
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Dissertations College of Engineering and Computer Science

12-2011

State-Based Techniques For Designing, Verifying And Debugging State-Based Techniques For Designing, Verifying And Debugging

Message Passing Systems Message Passing Systems

Rajaa Khaled Alqudah
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Alqudah, Rajaa Khaled, "State-Based Techniques For Designing, Verifying And Debugging Message
Passing Systems" (2011). Electrical Engineering and Computer Science - Dissertations. 313.
https://surface.syr.edu/eecs_etd/313

This Dissertation is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Dissertations by an
authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215683535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/eecs_etd
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_etd?utm_source=surface.syr.edu%2Feecs_etd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=surface.syr.edu%2Feecs_etd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_etd/313?utm_source=surface.syr.edu%2Feecs_etd%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

ABSTRACT

Message passing systems support the applications of concurrent events, where independent

or semi-independent events occur simultaneously in a nondeterministic fashion. The nature

of independence, random interactions and concurrency made the code development of such

applications complicated and error-prone. Conventional code development environments

or IDEs, such as Microsoft Visual Studio, provide little programming support in this re-

gard. Furthermore, ensuring the correctness of a message passing system is a challenge.

Typically, it is important to guarantee that a system meets its desired specifications along its

construction process. Model checking is one of the techniques used in software verification

which has proven to be effective in discovering hidden design and implementation errors.

The required advanced knowledge of formal methods and temporal languages is one of

the impediments in adopting model checking by software developers. To integrate model

checking environments and conventional IDEs, this dissertation proposes a multi-phase

development framework that facilitates designing, verifying, implementing and debugging

state-based message passing systems. The techniques and design principles of the proposed

framework focus on improving and easing the software development experience. In the first

phase, a two-level design methodology is proposed through using abstract high-level com-

munication blocks and hierarchical state-behavioral descriptions that were developed in

this research. In the second phase, a new method based on choosing from a pre-determined

set of patterns in concurrent communication properties is proposed to facilitate collecting

the essential specifications of the system where the atomic propositions are linked with the

system design. A complex property can be attained by hierarchically nesting some of these

patterns. A procedure to automatically generate formal models in a model checker (MC)

language is proposed. Once the model that contains both the design and the properties of

the system are generated, a model checker is used to verify the correctness of the proposed

system and ensure its compliance with specifications. To help in locating the source of

an undesired specification, if any, a procedure to map a counter example generated by the

MC to the original design is presented. In the third phase, a skeleton code of the design

specification is generated in a general programming language such as Microsoft C#, Java,

etc. moreover, the ability to debug the generated code using a conventional IDE while trac-

ing the debugging process back to the original design was established. Finally, a graphical

software tool that supports the proposed framework is developed where SPIN MC is used

as a verifier. The tool was used to develop and verify several case studies. The proposed

framework and the developed software tool can be considered a key solution for message

passing systems design and verification.

white

STATE-BASED TECHNIQUES FOR DESIGNING, VERIFYING AND

DEBUGGING MESSAGE PASSING SYSTEMS

by
Rajaa Khaled Alqudah

white

B.S., Yarmouk University, 2003
M.S., Northeastern University, 2007

white

white

white

white

Dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Engineering

white

white

Syracuse University

December 2011

white

white

white

white

white

white

white

white

white

Copyright © Rajaa Khaled Alqudah 2011

All Rights Reserved

Contents

List of Figures vi

List of Tables viii

Acknowledgments x

1 Introduction 1
1.1 Background . 5

1.1.1 Message Passing Systems . 5
1.1.2 Software Verification . 5
1.1.3 Model Checking . 7

1.2 Motivations and Contributions . 13
1.3 Dissertation Outline . 17

2 Review of Literature 18
2.1 Model Checking in Software Verification 18

2.1.1 Modeling System Specifications 19
2.1.2 Systems Properties . 21
2.1.3 Model Checking Tools . 21

2.2 Debugging multi process applications . 25

3 A Framework for Message Passing Systems Development 31
3.1 Overview . 31
3.2 System Design . 33

3.2.1 High-Level Block Design . 35
3.2.2 State-Behavioral Description . 38
3.2.3 Comparing to Petri Nets . 42
3.2.4 Hierarchical Designed-For-Verification CEFSM 44

3.3 Concurrent Property Specifications . 47
3.3.1 Pattern based properties . 48

v

3.4 Model Generation and Verification . 64
3.5 Code Generation . 65
3.6 Debugging . 70
3.7 Summary . 71

4 MPS Verification and Debugging Tool 72
4.1 Model Designer . 73
4.2 Property Editor . 76
4.3 Model Generation . 78

4.3.1 Translation Steps . 80
4.3.2 Timers in PROMELA . 84
4.3.3 LTL Properties in PROMELA . 87
4.3.4 Correctness of the PROMELA Model Generation 90

4.4 Verification . 92
4.4.1 User specific LTL Properties . 93
4.4.2 Built-in Properties . 93

4.5 Error Localization . 96
4.6 Code Generation . 99
4.7 Debugging . 100
4.8 Summary . 100

5 Case Study 102
5.1 Transmission Control Protocol (TCP) . 102

5.1.1 TCP connection management . 103
5.1.2 Modeling TCP . 106
5.1.3 PROMELA Model Generation . 108
5.1.4 Verification . 109

6 Conclusions and Future Work 112
6.1 Summary of Contributions . 113
6.2 Future Work . 114

Bibliography 115

A PROMELA Code 125

Index 131

List of Figures

1.1 Model Checking Example . 9
1.2 A Kripke structure for two processes that preserve mutual exclusion [10] . . 10
1.3 Next Operator . 11
1.4 Until Operator . 11
1.5 Motivation . 14
1.6 Framework Architecture . 16

2.1 Time line for a Call waiting requirements [38] 22
2.2 SPIN MC Principle . 22
2.3 SPIN Architecture . 24
2.4 Parallel Debugger Architecture [51] . 29

3.1 Framework Summary . 33
3.2 High-Level Block Design of a simple reliable transfer protocol 36
3.3 DV-CEFSM Example . 41
3.4 The state behavioral design of the four blocks in the Simple Reliable Trans-

fer Protocol . 42
3.5 Simple Reliable Transfer Protocol in Petri Net 44
3.6 An Example of Hierarchical CEFSM . 47
3.7 Event-Based Specification Pattern Ranges [62] 49
3.8 Relative time Pattern Ranges . 58
3.9 Absolute time Pattern Ranges . 59
3.10 State Design Pattern Structure [64] . 68

4.1 Proposed tool . 73
4.2 High-Level Block diagram of the simple reliable transfer protocol 74
4.3 Channel Editing Form . 75
4.4 State-Behavioral diagram for Sender Block 76
4.5 Form to add local variables . 77
4.6 State transition editing form . 78
4.7 Property Using Patterns Form . 79

vii

4.8 Form to build the property hierarchically 80
4.9 Form to add timers . 86
4.10 Verification Options . 95
4.11 The Trail Message Sequence Chart . 98
4.12 Linking the MSC to the original design 99
4.13 Inserting a break point to a state transition in the design 101

5.1 TCP three-way handshaking [76] . 104
5.2 State diagram of TCP Server . 105
5.3 State diagram of TCP Client . 105
5.4 Simultaneous TCP three-way handshaking [76] 106
5.5 Finite State Diagram of TCP [76] . 107
5.6 Structural Diagram of TCP . 108
5.7 Building Structural Diagram of TCP . 109
5.8 Behavioral Diagram of TCP Client . 110

List of Tables

3.1 Never Pattern LTL Mapping . 50
3.2 Invariant Pattern LTL Mapping . 51
3.3 Existence Pattern LTL Mapping . 52
3.4 At-Most-K Existence Pattern LTL Mapping where K=2 53
3.5 Recursive Exactly-K Existence Pattern for Global Scope 54
3.6 Exactly-K Existence Pattern LTL Mapping where K=2 54
3.7 At-Least-K Existence Pattern LTL Mapping 55
3.8 Sub-Set Existence Pattern LTL Mapping 55
3.9 Response Pattern LTL Mapping . 56
3.10 Precedence Pattern LTL Mapping . 56
3.11 Sequence of Events Pattern LTL Mapping 57
3.12 Set of Events Pattern LTL Mapping . 57

ix

ACKNOWLEDGMENTS

The success of this research endeavor has been due to the help and support of many profes-

sors, friends, and family members. First, I wish to extend my gratitude to my dissertation

advisor, Dr. C. Y. Roger Chen, for giving me the opportunity to study under his guidance

and for his mentoring contributions towards my growth as a graduate student, researcher,

and as a person, in addition to his encouragement, valuable comments and suggestions that

helped shape this research work. I would like to also thank Dr. James Fawcett and Dr. Dan

Pease who provided valuable insights and comments throughout this research. I am also

thankful to the dissertation committee members for their help and time.

I am thankful to my friends who have contributed a great deal towards my success and

completion of this dissertation. I am forever grateful to my parents for their sacrifices that

paved the way towards the successful completion of my education. Finally, I would like

to thank my husband Emad and my lovely daughter Jude for their standing by my side

throughout this time and for their long patience.

x

Chapter 1

Introduction

Message Passing Systems (MPS), such as multi-thread or multi-process based program-

ming environments, support the applications of concurrent events, where independent or

semi-independent events occur simultaneously in a nondeterministic fashion. Communi-

cation protocols, such as the Transmission Control Protocol (TCP), are typical examples

of such applications where a set of rules govern the syntax, semantics and synchronization

of communication between nodes via a network. Typically, this communication happens

to achieve a reliable transfer of data from one node to another. The design, verification,

development and debugging of Message Passing Systems (MPS) tend to be a difficult task

and subject to errors that are not common in single-process applications. Most of these

1

2 Chapter 1 Introduction

errors come from the non-deterministic nature of events during the execution. Deadlocks

and race conditions are examples of these errors just to mention few. Conventional code

development environments or IDE, such as Visual Studio, provide little programming sup-

port or assistance in this regard. A large body of research has focused on techniques that

can help verifying and validating software systems, examples can be found in [1–5].

