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Multimedia Object Modelling and Storage Allocation Strategies forHeterogeneous Parallel Access Storage Devices in Real TimeMultimedia Computing SystemsC. Y. Roger Chen, Kingsley C. Nwosu, P. Bruce Berra,Dept. of Elect. and Comput. Eng., IBM POWER Parallel Systems, CASE Center,Syracuse University, MS/992, Neighborhood Rd., Syracuse University,Syracuse, NY 13244. Kingston, NY 12401. Syracuse, NY, 13244.AbstractThe improvements in disk speeds have not kept upwith improvements in processor and memory speeds.Conventional storage techniques, in the face of multi-media data, are ine�cient and/or inadequate. Here,an e�cient multimedia object allocation strategy ispresented. We describe a multimedia object model, theobject and storage device characteristics, and the frag-mentation strategy. A bipartite graph approach is usedfor mapping fragments to storage devices and a costfunction is used to determine an e�cient allocation ofan object and to balance the loads on the devices.Keywords: bipartite graphs, bipartite matching, ef-�cient allocation, fragmentation, multimedia, storageallocation.1 IntroductionThe rapid advances in the technology of display de-vices, computers, networks, storage devices, and soft-ware engineering have pushed the emerging multime-dia applications into becoming one of the most im-portant and promising research areas. Multimedia in-formation processing encompasses the integrated gen-eration, representation, processing, storage, and dis-semination of independent machine processable infor-mation expressed in multifarious time dependent andindependent media. A unique feature of multimediais the highly diversi�ed media types and �le sizes. Inorder to avoid dealing with the heterogeneity of mul-timedia data, multimedia applications are usually de-veloped using an object-oriented approach, where eachobject represents a �le of video, audio, image, graph-ics, text, etc; or a combination of them. Moreover,it is usually required to integrate or combine multipleobjects of various media types into multiple-level com-plex objects. By using the object-oriented approach,

multimedia data can be processed and manipulated byusers in a universal way, regardless of the media typesand sizes of objects. However, from a system's pointof view, many problems arise in supporting such anobject-oriented multimedia system. Among the prob-lems, a most serious one is related to the storage. Thisis due to the fact that processor speed, memory speed,and memory size have grown exponentially over thepast few years [1][2], while disk speeds have improvedat a far slower rate. Consequently, the speed of thedisk rather than the speed of the CPU's is the limit-ing factor in many applications. For real-time infor-mation retrieval and presentation, it is imperative thatdata, for a given medium, be retrievable at some givenrate. The rates for some media are very high for cur-rent storage devices. The most conspicuous of theseis in the area of digital video. For example, the videodata object based on the NTSC standard requires thatvideo data be retrievable at a rate of 45 Mbits/sec.However, the peak speed of a magnetic disk drive isabout 10 Mbits/sec. and CD-ROMs operate at 1.2Mbits/sec. To meet the bandwidth requirement of afull-motion video �le, it is clear that the �le has to bespilt into multiple sub-�les, stored in di�erent disks;when needed, an interleaving technique will be per-formed to combine the multiple data streams into asingle data stream and then present it to the user.Conventional allocation techniques (such as datastripping/de-clustering [3][4][5] and data contigu-ity/clustering [6][7][8]) are developed mainly for textand numeric �les, which although can be di�erent insizes, are more or less on the same order. Unfortu-nately, when applied to multimedia applications, theconventional techniques are inadequate and ine�cient.Several �le system level approaches [9][10] have beenproposed and utilized; however, they do not encom-pass the gamut of multimedia types and are mostlyfor continuous media types (digital audio and video)without addressing the storage allocation with empha-



