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ABSTRACT 
 

In this dissertation, a set of general purpose single-field finite-difference time-domain 

updating equations for solving electromagnetic problems is derived. The formulation uses a 

single-field expression for full-wave solution. This formulation can provide numerical results 

similar to those obtained using the traditional formulation with less required computer resources.  

Traditional finite-difference time-domain updating equations are based on Maxwell's curl 

equations whereas the single-field updating equations used here are based on the vector wave 

equation. General formulations are derived for normal and oblique incidence plane wave cases 

for linear, isotropic, homogeneous and non-dispersive as well as dispersive media.  

To compare the single-field updating equations with the traditional ones, two-

dimensional transverse magnetic, two-dimensional transverse electric and one-dimensional 

electromagnetic problems are solved. Fields generated by a current sheet and a filament electric 

current are calculated for one and two-dimensional formulations, respectively.  Performance 

analyses of the single–field formulation in terms of CPU time, memory requirement, stability, 

dispersion, and accuracy are presented. Based on the simulations of several two-dimensional 

problems excited by a filament of electric current, it was observed that the single-field method is 

more efficient than the traditional one in terms of speed and memory requirements.  

One scattering problem consisting of three infinitely long dielectric cylinders excited by 

an obliquely incident plane wave and another scattering problem consisting of a point source 

exciting a dispersive sphere, utilizing Lorentz-Drude model, are also formulated and analyzed. 

The numerical results obtained confirmed the validity and efficiency of the single–field 

formulations.  
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1. INTRODUCTION 

1.1. Finite-Difference Time-Domain (FDTD) Method 

The first paper on FDTD was published in 1966 by Kane Yee [1]. Though Yee was 

the first person to develop the algorithm, the term “finite-difference time-domain” and its 

acronym “FDTD” were coined by Allen Taflove in 1980 [2]. The correct numerical stability 

criterion for Yee’s algorithm was determined by Taflove and Brodwin; they also reported the 

first sinusoidal steady-state FDTD solutions of two- and three-dimensional electromagnetic 

wave interactions with material structures [3]. In 1981, Mur published the first numerically 

stable, second-order accurate, absorbing boundary condition (ABC) for Yee’s grid [4]. 

Thanks to the improvements in computational power, interest in FDTD solution of 

Maxwell’s equations has increased almost exponentially since 1980s. FDTD is and will 

likely remain one of the dominant computational electrodynamics techniques due to its 

simple and versatile nature as well as its ability to utilize developments in computer hardware 

and software architecture. 

Yee's insight was to choose a geometry for spatially sampling the electric and 

magnetic field vector components which robustly represents both the differential and integral 

forms of Maxwell's equations [2]. The technique divides the problem geometry into spatial 

grids as shown in Figure 1.1 where electric and magnetic field components are placed at 

certain discrete positions in space and it solves Maxwell's equations in time-domain at 

discrete time instances [5]. Yee used an electric field (E) grid, which was offset from the 

magnetic field (H) grid in time as well as space, to derive updating equations that are used to 

calculate present values of field by using the past values throughout the entire computational 
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domain. The updating equations march E and H fields in a leap-frog fashion and move 

forward in time.  

The starting point for the construction of the traditional FDTD algorithm is Maxwell's 

time-domain curl equations. The vector form of Maxwell's curl equations is decomposed into 

six scalar equations for three-dimensional space: 
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where E is the electric field strength in volts per meter, H is the magnetic field strength in 

amperes per meter, Ji is the impressed electric current density in amperes per square meter, 

Mi is the impressed magnetic current density in volts per square meter,  ε is the permittivity 

                 in farads per meter  and µ is the permeability              in 

henrys per meter. 

The grid based nature of the method makes it memory-hog; therefore the FDTD 

problem domain must have the minimum size possible. The computational domain is 
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bounded with proper absorbing boundary to prevent any reflection from the FDTD problem 

domain walls. Accuracy, speed and required memory of the simulation are directly related to 

the absorbing boundary used. Various ABCs have been studied to provide better reflection 

performance while minimizing the extra memory requirements for the absorbing boundaries 

[4,6,7].  

 

Fig. 1.1 The Yee-cell [5]. 

 

FDTD can be used for the simulation of numerous kinds of electromagnetic 

problems: microstrip circuits, waveguide structures, electromagnetic coupling and 

propagation. FDTD can also easily handle many complex structures which are either quite 

challenging or currently impossible to solve analytically or with other numerical methods. 
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FDTD gives field solutions for transient problems. Time-domain results can be easily 

transformed to frequency domain if necessary; therefore, with one single computation, 

simulation results can be obtained over a wide frequency range.  

1.2. Simulation Challenges with FDTD Method 

FDTD has some issues to be handled with care such as stability, numerical 

dispersion, long computational time and large memory requirement for big size problems. 

The stability, hence the accuracy, of the solution is guaranteed by the choice of the 

sampling period in time and space i.e., Δt, Δx, Δy and Δz. The numerical stability of the 

FDTD method is determined by the Courant-Friedrichs-Lewy (CFL) condition, which simply 

requires that a wave cannot be allowed to travel more than one cell size in space during one 

time step [8]. The existence of instability exposes itself as the development of divergent 

spurious fields in the problem space as the FDTD iterations proceed [5].  

Due to the discretized nature of the procedure, error is inevitably introduced into the 

solution because of the finite-difference approximation of derivatives of continuous 

functions. One of the consequences of this error is the difference between c and the velocity 

of propagation of the numerical solution for a wave even in homogenous free space. The 

difference between the phase velocity numerically obtained by the FDTD method and the 

exact phase velocity is known as numerical dispersion [5]. A general discussion of numerical 

stability and dispersion, including the derivation of two and three dimensional numerical 

dispersion relations, other factors affecting the numerical dispersion and strategies to reduce 

the associated errors, can be found in [2]. 
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1.3. Motivation 

Although the FDTD method is widely used in the field of computational 

electromagnetics, the long computational time and large memory requirement have always 

been a concern with the technique. Extensive research has been done to improve the accuracy 

and speed of the method and different ABCs are developed to provide more accurate results 

[4,6,7]. An improvement in speed of the method, however, has relied almost solely on 

progress in computer hardware and software architecture.  

The equivalency of the vector wave equation to the Maxwell's curl equations, hence 

the existence of alternative formulations such as scalar and vector wave equations, has been 

known. Therefore, they are used as alternative formulations to be utilized with numerical 

techniques. Peterson et al. studied the scalar wave equation for the analysis of two-

dimensional inhomogeneous dielectric bodies illuminated by normally-incident fields with 

the finite element method (FEM)  [9, 10]; he also developed ABCs for the vector wave 

equation to be used with FEM [11]. Gedney and Navsariwala provided an unconditionally 

stable finite element time-domain solution of the vector wave equation [12]. There is not 

much published work investigating these formulations as a complete alternative to the 

traditional Yee algorithm; Aoyagi et al. investigated a possible combination of scalar and 

vector wave equations as well as a scalar wave equation and Maxwell's equations [13]; 

however both approaches lose generality since they require partitioning of the problem 

domain; Okoniewski discussed the application of the vector wave equation approach to an 

inhomogeneous wave-guide structure by using transverse field components [14]. Chu et al. 

studied the FDTD modeling of optical guided-wave devices based on the Yee algorithm and 

investigated the scalar wave equation and its semivectorial version for the simulation of 
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optical guided-wave devices, but the vector nature of the electromagnetic waves is either 

completely or partially ignored [15-19].    

