across hot cylinder along the transaxial direction. (b) Line 

profile through the uniform background along the axial direction. Staggered subset is represented by 

squares and in-plane subsets by triangles. Datasets were noiseless. 

 

 We also visually examine the image artifacts of the reconstructed images when using 
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groupings, Gibbs ringing is evident in locations where there are sharp edges. These artifacts 

appear as “overshoots” when going from hot to cold region and “undershoots” from cold to hot. 

In slices further from the central slice, one can observe strong sampling artifacts when using a 

staggered grouping, versus an in-plane grouping. 

  

a 
 

b 

  

c 
 

d 

Figure 3.5.  The top row shows slices through the uniform region reconstructed using (a) In-plane subset 

grouping and (b) staggered subset grouping. The bottom row shows slices through the five hot cylinders 

reconstructed using (c) In-plane subset grouping and (d) staggered subset grouping. The images in (a) and 

(c) contain fewer reconstruction artifacts then (b) and (d). 
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Noisy Datasets 

 Figure 3.6 shows plots of the MAR within various sized cylinders versus iteration for 

datasets acquired using 90, 120, 180, and 360 views with a fixed total dose and scan time.  In-

plane OS was used. Datasets contained Poisson noise and were acquired using 90, 120, 180, and 

360 views with a fixed total dose and scan time. Therefore, there is a tradeoff between sampling 

and SNR. By analyzing these plots we conclude that: 1) Convergence increases with increasing 

object size regardless of sampling, 2) MAR converges to values closer to 1 for larger objects, 3) 

the MAR associated with noisy datasets is smaller than that of noiseless datasets and 4) there is 

no noticeable difference between the four different samplings. 
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Table 3.1.  MAR within reconstructed cylindrical rods for noisy datasets at iteration 20 when angular 

views ranged from 90 to 360.  

cylinder diameter (cm) 90 views 120 views 180 views 360 views 

2.20  0.718 0.719 0.730 0.723 
1.76  0.733 0.702 0.720 0.718 
1.32  0.702 0.688 0.698 0.720 
0.88  0.672 0.633 0.668 0.659 
0.44  0.498 0.507 0.512 0.517 

 

Table 3.2.  Standard deviation within reconstructed cylindrical rods for noisy datasets at iteration 20 

when angular views ranged from 90 to 360. 

cylinder diameter (cm) 90 views 120 views 180 views 360 views 

2.20  0.152 0.148 0.154 0.144 
1.76  0.151 0.149 0.160 0.140 
1.32  0.178 0.163 0.165 0.187 
0.88  0.180 0.109 0.151 0.149 
0.44  0.099 0.098 0.087 0.081 

 

Table 3.3.  Uniformity within reconstructed cylindrical rods for noisy datasets at iteration 20 when 

angular views ranged from 90 to 360. 

cylinder diameter (cm) 90 views 120 views 180 views 360 views 

2.20  0.527 0.548 0.576 0.554 
1.76  0.537 0.524 0.594 0.503 
1.32  0.574 0.568 0.502 0.562 
0.88  0.508 0.339 0.453 0.485 
0.44  0.335 0.401 0.333 0.372 
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a b 

  

c d 
 

Figure 3.6.  MAR vs. iteration within various sized cylinders. Cylinder diameters are; (a) 0.44 cm, (b) 

0.88 cm, (c) 1.32 cm, and (d) 1.76 cm. Datasets contained Poisson noise. Each graph displays four curves 

corresponding reconstructions of projections containing 90, 120, 180, and 360 views with total scan time 

and administered dose fixed. 
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3.5 Conclusions 

 Here, the reconstruction performance was studied for a triple-head cone-beam SPECT 

system using a helical orbit acquisition. We looked at various subset groupings for the ordered-

subsets expectation maximization (OSEM) algorithm. We also examined how rotational and 

translational sampling affects reconstructed image quality when constrained by total injected 

dose and scan time. We conclude the following.  When reconstructing noiseless or noisy 

datasets, varying the rotational sampling from 90 views to 360 views over 360 degrees does not 

affect the reconstructed activity, regardless of the object size, in terms of both convergence and 

accuracy. When using ordered subsets, the subset group arrangement is important in terms of 

both image quality and accuracy. The rate of convergence is less when reconstructing small 

objects versus larger ones. Spatial resolution and accuracy are worse when reconstructing small 

objects versus larger ones.  
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Chapter 4. Converging Collimators with Circular Orbit 

4.1 Objective 

 The objective of this study was to determine the reconstruction performance when using 

a triple-head system with various combinations of converging collimators with a circular orbit 

while varying the number of angular views using a system matrix described in Chapter 2. A 

cone-beam collimator was used to increase sensitivity in both the transaxial and axial directions. 

Fan-beam collimators were used to achieve sufficient sampling along the axis-of-rotation. 

 

4.2 Introduction 

 Both cone-beam and fan-beam collimators offer increased sensitivity in comparison to 

parallel-beam ones. Cone-beam increases sensitivity along both the transaxial and axial 

directions while fan-beam offers an increase only along the transaxial. This increase in 

sensitivity is offset by insufficient sampling. Various combinations of collimators have been 

studied including parallel-beam and fan-beam [46], and parallel-beam and cone-beam [47,48]. In 

this section we further investigate using a combination of cone-beam and fan-beam collimators 

with a circular orbit acquisition employing a system matrix described in Chapter 2. 