sis on a multimedia object's real-time retrievability re-quirements. In addition, none of the existing storageallocations strategies takes into account the need forsupporting complex multimedia objects.2 Multimedia object modeling andsplittingIn this section, a data model is proposed for mul-timedia information processing. A typical tree repre-senting a compositemultimedia object (o1) is shown inFigure 1. An internal node with more than one child iscalled a complex object. The leaf nodes, which are thestorable units, are called Data Elements (DEs). Thecomposite multimedia objects are dynamically createdand stored in the system. Two general splitting tech-
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VisualFigure 1: An example of a multimedia object tree.niques can be utilized to achieve some degree of I/Oparallelism: (1) when the bandwidth requirement ofan object is more than the I/O transfer rate of a disk,e.g., the bandwidth requirement for displaying a fullmotion digital video �le and (2) when parallel accessof an object is helpful in computations for either mul-tiprocessors or vector processors. On the other hand,there are objects that cannot bene�t from a splittingand will be stored in a single disk. In case 1, it is re-quired that a minimum number of storage devices beavailable to achieve the expected parallelism. Figure2 shows a composite object where DE1 is of case 1,and DE4 is of case 2. DE2 and DE3 are not splitbecause they do not bene�t from splitting.In the rest of this paper, we will refer to DEs of typeDE1 as class-one DEs; objects of type DE2 or DE3as class-two DEs and DEs of type DE4 as class-threeDEs. Any of the allocation units, f1; : : : ; f9; DE2,and DE3, will henceforth also be referred to as anAtomic Unit (AU). We denote by <one;<two;<threethe set of all the AUs of class-one, class-two, and class-three DEs, respectively.

Figure 2: An example of object splitting.3 Multimedia object/storage charac-teristics and problem formulationThe jth DE in a composite object O is denoted asoj. Each DE is associated with a frequency distribu-tion. This frequency distribution represents the rela-tive probability that a given DE will be requested forretrieval. Each class-one DE, oj , has an expected re-trieval rate. This rate represents the minimumnumberof bytes of oj that should be retrieved per unit timein order to achieve its real-time requirements. Eachclass-three DE, ok, is associated with a degree of paral-lelism which indicates the degree of concurrent accessto the DE that may be helpful for computations foreither multi-processors or vector processors.Like the multimedia objects, the kth storage de-vice is denoted as Sk, its bandwidth as BW (Sk), totalamount of space already allocated as Sak , and the freespace as Sfk . The total number of storage devices isrepresented by m. Since we are dealing with a het-erogeneous environment where the computing systemcomprises di�erent types of storage devices with dif-ferent characteristics, the di�ering characteristic thatis of paramount importance to us is the bandwidth ofa storage device. We group related devices togetherbased on their bandwidths into }1; }2; : : : ; }�, where� is the number of di�erent bandwidths in the sys-tem and the bandwidth of each storage device in }iis BW (}i). We denote the kth AU of oj as aj;k andthe total number of AUs in oj as �j. Consequently,the storage allocation problem is formulated as fol-lows: (1) Given a composite multimedia object, howcan one decompose the DEs to build the AUs suchthat the allocation of the AUs achieve the real timerequirements? (2) Given a list of AUs produced fromthe fragmentation strategy, how does one de�ne theallocation process and AU allocatability? (3) Havingdetermined the storage devices to which an AU is al-