This study investigates a general single-field approach to derive the FDTD updating 

equations in a way that only one field component will be calculated and updated inside the 

iteration loop to eliminate iteration steps required to update the other field components. The 

single-field FDTD is an effort at reduction of FDTD variables in a Yee grid to only the three 

components of a single field variable, either E or H, while maintaining the ability to analyze 

full vector source injection. Since one field (E or H) can be derived from the other field, 

whenever needed, the proposed method, hence, is able to provide simulation results that can 

be obtained from traditional FDTD updating equations. The paradigm presented proposes to 

use single-field for the simulation. However, it does not impose and is not limited to any 

particular field term (E or H), because each field formulation has advantage over the others 

for some set of problems. For example, the electric field formulation (E formulation) is the 

most advantageous for two-dimensional transverse magnetic (2D TM) problems whereas the 

magnetic field formulation (H formulation) is a better choice for two-dimensional transverse 

electric (2D TE) problems. From software point of view, however, this does not imply that 

the lines of code and memory allocations will be doubled for the proposed technique. Due to 

the symmetry in Maxwell's equations and dual relations between the field and the source 

terms, one set of equations (E or H) can be transformed into a general purpose simulation 

software that can handle either case (TM or TE) with advantage in speed and memory. The 

described technique has the ability to analyze a large class of two-dimensional structures 

including arbitrary material types (perfect conductors, lossy dielectric and magnetic material 
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types). In addition to the arbitrary material types, various illumination sources (plane wave 

and arbitrarily positioned electric and magnetic sources) can also be handled.   

The significance of the improvement in speed and memory usage of the two-

dimensional formulations is that there are many interesting geometries that lend themselves 

to a two-dimensional analysis where bodies are assumed to be infinite in the longitudinal 

dimension. This includes (i) structures that are long in one dimension and are, thus, naturally 

two-dimensional problems, (ii) three-dimensional problems in which significant insight into 

the physics of the problem can be gained by a two-dimensional analysis, and (iii) structures 

that can be described by their E-plane and H-plane patterns [20]. 

In this dissertation, a single-field finite-difference time-domain formulation for 

electromagnetic simulations is derived and its accuracy and performance are investigated 

with various problems. The main focus is on solving two-dimensional electromagnetic 

problems with the presented formulation as the single-field formulation shows obvious 

advantage over the traditional one for two-dimensional problems. 

In Chapter 2, single-field finite-difference time-domain updating equations are 

derived for linear, homogeneous, isotropic and nondispersive media. In Chapter 3, one-

dimensional updating equations are derived and their performance is analyzed with an 

example. Chapter 4 presents the derivation and various analyses e.g., accuracy, speed, etc. for 

the two-dimensional single-field formulation. Chapter 5 has a detailed investigation of the 

single-field formulation for electromagnetic problems in the case of oblique plane wave 

incidence, and Chapter 6 includes the derivation and the numerical validation of single-field 

FDTD updating equations for dispersive media. Chapter 7 concludes the dissertation. 
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2. SINGLE-FIELD FDTD UPDATING EQUATIONS 

Characteristic behavior of electromagnetic fields can be specified by constructing an 

FDTD algorithm of Maxwell's time-domain equations. For linear, isotropic and 

nondispersive media; starting with Maxwell's curl equations, one can obtain a vector wave 

equation and solve it as scalar equations for its Cartesian coordinates. 

 

      
  

  
          (2.1)  

     
  

  
          

(2.2)  

 

Taking the curl of (2.1), we have: 
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              (2.4)  

        
 

  
                   (2.5)  

 

Substituting (2.2) into (2.5)  

 

        
 

  
  

  

  
                    

  

  
           

(2.6)  

 

Using the following vector identity 
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                  (2.7)  

 

Rearranging the terms in (2.6), one can obtain a vector wave equation as 

 

          

                
  

  
   

   

   
            

   
  

 

(2.8)  

 

To solve (2.8) with finite-difference time-domain method, we have to decompose it into its 

Cartesian components. The following three sections will detail the FDTD single-field 

formulation for a three dimensional computational domain. 

 

2.1. Derivation of the Updating Equation for the x Component  

Cartesian component of (2.8) in x direction can be written as 

 

              

                 
   

  
   

    

   
  

     

  
 
     

  
 

         
     
  

 

(2.9)  

    

   
 
    

   
 
    

   
  

    

   
 

    

    
 

    

    
 

                 
   

  
   

    

   
  

     

  
 
     

  
 

         
     
  

 

(2.10)  



10 

 

 

 

    

   
 
    

   
 

    

    
 

    

    

                 
   

  
   

    

   
  

     

  
 
     

  
 

         
     
  

 

(2.11)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (2.11) at the corresponding electric field node, i.e. Ex. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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For the other electric field components, we have to consider their positions in the Yee-cell [1] 

as shown in Figures 2.1 and 2.2. 
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Fig. 2.1 The positions of Ey field components with respect to Ex in the Yee-cell. 
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Fig. 2.2 The positions of Ez field components with respect to Ex in the Yee-cell. 
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The spatial derivatives of the magnetic sources are determined according to their positions in 

the Yee-cell as shown in Figures 2.3 and 2.4. 

 

 

 

 

 

Fig. 2.3 The positions of My with respect to Ex in the Yee-cell. 
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Fig. 2.4 The positions of Mz with respect to Ex in the Yee-cell. 
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Inserting (2.12)-(2.24) into (2.11), we have 
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We can simplify the updating equation for Ex as 
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2.2. Derivation of the Updating Equation for the y Component  

Cartesian component of (2.8) in y direction can be written as 
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (2.40) at the corresponding electric field node, i.e. Ey. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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For the other electric field components we have to consider their positions in the Yee-cell as 

shown in Figures 2.5 and 2.6. 

 

 

 

 

Fig. 2.5 The positions of Ex field components with respect to Ey in the Yee-cell. 
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Fig. 2.6 The positions of Ez field components with respect to Ey in the Yee-cell. 
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The spatial derivatives of the magnetic sources are determined according to their positions in 

the Yee cell as shown in Figures 2.7 and 2.8. 
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Fig. 2.7 The positions of Mx with respect to Ey in the Yee-cell. 
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Fig. 2.8 The positions of Mz with respect to Ey in the Yee-cell. 
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Inserting (2.41)-(2.53) into (2.40), we have 

 

Ey (i,j,k) 

Mx (i,j,k) 

Mx (i,j,k-1) 

x 

y 

z 

Mz (i-1,j,k) 

Ey (i,j,k) 

Mz (i,j,k) 
x 

y 

z 



19 

 

 

 

  
              

           
          

     

 
  
              

           
          

     

 
  
             

               
           

          

    

 
  
             

               
           

          

    

       
                  

  
             

          

   

   
  
              

           
          

     

  
    

             
          

  
 
    

             
          

  
 

       
          

    
               

          

   
 

(2.54)  

 

We can simplify the updating equation for Ey as 
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2.3. Derivation of the Updating Equation for the z Component  

Cartesian component of (2.8) in z direction can be written as  
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equations (2.69) at the corresponding electric field node, i.e. Ez. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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For the other electric field components, we have to consider their positions in the Yee-cell as 

shown in Figures 2.9 and 2.10. 