 

4.3 Methods 

 The object consisted of five hot cylinders imbedded within a large cold cylinder as shown 

in Fig. 4.1. The small cylinders were composed of PMMA and the large one was composed of 

water. The diameters of the five cylinders ranged from 0.44 to 2.2 cm. The concentration ratio 
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between the small and large cylinders was 3:1. The total activity was fixed at 3000 MBq for this 

phantom, and the total scan time was constrained to 1,800 s. 

  A triple-head SPECT detection system with combinations of low-energy ultra high 

resolution (LEUR) fan-beam collimators (FBC) and cone-beam collimators (CBC) were used. 

The detector and collimator parameters are given in the Appendix, Table A.2. The radius-of-

rotation (ROR) was 14.08 cm.  The angular sampling was 120 views over 2π radians, which 

translates to 40 views per detector head over π radians. Application of a triple-head detection 

system allows for sampling the reconstruction space from three angles separated by π radians 

per camera rotation versus a single-head system that allows for only one view per camera 

rotation. The combinations of collimators studied included; CBC-CBC-CBC (CCC), CBC-CBC-

FBC (CCF), CBC-FBC-FBC (CFF), and FBC-FBC-FBC (FFF). 

 Both noiseless and noisy datasets were considered. The noiseless dataset was created 

using the same projector that was used for reconstruction. This allowed for analyzing 

reconstruction artifacts that might be masked or otherwise hidden. The noisy datasets were 

simulated using the Monte Carlo-based SIMIND software. This allows for analyzing how noise 

propagation from the data to the reconstructed image is handled. 

 An ordered-subset version of the EM algorithm (OSEM) was used for reconstruction 

[19]. An OS number of 9 was used with in-plane grouping. The reconstructed voxel size was 

(0.22 cm)
3
 and the spatial resolution was 128 × 128 × 64. 

 
An exact attenuation map was used. 

Resolution and sensitivity compensation was established according to Chapter 1.1.6 and the 

parameters of which are listed in the Appendix. Post smoothing and regularization were not used.  

The system matrix for the CBC was created using 16 rays per detector bin, and the FBC was 

created using 4 rays per bin. 
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Cylinder Diameter 

(cm) 

 

1 2.20 

2 1.76 

3 1.32 

4 0.88 

5 0.44 

water 17.6 

 

Figure 4.1.  Digital phantoms that were used for converging collimator with circular orbit SPECT study. 

Five cylindrical rods embedded in a large cylinder. The ratio of activity between the small cylinder and 

background is 3:1. 

 

4.4 Results 

 The reconstructed image quality was assessed using the mean-to-actual ratio (MAR) and 

standard deviation (SD) of activity distribution, both are defined in Chapter 1.4, within hot 

cylinders of various sizes. Also, line profiles across various regions were used to assess spatial 

resolution and accuracy.  Figure 4.1 shows reconstructed images using various combinations of 

collimators. The top row corresponds to noiseless datasets and the bottom to noisy. By analyzing 

these images, it is evident that sampling artifacts are visible when using CCC and decrease going 

from CCC to CCF to CFF to FFF. 
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a b c d 

 

    
e f g 

 
h 

Figure 4.2.  Reconstructed images of cylinder phantom using various combinations of converging 

collimators. Top row corresponds to noiseless datasets, and bottom to noisy datasets. (a) and (e) CCC. (b) 

and (f) CCF. (c) and (g) CFF. (d) and (h) FFF.  

 

 Figure 4.3 shows a line profile across an in-plane uniform region of water and through 

the water-air boundary along the axis-of rotation. By analyzing these plots we conclude: 1) there 

are strong transaxial and axial artifacts when using a CCC system, 2) these artifacts decrease as 

we go towards a FFF system and 3) resolution along both transaxial and axial directions is best 

when using a FFF system. 
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a b 

 
Figure 4.3.  Line-profile through a 4 cm diameter ROI along the axial direction.  Reconstructions are of 

the cylinder phantom that was imaged over 120 views using various combinations of converging 

collimators. Datasets were noiseless. (a) Line-profile across a uniform region of the main cylinder. (b) 

Resolution between main cylinder and air.  

 

Table 4.1.  MAR, SD, and uniformity for a 4cm diameter ROI within a uniform region of water. 

Reconstructions are of the cylinder phantom that was imaged over 120 views using various combinations 

of converging collimators. Datasets were noiseless.   