Software testing is a common technique in which experiments are conducted on the actual

system before deployment to assure its compliance with requirements. For testing to be

effective it requires checking all the possible inputs and states; this is a costly and time-

consuming process that makes it impractical in most cases. Moreover, even a heavily tested

system may have errors that hardly appear or are impossible to replicate. Limitations in

time and resources encouraged industry to find different methods to verify their systems

other than dealing with the actual system.

Formal verification is a technique in which the correctness of the system is proven or dis-

proven using mathematical and formal methods [6]. One approach of formal verification is

model checking. Model checking is a technique to automatically test if a model of a sys-

tem meets a given specification by exhaustively exploring all the possible executable paths.

Using model checking in the verification process requires building a model of the system

in some formal language accepted by the MC in addition to writing the requirement spec-

ifications as temporal logic formulas. Building a model and writing temporal properties

3

require knowledge in the model checker programming language and a strong mathematical

background. These obstacles prevent using the model checking technique widely in the

software development process.

From the other hand, debugging is a process conducted to discover bugs that may reside in a

software system by allowing the programmer to monitor the execution of the system, pause

it, set some breakpoints and check the values in memory or even change it at runtime. This

technique uses stop-the-world [7] approach which may be useful for debugging single pro-

cess applications but not sufficient for multi-process applications. To our best knowledge,

there is no debugger tool that helps developers in debugging distributed systems by provid-

ing a high-level picture of the current state of the application execution, visualizing all the

interactions between processes, and reasoning about processes. Several attempts exist in

the literature to facilitate using model checking techniques in software verification and to

fill the existing gap between existing model checkers and the development environments.

There is a need for a comprehensive framework to help software developers design, verify,

implement and debug their systems without the need to learn all the mathematical details

of formal verification. To address this problem, a multiple phase approach for developing,

verifying and debugging state-based message passing systems is proposed in this disser-

tation. The target system is described using a two-level design approach: abstract com-

munication blocks level and hierarchical state-behavioral specification level. A procedure

4 Chapter 1 Introduction

to automatically generate formal models in a MC language is proposed. Moreover, a new

method based on choosing from a pre-determined set of patterns in concurrent communica-

tion properties is proposed to facilitate collecting the essential specifications of the system.

Once the model and the properties of the system are generated, a model checker is used

to verify the correctness of the proposed system and ensure its compliance with specifica-

tions. In case of any inconsistencies found, the error source will be automatically localized

using an algorithm that was developed for this purpose. A skeleton code of the system that

includes the correct design specifications is generated in a general programming language

i.e. Microsoft C#, Java, etc., moreover, the ability to debug the generated code using a

conventional IDE, such as Visual Studio, while tracing the debugging process back to the

original design is established.

The proposed approach was successfully implemented in the form of a tool support that

was developed in Microsoft C# where SPIN model checker was used as the verification

engine. Several case studies are presented to show this frame work effectiveness. The

following section gives a background about message passing systems, software verification

and model checking.

1.1 Background 5

1.1 Background

1.1.1 Message Passing Systems

Message Passing is a model of communication in a distributed system where messages

are sent from one node to another. In general, the purposes of this communication can be

one of the following: resource sharing, concurrency, scalability, transparency, openness or

fault-tolerance [8]. A message is a collection of data objects that can be managed by a

process and delivered to the destination. Usually, the communication between processes

is governed by rules that should be followed to ensure the success of the communication.

These rules are called communication protocols.

1.1.2 Software Verification

As software systems are being widely involved in everyday life, the need for reliable sys-

tems is critical and the failure is unacceptable. The process for checking if a software

system meets its specification is called software verification. Many techniques can be used

to verify the correctness of a software system. Simulation, testing, deductive verification

and model checking are among these techniques. While simulation is a technique in which

experiments are conducted on an abstraction or model of the system, testing, on the other

hand, is a technique in which experiments are conducted on the actual system before the

6 Chapter 1 Introduction

deployment. Verifying the correctness of a system using simulation or testing requires

checking all of its possible inputs and states which is time-consuming and impractical in

most cases. Moreover, even a heavily tested system can have errors that hardly appear and

are impossible to replicate. When an error is detected, it is often difficult to spot since, in

most cases, the sequence of events leading to this error cannot be reconstructed.

Deductive verification involves using axioms and proof rules to verify the correctness of a

system. This method, which can be used for infinite and finite state systems, is not fully

automatic and needs to be done by experts in logical reasoning since a lot of user interaction

and guidance for the theorem proving tool is required. Moreover, using this technique is a

time-consuming process which may last from days to months to prove a single protocol or

circuit. Consequently, the use of this method is limited to highly sensitive systems such as

security protocols.

The most widely used verification technique is Model checking [6] which is an automated

method in which the system to be verified is modeled as a finite state machine and the

specifications to be proven are written as temporal logic properties.

1.1 Background 7

1.1.3 Model Checking

Given a finite-state model of a system and a logical property, model checkers check whether

this property holds for that model or not by exploring all the possible executions paths of

the state machine and checking if the property being tested holds. In case the property fails,

a counterexample is generated in the form of a sequence of states.

The logical properties of a system can be classified into two major categories, safety and

liveness properties. The safety property specifies what should not ever happen or what

should always happen. In model checking, a counterexample of safety property is a list

of states where the last state contradicts the property. Conversely, the liveness property

specifies what should eventually happen. A counterexample is a loop that does not contain

a state with a specified property [6].

One restriction of using model checking is the number of states in the system to be verified.

Since the model checker uses an exhaustive search of the state space of the system and the

number of states can grow exponentially with respect to the number of values, the state

space of a system can be very large, or even infinite. Thus it is impossible to explore the

entire state space with the limited resources of time and memory. This problem is called

"state explosion problem".

8 Chapter 1 Introduction

In many cases, model checker tools are able to find errors that cannot be found by simula-

tion. This is due to two major reasons; first, model checkers examine all possible executions

of the system while simulators examine a relatively small part of these executions. Second,

writing the temporal properties in formal language can help the designer in clarifying am-

biguities in the system’s specifications.

To use model checker, the behavior of the target system should be presented by some

formal structure. Usually, the behavior of the system is represented by a Kripke Structure

proposed in [9]. Kripke structure is a graph such that its nodes are the states of the system

and its edges are the state transitions. Formally, a Kripke structure M is a 4-tuple M=(S,

I, R, L) where S is a finite set of states, I ⊆ S is a set of the initial states, R ⊆ S× S is a

transition relation where ∀s ∈ S,∃s′ ∈ S such that (s,s′) ∈ R and L : S→ 2AP is a labeling

function that maps each node to a set of properties that hold in the corresponding state

where AP is a set of atomic propositions, i.e., boolean expressions over variables, constants

or predicate symbols. A path in the structure M from a state s is an infinite sequence of

states π = s0s1s2... such that s0 = s and R(si,si+1) holds for all i≥ 0.

As an example, Figure 1.1 gives the pseudo code of two processes competing at some

shared resource. Only one process at a time can use this resource. This problem is known as

mutual exclusion [10]. Each process has a program counter where 1 represents the critical

section. Any process can access the shared resource only if this process is in its critical

1.1 Background 9

section. For this system, there are four states S = 00, 01, 10, 11. Let us assume that the

starting state is where both processes are in position 0, i.e., I = 00. The transitions between

states are specified by two rules, the next state will be the initial state unless the current

state is already the initial state and the initial state can transit to either state 01 or 10. Thus

R=(00,01), (00,10),(10,00),(01,00),(11,00). Figure 1.2 gives a graphical representation of

the Kripke structure of this system. The sequence 00,01,00,10,00,01,...is an initialized path

such that each process takes its turn to enter its critical section and use the shared resource.

This system satisfies the property of safety since at most one process can be in its critical

section at a time and nothing bad will happen.

process A

A.pc =0
forever

wait for B.pc =0
A.pc =1 access shared resource

end forever
end process

process B

B.pc =0
forever

wait for A.pc =0
B.pc =1 access shared resource

end forever
end process

Figure 1.1 Model Checking Example

The properties of a system should be formulated as temporal logic expressions. Linear

Temporal Logic (LTL) is a specification language that is used for describing sequences of

transitions between states in a system. LTL is an extension of classical logic which inherits

Boolean variables and Boolean operators (negation ∼, conjunction ∧, disjunction ∨ and

implication →) from propositional logic. In addition, LTL has the following temporal

10 Chapter 1 Introduction

11

01 00 10

Figure 1.2 A Kripke structure for two processes that preserve mutual exclusion
[10]

operators: X for next time, F for eventually or in future, G for globally and U for until.

These operators describe properties of a path through a structure. The formula Xp requires

that the property p holds in the next state of the path. Figure 1.3(a) and 1.3(b) show a path

for which Xp does and does not hold respectively. In both cases each state is labeled with

the properties that hold in it. The formula Fp holds along a path if p holds at some state

on the path. Fp holds in both paths in Figure 1.3 since, in both cases, the first state already

holds p. The formula Gp holds along a path if p holds in all the states of the path. Clearly,

the path in Figure 1.3(a) satisfies Gp while the path in Figure 1.3(b) does not, since p does

not hold in the second state. The formula pUg holds if there is a state on the path where q

holds and, at every preceding state on the path, p holds. Figure 1.4(a) and (b) show a path

in which pUg does and does not hold respectively.

fjdsjk

1.1 Background 11

p p p
...

p p
...