 

 

 

Fig. 2.9 The positions of Ex field components with respect to Ez in the Yee-cell. 
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Fig. 2.10 The positions of Ey field components with respect to Ez in the Yee-cell. 
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The spatial derivatives of the magnetic sources are determined according to their positions in 

the Yee cell as shown in Figures 2.11 and 2.12. 

 

 

 

 

Fig. 2.11 The positions of My with respect to Ez in the Yee-cell. 
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Fig. 2.12 The positions of Mx with respect to Ez in the Yee-cell. 
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Inserting (2.70)-(2.82) into (2.69), we have 
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We can simplify the updating equation for Ez as 
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3. ONE-DIMENSIONAL SINGLE-FIELD FDTD 

UPDATING EQUATIONS 

For the one-dimensional case, we assume that there is no field variation in z and y 

directions, i.e., 
 

  
 

 

  
   and the wave is propagating in the x direction. Based on this 

assumption, we can derive one-dimensional single-field FDTD updating equations by 

starting with (2.8) and decomposing it into its Cartesian components. Since only plane 

waves propagate in this one-dimensional domain and the assumed propagation direction is x, 

Ex component is therefore equal to zero. 

 

3.1   Derivation of 1D Updating Equations 

3.1.1.  1D Updating Equation for the y Component  

Cartesian component of (2.8) in y direction can be written as  
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equations (3.2) at the corresponding electric field node, i.e. Ey. The time 

derivatives are evaluated at the n
th

 time step; therefore: 
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 (3.6)  

 

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly as shown in Figure 3.1. 

 

 

 

 

Fig. 3.1 The positions of Mz with respect to Ey in the Yee-cell. 
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Inserting (3.3)-(3.7) into (3.2), we have 
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(3.8)  

 

We can simplify the updating equation for Ey as 
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3.1.2.  1D Updating Equation for the z Component  

Cartesian component of (2.8) in z direction can be written as  

 

              

                 
   

  
   

    

   
 
     

  
       

  
     
  

 

(3.17)  

    

   
                 

   

  
   

    

   
 
     

  
         

     
  

 (3.18)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equations (3.18) at the corresponding electric field node, i.e. Ez. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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 (3.20)  

        

  
 

    
           

      

   
 (3.21)  

       

   
 

  
          

       
      

     
 (3.22)  

 

The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly as shown in Figure 3.2. 
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Fig. 3.2 The positions of My with respect to Ez in the Yee-cell. 
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Inserting (3.19)-(3.23) into (3.18), we have 
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We can simplify the updating equation for Ez as 
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3.2   Performance Analysis 

 Next, we examine a one-dimensional electromagnetic problem, as given in [5]. The 

electric field components, due to a z-directed electric current sheet placed at the center of a 

problem space filled with air between two parallel perfectly electric conducting (PEC) plates 

extending to infinity in y and z directions, are computed.  

Figure 3.3 shows the problem geometry along with field distributions at t = 0.3 ns. 

The current sheet placed at the center, namely x = 0.5 m, generates two waves in both sides 

in opposite directions: solid line represents the electric field whereas corresponding magnetic 

field multiplied by the free space characteristic impedance is depicted as the dashed line. 

PECs are located at x = 0 and x = 1m. Electric field values are calculated based on single-

field FDTD formulation along x axis. In addition, magnetic field component, namely Hy, is 

also calculated directly from electric field values for visualization purpose.  
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Fig. 3.3 One-dimensional problem configuration [5]. 

 

Figure 3.4 shows the comparison of the CPU times required by the single-field and the 

traditional formulations for different sizes of one-dimensional computational domain. There 

is approximately 20% improvement in the simulation speed. This decrease in simulation time 

is because the single-field formulation has three floating-point multiplication operations per 

node (FLMOPn) in the FDTD loop as opposed to the traditional one having four as shown in 

Table 3.1. 
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Fig. 3.4 Comparison of CPU time performances in 1D. 

 

Required FLMOPn and the number of memory allocations for field terms per node (MAFTn) 

are tabulated in Table 3.1. The traditional formulation requires 20% more memory than the 

single-field formulation does. With these results, we can conclude that the single-field 

formulation is slightly advantageous over the traditional one for one-dimensional 

computational domains. 

 

Table 3.1: The required FLMOPn and MAFTn for 1D case. 

Formulations # FLMOPn # MAFTn 

Single-Field 3 3 coefficients + 2 fields = 5 

Traditional 4 3 coefficients + 3 fields = 6 

Improvement % 25 % 17 
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4. TWO-DIMENSIONAL SINGLE-FIELD FDTD 

UPDATING EQUATIONS 

For the two-dimensional case, we assume that there is no field variation in the z 

direction, i.e., 
 

  
  . Based on this assumption, we can derive two-dimensional single-field 

FDTD updating equations by starting with (2.8) and decomposing it to its Cartesian 

components.  
 

4.1.   Derivation of 2D Updating Equations 

4.1.1.  2D Updating Equation for the x Component  

Cartesian component of (2.8) in x direction can be written as 
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(4.3)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (4.3) at the corresponding electric field node, i.e. Ex. The time 

derivatives are evaluated at the n
th

 time step; therefore: 
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For the y-directed electric field components, we have to consider their positions in the Yee-

cell as shown in Figure 4.1. 

 

 

Fig. 4.1 The positions of Ey field components with respect to Ex in the Yee-cell. 
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The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figure 4.2. 

 

 

 

Fig. 4.2 The positions of Mz with respect to Ex in the Yee-cell. 
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Inserting (4.4) - (4.11) into (4.3), we have 

 

Ex (i,j) 

Mz (i,j) 

Mz (i,j-1) 

x 

y 



37 

 

 

 

  
            

         
        

     

 
  
           

             
         

        

    

       
                

  
           

        

   

   
  
            

         
        

     

  
    

           
        

  
        

      

  
    
             

        

   
 

(4.12)  

 

We can simplify the updating equation for Ex as 
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4.1.2.  2D Updating Equation for the y Component  

Cartesian component of (2.8) in y direction can be written as  
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equations (4.24) at the corresponding electric field node, i.e. Ey. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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For the x-directed electric field components, we have to consider their positions in the Yee-

cell, as shown in Figure 4.3. 

 

 

Fig. 4.3 The positions of Ex field components with respect to Ey in the Yee-cell. 
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The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figure 4.4. 

 

 

 

Fig. 4.4 The positions of Mz with respect to Ey in the Yee-cell. 
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Inserting (4.25) - (4.32) into (4.24), we have 
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We can simplify the updating equation for Ey as 
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4.1.3.  2D Updating Equation for the z Component  

Cartesian component of (2.8) in z direction can be written as  

 



42 
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (4.44) at the corresponding electric field node, i.e. Ez. The time 

derivatives are evaluated at the n
th

 time step; therefore: 
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The magnetic sources are associated with the magnetic field, so their positions in the Yee-

cell are determined accordingly, as shown in Figures 4.5 and 4.6. 
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Fig. 4.5 The positions of My with respect to Ez in the Yee-cell. 
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Fig. 4.6 The positions of Mx with respect to Ez in the Yee-cell. 
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Inserting (4.45)-(4.51) into (4.44), we have 
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We can simplify the updating equation for Ez as 
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4.2. A 2D TM Problem with a Filament Electric Current   

A two-dimensional problem is constructed as free space with a z-directed impressed 

electric current located at the origin, as depicted in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 2D TM problem configuration. 
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The current density has a Gaussian waveform with magnitude of 1 [Amp/m]. Electric 

fields generated by the traditional and the single-field formulations are compared in time and 

frequency domains; the stability and dispersion analyses are also performed for both. Since 

the real benefit of the single-field formulation is the time required to run the simulation and 

the required memory size, the two formulations are run for different domain sizes and the 

CPU times required to complete the simulation are recorded. CPU time verses domain size is 

plotted for both formulations. To get a better insight for the simulation time and memory 

usage, required FLMOPn and MAFTn will be tabulated. 