Combination MAR SD uniformity 
CCC 0.987 0.035 0.105 
CCF 0.990 0.030 0.090 
CFF 0.979 0.023 0.069 
FFF 0.989 0.012 0.040 

 

 

 Figure 4.4 shows plots of the MAR within various sized cylinders versus 

iteration. Datasets contained Poisson noise. By analyzing these plots we conclude 

that: 1) Convergence increases with increasing object size regardless of system of 

collimators, 2) MAR converges to values closer to unity for larger objects, and 4) 

there is no noticeable difference between the four systems of collimators. 
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a 
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c d 
 

Figure 4.4.  MAR within small cylinders versus cylinder volume. Reconstructions are of the cylinder 

phantom that was imaged over 120 views using various combinations of converging collimators. Datasets 

contained Poisson noise. (a) CCC, (b) CCF, (c) CFF, and (d) FFF. 
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4.5 Conclusions 

 We examined a system composed of three possibly different converging collimators 

using a circular orbit. We conclude the following:  When reconstructing noiseless datasets, using 

a triple-cone beam system resulted in axial distortion artifacts and diminished resolution along 

the transaxial direction. Using a triple-fan beam system resulted in the best reconstructed image 

quality in terms of bias, noise, and contrast. When noisy datasets were reconstructed, a cone-

cone-fan beam system resulted in best reconstructed image quality in terms of mean-to-actual 

ratio for small lesions and a triple-fan beam system for large lesions. 
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Chapter 5. System Matrix in Mesh Domain 

5.1 Objective 

 The purpose of this study was to develop and implement an accurate and computationally 

efficient method for determination of the mesh-domain system matrix including attenuation 

compensation for Ordered Subsets Expectation Maximization (OSEM) Single Photon Emission 

Computed Tomography (SPECT). The mesh-domain system matrix elements were estimated by 

first partitioning the object domain into strips parallel to the detector face and with width not 

exceeding the size of a detector unit. This was followed by approximating the integration over 

the strip/mesh-element union. This approximation is the product of: (i) strip width, (ii) 

intersection length of a ray central to strip with a mesh element, and (iii) the response and 

expansion function evaluated at midpoint of the intersection length. Reconstruction was 

performed using OSEM without regularization and with exact knowledge of the attenuation map. 

The method was evaluated using synthetic SPECT data generated using SIMIND Monte Carlo 

simulation software. Comparative quantitative and qualitative analysis included: bias, variance, 

standard deviation and line-profiles within three different regions of interest. We found that no 

more than two divisions per detector bin were needed for good quality reconstructed images 

when using a high-resolution mesh. 

 

5.2 Introduction 

 The most common basis functions used for SPECT reconstruction are 3-D rect-functions 

or voxels. A voxel is a cubic volume element in which the expected activity is uniform within. 

Although this voxel-based representation has many attractive features in terms of computation, 
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non-constant basis functions have been shown to have advantages, as well. In 1992, Lewitt [5] 

introduced Bessel-Kaiser base functions (Blobs), which were later shown to a reduce noise and 

increase accuracy in reconstructed images [49].  Recently, mesh-based image representation has 

been studied in the context of emission tomography reconstruction [50,51]. This approach might 

offer significant advantages over voxel-based approaches. One benefit is that fewer mesh nodes 

are required to accurately characterize an image, as compared to the number of pixels or voxels 

that are required for the same task. Consequently, the ill-posed inverse problem of reconstruction 

from limited number of projections becomes better regularized. Also, the mesh framework 

allows for natural motion compensation. Before its application to emission tomography, mesh 

modeling had been applied to various areas of image processing, including image compression, 

motion tracking and compensation, and medical image analysis [52]. The mesh-based 

representation partitions the reconstruction space into non-overlapping triangular (2-D) and 

tetrahedral (3-D) patches called mesh elements. Each mesh element is defined by either three (2-

D) or four (3-D) nodes. 

 

5.3 Methods 

5.3.1 Mesh  

 In this study, the MESD2D MATLAB toolbox by Darren Engwirda [53] was used to 

generate the mesh structure. Element size was adapted to ensure that the geometry was 

adequately resolved. Exact anatomical prior information was used to define the geometry and 

attenuation coefficients at nodal locations. This prior information was based on the NURBS-

based cardiac-torso XCAT phantom version 2.07 [54]. An example of a mesh along with the 
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corresponding digital atlas is shown in Fig.5.1. This mesh consists of 7060 nodes connecting 

14086 triangles. The smallest element size was 0.085 pixels and the largest was 145.5 pixels. 

 

  
 

a b c 
 

Figure 5.1.  (a) NCAT activity map. (b) NCAT attenuation map. (c) Mesh consisting of 7060 nodes and 

14,086 triangles. For clarity only center region of mesh is shown (80 × 80 pixels out of 128 × 128 pixels). 

 

5.3.2 System Matrix 

 The deterministic portion of the imaging equation relating the continuous activity 

distribution to the discrete detection of gamma photons is 

2(r) (r)m mg h f d r ,                                                    (5.1)  

where hm(x) is the system response function relating the detector response at bin m to an 

impulse at location x. The emission distribution f(x) is over object domain . Expanding f(x) in 

terms of irregular mesh elements defined by N nodes can be expressed as 

( ) ( )
N

n n

n

f f br r ,                                              (5.2) 
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where fn is the emission distribution defined at the location of the n
th 

node and bn(r) is the sum of 

the basis functions attached to node n. Here, we assume a piecewise linear correspondence 

between nodes. The imaging equation can now be written as 

3( ) ( )
N

m n m n

n

g f h b d rr r .                                           (5.3) 

The system matrix is defined as 

 

     
3(r) (r)mn m na h b d r

  
.                        (5.4) 

 The aim of this study was to approximate this integral using numerical integration. This 

approximation was carried out by first partitioning the object domain into strips parallel to the 

detector face and with width not exceeding the size of a detector unit. The more divisions per 

detector bin, the more accurate the numerical integration. Of course, there is a trade-off between 

accuracy and computation speed. 