(a) (b)

a

Figure 1.3 Next Operator

p p q
...

p q
...

(a) (b)

a

Figure 1.4 Until Operator

Going back to the example in Figure 1.1, the global operator G can be specified as G ∼

(c1,c2) , where ci labels the states where process i is in its critical section. Literally, this

can be translated to English as follows: it is not possible for both c1 and c2 to be true at

the same state. For the same example, the property which says that the first process will

eventually reach its critical section can be formalized using the eventually operator as F.

This property does not hold since the system may loop between the initial state 00 and the

state 10 and never reach 01.

A Kripke structure M satisfies a temporal formula f, if and only if all the initialized paths

of the structure satisfy the formula. Formally, M |= f , iff π |= d for all the initialized paths

π of M. The relation |= is defined recursively as follows:

π |= p i f f π ∈ L(π(0))

12 Chapter 1 Introduction

π |= X f i f f π1 |= f

π |= G f i f f πi |= f f or all i≥ 0

π |= F f i f f πi |= f f or some i≥ 0

π |= f Uq i f f πi |= q f or some i≥ 0 and πi |= f f or all 0≤ j ≤ i

Using model checkers in verifying software systems can catch a range of logical and func-

tional design errors, especially errors related to concurrency and multi-threading issues

such as:

• Deadlock and starvation

• Race conditions

• Locking and priority problems

• Resource allocation errors

• Violation of system bounds (memory, stack ..)

• Redundancy

In order to use model checker on the verification process, two things are required from the

user. The first is to learn how to build logic models i.e., how to extract a model from the

1.2 Motivations and Contributions 13

software code to verify. The second is to learn how to use abstraction to solve the problem

of space explosion. The third is to learn how to formalize requirements in LTL. Examples

of available model checkers are Blast [11] Chess [12] and SPIN [13].

1.2 Motivations and Contributions

This research was motivated by the fact that a gap exists between model checking environ-

ments and conventional integrated development environments (IDEs). This gap prevents a

simultaneous, efficient and effective benefit from both of these environments in the soft-

ware development process. Figure 1.5 shows a schematic representation of this gap. On

one hand, model checking is an efficient technique to ensure the correctness of a system

before deployment. Using model checking requires building a model of the system in some

formal language accepted by the MC in addition to writing the requirement specifications as

temporal logic formulas. Building a model and writing temporal properties require knowl-

edge in the model checker specification language and a strong mathematical background.

These are obstacles for the majority of developers which in turn prevent model checking

techniques from being widely used in the software development process. On the other

hand, IDEs provide a debugging ability which enables the user to monitor and pause the

execution of a system, set breakpoints and check the values in memory at runtime. Even

though, debuggers are useful in single process applications, the nature of independence,

random interaction and concurrency made the debugging of multi-process applications not

a sufficient practice. Current debuggers are not able to provide a high-level picture of the

14 Chapter 1 Introduction

current state of a multi-process application, visualize the interactions between processes or

link the implementation code to the original design.

white

Figure 1.5 Motivation

In this research, the need for a comprehensive engineering development environment to

help software developers design, verify, implement and debug their systems without the

need to learn all the mathematical details of formal verification was realized. To address

this problem, a multiple phase approach for developing and verifying message passing

systems is proposed. The target system is described using a two-level design approach:

an abstract communication blocks level and a hierarchical state-behavioral specification

level. A procedure to automatically generate formal models in a MC language is proposed.

On the other hand, a new method based on choosing from a predetermined set of patterns

in concurrent communication properties is proposed to facilitate collecting the essential

specifications of the system.

Once the model and the properties of the system are generated, a model checker is used to

1.2 Motivations and Contributions 15

verify the correctness of the proposed system and ensure its compliance with specifications.

In case of any inconsistencies found, the error source will be automatically localized using

an algorithm that was developed for this purpose. A skeleton code of the system that

includes the correct design specifications is generated in a general programming language

i.e. Microsoft C#, Java, etc. Finally, the ability to debug the code using a conventional IDE

while tracing the debugging process back to the original design was established. Figure 1.6

shows a schematic diagram of the proposed framework. A graphical software tool that

supports the proposed framework is developed where SPIN MC is used as a verifier. The

tool was used to develop and verify several case studies. The proposed framework and the

developed software tool can be considered as a key solution for message passing systems

design, verification and debugging. white white white white white white white

The main contributions of this research can be summarized in the following points:

• A comprehensive framework to help software developers design, verify, implement

and debug their systems without the need to learn all the mathematical details of

formal verification.

• A multi-level graphical approach to design state-based message passing systems.

• A Hierarchical Designed-for-Verification extended finite state machine (HDV-EFSM)

to assist in designing complex systems with too many states.

• A set of hierarchical event-based and time-based patterns for concurrent properties

16 Chapter 1 Introduction

Figure 1.6 Framework Architecture

is proposed along with a mapping between these patterns to linear temporal logic

(LTL).

• A tool environment to support the proposed approach where SPIN model checker was

used as a verification engine along with a formal approach for translating the design

system to PROMELA language (the input of SPIN) and to a general programming

language e.g., C# or Java.

• A procedure to integrate an IDE to the developed tool during the debugging mode

and switch between the graphical system design and its code implementation.

1.3 Dissertation Outline 17

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. A related literature review of software

verification, model checking and debugging multi-process applications is given in Chap-

ter 2. Chapter 3 presents in details the proposed approach to the design, verification and

debugging of message passing communication systems. Chapter 4 introduces the software

tool developed based on the proposed approach. The tool was implemented in Microsoft

Visual C# and includes the design, verification, implementation and debug phases. Case

studies will be presented in Chapter 5. Finally, the dissertation conclusions and future work

are discussed in Chapter 6.

Chapter 2

Review of Literature

Different approaches have been proposed in literature to model, verify and debug software

systems. This chapter presents a state-of-the-art survey of these topics.

2.1 Model Checking in Software Verification

Model checking is a technique used to verify the correctness of systems. Different ap-

proaches have been proposed in literature to model check software systems. These ap-

proaches differ mainly in the following three aspects: the system modeling technique, the

formalization of the system properties and the used model checker engine. The following

subsections discuss these classifications.

18

2.1 Model Checking in Software Verification 19

2.1.1 Modeling System Specifications

Using a model checker to verify the correctness of a system requires building a model

of the system in a formal language accepted by the model checker. Different approaches

have been proposed to generate such a model. The following subsections discuss these

approaches.

2.1.1.1 Hand-Written Formal Modeling

This approach requires writing a formal model in the model checker specification language

by hand [14–16]. This approach is error-prone and needs advanced knowledge of the MC

language.

2.1.1.2 Extraction from Code

This approach is based on extracting a verifiable model from the implementation of the

system. This can be done either manually as in [17–20] or automatically as in [21, 22].

The manual extraction is time-consuming and needs advanced knowledge in the modeling

languages. On the other hand, the automatic extraction is a more efficient technique, but

has the problem of ensuring that the extracted abstract model is a correct mapping to the

actual system. Most of these techniques use a level of abstraction based on the properties to

be verified such that a model that captures only the details relevant to that property needs to

be extracted. AX, stands for Automatic eXtractor [22], extracts models from C programs at

an abstraction level defined by the user. Java PathFinder [21], on the other hand, translates

20 Chapter 2 Review of Literature

programs written in Java to models in PROMELA which can be verified using SPIN. Other

examples can be found in [23, 24].

2.1.1.3 High-Level Modeling

This approach uses higher level diagram-based or text-based architecture specifications lan-

guages to describe the system then converts the result to the language of the model checker.

Shi and He [25] use Petri-Net to describe the system behavior. Wright and Garlen [26]

use Communication Sequential Processes (CSP). Even though, these languages are rich

in describing the behavior of a concurrent system, using these languages requires ad-

vanced knowledge in the languages syntax and semantics. CHARMY [27] , Bose [28] and

vUML [29] used standard unified modeling language (UML) class and sequence diagrams

to describe the specifications of a system. Byun [30] presented pattern-based development

methodology to design such systems.

2.1.1.4 Direct Code Model Checking

Other studies proposed model checkers that can work directly with the implementation

code without requiring building a model. CMC [31], for example, is a model checker that

works directly with unmodified C or C++ implementation without requiring any interme-

diate steps. Other tools are SLAM [32], JPF [33] and Verisoft [34].

2.1 Model Checking in Software Verification 21

2.1.2 Systems Properties

To verify the correctness of a system using model checking its properties should be ex-

pressed in temporal languages that are accepted by the MC such as Linear Temporal Lan-

guage (LTL), Computational Tree Logic (CTL), CLT* and mu-calculus. LTL is the most

popular one which is used in CBabel [16], vUML [29] and CHARMY [27]. It is well

known that writing and understanding properties in these languages is not an easy task since

a strong background in these formal languages is required [35]. On the other hand, some

studies exist in literature that proposed visual graphical notations to build these properties.

Ramakrishna et al. [36] used Real-Time Future Interval Logic (RTFIL) diagrams. Damm

and Hare [37] used Live Sequence Chart (LSC). Activity diagram is used by Bose [28].

Smith et al. [38] proposed Timeline Editor which is a visual specification formalism to

place a series of events on a timeline. Figure 2.1 shows a time line for a call waiting

requirements.