4.2.1.   Stability Comparison 

Stability analysis was conducted by changing the value of discrete time, i.e., Δt, and 

observing the change in the field values generated by the single-field and the traditional 2D 

updating equations.  

 

Fig. 4.8 Field comparison for Δt = 2.35 ps. 
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Fig. 4.9 Field comparison for Δt = 2.37 ps. 

 

The Courant-Friedrichs-Lewy (CFL) condition [8] requires that the time increment    

be 2.35 ps for a stable result if the space increments in both directions,    and   , are 1 mm. 

Figure 4.8 shows the field comparison of such stable simulation results calculated at point (8, 

8) mm in a 20 mm x 20 mm problem domain as shown in Figure 4.7. If we set it to 2.37 ps, 

the single-field and the traditional formulations show divergence from optimum field values. 

Figure 4.9 shows the divergence in terms of magnitude of the field versus time step. The 

single-field formulation provides comparatively less divergent results than the traditional 

formulation does, since it requires less numerical computation. 
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4.2.2.   Dispersion Analysis 

Dispersion is defined as the variation of a propagating wave’s velocity with 

frequency. The analysis is done for Ez component of the electric field under the assumption 

of lossless medium and monochromatic traveling wave solution 

 

  
              

                      (4.63)  

 

 where    and    are the x and y components of the numerical wavevector; ix, and iy are 

space indices. By substituting this field expression into the single-field updating equation for 

Ez, and using     
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    , one can obtain 

 

  
  

 
  
 

 
    

 
      

 

 
 

  
 

 
    

 

   
                

 

   
              

   

 

(4.64)  

 

where PPW is the number of points in wavelength discretization, cn is the numerical velocity, 

   is the numerical wavelength, and   is the angle between the direction of the propagating 

wave and the positive x-axis. (4.64) gives the ratio of the velocities or wavelengths as a 

function of PPW and  . A detailed derivation of dispersion analysis procedure for single-

field formulation is given in Appendix A. 

 Figure 4.10 shows the variation of the normalized numerical phase velocity (cn / c0) 

versus points per wavelength discretization (PPW) in two-dimensional FDTD grid. 
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Dispersion performance of the single-field formulation shows a characteristic similar to the 

traditional formulation as given in [21].  

 

 

Fig. 4.10 Dispersion performance of the single-field formulation. 

 

4.2.3.   CPU Time Analysis 

Figure 4.11 shows the CPU time the formulations require to complete a simulation of 

corresponding size for 1800 time steps with 0.0694% difference in calculated field values. X 

axis represents the number of grids used to characterize the problem. 
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Fig. 4.11 Comparison of CPU time performances in 2D. 

 

A speed up factor is calculated according to the formula given in (4.65) for different problem 

sizes and plotted in Fig. 4.11 for different number of time steps. 
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Fig. 4.12 Speedup factor in 2D. 

 

The single-field formulation appears to be three times faster than the traditional one for 

domain sizes close to three million cells. Higher speed factors are expected for larger 

domains as evident from the trend in Figure 4.12. This speed up is because the single-field 

formulation has four FLMOPn inside the FDTD time marching loop as opposed to the 

traditional one having seven. The specifications of the computing system used for the 

simulations are given in Appendix C.  

 

4.2.4.   Memory Usage Analysis 

Table 4.1 shows the number of FLMOPn, floating-point addition operation per node 

(FLAOPn) and MAFTn. The single-field formulation requires 40% less memory to simulate 

the same size problem than the traditional formulation.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

Number of cells in FDTD domain [millions]

S
p

ee
d

u
p

 f
ac

to
r

 

 

 N=1500

 N=1800

 N=2000



52 

 

 

 

Table 4.1. The required FLMOPn, FLAOPn and MAFTn for 2D formulations. 

Formulations # FLAOPn # FLMOPn # MAFTn 

Single-field 5 4 4 coefficients + 2 fields = 6 

Traditional 8 7 7 coefficients + 3 fields = 10 

Improvement % 37.5 % 43 % 40 

 

4.3. A 2D TE Problem with a Filament Magnetic Current   

A two-dimensional problem is constructed as free space with a z-directed impressed 

magnetic current located at the origin. The current density has a Gaussian waveform with 

magnitude of 1 [V/m]. Magnetic fields generated by the traditional and the single-field 

formulations are compared in time and frequency domains; stability and dispersion analyses 

are also performed for both. For the TE problem, H field-based single-field formulation is 

used as given in Appendix B. Due to the symmetry in the formulation and duality in the 

problem, merits for CPU time, memory requirements, stability and dispersion are the same as 

for the TM problem given in section 4.2. Therefore, Figure 4.11 and Figure 4.12, and Table 

4.1 show the performance of the single-field formulation for 2D TE problems as well. 

 

4.4. A 2D TM Scattered Field Problem    

An infinite line of a constant electric current is placed parallel and in the vicinity of a 

circular conducting cylinder of infinite length.  
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Fig. 4.13 A line source near a circular cylinder. (a) Side view. (b) Top view [22]. 

 

We will examine here the scattering of the cylindrical waves by the cylinder for     . The 

analytical solution for the total electric field is given in [22] as 
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(4.67)  

 

where    is the distance from the center of the cylinder to the field point, its range is 0.1-1.1 

m,    is the distance from the center of the cylinder to the source point, its value is 0.1 m,   

is the azimuth angle of the field point and     is the azimuth angle of the source point, its 

value is 0, a is the radius of the conducting cylinder and its value is 0.01 m. For the 

numerical simulation, the spatial and temporal steps used are Δx = 1 mm, Δy = 1 mm and Δt 

= 2.2407 ps, respectively. The cylinder is modeled in FDTD domain by stair-casing. For the 
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analytical solution two hundred terms are used for the Hankel function summation and the 

frequency is set to 1 GHz. Electric field is computed with the single-field and the traditional 

formulation at one thousand different spatial points on the x axis in time-domain and 

converted to frequency domain to compare with the analytical solution results. Error for 

single-field and traditional formulations with respect to the analytical solution is calculated 

according to (4.68) and their performances are shown in Figures 4.14 and 4.15. The single-

field and the traditional formulations show similar performance in terms of accuracy. 

 

                
                                     

                           
  (4.68)  

 

 

Fig. 4.14 Comparison of the numerical solutions with the analytical solution; magnitude. 
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Fig. 4.15 Comparison of the numerical solutions with the analytical solution; phase. 

 

4.5. A 2D TM Problem with Dielectric and PEC Scatterers   

A two-dimensional problem is constructed as free space with a z-directed impressed 

electric current located at the origin. The current density has a Gaussian waveform with 

magnitude of 1 [V/m]. A dielectric square of size 1 mm with dielectric constant 2.2 is located 

at (0.5, 1.5) mm and a square PEC of size 1 mm is located at (-0.5, -1.5) mm. In addition, one 

dielectric circular media of radius 1 mm with dielectric constant 2.2 and another circular 

media with dielectric constant 3.2, relative permeability 1.4, electric conductivity 0.5, and 

magnetic conductivity 0.3 are located at (-2, 1) mm and (2, -1) mm, respectively [5].  
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Fig. 4.16 2DTM problem with an electric line current in the presence of objects of different 

materials and shapes. 