 For the purpose of this study, the response function for an ideal parallel-beam 

collimator/detector system was considered. Only attenuation using narrow-beam geometry was 

modeled. The other image degrading phenomena including spatially varying resolution, 

Compton scattering, and partial-volume effects were not considered. Let the width of a detector 

bin be w and the number of divisions per bin be denoted as d. Also, let the intersection length of 

a mesh element e and a ray associated with bin i running down the center of division r be 

denoted lmer (Fig. 2c). Then, an approximation to Eq. (5.4) can be expressed as 
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(5.5) 

 

Where ( )n nerb l is the linear basis function associated with the n
th

 node (with the n
th

 node set to a 

value of 1 and all other nodes set to 0) evaluated at the midpoint of the intersection length merl . 

For the attenuation portion within the exponential, ( )merl represents the attenuation coefficient 

evaluated at merl . The constant parallel-beam sensitivity factor is σ. 

 

 

 

Figure 5.2.  Intersection of mesh element and detector bin using 4 divisions per bin. 
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5.3.3 Projection Set 

 The activity-distribution and attenuation-coefficient maps were generated using the 

NURBS-based cardiac-torso XCAT phantom version 2.0 [54]. These maps correspond to gamma 

emission of Tc-99
m

 with mean energy of 140 keV, and are shown in Fig. 5.1. The Monte Carlo 

simulation code, SIMIND, was used to simulate a simplified SPECT imaging system [25]. The 

detector consisted of a one-dimensional array of 128 elements with a pixel size of 0.625 cm. 

Compton scattering was not modeled. The collimator and detector were modeled as being ideal. 

This included a) accepting only photons normal to the detector face, b) no collimator penetration, 

and c) perfect detector resolution. Poisson noise was added to the projection sets. Two different 

noise levels were considered: high noise (10%) and low noise (1%). These data sets are shown in 

Fig. 5.3. 

 

5.3.4 Reconstructions 

 Reconstructions were achieved using the standard Ordered Subsets Expectation 

Maximization (OSEM) algorithm with OS = 5 [19]. Regularization techniques were not used. Up 

to 100 iterations were employed. Examples of reconstructed images are shown in Fig. 5.3. 
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Figure 5.3.  Data sets and reconstructed images. First row corresponds to low noise dataset and second 

row to high noise dataset. (a) Sinograms with varying levels of noise of the NCAT chest phantom 

generated using SIMIND SPECT simulation software. (b) Mesh-based reconstruction using 1 division per 

bin. (c) Mesh-based reconstruction using 2 divisions per bin. (d) Mesh-based reconstruction using 3 

divisions per bin. (e) Mesh-based reconstruction using 10 divisions per bin. (f) Voxel-based 

reconstruction using 10 divisions per bin. 

 

5.3.5 Evaluation 

 We evaluated reconstructed image quality based on the normalized mean square error 

(NMSE) and signal-to-noise ratio (SNR) versus iteration. Three different regions of interest were 

examined; the entire chest phantom, right lung, and inside the heart wall. In addition to the image 

quality measures listed above, line-profiles through the heart and left lung were used to 

investigate resolution and accuracy of the reconstructed images. 

5.4 Results 

 Plots of NMSE vs. iteration using 1, 2, 3, 5, and 10 divisions per bin for three different 

regions of interest are shown in Fig. 5.4. We observe that at least 2 divisions per bin are needed 

for both low and high noise levels. The extent of improvement increases with increasing noise in 

data. 
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 Plots of SNR vs. iteration using 1, 2, 3, 5, and 10 divisions per bin for regions within the 

right lung and heart are shown in Fig. 5.5. Within the right lung, we observe only slight 

improvements when using more than 1 division per bin for both noise levels. Within the heart we 

observe only slight improvements when using more than 2 division per bin for high noise levels. 
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a b 

  

c d 
Figure 5.4.  Analysis of reconstructed data sets. First, row corresponds to low noise dataset and second 

row to high noise data sets. Normalized mean square error (NMSE) vs. iteration within the entire chest 

phantom for high noise dataset (a) and low noise dataset (c). NMSE vs. iteration within the heart for high 

noise dataset (b) and low noise dataset (c). 
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a b 

  

c d 
Figure 5.5.  Analysis of reconstructed data sets. First, row corresponds to low noise dataset and second 

row to high noise data sets. Signal-to-noise ratio (SNR) vs. iteration within the right lung for low noise 

dataset (a) and high noise dataset (c). SNR vs. iteration within the heart for low noise dataset (b) and high 

noise dataset (c). 
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 Horizontal line profiles through the heart and left lung are shown in Fig. 5.6. We observe 

that resolution and accuracy are limited when using one division per bin. At least two divisions 

are needed to produce images with quality comparable to voxel-based reconstruction. 

 

  

a b 
Figure 5.6.  Line profiles through the reconstructed (a) heart and (b) left lung at iteration 20. 

 

5.5 Conclusions 

 In this chapter we proposed a simple method for estimation of the system matrix for the 

mesh-domain SPECT reconstruction using a high resolution mesh representation. We found that 

that no more than two divisions per detector bin width are needed for satisfactory reconstruction. 