locatable, what criteria are necessary and su�cient indetermining the most e�cient storage device to storean AU? (4) Given an allocation strategy, how can onedemonstrate that it fairly and su�ciently balances theloads among the storage devices?4 Problem and allocation analysisHaving de�ned the problem, it is important thatwe discuss the vital decisions that must be made toaddress the facets of the allocation process. Each al-location process comprises a composite object with itsassociated DEs. The storable elements are the DEs.A composite object is dynamically created and storedin the system with respect to the current status of thestorage devices. For an allocation process, all the DEsof a composite object are considered simultaneously.Since the most common operation during the alloca-tion process is the determination of the mappings ofAUs to storage devices, we denote the fact that AU ais mapped to Sk as a j= Sk.4.1 Intra DE allocationThe intra DE allocation stipulates the allocationpolicy that must exist when allocating the AUs of aDE. In the case of a class-one or class-three DE, itis imperative that each of its AUs be stored in a dif-ferent storage device in order to achieve the expectedretrieval rate or degree of parallelism. Therefore, ifoi is a class-one or class-three DE, then the intra DEallocation states that8k=1;�i if ai;k j= Sh then 8g=1;�i 6 9ai;g such thatai;g j= Sh (k 6= g) and (1 � h � m):4.2 Intra complex object allocationAs is prevalent in most complex object oriented sys-tems, users or applications may need to access all thedata associated with a complex object concurrently.In that case, therefore, it becomes necessary that allthe DEs of a complex object be stored in such a waythat all of its data can be retrieved concurrently. Wemust, therefore, allocate each AU of a complex objectto a di�erent storage device. Therefore, if o1; : : : ; ojare the DEs of a complex object, then the intra com-plex object allocation states that8x1=1;j 8x2=1;�x1 if ax1;x2 j= Sh then8x3=1;j 8x4=1;�x3 6 9ax3;x4 such thatax3;x4 j= Sh; (x3 6= x1; 1 � h � m):

4.3 Inter composite object allocationAnother access situation that we must consider iswhen the access crosses multiple composite objects.In an environment with a limitless number of storagedevices, we can a�ord to store every AU in a di�erentstorage device. However, that situation is unrealistic.We, sometimes, expect the situation depicted in Fig-ure 3 to occur where composite objects O1 and O2share O1's o2. For allocation purposes, we logicallythink of shared DEs as, physically, belonging to eachof the composite object. For example, using Figure3, if O1 were allocated �rst, then none of O2's AUsshould be allocated in the same device with O1's o2.
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O2Figure 3: An example of object sharing.5 Fragmentation strategiesFor class-one DEs, we have to decompose their datainto fragments that foster parallel reads to achievetheir expected retrieval rates. In order to obtain thesefragments, we have to determine the degree of decom-position of a given DE. We need to compute the num-ber of storage devices that can be accessed in parallelto satisfy the retrievability requirement. A DE's Stor-age Set (�) is the set of the number of storage devicesneeded to achieve its expected retrieval rate based onthe amount of data that can be retrieved from eachstorage device per unit time (i.e., bandwidth) in paral-lel. If we have a homogeneous con�guration of storagedevices, then the computation of the number of stor-age devices needed is straightforward since all of thestorage devices have the same bandwidth. In the caseof heterogeneous storage devices, we have to considerdi�erent storage devices with di�erent bandwidths.So we are forced to consider combinations of di�er-ent storage devices with di�erent bandwidths. Con-sequently, a DE can have multiple storage sets. Anelement of a storage set indicates the possible numberof storage devices for one or more device clusters thatis necessary to achieve the real time requirement of aDE. It is obvious that the number of sets in a storageset could become very large. As a result, some con-