 

Electric field values sampled at (0.8, 0.8) mm by the traditional and the single-field 

formulations are compared in time and frequency domain. Figure 4.17 shows a comparison 

between field values calculated by both formulations in time-domain. Figures 4.18 and 4.19 

show a comparison of magnitude and phase of the field values in frequency domain, 

respectively.   

 CPU time comparison is also performed for this configuration and the resulting speed 

up is the same as the one shown in Fig. 4.11, as expected. This example is of great 

significance for the validity of the single-field formulation as it includes non-zero electric 

and magnetic conductivity in addition to dielectric and magnetic property in scatterers. 
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Fig. 4.17 Time-domain comparison. 

 

 

Fig. 4.18 Frequency domain comparison: magnitude. 
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Fig. 4.19 Frequency domain comparison: phase. 

 

4.6. 2D Analysis of a Horn Antenna   

FDTD solution is produced for a sectoral (2D) PEC horn antenna excited by a 

sinusoidal voltage in a TEz computational domain. The computational domain is truncated by 

a Liao absorbing boundary condition (ABC). The ABC is introduced to eliminate reflections 

from the grid truncation and to simulate outgoing traveling wave propagation in an 

unbounded medium. The horn is modeled by setting the necessary FDTD update equation 

coefficients to represent the PEC material walls. 
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Fig. 4.20 TEz 2D horn antenna configuration in the FDTD computational domain. 

 

Figure 4.20 shows how the horn antenna is modeled for the FDTD method, Ey field excites 

the antenna on the excitation plane. The flare section of the horn is staircased to conform 

with the Cartesian coordinates used. The simulation is run with the following data: time step 

4.23 ps, the frequency of excitation 9.84252 GHz, spatial discretization in x and y 2.5 mm 

and the wavelegth 30.5 m [23]. This application is a good example of structures that can be 

characterized by their principal plane patterns. This 2D analysis of the geometry gives 

substantial engineering insight to the behavior of the antenna with minimum memory 

requirement and computational time.  

Excitation Plane 
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Fig. 4.21 Ey field at 0.5 ns: The single-field formulation. 

 

The y component of the radiated electric field is given for visual comparison between the 

single-field and the traditional formulations. Figures 4.21 and 4.22 show that both 

formulations' simulation results are in good match. 

 

 

Fig. 4.22 Ey field at 0.5 ns: The traditional formulation. 
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5. SINGLE-FIELD FDTD UPDATING EQUATIONS for 

OBLIQUE INCIDENCE 

Starting with Maxwell's equations for the incident and the total field, one can obtain 

the vector wave equation and solve it for each component of the Cartesian coordinate system 

as scalar equations. 

One can write Maxwell's equations for incident field in free space as 

 

             
        

  
 (5.1)  

            
        

  
 

(5.2)  

 

and for the total field as 

 

            
        

  
           (5.3)  

           
        

  
           

(5.4)  

 

The total field is comprised of incident and scattered field components 

 

                (5.5)  

                (5.6)  

 

Taking the curl of (5.1) and (5.3), we have: 
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  (5.7)  
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 (5.9)  

           
 

  
                    (5.10)  

 

Using (5.4), (5.5) and (5.9) 

  

      
      

   
           

   
 

  
  

     

  
             

     

  
         

(5.11)  

 

Using the following vector identity 

  

                 
(5.12)  

                  

          
      

   
   

       

   
          

     

  
          

(5.13)  

 

To implement (5.13) with finite-difference time-domain method, we have to decompose it to 

its Cartesian components. Moreover, we assume no variation for field magnitude in z 

direction, but the variation in phase of the field can be obtained from the phase expression of 

the field.  
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Fig. 5.1 Obliquely incident electric field. 

 

The phase expression of a time-harmonic incident plane field, as shown in Figure 5.1, can be 

written as  

 

        (5.14)  

 

where the wave vector k and the position vector r are expressed in Cartesian coordinates as 

 

                                                  (5.15)  

              (5.16)  

 

where 

          (5.17)  
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A general expression for the incident field with a time delay    and spatial shift   , as 

depicted in Figure 5.1, can be written as 

 

                          
 

 
           (5.18)  

 

Expressions for the incident plane wave for oblique incidence case are given in Table 5.1. 

 

Table 5.1. The obliquely incident plane wave field expressions. 

                                    

                                                        

                                                       

                                  

       
 

  
                               

 

  
                 

       
 

  
                                

 

  
                 

        
 

  
                          

 

 

Using (5.14) and (5.15), one can derive the following identities for the variation in z direction 

 

 

  
            (5.19)  
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 (5.20)  
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 (5.22)  

 

At this point, we have two options to continue with; either to replace the spatial derivatives 

with a constant, namely (5.19) and (5.21) or to harness the assumption that the fields are 

time-harmonic or can be decomposed into harmonic components, hence replace the spatial 

derivatives with their time derivative equivalents, namely (5.20) and (5.22). Since there is no 

published work that uses the latter approach to compare with, the former (constant-k) 

approach will be evaluated in the following section to compare with the traditional 

formulation [24, 25]. 

 

5.1. Derivation of the Updating Equations for Oblique Case  

5.1.1. Updating Equation for the x Component  

Cartesian component of (5.13) incorporated with (5.19) and (5.21) in x direction can be 

written as 

 

         

   
             

         
         

    
             

        

  

          
        

   
   

         

   
          

       

  
            

(5.23)  



66 

 

 

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (5.23) at the corresponding electric field node, i.e. Ex. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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 (5.28)  

 

Inserting (5.24) - (5.28) into (5.23), we have 
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(5.29)  

 

We can simplify the updating equation for Ex as 
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5.1.2. Updating Equation for the y Component  

Cartesian component of (5.13) with (5.19) and (5.21) incorporated in y direction can be 

written as 

 

         

   
             

         
         

    
             

        

  

          
        

   
   

         

   
          

       

  
            

(5.40)  
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (5.40) at the corresponding electric field node, i.e. Ey. The 

time derivatives are evaluated at the n
th

 time step; therefore: 
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Inserting (5.41) - (5.45) into (5.40), we have 
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(5.46)  

 

We can simplify the updating equation for Ey as 
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5.1.3. Updating Equation for the z Component  

Cartesian component of (5.13) incorporated with (5.19) and (5.21) in z direction can be 

written as 
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To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (5.57) at the corresponding electric field node, i.e. Ez. The time 

derivatives are evaluated at the n
th

 time step; therefore: 
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Inserting (5.58) - (5.63) into (5.57), we have 

 



73 

 

 

 

 
       
                 

              
        

     
 

  
       
                 

              
        

     
 

            
       
              

        

  
 

            
       
              

        

  
 

           
      
                

             
        

     
 

    
       
                 

              
        

     
 

           
       
                

        

   
              

       

           
      
               

        

   
             

        

(5.64)  

 

We can simplify the updating equation for Ez as 
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5.2. Accuracy Analysis 

 Problem geometry is constructed as shown in Figures 5.2 and 5.3. Three dielectric 

cylinders are located on y axis, as a plane wave is obliquely incident towards -x direction. 