Also, using more than two divisions per detector bin does not significantly improve 

reconstructed images.  

 The computational simplicity of our method does come at a price. Since we model the 

energy flux as being within a region the width of a detector bin and perpendicular to the detector 

face, resolution modeling might be less accurate than in a cone-of-rays approach [55]. An 
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adequate way to compensate for this effect might be application of a Gaussian kernel to model 

realistic point-spread function. Although less computationally expensive, it is also less accurate.   
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Chapter 6. Volumetric Micro-CT Iterative Reconstruction 

6.1 Objective 

 We have developed a fully volumetric system model for high resolution cone-beam 

micro-computed tomography (micro-CT) iterative reconstruction. The method consists of 

partitioning the reconstruction space into slabs that contain the de-magnified detector bin grid 

and are oriented parallel to the detector face. Results for a reconstructed dead mouse are given. 

 

6.2 Introduction 

 In this chapter we switch focus from emission tomography to transmission micro-CT. 

The attenuation coefficient μ for a material quantifies the amount of x-ray photons diverted from 

the initial direction of propagation within a narrow beam when traversing a thin slice of material. 

The larger μ is for a material, the more x-ray photons are diverted per unit length of material 

traversed. The properties of the material that μ depends on are density and effective atomic 

number. The x-ray property that μ depends on is the energy E, and so we can write μ(r, E). For x-

ray energies ranging from 10 to 80 keV, the two main mechanisms responsible for attenuation in 

soft tissue and water are the photoelectric and Compton effects. Refer to Chapter 1.1.5 for µ 

dependence on material density, atomic number, and x-ray energy.  

 Computed tomography estimates the object’s properties from a series of digital 

radiographs obtained from different views. Fundamentally, this is a continuous-to-discrete 

nonlinear mapping [56]. X-rays suffer from Poisson noise and detectors suffer from non-Poisson 

(Gaussian) noise. This calls for a stochastic treatment. The Boltzmann transport equation can be 

used to rigorously describe image formation [56]. 
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 The goal of polyenergetic transmission tomography with photon-counting detectors is to 

reconstruct the attenuation coefficient map ( , )Er at some effective energy E . With 

monoenergetic transmission tomography, the goal is to reconstruct the attenuation coefficient 

map ( )r . For this we use a monoenergetic approximation. 

 Image quality is directly linked to radiation dose. The Poisson noise can be reduced by 

increasing the intensity of the x-ray source. This leads to a potentially harmful increase in dose 

administered to the animal. 

 

6.3 Methods 

6.3.1 Micro-CT Scanner 

 The scanner used is the MicroCAT II (Siemens Preclinical Solutions, Knoxville, TN), 

which provides high resolution (50 µm) imaging designed specifically for small animals. The x-

ray source consists of a tungsten anode with a maximum power of 40 W, a voltage range of 35-

80 kVp, and maximum anode current of 500 μA. The focal spot size is quoted to be less than 50 

µm and the quoted maximum achievable spatial resolution is 27 µm. The x-ray detector consists 

of 2048 × 3096 CCD array coupled to a high-resolution phosphor screen designed for high-

speed, low-noise, whole mouse imaging. The maximum allowable field of view is 5.4 cm 

(vertical) × 8 cm (horizontal). An example of the scanner and detector-object coordinate systems 

is shown in Fig. 6.1. 
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a b 
 

Figure 6.1.  (a) MicroCAT II scanner (Siemens) in use at SUNY Upstate Medical University (courtesy of 

SUNY Upstate  Medical University). (b) Detector and object coordinate systems.  

  

 For this study, we used an x-ray voltage of 60 kVp, an anode current of 500 μA, and 2 

mm of aluminum filtration. The total scan time was 778 s over 360 views, focal length was 

426.66 mm, and radius-of-rotation (ROR) was 78.70 mm. The original dataset was at the full 

resolution of the detector and was then down-sampled by a factor of 8 for reconstruction. 

 

6.3.2 Transmission Imaging Equation 

 We parameterize the object space according to Chapter 1.1.2; however, the object of 

interest is now the distribution of the linear attenuation coefficients μ. The expansion of μ(r) has 

the form      

 ( ) ( ) .
N

n n

n

br r  (6.1) 
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We choose piecewise constant rect-functions as the basis functions, for to their symmetry 

relations and computational simplicity. 

 The imaging model for transmission tomography has the form given by Eq. (1.5). The 

approximate monoenergetic transmission continuous-to-discrete transformation can be written 

[4] as 

 exp ( )
m

m mg b dlr  (6.2) 

where bm is the blank scan of m
th

 detector bin and we define Γm as the polyhedron formed by the 

m
th

 detector bin as the base and the focal point as the apex. 