straints, as described below, are utilized to minimizethe size of a storage set. To that end, therefore, thenumber of sets in a DE's storage set is reduced to atmost 2� � 1. Let �k = fy1; y2; : : :g be the kth storageset of oj where yi is the number of storage devices from}i needed to achieve the expected retrieval rate. Foreach combination of device clusters that form a stor-age set, each cluster must be represented by at leastone storage device. The amount of data retrievablefrom the storage devices of a storage set must not beless than the expected retrieval rate or degree of par-allelism, but should exceed that value with minimumvalue. The storage device clusters are arranged in or-der of decreasing bandwidths. The number of storagedevices per device cluster in a storage set decreaseswith increasing bandwidth, when applicable. In therest of the paper, when necessary, the expected re-trieval rate of a class-one DE oj is represented as �j .For example, given �j and �k = fy1; y2; y3g then thefollowing conditions must hold:1. BW (}1) > BW (}2) > BW (}3),2. y1 � y2 � y3,3. [y1BW (}1)+y2BW (}2)+y3BW (}3)] � �j , and(a) [(y1 � 1)BW (}1) + y2BW (}2) +y3BW (}3)] < �j ,(b) [y1BW (}1) + (y2 � 1)BW (}2) +y3BW (}3)] < �j ,(c) [y1BW (}1) + y2BW (}2) + (y3 �1)BW (}3)] < �j :If any of the conditions above is violated, then the cor-responding storage set is invalid. The above conditionsare equivalent to solving the integer linear program-ming problem:y1BW (}1) + y2BW (}2) + y3BW (}3) � �j ,y1 � y2; y2 � y3; y3 > 0:An �k with j �k j 1 = g is acceptable if(1) Pgi=1 yi � m, and(2) 8j=1;g yj � j }j j.For example, consider a class-one DE of size120KB and bandwidth requirement of 60KB=s, giventhat }1 = fS1; S2; S3g; }2 = fS4; S5g; }3 =fS6; S7; S8g; BW (}1) = 30; BW (}2) = 20, andBW (}3) = 10. Thesets of the combinations of clusters of storage devicesare f}1g; f}2g; f}3g; f}1; }2g; f}1; }3g; f}2; }3g;and f}1; }2; }3g. The valid storage sets are �1 =1j A j ! the number of elements in set A

f2g; �2 = f3g; �3 = f6g; �4 = f1; 2g; �5 =f1; 3g; �6 = f2; 2g; and �7 = f1; 1; 1g.Obviously, �2, and �3 are not acceptable. Further-more, without the constraints discussed above, for ex-ample, it is evident that given f}2; }3g, the storagesets f3; 0g; f1; 4g; f0; 6g; f2; 3g, and f1; 5g can achievethe real time requirements. However, applying theconstraints limits the option to f2; 2g. If none of thestorage sets of a DE is acceptable, then we can notallocate the DE. When that happens, a message maybe sent to the user suggesting a higher degree of datacompression on the class-one DEs or a lower degree ofparallelism for class-three DEs. Since the size of eachdata retrieved per unit time from each storage deviceis its bandwidth, each AU stored in a storage devicecomprises a number of chunks of data whose size isequal to the bandwidth of the storage device. We calleach of this chunk of data a Storage Element (SE). AnAU then consists of one or more SEs arranged in sucha way that guarantees parallel retrieval of contiguousdata. For a given DE, we denote as k the number ofstorage devices in �k. We call k the storage lengthof a storage set. Consequently, each �k comprises kAUs where each AU is denoted as ak;l; 1 � l � k.We represent the number of SEs in ak;l as �k;l. Thesum of all the sizes of all the SEs of all the AUs of aDE must be at least as large as the size of the DE.Furthermore, reducing any AU of any storage set of aDE by one SE must violate the preceding condition.We denote as 1qk;l the fact that SE fq belongs to AUak;l. Therefore, for �kif 1qk;l then 8(h mod k = q mod k) 1hk;l (h 6= q):As is evident from building the AUs, the data rep-resented by each AU do not constitute a contiguousdata in a DE. The physical addresses of the SEs inan AU di�er by some factors of the bandwidths of thestorage devices. This is a consequence of data inter-leaving which is essential for achieving parallel I/O fora stream of data. Figure 4 shows the SEs and AUs ofall the storage sets. The numbers beside the boxesrepresent the physical addresses of the SEs in a DE.The above discussion on fragmentation strategyhas been done in the context of class-one DEs. Inthe case of class-three DEs, the degree of paral-lelism also represents the expected number of AUs.Therefore, for a class-three DE, a storage set isvalid if its storage length is equal to the DE's
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a1;1 a1;2 a4;1 a4;2 a4;3a5;1 a5;2 a5;3 a5;4a6;1 a6;2 a6;3 a6;4a7;1 a7;2 a7;3Figure 4: A sample generation of storage sets.degree of parallelism. Furthermore, conditions (1) and(2) and the acceptibility requirement discussed abovemust hold. If the application of the above rules yieldsno storage set, then a storage set whose storage lengthminimally exceeds the degree of parallelism is selected.In the case of class-two DEs, each DE is made up ofone storage set consisting of one AU.6 The proposed mapping techniquesAn AU is allocatable to a storage device if the stor-age device belongs to the device cluster from which theAU was built. In other words, the bandwidth of thestorage device must be equal to the size of the AU'sSE. Given an AU, we have a list of storage devices towhich it is allocatable. If the AUs and storage devicesrepresent nodes in a graph, then we can construct anedge from an AU to a storage device to which thatAU is allocatable. We must then select one of thesestorage devices as the most e�cient storage for theAU. In order to accomplish this, one must considerthe e�ects of allocating a given AU to all the possiblestorage devices. If we assign a weight to each of thesenodes, then one can, using some criteria, determinethe best allocation for a given AU. In order to fairlybalance the loads, we need to specify some factors thatwill help to determine an e�cient allocation of an AU.Prominent among these factors are the current statusof a storage device with respect to the AUs alreadyallocated, the e�ect of the free space in the storagedevice, and the bandwidth of the storage device. Thecurrent status function must be de�ned in terms of an