Scattered fields are sampled at 500 points on the x-axis (0-0.5 m, 0). The dielectric cylinders 

have radius of 1 cm and dielectric constant 4. Center-to-center distance is 3 cm. The incident 

wave has a Gaussian shape with maximum frequency 15 GHz, the azimuth angle (    ) is 0 

with respect to the x axis and its angle of incidence (    ) is 30 degrees with respect to the z 

axis. Figures 5.4 to 5.9 show the field comparison of the single-field and the traditional 
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formulation. In both formulations, constant-k approach is utilized, and the k0 value is set 

according to the following formula 

 

            (5.76)  

  

 

 

 

 

 

 

 

 

 

  

 

Fig. 5.2 Three dielectric cylinders subject to an obliquely incident plane wave. 
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Fig. 5.3 Arrangement of the cylinders. 

 

 

Fig. 5.4 Electric field comparison for f = 5 GHz: magnitude. 
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Fig. 5.5 Electric field comparison for f = 5 GHz: phase. 

 

 

Fig. 5.6 Electric field comparison for f = 10 GHz: magnitude. 
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Fig. 5.7 Electric field comparison for f = 10 GHz: phase. 

 

 

Fig. 5.8 Electric field comparison for f = 15 GHz: magnitude. 
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Fig. 5.9 Electric field comparison for f = 15 GHz: phase. 

 

Figures 5.4 to 5.9 show a good agreement between the single-field and the traditional 

formulation. The k value is calculated as 91, 182 and 273 for incidence angle of 30 degrees 

and for frequency of 5, 10 and 15 GHz, respectively, according to the Equation (5.76).  
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field formulation is faster than the traditional one for any 2D problem in the case of both 

normal and oblique incidence.  

 

Fig. 5.10 CPU time comparison for 2D oblique case. 

 

5.4. Memory Usage Analysis  

 Memory requirements for both formulations can be compared by counting the 

number of coefficients used in the updating equations in addition to the scattered and incident 

field terms needed. The traditional formulation has six updating equations for constant-k 

approach, such as 
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Table 5.2 shows the number of FLMOPn and MAFTn required for the single-field and the 

traditional formulations. Given memory allocations are for updating equations only, problem 

domain and material related memory allocations are not mentioned here since they apply in 

both formulations. The single-field formulation seems to require less memory; therefore it 

can handle bigger problems than the traditional one with the same amount of memory. 

 

Table 5.2. Required FLMOPn and MAFTn for oblique incidence case. 

Formulations # FLMOPn # MAFTn 

Single-field 25 25 coefficients + 15 fields (6 scat. + 9 inc.)  = 40 

Traditional 30 30 coefficients + 18 fields (6 scat. + 12 inc.) = 48 

Improvement % 17 % 17 
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6. SINGLE-FIELD FDTD UPDATING EQUATIONS 

FOR DISPERSIVE MEDIA 

Characteristic behavior of electromagnetic fields inside dispersive media can be 

analyzed by Lorentz-Drude (LD) model. The traditional formulation incorporated with the 

LD model has been used extensively to simulate various materials and geometries for 

scientific and practical applications [26-28]; the updating equations are given in Appendix D. 

One can incorporate LD model in Maxwell's curl equations in frequency domain, and 

transform the resulting equations to time-domain.   

Starting with Maxwell's curl equations in frequency domain and harnessing the 

auxiliary differential equation (ADE) approach [29], one can obtain a vector wave equation 

and solve it for each component of Cartesian coordinate system as scalar equations. 

 

6.1. Lorentz-Drude Model for Permittivity  

 The LD model for permittivity is given by [2] as 

 

         
   

 

         
 

      
 

             
  (6.1)  

 

where     is the relative permittivity at infinite frequency,     is the Drude pole frequency, 

   is the inverse of the pole relaxation time,     is the change in relative permittivity due to 

the Lorentz pole pair,     is the frequency of the pole pair (the undamped resonant 

frequency of the medium), and    is the damping coefficient. 
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 Maxwell's equations in frequency domain for time-harmonic fields with      

dependence are given by 

 

         (6.2)  

        
(6.3)  

 

And the constitutive relations for linear, isotropic and homogeneous media are defined as  

 

      (6.4)  

      
(6.5)  

 

Assuming a constant permeability, taking the curl of (6.2) and using (6.3), we have: 

 

                  (6.6)  

                   (6.7)  

                   (6.8)  

 

Substituting (6.1) into (6.8)  

 

                 
   

 

         
 

      
 

             
    (6.9)  

 

Rearranging (6.9) and introducing two terms    and    
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                        (6.10)  

 

where    and    represents the Drude part and the Lorentz part, respectively.  

 

        
   

 

         
  (6.11)  

      ε 
Δ     

 

             
   (6.12)  

 

Replacing    terms with 
 

  
 and arranging the terms, (6.11) and (6.12) can be written as 

 

    
   

        
 

   

   
   

   
  

 (6.13)  

 

    

   
           

 
   

   
   

   

  
    

    

(6.14)  

 

Revisiting (6.10), and replacing    term with  
  

   
, one can obtain the vector wave equation 

              
   

   
       (6.15)  

 

Now, we can decompose (6.15) into its Cartesian components. 
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6.1.1.  Updating Equation for the x Component 

 Cartesian component of (6.15) in x direction can be written as 

 

    

   
 

    

    
 

    

    
  

    

   
 
    

   
 
    

   
        

    

   
           (6.16)  

    

    
 

    

    
 
    

   
 
    

   
       

    

   
           (6.17)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (6.17) at the corresponding electric field node, i.e. Ex. The 

time derivatives are evaluated at the n
th

 time step, therefore: 

 

           

   
 

  
              

           
          

     
 (6.18)  
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 (6.20)  

           

    
 

  
             

               
           

          

    
 (6.21)  

           

    
 

  
             

               
           

          

    
 (6.22)  

 

Inserting (6.18) - (6.22) into (6.17), we have 
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(6.23)  

 

We can simplify the updating equation for Ex as 

 

  
              

              
             

                
           

    
                

             
           

    
                

             
           

    
                 

             
               

        

   
           

    
                 

             
               

        

   
                          

             
          

(6.24)  

 

where 

          
     

     
 (6.25)  

   
                        

      
     

 
 

     
 

 

     
  (6.26)  

   
                         

     
     

     (6.27)  

   
                        

 

     
  (6.28)  
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  (6.29)  

   
                          

 

    
  (6.30)  

   
                          

 

    
  (6.31)  

 

The x component of the Drude part can be written as 

 

      
   

        
 

    

   
   

     
  

 (6.32)  

             

   
 

    
                

             
          

     
 (6.33)  
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(6.35)  

 

We can simplify the updating equation for JD,x as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.36)  

 

where 
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 (6.37)  

    
               

      

      
 (6.38)  
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 (6.39)  

 

 

The x component of the Lorentz part can be written as 

 

      
   

           
 

    

   
   

     
  

    
      (6.40)  

             

   
 

    
                

             
          

     
 (6.41)  
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(6.43)  

 

We can simplify the updating equation for PL,x as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.44)  

 

where 
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 (6.45)  

    
               

      

      
 (6.46)  

    
             

          
 

      
 (6.47)  

 

Equations (6.24), (6.36) and (6.44) constitute the updating equations in x direction. 