2.1.3 Model Checking Tools

Different model checkers are presented in literature and used to model check software

systems. Examples of available model checkers are Blast [11] Chess [12] and SPIN [13]. In

this review SPIN model checkers will be discussed. SPIN [13] is one of the most powerful

model checkers that can be used to verify the correctness of concurrent systems and can

check either hand-built or mechanically generated models. SPIN differs from other model

checkers in offering a number of options to speed up the model checking process and save

22 Chapter 2 Review of Literature

Figure 2.1 Time line for a Call waiting requirements [38]

memory. Moreover, SPIN supports asynchronous modeling which is a main property of

message passing systems. Let L(S) be a set of possible behavior of a system S and L(p) is

a set of the valid or desirable behaviors of the system, model checking tries to prove that

L(S) ⊆ L(p) i.e. everything possible is also valid. On the other hand, SPIN’s verification

engine tries to prove that L(S)∩L(∼ p) = φ . From Figure 2.2, if m is an empty set then

S satisfies p, on the other hand if m is not an empty set then there are one or more counter

examples that shows how S violates p.

S
all possible
executions

∼p
all invalid
executions

m
possible and invalid
executions

Figure 2.2 SPIN MC Principle

2.1 Model Checking in Software Verification 23

Systems to be verified using SPIN are described in PROMELA (Process Meta Language),

which supports the modeling of asynchronous distributed algorithms. Properties to be

verified are expressed as Linear Temporal Logic (LTL) formulas. The major target of

PROMELA is to be a system description language, not an implementation language. This

language focuses in the modeling of process synchronization rather than mathematical

computations and on the description of concurrent software systems rather than hardware

circuits. The syntax of PROMELA is similar to C language but simplified; no pointers, no

real datatypes such as float or real and no functions. No notion of time and clock exist in

PROMELA.

In PROMELA, system components are modeled as processes which communicate via chan-

nels or through shared memory represented as global variables. Given a PROMELA model

as input, SPIN generates a C program which conducts system verification by scanning the

state space using a depth-first search (DFS) algorithm. Two types of properties can be

checked in this stage, first; liveness properties such as non-progress cycles and eventual

reception of messages, second; safety properties such as invalid end states, assertions, un-

specified message receptions and absence of deadlock. Other specific properties can be

checked by writing Linear Temporal Logic (LTL) formulas. SPIN converts an LTL expres-

sion to a never claim which is just another process that is executed in lock-step where a

step from the never claim process executes after each step from the system. When an error

is found, SPIN saves the trace of steps led to the invalid state.

24 Chapter 2 Review of Literature

Figure 2.3 shows an overall architecture of SPIN. The inputs for SPIN are the specification

model written in PROMELA and the properties to be verified written in LTL. SPIN will

generate a verifier in C language called pan.c. This file should be complied and run.

In addition to model checking, SPIN can also operate as a simulator, following one possi-

ble execution path through the system and presenting the resulting execution trace to the

user. All Spin software is written in ANSI standard C, and is portable across all versions of

Unix, Linux, cygwin, Plan9, Inferno, Solaris, Mac, and Windows [13]. SPIN uses differ-

ent approaches to cope with the state-space expulsion problem. These approaches include

state-vector compression, bit-state hashing and partial order reduction.

System Specification
in Promela

Requirments
in LTL

SPIN pan.c

C Compilera.out

Yes No, counter example

Figure 2.3 SPIN Architecture

2.2 Debugging multi process applications 25

2.2 Debugging multi process applications

The problems of testing software were first mentioned few decades ago; since that time

the complexity of software, the available memory and computer speed have been increased

but software is basically still developed and tested in the same way. It is not possible to

predictably produce reliable software.

Testing is a common method to validate software systems. The process starts by unit test

which is the isolation of a single module or process in the system and verify its correctness.

Once this test passed, a system integration test is done with a group of unit tests to build

the whole system step-by-step. For sequential software systems, this method can be used

even it is very time-consuming. In distributed software systems, concurrency problems

may prevent proper execution of the system while making testing a hard task. Concurrency

can cause race conditions, starvation, deadlock or delay problems.

Debugging is a process of discovering any bugs that may reside in a software system to

make it behaves as expected. Debuggers are tools which help the programmer to monitor

the execution of the system, pause it, set some breakpoints and check the values in mem-

ory or even change it at runtime. This technique uses stop-the-world [7] approach which

may be useful for debugging single process applications but not sufficient for distributed

applications. Several methods for helping the developers in debugging distributed software

systems are proposed in literature. The known methods for debugging parallel applica-

26 Chapter 2 Review of Literature

tions can be divided into three main categories [39]: Automated verification of correctness,

Comparative debugging and Interactive debugging.

The first category is based on automated correctness verification where a specific condi-

tions of the system are checked while the application is executing. These conditions may

include the correctness of calls of libraries that control the parallel execution and message

exchange, the correct synchronization of processes and threads when shared data are used,

and so on. This kind of debugging is done fully automated; the user is not involved in

any stage of this process. Types of errors that can be detected using this debugging tech-

nique are: Parallelism specifications, deadlocks, incorrect parameters, incorrect access of

shared data, use of uninitialized variables and other errors. Examples of debuggers of this

type are: Intel Message Checker [40], MPI debugger in the DVM system [41] , HP Visual

Threads [42],and Intel Thread Checker [43].

The second category is called Comparative debuggers where a comparison of several runs

of the same program is conducted by analyzing the traces collected in the course of the

execution. Example of this type of debuggers is DVM system [44].

The third category is called Interactive debuggers where an interaction between the user

and the debugger is allowed in any stage of the execution of the application by setting

break points, step-by-step execution, testing and displaying values of particular variables.

Examples of this type of debuggers are: TotalView [45], TDB [46], P2D2 [47], DDBG [48]

and Allinea DDT [49].

2.2 Debugging multi process applications 27

This review will focus on the third type of debuggers, the Interactive debuggers for dis-

tributed programming. Allinea DDT is fully integrated with Microsoft Visual Studio which

gives full control of parallel and multi-threaded applications as well as MPI applications.

It is able to debug programs written in C, C++, C-Sharp, Python, FORTRAN and all .Net

languages [49]. TotalView is a dynamic source code and memory debugger for C, C++ and

FORTRAN applications written for Linux, UNIX and Mac OSX platforms. It can debug

one or many processes and/or threads with complete control over program execution. To-

talView does not support C-Sharp programs and Windows Operating System [45]. While

both TotalView and DDT debuggers provide the developer with detailed information about

the running processes in the application, no one provides a high-level picture of the current

state of the application execution.

A debugger for flow graph based Dynamic Parallel Scheduled (DPS) parallelization frame-

work is presented in [50]. The flow graph is used to provide both a high level and a detailed

picture of the current state of the application execution. The parallel nature of DPS appli-

cation is presented as an acyclic directed graph that specifies the dependences between

messages and computations, where vertices represent serial computations and edges rep-

resent messages transfers. A later study by the same authors of [50] extends the concept

of debugging DPS applications to debug MPI applications [51]. They designed a debug-

ger that displays a message-passing graph of the execution of an MPI application which

provides a higher level view of its communication patterns. This debugger provides the

following features for the user: hiding/unhiding part of the processes, attaching regular

28 Chapter 2 Review of Literature

debugger to a process, changing the contents of a message at run time, reordering the mes-

sages to check for race conditions, displaying the contents of message queues at any point

and setting conditional breakpoints.

Figure 2.4 describes the system proposed in [51]. The Debugger is a standalone program

which the parallel application should connect before startup. Each application has a hock

with the debugger, which sends and receives from the debugger. The communications

between the debugger and the processes are as follows:

• Each process will notify the debugger upon startup

• For every message a process sends, the process will first notify the debugger by

sending the message contents and then waits for an acknowledgment

• When the debugger acknowledges the process, the process sends the message to the

destination.

• When the process wants to do any operation i.e., processing the message, it will first

notify the debugger and waits for acknowledgment

Microsoft Visual Studio 2008 includes a debugger with multi-threaded debugging support.

It provides a "Threads" window which lists all of the current threads in the system. From

this window the developer can freeze or resume a thread, switch the current active thread,

examine thread state and examine the state of local variables within the thread. This win-

2.2 Debugging multi process applications 29

Figure 2.4 Parallel Debugger Architecture [51]

dow acts as the command center for examining and controlling the different threads in an

application. Visual Studio 2010 supports the debugging of parallel applications by being

able to present the state of the application anytime during the execution in the debugging

mode across the different parallel execution units. It has task and thread windows to show

the status of the processes and/or threads at any points in addition to stack view window

which will show graphically the execution path of individual tasks [52].

HP proposed Causeway [53], a debugger for message-passing distributed systems. Their

approach debugs the system by generating data traces that can be processed offline i.e. post-

mortem debugging. This way of debugging generates large amount of tracing data which

required effective searching techniques to find a bug. In [54] a live distributed debugger

is proposed for debugging stream applications. It allows the user to limit the amount of

30 Chapter 2 Review of Literature

tracing data depending in which part of the system is under investigation. The results are

presented as visual graphical models. These debugging tools generate data traces while the

system is running and help the user displays these data in different formats. These tools do

not provide any help for the developer in reasoning about the cause and the solution of any

residence bug.

Chapter 3

A Framework for Message Passing

Systems Development

Verifying that a software system satisfies its required properties is important. This chapter

presents in details an approach to formally verify and debug message passing communica-

tion systems using model checking.

3.1 Overview

As mentioned before, in order to verify the correctness of a system using model checking,

a model of the system should be built in some language accepted by the model checker

and the specifications to be verified should be given as temporal logic formulas. Building

a model and writing temporal properties require advance knowledge in these languages

31

32 Chapter 3 A Framework for Message Passing Systems Development

and strong mathematical background which are not always available among the majority

of software developers. These obstacles prevent using model checking technique widely in

the software development process [55].