 Inserting the expansion into Eq. (6.2) leads to 

 exp
N

m m n mn

n

g b a , (6.3) 

where the system matrix is defined as 

 ( )
m

mn na b dlr . (6.4) 

 Different system models have been studied by various groups.  Considerations include 

detector characteristics, scan geometry, interactions between x-rays and matter, and the manner 

in which each voxel contributes to a given detector element. Improvements to the system model 

can lead to improved reconstructed image quality in terms of accuracy, spatial resolution, 

contrast, and detectability to name a few. Here is an overview of current system models: 

 Line based system models: This model defines a system matrix element amn as the length-of-

intersection of the projection ray associated with the m
th

 bin with n
th

 voxel. The ray is 

projected from the source to the center of a subdivision of the detector element. In the 
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context of circular orbit cone-beam geometry, this method creates ring artifacts in noncentral 

slices along the transaxial direction due to unequal weighting [57]. 

 Trilinear interpolation [1,57,58]: As with line-based system models, this one is also ray-

driven. A projection ray is sampled at equidistant points and each sample point is 

interpolated to the eight nearest voxel centers.  This method is relatively fast and widely used 

and has been shown to be a good approximation [59]. 

 Exact volumetric intersection model: A volumetric-intersection model interprets a projection 

ray as convex polyhedron with source at apex and detector bin at the base [31]. An exact 

volumetric system model determines the exact volume from intersection vertices. This is 

accomplished by locating the vertices where the projection ray intersects the voxel. From 

these vertices, the surfaces are subdivided into triangles and the volumes of the resulting 

tetrahedrons are computed. These volumes are then summed to form the intersected volume. 

 Discrete volume intersection model: Discrete volumetric models are an approximation to 

exact volumetric models. This type of model subdivides the voxel into subvoxels and defines 

the approximation as the ratio of subvoxel centers to the total number of subvoxels [32,33]. 

 Slab volume system model: This is our proposed method. We interpret integration over slabs 

within Γm and parallel to the detector face. It consists of partitioning the reconstruction space 

into slabs that contain the demagnified detector bin grid and are oriented parallel to the 

detector. Section 6.3.4 gives a detailed description. 

 

6.3.3 Reconstruction Method 

 Although any reconstruction algorithm that uses a projection operator would suffice, we 

chose to use the maximum likelihood-gradient ascent for transmission tomography (ML-
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TRANS) algorithm [60] to demonstrate performance. This is a gradient ascent approach for 

maximization the log-likelihood function (Eq. (1.20)) for transmission data with Poisson noise. 

The update formula can be written as 

 
1

M
k

m m mn
k k m
n n M N

k

m mn mp

m p

g g a

g a a

 (6.5) 

where gm is the raw projection data associated with the m
th

 detector bin. The simulated projection 

of the m
th

 detector bin for k
th 

 iteration is 

 exp
N

k k

m m mn n

n

g b a  (6.6) 

where bm is the blank scan of m
th

 detector bin. 

 

6.3.4 Slab Formulism of System Matrix 

 The method consists of partitioning the reconstruction space into slabs. The slabs are 

oriented parallel to the detector face. Each slab is partitioned into a grid composed of a de-

magnified version of the detector bin grid.  The grid size for slab s that is located a distance ds 

from the detector face is 

 s
s

F d
P

F
 (6.7) 

where P is the detector grid size and F is the focal length. A slab bin corresponding to slab s and 

the m
th 

detector bin is denoted sm. For each slab, the area-of-intersection between a system 

matrix element amn is the sum of the individual slab contributions and is given by 
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S

mn smn

s

a a  (6.8)  

where S is the total number of slabs. An example of a slab that is located a distance d from the 

detector is shown in Fig. 6.2a. An individual slab contribution is 

 
cos

smn smn
smn

m s s

x yt
a  (6.9) 

where xsmn and  ysmn are the width and height, respectively, of the area-of-intersection between 

sm
th

  slab-bin and n
th

 voxel. The factor φm is the angle between the cone-beam iso-ray and a ray 

from the focal point to the center of the m
th 

detector bin. The slab thickness is t.  Illustrations of a 

voxel-slab-intersection are shown in Fig. 6.2b,c. 
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a 

 

 
b  

 

Figure 6.2.  Geometry of cone-beam CT. (a) Slab with a grid size δ that is equal to the de-magnified 

detector bin grid size P at a distance d from the detector face to the center of the slab. (b) View of a voxel-

slab-intersection along the transaxial direction. The intersection points between the center of the slab and 

the voxel grid are shown. 
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Figure 6.3.  Detector plane view of the voxel-slab-intersection. The shaded region shows the area-of-

intersection between a slab-bin and a voxel. 

 

6.4 Results 

 The following figures show reconstructions of a dead mouse imaged using the MicroCAT 

II at Upstate Medical University.  For comparison, we also included reconstructions done using 

the commercial FBP-based software, Cobra (Exxim Computing Corporation),  without the 

application of post smoothing. A slice through the transaxial plane displaying the sinus is shown 

in Fig. 6.4 and a slice through the coronal plane is shown in Fig. 6.5. 
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a b 

 

Figure 6.4.  Reconstructions of micro CT data set consisting of projections of the head of a rat. (a) 

reconstruction using commercial FBP-based software, Cobra (Exxim Computing Corporation), without 

any post smoothing applied. (b) Iterative reconstruction using slab formulism.    

 

 

 

 

 

 

 

 



84 

 

  
a b 

 

   
c d e 

Figure 6.5.  Coronal view of the paws.  (a) Reconstructed using FBP. (b) Iterative reconstruction using 

slab formulism. (c) Close-up of (a). (d) and (e) Close-ups of (b). (d) Result after applying a post 3×3 

neighborhood averaging filter to (b). 