 

6.1.2.  Updating Equation for the y Component 

 Cartesian component of (6.15) in y direction can be written as 

 

 
    

    
 
    

   
 

    

    
   

    

   
 
    

   
 
    

   
        

    

   
           (6.48)  

 
    

   
 
    

   
 

    

    
 

    

    
       

    

   
           (6.49)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (6.49) at the corresponding electric field node, i.e. Ey. The 

time derivatives are evaluated at the n
th

 time step, therefore: 

 

           

   
 

  
              

           
          

     
 (6.50)  

           

   
 

  
              

           
          

     
 (6.51)  
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 (6.54)  

 

Inserting (6.50) - (6.54) into (6.49), we have 

 

 
  
              

           
          

     

 
  
              

           
          

     

 
  
             

               
           

          

    

 
  
             

               
           

          

    

       
  
              

           
          

     
           

(6.55)  

 

We can simplify the updating equation for Ey as 

 

  
              

              
             

                
           

    
                

             
           

    
                

             
           

    
                 

             
               

        

   
           

    
                 

             
               

        

   
                          

             
          

(6.56)  
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where 

          
     

     
 (6.57)  
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  (6.62)  

   
                          

 

    
  (6.63)  

 

The y component of the Drude part can be written as 
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(6.67)  
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We can simplify the updating equation for JD,y as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.68)  

 

where 

    
             

 

      
 (6.69)  
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 (6.71)  

 

The y component of the Lorentz part can be written as 
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(6.75)  
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We can simplify the updating equation for PL,y as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.76)  

 

where 

    
             

           
 

      
 (6.77)  

    
               

      

      
 (6.78)  

    
             

          
 

      
 (6.79)  

 

Equations (6.56), (6.68) and (6.76) constitute the updating equations in y direction. 

 

6.1.3.  Updating Equation for the z Component 

 Cartesian component of (6.15) in z direction can be written as 

 

 
    

    
 
    

    
 
    

   
   

    

   
 
    

   
 
    

   
        

    

   
           (6.80)  

 
    

   
 
    

   
 
    

    
 
    

    
       

    

   
           (6.81)  

 

To derive the FDTD updating equations for the electric fields, we have to evaluate all the 

spatial derivatives in equation (6.81) at the corresponding electric field node, i.e. Ez. The time 

derivatives are evaluated at the n
th

 time step, therefore: 



94 
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 (6.86)  

 

Inserting (6.82)-(6.86) into (6.81), we have 

 

 
  
              

           
          

     

 
  
              

           
          

     

 
  
             

               
           

          

    

 
  
             

           
               

          

    

       
  
              

           
          

     
           

(6.87)  

 

We can simplify the updating equation for Ez as 
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where 
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The z component of the Drude part can be written as 
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We can simplify the updating equation for JD,z as 
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where 
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The z component of the Lorentz part can be written as 
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We can simplify the updating equation for PL,z as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.108)  

 

where 

    
             

           
 

      
 (6.109)  

    
               

      

      
 (6.110)  

    
             

          
 

      
 (6.111)  

 

Equations (6.88), (6.100) and (6.108) constitute the updating equations in z direction. 

 

6.2. Lorentz-Drude Model for Permeability  

 The LD model for permeability can be written as 
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  (6.112)  

 

where     is the relative permeability at infinite frequency,     is the Drude pole frequency, 

   is the inverse of the pole relaxation time,     is the change in relative permeability due to 

the Lorentz pole pair,     is the frequency of the pole pair (the undamped resonant 

frequency of the medium),    is the damping coefficient. 

 Assuming constant permittivity, taking the curl of (6.3), using (6.2), (6.4) and (6.5), 

we have: 

 

                (6.113)  

                  (6.114)  

                 (6.115)  

 

Substituting (6.112) into (6.115)  

 

                 
   

 

         
 

      
 

             
    (6.116)  

 

Rearranging (6.116) and introducing two terms    and    

 

                        (6.117)  

 



99 

 

 

 

where    and    represent the Drude part and the Lorentz part, respectively.  

 

        
   

 

         
  (6.118)  

        
      

 

             
   (6.119)  

 

Replacing    terms with 
 

  
 and arranging terms, (6.118) and (6.119) can be written as 

 

    

   
        

 
   

   
   

   

  
 (6.120)  

    

   
     Δ     

 
   

   
   

   

  
    

    (6.121)  

 

Revisiting (6.117), and replacing    term with  
  

   
, one can obtain the vector wave 

equation 

              
   

   
       (6.122)  

 

Now, we can decompose (6.122) into its Cartesian components 

 

6.2.1.   Updating Equation for the x Component 

 Cartesian component of (6.122) in x direction can be written as 
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           (6.124)  

 

To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the 

spatial derivatives in equation (6.124) at the corresponding magnetic field node, i.e. Hx. The 

time derivatives are evaluated at the n
th

 time step, therefore: 
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Inserting (6.125) - (6.129) into (6.124), we have 
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(6.130)  

 

We can simplify the updating equation for Hx as 
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102 
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The x component of the Drude part can be written as 
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(6.142)  

 

We can simplify the updating equation for KD,x as 
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where 
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The x component of the Lorentz part can be written as 
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We can simplify the updating equation for ML,x as 

 

    
               

                
             

                  
          

     
              

              
           

            
(6.151)  

 

where 
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 (6.154)  

 

Equations (6.131), (6.143) and (6.151) constitute the updating equations in x direction. 

 

6.2.2.   Updating Equation for the y Component 

 Cartesian component of (6.122) in y direction can be written as 
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To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the 

spatial derivatives in equations (6.156) at the corresponding magnetic field node, i.e. Hy. The 

time derivatives are evaluated at the n
th

 time step, therefore: 
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Inserting (6.157) - (6.161) into (6.156), we have 
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We can simplify the updating equation for Hy as 
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where 
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  (6.170)  

 

The y component of the Drude part can be written as 
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We can simplify the updating equation for MD,y as 
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The y component of the Lorentz part can be written as 
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We can simplify the updating equation for ML,y as 
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Equations (6.163), (6.175) and (6.183) constitute the updating equations in y direction. 

 

6.2.3.   Updating Equation for the z Component 

 Cartesian component of (6.122) in z direction can be written as 

 



109 

 

 

 

 
    

    
 
    

    
 
    

   
   

    

   
 
    

   
 
    

   
 

       
    

   
           

(6.187)  

    

    
 
    

    
 
    

   
 
    

   
       

    

   
           (6.188)  

 

To derive the FDTD updating equations for the magnetic fields, we have to evaluate all the 

spatial derivatives in equations (6.188) at the corresponding magnetic field node, i.e. Hz. The 

time derivatives are evaluated at the n
th

 time step, therefore: 
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Inserting (6.189) - (6.193) into (6.188), we have 
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We can simplify the updating equation for Hz as 
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The z component of the Drude part can be written as 
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We can simplify the updating equation for KD,z as 
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The z component of the Lorentz part can be written as 
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We can simplify the updating equation for ML,z as 
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where 
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 (6.218)  

 

Equations (6.195), (6.207) and (6.215) constitute the updating equations in z direction. 

 

6.3.  A Note on Performance 

 Single-field FDTD updating equations are derived for three-dimensional dispersive 

media by harnessing Lorentz-Drude model. One can reduce the formulations presented here 

to two-dimensional dispersive problems and take advantage of the improvement in speed and 

memory requirement as presented in Chapter 4, because the dispersive media updating 

equations have structure similar to the ones derived for general non-dispersive media. The 

only addition is the Lorentz and Drude parts that also exist in the traditional method. This 

chapter shows that the single-field  approach is applicable for dispersive as well as 

nondispersive media. 