This research aims to facilitate using model checking in software verification by proposing

a multi-phase approach. These phases are: system design phase, properties specification

phase, verification phase, code generation phase and debugging phase. The message pass-

ing system is described using a two-level design approach: abstract communication blocks

level and hierarchical state-behavioral specification level. A procedure to automatically

generate formal models in a model checker language is proposed. A new method based on

choosing from a pre-determined set of patterns in concurrent communication properties is

proposed to facilitate collecting the essential specifications of the system. Once the model

and the properties of the system are generated, a model checker is used to verify the correct-

ness of the proposed system and ensure its compliance with specifications. In case of any

inconsistencies found, the error source will be automatically localized using an algorithm

that was developed for this purpose. A skeleton code of the system that includes the correct

design specifications is generated in a general programming language i.e. Microsoft C#,

Java, etc. Moreover, the ability to debug the code using a conventional IDE while tracing

the debugging process back to the original design was established. Figure 3.1 illustrates

the proposed framework. The following subsections describe these phases in details.

3.2 System Design 33

Figure 3.1 Framework Summary

3.2 System Design

A formalism to model the specifications of a Message Passing System (MPS) structure and

interactions is required. A two-level design approach is proposed where the design of the

system is decomposed into high-level block description and state-behavioral description.

An MPS-Block Diagram was proposed to provide a high-level abstract architecture of the

system in the form of blocks and communication channels between these blocks. In the

state-behavioral description, the internal behavior of the high-level blocks is described us-

ing a modified finite state machine diagram. To easily explain the proposed approach, a

34 Chapter 3 A Framework for Message Passing Systems Development

simple example will be discussed and used as a sample use case through this chapter.

Example: Simple Reliable Transfer Protocol

A simple reliable communication protocol is a basic protocol to transfer data on a lossy

lower layer. Messages are sent from node A to node B such that when B receives a message

from A, it replies with an acknowledgment to ask for the next message, i.e. each message

should be acknowledged before next message can be sent. Here, it was assumed that the

lower layer may loose messages randomly but not corrupt the contents. Each message

from A to B contains a data part and a one-bit sequence number, i.e., a value that is either

0 or 1. Messages from B to A contain an acknowledgment bit (0 or 1). Node A starts by

sending a message with sequence number x, A now will wait to get a response from B. when

B receives the message, it compares the message’s sequence number with the expecting

sequence number (0 for the case of first message). If they are equal, B acknowledges by

sending ACK message to A with x sequence number, accepts the message and complements

the expected sequence number. But if they are different, B sends ACK message to A with x

sequence number. When A gets an ACK from B, two possibilities can happen:

• If the sequence number of the ACK message and the original sent number are equal,

A complements the sequence number and continues sending the next data frame (if

any).

• If the sequence number of the ACK message and the original sent number are not

3.2 System Design 35

equal, A will resend the same message again.

To avoid infinite waiting for an acknowledgment from B, node A starts a timer each time

it sends a message to B such that if this timer expires before an ACK is received, A will

resend the message. Node A will try to send a message frame N times. If all of these trials

fail, A will quit. The following two subsections provide details about the proposed design

phase and how to apply it on this example.

3.2.1 High-Level Block Design

An MPS-Block Diagram was proposed to decompose the large MPS into several subsys-

tems in order to reduce the design complexity. Each subsystem may be treated as a high-

level black box where all the internal details are ignored at this stage and only the interac-

tions between the subsystems are considered. The high-level block description of a system

can contain:

• High-Level Blocks: the architectural building elements of the system

• Communication Channels: the interaction paths between the high-level blocks

• Messages: the type of interactions between any two blocks via a communication

channel

Figure 3.2 shows the modeling of the simple reliable transfer protocol descried above us-

ing the proposed high-level block design. There are four blocks and six communication

36 Chapter 3 A Framework for Message Passing Systems Development

Figure 3.2 High-Level Block Design of a simple reliable transfer protocol

channels. The main blocks needed to model this system are:

1. Upper Block: which generates and consumes the date messages

2. Sender Block: which accepts messages from the Upper block and sends these mes-

sages to the lossy lower layer block

3. Receiver Block: which accepts messages from the lower layer and sends these mes-

sages to the Upper layer block

4. Lower Block: which simulates the lossy communication layer between the sender

and the receiver

3.2 System Design 37

The communication channels and their corresponding messages are:

1. UTOS: this channel connects the upper block to the sender block. The message that

goes through this channel is send(byte d) where d is the data byte to send.

2. STOL: this channel connects the sender block to the lower block. The message that

goes through this channel is send2L(byte d, bit a) where d is the byte to send and a

is the sequence bit.

3. LTOS: this channel connects the lower block to the sender block. The message that

goes through this channel is ack2S(bit b) where b is the acknowledgment bit.

4. LTOR: this channel connects the lower block to the receiver block. The message that

goes through this channel is send2R(byte s, bit a) where s is the received data byte

and a is the received sequence bit.

5. RTOL: this channel connects the receiver block to the lower block. The message that

goes through this channel is ack2L(bit b) where d is the acknowledgment bit.

6. RTOU: this channel connects the receiver block to the upper block. The message that

goes through this channel is receive(byte d) where d is the received byte.

38 Chapter 3 A Framework for Message Passing Systems Development

3.2.2 State-Behavioral Description

Once an abstract general architecture of the system is built as a group of MPS-level blocks

with communications channels between these blocks, the internal behavioral of each block

should be described. This behavioral can be described as a finite state machine (FSM) [56].

Although FSM is useful in systems specification description, this diagram cannot hold local

variables in the state which is necessary in most message passing systems, especially with

increased complexity of such systems. Ellsberger et al. [57] proposed a Communicating

Extended Finite State Machine (CEFSM) which is a finite state machine that is extended

with variables and actions.

In order to make the FSM a suitable presentation of the system behavior in the proposed

framework, a number of parameters should be added to the state machine. In the verifi-

cation process, it is important to determine the end state of a machine since this state is

considered the only valid termination point of all the execution paths otherwise an error

should be reported. To overcome this, an extension to the CEFSM is proposed in this

research to facilitate the verification process. In the modified CEFSM, the end state and

the required assertions were added. The new machine is called Designed for Verification

CEFSM (DV-CEFSM). Follows is the formal definition of the DV-CEFSM:

Definition: An DV-CEFSM is a 7-tuple(S,s0,M, f ,V,send,a) where:

• S is a set of states

3.2 System Design 39

• s0 is the initial state

• send is the end state (to be used in the verification phase)

• M is a set of all input and output messages and their parameters

• V is a set of local variables and their initial values

• f is a state transition relation

• a is a list of assertions, if any (to be used in the verification phase)

Logical and arithmetic operators are used to operate in the local variables and the message

parameters. A new definition of a state transition is given here which includes a number of

added parameters required for verification and debugging purposes. A State Transition f is

defined as follows:

Definition: A State Transition f is an nine-tuple(ss,se, i, p,a,o,d, t,b) where:

• ss is the starting state of the transition

• se is the ending state of the transition

• i is the input message (if any) that will initiate the transition

• p is a condition (if any) than governs the final state of the transition

40 Chapter 3 A Framework for Message Passing Systems Development

• a is a set of actions

• o is a set of output messages

• d is a boolean variable to indicate if the output messages are deterministic or non-

deterministic

• t is a boolean variable to indicate if this operation is atomic or not

• b is a boolean variable to indicate if there is a breakpoint at this transition or not

The system goes from one state to another in response to an incoming message. If a system

is in specific state s ∈ S and receives a message m ∈ M. Depending on the contents of

this message (by testing some conditions if any), the system performs some actions, emits

output messages and then it may move to the next state in the state transition relation f . In

some cases, the destination state of a transition is not only governed by the input message

and its contents but also by the result of some mathematical or logical operations in a local

variable of the state itself or a global variable of the machine. As MPS tends to be more

complex and harder to model as FSM in practice, hierarchical DV-CEFSM is introduced in

Section 3.2.4.

Figure 3.3 gives an example of a DV-CEFSM where S = {s0,s1,s2}, the initial state is s0,

the end state is s2, the set of messages is M = {m0(byte x),m1(byte x,bit a),m2(bit b),m3}

and c is a local variable with initial value of zero.

3.2 System Design 41

S0

S1

S2

m0(x)/c=0,a=0/m1(x,a) m2(b)[a==b]/a=!a/-

m2(b)[a!=b]/-/m1(x,a)m3[c<3]/c=c+1/m1(x,a)

m3[c==3]/-/-

Figure 3.3 DV-CEFSM Example

Based on the above two-level approach to design a MPS, a formal definition of a state based

MPS is given as follows:

Definition:A State-Based Message Passing System (SB-MPS) is a three-tuple (B,Ch,G)

where:

• B is a set of all the high-level blocks in the system and their DV-CEFSM

• Ch is a set of all the communication channels in the system and their messages

• G is a set of global variables of all the blocks in the system and their initial values

The state behavioral diagram of the four blocks of the simple reliable transfer protocol

42 Chapter 3 A Framework for Message Passing Systems Development

discussed above is shown in Figure 3.4.

Figure 3.4 The state behavioral design of the four blocks in the Simple Reliable
Transfer Protocol

3.2.3 Comparing to Petri Nets

Petri-Net, first designed in [58] is a formal representation of parallel and distributed system

with mathematical semantics that is used in formal verification. There are many parallel

computation applications where Petri Net has been successfully used. The basic compo-

nents of a Petri Net model are places, transitions, arcs and tokens. Places and transitions are

basic nodes where an arc may exists only from a place to a transition or from a transition

to a place. A place can contain zero or more tokens that may be moved or "fired" to other

place.