 

6.5 Conclusions 

 Our contribution to micro-CT reconstruction is the formulation and implementation of a 

cone-beam system matrix that reduces ring artifacts associated with sampling of the 

reconstruction space. This new approach reduces the common 3-D ray-tracing technique into 2-

D, making it very efficient. The images obtained using our approach were compared to images 

reconstructed by means of analytical techniques. We observed significant improvement in the 

image quality for the images reconstructed using our iterative method. Though initial results are 
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promising, further work is required. Beam hardening artifacts are clearly visible and methods for 

their reduction should be developed and applied. Computational speed is slow. Quantitative 

analysis will need to be conducted to determine accuracy. 
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Appendix 

A.1 Detector and Collimator Parameters 

 Table A.1 shows the detector and collimator parameters of the imaging systems used in 

the Division of Nuclear Medicine at SUNY Upstate Medical University. Table A.2 shows the 

detector parameters of the simulated datasets used in this dissertation. These datasets were 

created using the SIMIND Monte Carlo simulation software [25]. 

 

Table A.1.  Parameters of detectors and collimators used in the Division of Nuclear Medicine at SUNY 

Upstate Medical University. 

 Siemens 

LEHR 

parallel-

beam 

Siemens 

LEHR  

cone-beam 

Trionix 

LEUR 

parallel-beam 

Trionix  

LEHR  

fan-beam 

Trionix  

cone-beam 

Detector width (pixels) 128 128 128 128 128 
Detector height (pixels) 128 128 64 64 64 
pixel size (cm) 0.4795 0.4795 0.362 0.356 0.362 
Collimator thickness (cm) 2.405 2.8 3.4925 4.13 4.3 
Septal wall thickness (cm) 0.016 0.025 0.01778 0.015 0.025 
Hole diameter (cm) 0.111 0.19 0.1397 0.12 0.19 
Focal length (cm) NA 70 NA 43.1 100 

 

Table A.2.  Parameters of the simulated gamma ray detection systems used for this study. 

 LEUR parallel-beam LEUR fan-beam LEUR cone-beam 

Detector width (pixels) 128 128 128 
Detector height (pixels) 64 64 64 
Pixel size (cm) 0.362 0.356 0.356 
Collimator thickness (cm) 3.49 4.13 4.13 
Septal wall thickness (cm) 0.0178 0.015 0.015 
Hole diameter (cm) 0.14 0.12 0.12 
Focal length (cm) NA 43.1 43.1 

 

 



87 

 

A.2 Resolution and Sensitivity Parameters for Simulated Parallel-Beam  

   
a b c 

 

   
d 
 

e f 

Figure A.1.  SIMIND simulation of point sources imaged with parallel-beam collimator. Distance of 

point source from collimator face; (a) 4.4 cm, (b) 8.8 cm, (c) 13.2 cm, (d) 17.6 cm, (e) 22.0 cm, and (f) 

26.4 cm. 

 

Table A.3.  Parameters when line-profiles through the parallel-beam collimator projected point-sources 

shown in fig. 8.1 are fit to an amplitude-Gaussian function Eq. (1.15). 

distance to 

collimator 

(cm) w (pixels) 

w std error 

(pixels) 

FWHM 

(pixels) 

A 

(counts/MBq) 

A std error 

(counts/MBq) R
2 

0.00 3.22 × 10-1 7.71 × 10-4 7.59 × 10-1 7.27 × 10-1 5.71 × 10-2 1 

4.40 4.70 × 10-1 2.75 × 10-4 1.11 5.14 × 10-1 1.89 × 10-2 1 

8.80 6.52 × 10-1 3.37 × 10-3 1.53 2.96 × 10-1 1.39 × 10-1 0.99983 
1.32 × 10-1 8.33 × 10-1 1.25 × 10-2 1.96 1.85 × 10-1 2.33 × 10-1 0.99884 
1.76 × 10-1 1.01 8.36 × 10-3 2.38 1.24 × 10-1 7.94 × 10-2 0.99969 
2.20 × 10-1 1.22 3.12 × 10-2 2.86 8.87 1.65 × 10-1 0.99726 
2.64 × 10-1 1.40 3.16 × 10-2 3.31 6.61 1.10 × 10-1 0.99728 

 

Table A.4.  Coefficients for the Gaussian spread w (Eq. (1.17)) of the resolution function for parallel-

beam collimator. 

coefficient value std error 

b0 2.98 × 10-1 1.17 × 10-2 

b1 4.14 × 10-2 7.34 × 10-4 

b2 0 0 
b3 0 0 
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Table A.5.  Coefficients for the amplitude A (Eq. (1.16)) of the resolution function for parallel-beam 

collimator. 

coefficient value std error 

a0 7.35 × 10-1 1.81 
a1 -6.43 6.51 × 10-1 
a2 2.03 × 10-1 6.05 × 10-2 
a3 -2.08 × 10-3 1.50 × 10-3 

 

 

A.3 Resolution and Sensitivity Parameters for Simulated Fan-Beam SPECT  

   
a b c 

 

   
f e g 

 
Figure A.2.  SIMIND simulation of point sources imaged with fan-beam collimator. Distance of point 

source from collimator face; (a) 4.4 cm, (b) 8.8 cm, (c) 13.2 cm, (d) 17.6 cm, (e) 22.0 cm, and (f) 26.4 cm. 