AU's size and frequency and we call that the expecteddisk tra�c requirement and represent it by a functionF . This function must always be de�ned such thata DE's frequency is emphasized and certain charac-teristics of the multimedia environment should alsobe taken into consideration. Through many experi-ments, we have found that F(f; z) = z 11�f , where f; zare frequency and size of an AU, respectively, seemsto be a good choice. Of course, F can be de�ned inmany other ways to emphasize special characteristicsof an environment. Let ai be an AU, SIZE(ai) thesize of AU ai, and FREQ(ai) the frequency of AU ai.The current cumulative tra�c requirement of Sk, as-suming that there are a total of h AUs already storedin it, is computed as:Swk =Phi=1F(FREQ(ai); SIZE(ai)):The cumulative tra�c requirement of a storage deviceis an indication of the expected access to the storagedevice with respect to the AUs allocated to it. Con-sequently, a reasonable motivation is to allocate thenext AU to the storage device with lowest cumulativetra�c requirement. However, that factor alone doesnot determine an e�cient storage device to allocate anAU. In order to get a more vivid understanding of thee�ect of the cumulative tra�c requirement, we needto determine the expected disk tra�c per unit of allo-cated space in a storage device. That value indicatesthe disk tra�c exerted per unit of allocated space ina given storage device. We extend the expected disktra�c per unit of allocated space and determine theinduced expected disk tra�c per unit of allocated space.That is the expected disk tra�c per unit of allocatedspace if the AU under consideration is allocated to agiven storage device. We denote as Gwk the inducedexpected disk tra�c per unit of allocated space by anAU on Sk. After a successful allocation of an AU toSk, Swk becomes Gwk . Consequently, for a given AU,Gwk;i = Swk +F(FREQ(ai);SIZE(ai))Sak+SIZE(ai) :It is undoubtably obvious that the amount of freespace in a storage device plays a role in determiningthe current and future utilization of a storage device.The fact that a storage device has a low cumulativetra�c requirement relative to another storage devicedoes not convincingly indicate that it is under-utilizedrelatively. If the storage device with higher cumulativetra�c requirement has considerably larger free space,then it is imperative that relative to their availablespaces, it is under-utilized. Again, the fact that a stor-age device has a high cumulative tra�c requirementrelative to another storage device should not imply an