3.2 System Design 43

Colored Petri Net (CPN) [59] is an extended Petri net where a token can hold data of a

given type or color in a place. Formally, a Colored Petri Net model is defined as follows

[59]:

Definition: A Colored Petri Net (CPN) is an eight-tuple (P,T,A,Σ,V,C,G,E) where:

• P is a set of places

• T is a set of transitions where P∩T = φ

• A⊆ P×T ∪T ×P is a set of directed arcs

• Σ is a set of non empty types or color sets

• V is a set of typed variables

• C is a color set function assigning a color set (or a type) to each place.

• G is a guard function assigning a guard to each transition

• E is an arc expression function assigning an arc expression to each arc

Figure 3.5 shows the model of the simple reliable transfer protocol discussed above in Petri

Net. As shown in the figure, it is hard to draw a clear model for such a simple protocol.

Moreover, as the target system becomes larger, the final Petri Net model becomes more

complicated and hard to visualize and understand [60]. On the other hand, the proposed

44 Chapter 3 A Framework for Message Passing Systems Development

modeling approach decomposes the modeling process into two stages (block design and

behavioral design) which makes it relatively easier compared to Petri Net.

Figure 3.5 Simple Reliable Transfer Protocol in Petri Net

3.2.4 Hierarchical Designed-For-Verification CEFSM

In practice, modeling the behavioral of a system as a finite state machine tends to become

harder as the number of states in the FSM increases. This also impedes the reading and un-

derstanding of the result FSM. To model complex systems as FSM, several studies proposed

using hierarchical FSM [61]. In this dissertation, a hierarchical or nested DV-CEFSM is

proposed to facilitate the process of top-down decomposing of complex message passing

systems.

A Hierarchical DV-CEFSM has the following components:

• A set of Simple States S

3.2 System Design 45

• A set of Complex States C

• An initial simple state s0

• An end simple state send

• A set of all input and output messages and their parameters

• A set of local variables and their initial values

• A list of assertions, if any

• A simple state transition relation

• A complex transition relation

A Complex state recursively contains simple states and other complex states in addition to

the following two pseudo states:

• Enter State: This state acts as an entrance to the state diagram of the complex state.

All the incoming transitions to the state diagram should go through this pseudo state.

This state directs an incoming transition into its final destination.

• Exit State: This state acts as an exit gate to the state diagram such that all the outgoing

transition from the complex state should pass through this state.

A simple state si within a complex state Ci can communicate with other outside states only

46 Chapter 3 A Framework for Message Passing Systems Development

through the Enter or Exit states. In other words, there is only one entrance state and one

exit state to the complex state.

A simple transition connects two simple states and a complex transition connects a simple

state to a complex state, a complex state to a complex state or a complex state to a simple

state. A Complex State Transition differs from a simple transition in the definition of the

source and destination of the transition. The source of a complex transition should be

defined as the name of the complex state and the corresponding internal simple state.

An example of a hierarchical DV-CEFSM is shown in Figure 3.6. In this example S0 and S3

are simple states. C1 is a complex state which contains the simple states S1 and S2. t2 and

t4 are simple transitions that connects two simple states. t1 and t5 are complex transitions

such that t1 connects the simple state S0 to the complex state C1 and t5 connects C1 to S3.

The transitions t3 and t6 are pseudo transitions that connects the pseudo states. The source

of the transition t1 is defined as S0 while the destination of t1 is defined as C1 : S1. Note

here that in hierarchical state diagram only one state is active at a time.

In some cases, it may be required to convert a hierarchical state machine to a one without

any complex states. This process is called Flatten Process since it expands any complex

state to a set of simple states. To explain this process, let H is a hierarchical DV-CEFSM

and its corresponding flat DV-CEFSM D. D is generated using the following rules:

• For each simple state in H add a state to D

3.3 Concurrent Property Specifications 47

S0

E
nt

ry E
xit

C1

t1 t5t2

t3t4

S1

S2

S3

t6

Figure 3.6 An Example of Hierarchical CEFSM

• For any complex state in H, recursively add all of its states to D

• For each simple transition in H add a transition in D between the same corresponding

states

• The initial and end states in H are mapped to the initial and end states in D

• For each complex transition in H that connects Ci : S j to Ck : Sl , recursively convert

the complex transition to a regular transition in D that connects the state S j to state

Sl after expending Ci and Ck.

3.3 Concurrent Property Specifications

Once the design of the system is described, the required properties should be specified.

These properties usually expressed in a temporal formal language. Generally, the properties

of a system can be classified either as Liveness properties or Safety Properties [13]. A

48 Chapter 3 A Framework for Message Passing Systems Development

Liveness property indicates that something good should eventually happen while a safety

property indicates that something bad should never happen. In the proposed framework,

a simplified pattern-based approach to construct these properties is used. The following

subsections describe this approach.

3.3.1 Pattern based properties

The pattern approach is based on the similarities noticed in system’s requirements such

that a specification pattern can be defined as a general description of a recurring required

sequence of events in a finite state machine. This method has the advantage of providing a

pre-caned solution for the properties modeling and can effectively and efficiently simplify

the MPS verification process. Patterns in finite state machine property specifications were

first introduced in [62].

In this work, patterns in property specifications are studied and classified based on the type

of the incident that raises the pattern. Patterns in property specifications can be classified

as event-based or time-based patterns. While event-based patterns describe the occurrence

of an event in relation to other events, time-based patterns describe the occurrence of an

event in relation to an absolute of relative time. The following subsections describe these

patterns.

3.3 Concurrent Property Specifications 49

3.3.1.1 Event-Based Patterns

Event-based patterns describe the occurrence of an event in relation to other events. A

previous work by Dwyer et al. [62] to identify the different property specification patterns

was adapted in this research. An extension of these patterns in addition to new patterns was

proposed and identified in this work. Each pattern holds valid for a certain range which

specifies to what extend this pattern should hold. The following ranges where proposed

in [62]: Global (throughout the entire execution path), Before R (up to the occurrence of

another event R), After Q (after an event Q occurred) and Between Q and R (the part of

the execution after the occurrence of Q and before the occurrence of R). Figure 3.7 shows

the event-based ranges. The following subsections list these patterns. In the proposed

framework and its resulted tool support, a mapping between these patterns along with the

different scopes to LTL was also performed.

Global

Before R

After Q

Between Q and R

R R

Q Q

Q R RQ Q Q

Figure 3.7 Event-Based Specification Pattern Ranges [62]

50 Chapter 3 A Framework for Message Passing Systems Development

3.3.1.1.1 Never Pattern

Intent To describe that a given event P should not happen within a specified scope condi-

tion.

LTL Mapping Expressing this pattern as a Linear Temporal Logic is done using the ! (not)

operation. Table 3.1 gives the formulas of this pattern in different scopes.

Example and Known Uses An example of using this pattern is in the well known Mutual

Exclusion algorithm [62]. This algorithm is used to avoid using a common resource (e.g.

critical section, global variable, ...) simultaneously. Let P is the event that two processes

p1 and p2 are in their critical sections, the property can be written in LTL as [](!P).

Table 3.1 Never Pattern LTL Mapping

Scope Condition LTL Expression

Globally [] (!P)

Before R <> R -> (!P U R)

After Q [](Q -> [](!P))

Between Q and R []((Q & !R & <>R) -> (!P U R))

3.3.1.1.2 Invariant Pattern

Intent To describe that a given event P should always happen within a specified scope

condition.

3.3 Concurrent Property Specifications 51

LTL Mapping Table 3.2 gives the formulas of this pattern in different scopes.

Example and Known Uses For the Mutual Exclusion algorithm, let P is the event that

process p1 and p2 are not using a shared resource at the same time, then this property can

be written as []P.

Table 3.2 Invariant Pattern LTL Mapping

Scope Condition LTL Expression

Globally [] (P)

Before R <> R -> (P U R)

After Q [](Q -> [](P))

Between Q and R []((Q & !R & <>R) -> (P U R))

3.3.1.1.3 Existence Pattern

Intent To describe that a given event P should happen at least once within a specified

scope condition.

LTL Mapping Table 3.3 gives the formulas of this pattern in different scopes.

Example and Known Uses An example of the existence pattern can be found in the situa-

tion where a process eventually reaches it is final state and terminates. This can be modeled

as <> P where P is the event that the process is in its end state se.

52 Chapter 3 A Framework for Message Passing Systems Development

Table 3.3 Existence Pattern LTL Mapping

Scope Condition LTL Expression

Globally <>(P)

Before R !R U ((P & !R) | [] !R)

After Q [](!Q) | <>(Q & <>P)

Between Q and R [](Q & !R -> (!R U((P & !R) | [] !R)))

3.3.1.1.4 At-Most-K Existence Pattern

Intent At-Most-K Existence P,K describes that a given event P should happen at most K

times within a specified scope condition.

LTL Mapping Table 3.4 gives the formulas of this pattern in different scopes where k=2.

3.3.1.1.5 Exactly-K Existence Pattern

Intent Exactly-K Existence P,K describes that a given event P should happen exactly K

times within a specified scope condition.

LTL Mapping Table 3.5 shows the LTL formulas for Exactly-K Existence pattern. The

formula for K=N is built recursively from sub formulas. Table 3.6 gives the formulas of

this pattern in different scopes where K=2.

3.3 Concurrent Property Specifications 53

Table 3.4 At-Most-K Existence Pattern LTL Mapping where K=2

Scope Condition LTL Expression

Globally (!P U((P U((!P U((P U ([]!P | []P)) [] !P)) | [] P))) |[] !P)

Before R <>R -> ((!P & !R) U (R | ((P & !R) U (R | ((!P & !R) U (R | ((P & !R)

U (R | (!P U R)))))))))

After Q <>Q -> (!Q U (Q & (!P U((P U((!P U((P U ([]!P | []P)) [] !P)) | [] P)))

|[] !P)))

Between Q and R []((Q & <>R) -> ((!P & !R) U (R | ((P & !R) U (R | ((!P & !R) U (R |

((P & !R) U (R | (!P U R))))))))))

3.3.1.1.6 At-Least-K Existence Pattern

Intent At-Least-K Existence P,K describes that a given event P should happen at least K

times within a specified scope condition.