 

Table A.6.  Parameters when line-profiles through the fan-beam collimator projected point-sources 

shown in fig. 8.2 are fit to an amplitude-Gaussian function Eq. (1.15). 

distance to 

collimator 

(cm) w (pixels) 

w std error 

(pixels) 

FWHM 

(pixels) 

A 

(counts/MBq) 

A std error 

(counts/MBq) R
2 

0.00 3.19 × 10-1 5.96 × 10-4 7.51 × 10-1 6.82 × 10-1 3.49 × 10-4 1 

4.40 3.99 × 10-1 3.54 × 10-4 9.40 × 10-1 5.91 × 10-1 3.23 × 10-4 1 

8.80 5.36 × 10-1 1.16 × 10-4 1.26 4.67 × 10-1 8.11 × 10-5 1 
1.32 × 10-1 6.69 × 10-1 3.03 × 10-3 1.58 3.01 × 10-1 1.25 × 10-3 0.9998 
1.76 × 10-1 8.02 × 10-1 7.63 × 10-3 1.89 2.65 × 10-1 2.22 × 10-3 0.99918 
2.20 × 10-1 9.24 × 10-1 4.90 × 10-3 2.18 2.20 × 10-1 9.78 × 10-4 0.99977 
2.64 × 10-1 1.06 1.10 × 10-2 2.48 2.49 × 10-1 2.13 × 10-3 0.99915 
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Table A.7.  Coefficients for the Gaussian spread functions along the horizontal wu and vertical wv (Eq. 

(1.17)) of the resolution function for fan-beam collimator. 

wu wv 

coefficient value std error coefficient value std error 

b0 1.65 × 10-1 6.21 × 10-2 b0 2.71 × 10-1 3.97 × 10-3 

b1 7.44 × 10-2 1.61 × 10-2 b1 2.99 × 10-2 2.32 × 10-4 

b2 -3.09 × 10-3 1.17 × 10-3 b2 0 0 

b3 1.62 × 10-4 2.51 × 10-5 b3 0 0 

 

Table A.8.  Coefficients for the amplitude A (Eq. (1.16)) of the resolution function for fan-beam 

collimator. 

coefficient value std error 

a0 9.75 × 10-1 6.66 × 10-3 

a1 -7.20 × 10-2 1.72 × 10-3 

a2 2.45 × 10-3 1.25 × 10-5 

a3 -2.82 × 10-5 2.69 × 10-6 

 

 

A.4 Resolution and Sensitivity Parameters for Simulated Cone-Beam  

   
a b c 

 

   
d e f 

 
Figure A.3.  SIMIND simulation of point sources imaged with cone-beam collimator. Distance of point 

source from collimator face; (a) 4.4 cm, (b) 8.8 cm, (c) 13.2 cm, (d) 17.6 cm, (e) 22.0 cm, and (f) 26.4 cm. 
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Table A.9.  Parameters when line-profiles through the cone-beam collimator projected point-sources 

shown in fig. 8.3 are fit to an amplitude-Gaussian function Eq. (1.15). 

distance to 

collimator 

(cm) w (pixels) 

w std error 

(pixels) 

FWHM 

(pixels) 

A 

(counts/MBq) 

A std error 

(counts/MBq) R
2 

0.00 3.22 × 10-1 5.12 × 10-4 7.59 × 10-1 7.73 × 10-1 4.43 × 10-4 1 
4.40 4.59 × 10-1 2.13 × 10-4 1.08 7.77 × 10-1 2.39 × 10-4 1 
8.80 6.87 × 10-1 3.42 × 10-3 1.62 5.58 × 10-1 2.52 × 10-3 0.99969 

1.32 × 10-1 9.71 × 10-1 5.24 × 10-3 2.29 4.19 × 10-1 1.90 × 10-3 0.99971 
1.76 × 10-1 1.39 1.80 × 10-2 3.27 3.36 × 10-1 3.55 × 10-3 0.99832 
2.20 × 10-1 1.99 3.27 × 10-2 4.69 2.93 × 10-1 3.73 × 10-3 0.99729 
2.64 × 10-1 1.99 3.27 × 10-2 4.69 2.93 × 10-1 3.73 × 10-3 0.99729 

 

Table A.10.  Coefficients for the Gaussian spread w (Eq. (1.17)) of the resolution function for cone-beam 

collimator. 

coefficient value std error 

b0 3.13 × 10-1 2.11 × 10-2 
b1 4.01 × 10-2 7.57 × 10-3 
   
b2 -8.54 × 10-4 7.03 × 10-3 
b3 1.15 × 10-4 1.75 × 10-5 

 

Table A.11.  Coefficients for the amplitude A (Eq. (1.16)) of the resolution function for cone-beam 

collimator. 

coefficient value std error 

a0 1.01 × 10-6 2.42 × 10-8 
a1 -6.17 × 10-8 3.59 × 10-9 
a2 1.29 × 10-9 1.14 × 10-10 
a3 0 0 
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