automatic rejection of that storage device. If a stor-age device has a high cumulative tra�c requirementbut a high bandwidth, then the resultant e�ect of thecumulative tra�c requirement is reduced by the factthat a large chunk of data is retrievable per unit time.Therefore, our mapping goal is to select the storage de-vice that minimizes these factors. It is obvious that, interms of magnitude, the bandwidth of a storage deviceis comparatively smaller than its total allocated spaceand free space (in most cases). Therefore, expressingthe impacts of allocated space, free space, and band-width with respect to the cumulative tra�c require-ment requires that the impact from the bandwidth beexpressed in such a way that it does not obscure itscounterparts. The impact from the bandwidth shouldbe related to the disparity between the bandwidths,i.e., if there is a considerable gap between the smallestand largest bandwidths of the storage devices underconsideration, then the bandwidth factor should alsoreect that. We represent the sum of these factors asa cost function &. Ifc1 = cost induced by induced expected disk tra�cper unit of allocated space,c2 = cost induced by free space with respect tothe cumulative tra�c requirement,c3 = bandwidth factor,then, & = (e1c1 + e2c2)� c3where c1 = Gwk , c2 = SwkSfk , andc3 = 1 + (e3BWmax�BWSk )e3BWmax :BWmax is the maximumbandwidth of the storage de-vices allocatable to an AU. BWSk is the bandwidth ofthe storage device currently under consideration fromthe set of storage devices allocatable to an AU. Thecoe�cients e1 and e2 are the accentuating values. Weuse them to emphasize or de-emphasize the relativeimportance of the corresponding induced cost. Werecommend that these coe�cients be in the range ofzero and 1. The coe�cient e3 is used to control the ef-fects of the bandwidth factor and it is determined fromthe maximum and minimum bandwidths in the sys-tem. We recommend that e3 be selected such that thebandwidth factor is in the range 1:5 to 1:9. In otherwords, 1:5 � 1 + e3BWmax�BWSke3BWmax � 1:9. For example,given that BWmax = 10MB and BWmin = 50MB, ife3 = 2, then the bandwidth factor is in the range of 1:5to 1:9. On the other hand, if e3 = 3, then the band-width factor is in the range of 1:67 to 1:93. Given anAU and the & costs of allocating it to di�erent storagedevices, we select the storage device with minimum

cost. We denote the fact that an AU, ai, is allocat-able to the storage device, Sk, as ai?Sk and the sizeof each SE in ai as SESIZE(ai ). Therefore, ai?Sk if1. ai 2 <one and(a) SESIZE(ai ) = BW (Sk);(b) Sfk � SIZE(ai):2. ai 2 <two _ ai 2 <three and(a) Sfk � SIZE(ai):Our minimization goal is such that given g AUs of acomposite multimedia object and &i;k as the cost ofallocating AU ai to the storage device Sk, therefore,minimizePgi=1 &i;k where 9Sk (1 � k � m) suchthat ai?Sk:For example, Table I shows the current values for 6storage devices, and Table II shows the sizes and fre-quencies of 5 AUs of a composite multimedia object.After determining allocatabilities of the AUs and com-puting the & costs, Table III shows the & cost of eachAU to the storage device to which it is allocatable. Inthis simple example, e1 = e2 = 1.Table I: A sample of storage devices' current valuesused for allocation decision.
Free space

Allocated space

Cur. cum.

Bandwidths

100MB10MB 500MB 100MB 1MB 15MB

5MB 120MB 10KB 500KB 50MB 70MB

traffic reqs.
15728640 262144000 102400 1048576 125829120 104857600
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S 1 S 2 S 3 S 4 S 5 S 6Table II: A sample of sizes and frequencies of someAUs.a1 a2 a3 a4 a5Size 50KB 75KB 1.5MB 100KB 3MBFrequency 0.4 0.19 0.10 0.3 0.01Table III: & costs from Tables I and II.S1 S2 S3 S4 S5 S6a1 16.6 2810.0 - - - -a2 17.5 2811.0 - - - -a3 - - 0.2 - - 16.9a4 - - - 0.1 128.1 -a5 - - 0.3 - - 17.2Consequently, applying the allocation and mini-mization rules, we have a1?S2; a2?S1; a3?S6; a4?S4;a5?S3; with a total cost of 2844.8.