 

6.4. Numerical Validation 

 To verify the numerical validity of the derived formulations, a three-dimensional 

problem is set up. To perform the simulation of the structure, the single-field formulations 

incorporated with LD modeled permittivity as given in Section 6.1 are used along with the 

traditional formulations given in Appendix D.  

 The problem space includes a sphere of radius 18 nm located at the origin with the 

following properties:           ,                    ,                  , 
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                   ,                    and         . There is a point 

field-source that updates x component of the electric field at (60, 60, 20) nm with a Gaussian 

pulse; the total field is sampled in three different locations: (60, 60, 40) nm, (60, 60, 70) nm 

and (60, 60, 100) nm.  Figures 6.1, 6.2 and 6.3 show the comparison of field values calculated 

by the single-field and the traditional formulations. The entire FDTD domain is 120 nm x 

120 nm x 120 nm, and the sphere is located at (60, 60, 60) nm.  

 

 

Fig. 6.1 Ex field sampled at (60, 60, 40) nm. 
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Fig. 6.2 Ex field sampled at (60, 80, 70) nm. 

 

 

Fig. 6.3 Ex field sampled at (60, 80, 100) nm. 
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7. CONCLUSION 

Single-field finite-difference time-domain updating equations based on single-field 

have been derived for three-, two- and one-dimensional electromagnetic problems. Although 

the single-field approach can be applied to either field, that is, we can develop single-field 

FDTD updating equations based on E or H field, electric field based updating equations are 

used for the derivation and verification purposes. Liao's absorbing boundary condition is 

used whenever needed.  

One-dimensional case of the single-field formulation is evaluated with an example 

geometry, and it is observed that the single-field formulation is 20% faster than the 

traditional one, and provides around 17% memory reduction for solving the same size 

problem. 

The single-field formulation has a great advantage in two-dimensional case. A two-

dimensional TM problem is constructed with an electric current source, and the field away 

from the source is calculated by the single-field and the traditional formulations. First, the 

stability and dispersion analyses are performed. Then, the speed and memory analyses 

follow; the single-field formulation happens to be almost three times faster and requires 

about 40% less memory than its traditional counterpart. A two-dimensional TE problem 

evaluation is also discussed to show that the single-field formulation is advantageous for 

two-dimensional TE as well as TM problems. A scattering problem of an infinite line-current 

in the vicinity of a circular conducting cylinder is simulated with both formulations and the 

results are compared with respect to the analytical solution; the two FDTD formulations 

show similar accuracy characteristics. Another TM problem is considered to test the ability 

of the single-field formulation in handling simulations that include PECs and dielectric and 
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magnetic scatterers with non-zero electric and magnetic conductivity. A sectoral (2D) horn 

antenna that is of great significance in practice is also simulated with both formulations; 

generated fields are plotted for visual comparison and they are in good agreement.  

  In addition to the normal incidence case, oblique incidence case is also considered; 

oblique incidence FDTD updating equations are derived and compared with the traditional 

formulation in terms of accuracy, speed and memory requirements. The single-field 

formulation is as advantageous in terms of speed and memory requirements in oblique 

incidence case as it is in the case of normal incidence. 

Finally, general FDTD updating equations based on single-field are derived for 

dispersive media. Two cases are studied: (i) E-based single-field FDTD updating equations 

with constant permeability and Lorentz-Drude (LD) modeled permittivity and (ii) H-based 

single-field FDTD updating equations with constant permittivity and LD modeled 

permeability. It is shown that single-field formulation can be obtained for dispersive media, 

too. Numerical validation is performed with a three-dimensional problem that includes a 

dispersive sphere. Results generated by the single-field and the traditional formulations are in 

good agreement.       

The single-field FDTD formulation, in overall, is faster and requires less memory for 

any two-dimensional TE and TM problems with normal as well as oblique incident waves. 

This is the main contribution of this dissertation. Another contribution is the derivation and 

validation of single-field FDTD formulation for dispersive media analysis.  

Future studies would be to investigate the compatibility of the single-field approach 

with the software and hardware acceleration techniques such as parallel programming and 
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Compute Unified Device Architecture (CUDA) [30, 31]. Moreover, this single-field 

approach can be extended to finite-difference frequency-domain formulation.   
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APPENDIX A 

Dispersion Analysis in Two-dimensional Problem Space 

Start with the updating equation for Ez component 

 

  
            

              
             

            
       

    
            

           
         

    
            

           
          

(A.1)  

 

Consider a lossless medium and assume the following monochromatic traveling-wave trial 

solutions, then 
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                          (A.7)  

 

where    and    are the x and y components of the numerical wavevector, and ix and iy are 

space indices. By substituting those field expressions into the updating equation, one may 

obtain 
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Coefficient values for a lossless medium are  
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Assuming that         
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APPENDIX B 

Single-Field FDTD Updating Equations Based on H-field 

Starting with Maxwell's curl equations: 

 

      
  

  
          

(B.1)  

     
  

  
          (B.2)  

 

Taking the curl of (B.2) and following a procedure similar to that presented in Chapter 2, one 

can obtain the H-field vector wave equation as 

 

          

                
  

  
   

   

   
            

   

  
 

(B.3)  

 

To find the H-based single-field updating equations, (B.3) is decomposed into its Cartesian 

components and necessary difference equations are substituted according to their positions in 

the Yee-cell. Consequently, the following updating equations can be derived. 
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APPENDIX C 

The Computing System Information 

All of the simulations presented in this dissertation are done with a system whose 

specifications are given in Table C.1 below. 

 

Table C.1 The computing system specifications. 

Processor Intel(R) Core(TM) i7 CPU 920 @ 2.67 GHz 

Memory 6.00 GB 

System Type 64-bit Operating System 

Operating System Windows 7 Professional 

Programming Language/Compiler Matlab v.7.8.0.347 (R2009a) 32-bit (win32) 
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APPENDIX D 

The Traditional Updating Equations with Lorentz-Drude 

Model for Permittivity 

Following a procedure similar to the one presented in Section 6.1, we can derive the 

traditional FDTD updating equations for dispersive media based on Lorentz-Drude model. 

The formulations are developed with constant permeability and LD-modeled permittivity as 

given in (6.1). Moreover, this procedure can provide the dual formulations for media with a 

constant permittivity and LD-modeled permeability.  

Incorporating (6.1) in (6.3), and making use of (6.4), one can obtain 
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Introducing the Drude and the Lorentz terms,  
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Revisiting (D.2), and using (D.3) and (D.4) 
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Replacing    terms with 
 

  
 and arranging the equations, (D.3) and (D.4) can be written in 

time-domain as 
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We can write (D.5) and (6.2) in time domain as 

 

        
  

  
      

   

  
 (D.8)  

       
  

  
 (D.9)  

 

The traditional FDTD updating equations will be based on the time-domain equations (D.6) 

to (D.9). Those vector equations are decomposed into their Cartesian components and 

differentiation terms are discretized accordingly to obtain the following updating equations 

for electric field, magnetic field, Drude and Lorentz terms. C terms represent constant 

coefficients in terms of medium characteristics. 
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The x component of the electric field, magnetic field, the Lorentz part and the Drude 

part updating equations are 
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The y component of the electric field, magnetic field, the Lorentz part and the Drude 

part updating equations are 
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The z component of the electric field, magnetic field, the Lorentz part and the Drude 

part updating equations are 
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The constant coefficients are given as follows 
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