LTL Mapping Table 3.7 gives the formulas of this pattern in different scopes where k=2.

3.3.1.1.7 Sub-Set Existence Pattern

Intent To describe that a given sub set of n events P1, P2, P3, .., Pn should happen within

a specified scope condition. These events can occur in any order.

LTL Mapping Table 3.8 gives the formulas of this pattern 2 out of 3 events P1,P2, P3

should happen.

54 Chapter 3 A Framework for Message Passing Systems Development

Table 3.5 Recursive Exactly-K Existence Pattern for Global Scope

Function LTL Expression

Exactly_1(P) <>P & [] (P -> X ([]!P))

Exactly_2(P) <>P & (!P U (P & X (Exactly_1(P))))

Exactly_N(P) <>P & (!P U (P & X (Exactly_N-1(P))))

Table 3.6 Exactly-K Existence Pattern LTL Mapping where K=2

Scope Condition LTL Expression

Globally <>P & (!P U (P & X<>P & [] (P -> X ([]!P))))

Before R <>R ->(<>(P&!R) & ((!P &!R) U ((P&!R) & X<>(P&!R) & [] ((P&!R)

-> X ([]!P)))))

After Q <>Q -> (!Q U(Q & (<>P & (!P U (P & X<>P & [] (P -> X ([]!P)))))))

Between Q and R []((Q & <>R) ->(<>(P&!R) & ((!P &!R) U ((P&!R) & X<>(P&!R) &

[] ((P&!R) -> X ([]!P))))))

3.3.1.1.8 Response Pattern

Intent This pattern describes the situation where a given event P should happen after a

given event S within a specified scope condition.

LTL Mapping Table 3.9 gives the formulas of this pattern in different scopes.

3.3 Concurrent Property Specifications 55

Table 3.7 At-Least-K Existence Pattern LTL Mapping

Scope Condition LTL Expression

Globally P U <>P

Before R <>R ->((P& !R) U <>(P & !R))

After Q <>Q -> (!Q U (Q & (P U <> P)))

Between Q and R [](Q->((P& !R) U <>(P & !R)))

Table 3.8 Sub-Set Existence Pattern LTL Mapping

Scope Condition LTL Expression

Globally ((<>P1 & <>P2) | (<>P1 & <>P2) | (<>P2 & <>P3))

Before R <>R -> ((<>P1 & <>P2) | (<>P1 & <>P2) | (<>P2 & <>P3)) U R)

After Q [](Q -> [](<>P1 & <>P2) | (<>P1 & <>P2) | (<>P2 & <>P3)))

Between Q and R []((Q & !R & <>R) -> (((<>P1 & <>P2) | (<>P1 & <>P2) | (<>P2 &

<>P3)) U R))

3.3.1.1.9 Precedence Pattern

Intent This pattern describes the situation where a given event P should happen as a pre-

condition for a second event S to happen within a specified scope.

LTL Mapping Table 3.10 gives the formulas of this pattern in different scopes.

56 Chapter 3 A Framework for Message Passing Systems Development

Table 3.9 Response Pattern LTL Mapping

Scope Condition LTL Expression

Globally [](P -> <>S)

Before R <>R -> (P -> (!R U (S & !R))) U R

After Q [](Q -> [](P -> <>S))

Between Q and R []((Q & !R & <>R) -> (P -> (!R U (S & !R))) U R)

Table 3.10 Precedence Pattern LTL Mapping

Scope Condition LTL Expression

Globally !P U (S | [] !P)

Before R <>R -> (!P U (S | R))

After Q []!Q | <>(Q & (!P U (S | [] !P)))

Between Q and R []((Q & !R & <>R) -> (!P U (S | R)))

3.3.1.1.10 Sequence of Events Pattern

Intent To describe a situation where two or more events (P1, P2, P3 ,.., Pn) should happen

within a scope condition in the same given order. This pattern can be considered as a

general version of the response pattern but with two or more events.

LTL Mapping Table 3.11 gives the formulas of this pattern where n = 3 i.e. events P1,

P2, P2 should occur in sequence.

3.3 Concurrent Property Specifications 57

Table 3.11 Sequence of Events Pattern LTL Mapping

Scope Condition LTL Expression

Globally [](<>P1 & (P1-><>P2) & (P2-><>P3))

Before R <>R ->([](<>(P1 & !R) & (P1-><>(P2& !R)) & (P2-><>(P3 & !R))))

After Q <>Q ->(!Q U (Q & ([](<>P1 & (P1-><>P2) & (P2-><>P3)))))

Between Q and R []((Q & <> R) ->([](<>(P1 & !R) & (P1-><>(P2& !R)) & (P2-><>(P3

& !R)))))

3.3.1.1.11 Set of Events Pattern

Intent To describe that a given set of n events P1, P2, P3, .., Pn should happen within a

specified scope condition. These events can occur in any order.

LTL Mapping Table 3.12 gives the formulas of this pattern where n = 3 i.e. events P1,

P2, P2 should occur.

Table 3.12 Set of Events Pattern LTL Mapping

Scope Condition LTL Expression

Globally (<>P1 & <>P2 & <>P3)

Before R <>R -> ((P1 & P2 & P3) U R)

After Q [](Q -> [](P1 & P2 & P3))

Between Q and R []((Q & !R & <>R) -> ((P1 & P2 & P3) U R))

58 Chapter 3 A Framework for Message Passing Systems Development

3.3.1.2 Timer Specification Patterns

Time is an important factor in describing message passing systems. Usually, these systems

are time dependent in nature where events occur based on time. Taking this into consider-

ation, time-based patterns in MPS were identified in this research. Konard and Cheng [63]

proposed a list of real-time specification patterns that work with ranges in Figure 3.7. An

extension of these patterns in addition to new patterns was proposed and identified in this

work in different ranges. The proposed operation ranges of these patterns depend on either

a relative time u or an absolute time t. Relative time ranges can be described as follows:

Exactly after u time units, anytime after u time units, anytime within u time units and any-

time between the range u1 and u2 time units. Figure 3.8 shows these ranges. On the other

hand, absolute time ranges include: Any future time, anytime no later than t, anytime after

t, exactly at time t and anytime between t1 and t2. Figure 3.9 shows these ranges.. The

identified time-based patterns are listed in the next subsections.

Exactly after u units

Anytime after u units

Within u units

Between u1 and u2

now u

now u

now u

now

u1

u2

Figure 3.8 Relative time Pattern Ranges

3.3 Concurrent Property Specifications 59

Any Future Time

No Later than t

Exactly at time t

now

now t

now t

After time t
now t

Within (t1,t2)

now t1 t2

Figure 3.9 Absolute time Pattern Ranges

3.3.1.2.1 Duration Existence

The intent of this pattern is to describe that an event should happen and continue to be valid

(at least or at most) for a specific period of time units t.

3.3.1.2.2 Cyclic Existence

This pattern describes the situation where an event should happen "every" specific period

of time units t.

3.3.1.2.3 Timed Response

This pattern describes the situation where an event P must be followed by an event Q within

a specified time frame t i.e. Q occurs within t time units after P.

60 Chapter 3 A Framework for Message Passing Systems Development

3.3.1.2.4 Timed Existence

Indicate that an event P exists within a specified period of time. This applies to all the

variations of the Existence Pattern (bounded, subset, etc).

3.3.1.2.5 Response Duration

This pattern describes the situation where an event P must be followed by an event Q and

Q should hold valid for a specific period of t time units .

3.3.1.3 Hierarchical Properties

Systems complexity is increasing from day to day. In order to facilitate modeling more

complex system properties, a hierarchical approach is proposed such that a hierarchical

property is built up from a set of simple properties or propositions using boolean operators

or property patterns. Formally a hierarchical property is built as follows:

Property -> Hierarchical_Expression

Hierarchical_Expression -> (Expression_Join) Expression

Expression_Join -> and | or

Expression -> Atomic_Proposition | Expression_Pattern

Expression_Pattern -> Unary_Pattern | Binary_Pattern | N-ary_Pattern

Unary_Pattern -> Never | Invariant | Existence

Binary_Pattern -> Response | Precedence

3.3 Concurrent Property Specifications 61

N-ary_Pattern -> Sequence of Events | Set of Events | Sub Set of Events

3.3.1.4 Extracted Properties

To facilitate properties generation even more, a procedure to extract properties out of the

design patterns was proposed. In this procedure, LTL expressions will be automatically

extracted from the state machines at either the state level or the transition level. The ex-

tracted properties can be used as atomic expressions in building more advanced properties.

Follows is a description of the proposed procedure at both state and transition levels.

State level: the state level can be divided to initial state and not-initial state levels:

• Initial State: For the initial state s0 in a finite state machine, the following prop-

erties are extracted:

– If s0 has only one outgoing transition, then the input message in_msg of this

transition should be received eventually to initiate the state machine, i.e.

<> (in_msg)

– If s0 has n outgoing transitions (with or without predicates), then one of the

input messages of these transitions should be eventually received. i.e.

<> (
∨n

i=0(in_msg [∧predicate]))

– If s0 has n outgoing transitions (with or without predicates), then always one

62 Chapter 3 A Framework for Message Passing Systems Development

of these transitions should occur. i.e.

�(
∨n

i=0((in_msg [∧predicate])→<> (
∧m

j=0 out_msgi, j))

• Not-Initial State: For any state si other than the initial state, the following prop-

erties are extracted:

– If a state si has one incoming transition and n output transitions, then the

occurrence of the incoming transition should be eventually followed by

one of the outgoing transitions. i.e.