7 Bipartite graph modelOne of the widely studied graphs is the bipartitegraph [11]. The bipartite graph used here consists oftwo sets of vertex partitions, Va and Vs. The Va ver-tices are made up of AUs while the Vs vertices aremade up of the storage devices. Therefore,8v 2 <one _ <two _ <three; v 2 Vaand8k=1;mSk 2 VsAn edge exists between an AU and a storage deviceif the allocatability requirement is met. Each edge islabeled with the & of the corresponding storage devicewith respect to the target AU.The selection process for an e�cient allocation ofAUs is similar to the bipartite matching problemwhich has been applied to numerous problems such asthe max-ow problem [11], bipartite weighted matchingproblem [12], also known as the assignment problem.Several algorithms have been developed to solve theseproblems, however, the most widely utilized and best�ts our problem is the Hungarian Method [12]. TheHungarian Method guarantees a solution for a com-plete bipartite graph if one exists. Before applying theHungarian Method, it is imperative that we guaranteethat the bipartite graph is complete. Certain conspic-uous conditions make our bipartite graph susceptibleto incompleteness, namely, when (1) there is an AUthat is not allocatable, and (2) there are two or moreAUs that are allocatable to the same storage device.Consequently, given the AUs of the valid storage setsof the DEs of a composite object, we must preprocessthe expected bipartite graph for completeness. By allintents and purposes, an incomplete bipartite graphcan only be made complete by coalescing holes in thestorage devices or reducing the number of AUs of aDE, if possoible. We consider reducing the numberof AUs if that number exceeds the number of storagedevices. As an e�cient way of reducing the numberof AUs, we remove storage sets of a DE when multi-ple storage sets exist. The storage sets of a DE areremoved in order of decreasing storage length. Theintention is to remove those storage sets that require,comparatively, more storage devices. However, eachDE must be represented by at least one storage set.We reduce the storage sets of class-three DEs �rst fol-lowed by class-one DEs. When we cannot form a com-plete bipartite graph for a composite object, the usermay be instructed to modify certain characteristics ofsome of the DEs, such as the real time requirementsor higher compression. A DE in a complete bipartitegraph may have more than one storage set. However,

only one storage set is necessary for the allocation. Inthat case, we select the storage set whose total & costis minimal. For example, Figure 5 (left) shows the bi-partite graph built from Tables I, II, and III. Using theHungarian Method, the bipartite matching yields themapping indicated by the bold faced edges. However,during preprocessing, the bipartite graph in Figure 5(right) is determined to be incomplete and so we donot apply the Hungarian Method to it.
Figure 5: A sample mapping via Hungarian Methodand an unallocatable bipartite graph.8 Simulation model and resultsWe generated 3 groups of devices where each grouphas common characteristics such as the bandwidth andsize. Each group comprises 10 storage devices. In theresults shown below, each composite object consistsof a random number of DEs of size between 1 byteand 500MB. The expected retrieval rates range from.125KB/s to 30MB/s. Devices in group 1 have sizeof 100MB and bandwidth of 1MB, devices in group2 have size of 75MB and bandwidth of 750KB, anddevices in group 3 have size of 50MB and bandwidthof 500KB. Figure 6 shows the distribution, accordingto frequencies, of the total number of DEs generated.The expected disk tra�c function used, given size, z,and frequency, f , is F(f; z) = z[ 11�f ]:Figure 7 shows an example �nal cumulative tra�crequirements of the storage devices when a fair mix-ture of DEs of di�erent frequencies were used. Com-parative results were also obtained when more low orhigh frequency objects were used. Table IV shows thedata distribution by percentage in the storage devicesafter the allocation of the objects.



size

frequency

< 2KB < 10KB < 100KB < 500KB < 1MB < 10MB < 50MB < 200MB < 400MB < 500MB
.160 .147 .130 .120 .110 .093 .080 .067 .053 .040Figure 6: Distribution of simulation data.Table IV: A sample percentage data distribution.
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