�(incoming_in_msg→ (
∨n

i=0(<> (outgoing_in_msgi [∧outgoing_predicatei]∧

(
∧m

j=0 outgoing_out_msgi, j))))

– If the state has one or more outgoing transitions, then each transition

input message should be followed by its corresponding output. i.e.

�(
∧n

i=0((outgoing_in_msg [∧outgoing_predicate])→

<> (
∧m

j=0 outgoing_out_msgi, j)))

– If the state has one or more incoming and outgoing transitions, then the

input messages of the incoming transitions should imply the firing of any

output messages of the outgoing transitions. i.e.

�(
∨n

i=0(incoming_in_msgi [∧incoming_predi])→

3.3 Concurrent Property Specifications 63

<> (
∨n

i=0(
∧m

j=0(outgoing_out_msgi, j)))

– If the state si has one incoming transition and more than one outgoing

transitions, then the input message of the incoming transition should be

followed by one of the input messages of the outgoing transitions (with

predicate if any).

Transition level: For any transition t in a state machine, the receiving of the input message

in_msg while the predicate is true (if any) should always imply the firing of all the n output

messages out_msgi , i.e. �((in_msg [∧predicate])→<> (
∧n

i=0 out_msgi))

Applying the above rules to the simple reliable transfer protocol discussed in Section 3.2,

the following eleven properties are extracted:

• �((send2R(s,a)∧ [a == e])→ (<> (ack2L(b)∧ receive(s)))), i.e., Always any oc-

currence of send2R(s,a) AND [a==e] implies ack2L(b) AND receive(s).

• �(send2R(s,a)∧[a!= e])→<> ack2L(b), i.e, Always any occurrence of send2R(s,a)

where [a!=e] implies ack2L(b).

• �(send2R(s,a)∧ [a == e])→ (<> (ack2L(b)∧ receive(s))∨ ((send2R(s,a)∧ [a! =

e])→ (<> ack2L(b))))

• �((send2R(s,a)∨send2R(s,a))→ (<> (((send2R(s,a)∧[a== e])∧(!(send2R(s,a)∧

[a! = e])))∨ ((!(send2R(s,a)∧ [a == e]))∧ (send2R(s,a)∧ [a! = e])))))

64 Chapter 3 A Framework for Message Passing Systems Development

• �(send(d)→<> send2L(d,a)), i.e., Always any occurrence of send(d) implies send2L(d,a).

• �(ack2S(b)→<> send(d)), i.e., Always any occurrence of ack2S(b) implies send(d).

• �(send(d)→ (<> (((ack2S(b)∧[a== b])∧(!(ack2S(b)∧[a!= b])))∨((!(ack2S(b)∧

[a == b]))∧ (ack2S(b)∧ [a! = b]))))).

• �(ack2L(b)→<> ack2S(b)), i.e., Always any occurrence of ack2L(b) implies ack2S(b)

• �(send2L(d,a)→<> send2R(s,a)), i.e., Always any occurrence of send2L(d,a) im-

plies send2R(s,a)

• �((ack2L(b)→ (<> ack2S(b)))∨ (send2L(d,a)→<> send2R(s,a)))

• �((ack2L(b)∨send2L(d,a))→ (<> ((ack2L(b)∧(!send2L(d,a)))∨((!ack2L(b))∧

send2L(d,a)))))

3.4 Model Generation and Verification

As stated earlier, in order to use model checking to verify the correctness of a system, a

model of the system should be built in a formal language accepted by the model checker.

As mentioned above, while model checking can be useful in validating systems, it is not

a common practice [55]. Building models is not easy; it can take more time to write the

model than it did to write the system’s code. Furthermore, it is easy to miss errors when

checking the model rather than checking the code itself. To overcome these challenges, an

3.5 Code Generation 65

algorithm was designed to automatically generate a model that accurately represents the

system (design and properties specification) in a language accepted by the model checker.

Model generation processes depends on the used model checker since each model checker

has it is own modeling language. Section 4.3 describes how to build a model in PROMELA

language which is the formal language of SPIN model checker. Once the model is gener-

ated, the properties to be checked should be added to the model. After generating the model

along with the properties, the model is validated using the model checker. The system prop-

erties such as the absence of deadlocks, non- progress cycles and un-executable code are

also checked.

3.5 Code Generation

When the properties of the system are verified, a skeleton code of the design specifications

can be generated in a general programming language. The method described in Section 3.2

to design a system facilitates this process such that each block in the structural design can

be mapped to a unique node process while communication paths are mapped to network

sockets which enable data transfer between nodes. The state machine of each block in the

structural design is converted to the body of the node process. Different approaches are

existing in literature to implement finite state machines. Two of these techniques will be

discussed here.

66 Chapter 3 A Framework for Message Passing Systems Development

Nested Switch-Case: The most common technique is by using nested switch-case. Even

though this approach is easy to write, the complexity of the code increases rapidly as the

size of the state machine increases. The following listing gives the generated code of the

Simple Reliable Transfer Protocol discussed in Section 3.2.

Listing 3.1 Nested-Switch Case

public class Sender {

enum State {wait_data, wait_ack, finished };

enum Event {put,data_req,ack_ind};

private State s;

public Sender () { s = wait_data;}

public boolean connect (...) {...}

public void accept() {...}

// define sockets

void Transition (Event e) {

switch (s)

{ case wait_data:

switch (e) {

case put:

// check the predicate

// conduct the actions list

// send any output messages to the

next block

s= wait_ack;

break;}

3.5 Code Generation 67

break;

case wait_ack:

switch (e) {

case ack_ind:

// check the predicate

// conduct the actions list

// send any output messages to the

next block

s=finished;

break;

case timer_expire:

// check the predicate

// conduct the actions list

// send any output messages to the

next block

s=wait_ack;

break; }

break;

case finished:

// any actions required

break;

} } }

68 Chapter 3 A Framework for Message Passing Systems Development

State Design pattern: State design pattern is one of the behavioral patterns discussed

in [64]. This pattern can be used to implement a finite state machine since an object can

change its state based on some events. Figure 3.10 shows the structure of state pattern. Fol-

lows is the State Design Pattern code which is adapted in this tool for the Simple Reliable

Transfer Protocol Sender process.

Figure 3.10 State Design Pattern Structure [64]

Listing 3.2 State Design Pattern generated code

abstract class abstractState {

public virtual void PUT(Sender s, byte d){ }

public virtual void DATAREQ (Sender s, byte d, bool a){ }

public virtual void ACKIND (Sender s,bool b){ }

public void GOTO(Sender s, abstractState des)

{ s.ChangeState(des); }

};

public class WaitData: abstractState {

3.5 Code Generation 69

public override void PUT(Sender s,byte d) {

//start the timer

GOTO(s, new WaitAck()); } }

public class WaitAck: abstractState {

public override void ACKIND(Sender s,bool b){

if (a!=b){

//start the timer

GOTO(s, new WaitAck());}

if (a == b){

a = !a;

// reset the timer

GOTO(s, new WaitData());} }}

public class Finished: abstractState{...}

public class Sender{

abstractState state;

public Sender() { state = new WaitAck(); }

public void PUT(byte d) { state.PUT(this,d); }

public void DATAREQ (byte d, bool a) { state.DATAREQ(this, d, a); }

public void ACKIND(bool b) { state.ACKIND(this, b); }

public void ChangeState(abstractStateSender s) { state = s;}

}

70 Chapter 3 A Framework for Message Passing Systems Development

3.6 Debugging

Debugging is a process of discovering any bugs that may reside in a software system to

make it behaves as expected. Different approaches are used to simplify debugging software

systems which can be based either on a comparison of different executions of the system or

interactions with the user. In Comparative debuggers a comparison of several runs of the

same program is conducted by analyzing the traces collected in the course of the execution.

Interactive debuggers provide an interaction between the user and the debugger in any

stage of the execution of the application by setting break points, step-by-step execution

and displaying values of particular variables. These type of debuggers are not able to

provide a high-level picture of the current state of the multi-process application, visualize

the interactions between processes or link the implementation code to the original design.

In this framework a step forward in debugging multi-process applications is proposed.

Starting from the design phase, a break point can be inserted at any transition in the be-

havioral description of the system. These break points are reflected in the code generation

phase by adding a breakpoint in the corresponding code. During the execution of the code

at the debugging mode, if a process stops at one of the breakpoints, the ability to link this

break point to its corresponding source in the design is provided. This integration of the

state behavioral diagram and the debuggers allow the developer to get a high level picture of

the system while debugging and trace the interactions between the processes. More details

and examples about this will be shown in Chapter 4.

3.7 Summary 71

3.7 Summary

A multi-phase approach for developing, verifying and debugging message passing sys-

tems is described in this chapter. The target system is described using a two-level design

approach: abstract communication blocks level and hierarchical state-behavioral specifi-

cation level. A procedure to automatically generate formal models in a MC language is

proposed. On the other hand, a new method based on choosing from a pre-determined set

of patterns in concurrent communication properties is proposed to facilitate collecting the

essential specifications of the system. Once the model and the properties of the system

are generated, a model checker is used to verify the correctness of the proposed system

and ensure its compliance with specifications. In case of any inconsistencies found, the

error source will be automatically localized using an algorithm that was developed for this

purpose. A skeleton code of the system that includes the correct design specifications is

generated in a general programming language i.e. Microsoft C#, Java, etc., moreover, the

ability to debug the code using a conventional IDE while tracing the debugging process

back to the original design was established.

In order to use the proposed approach to design and verify a system, the communication be-

tween the components of the system, i.e. processes or threads, should only be done through

passing messages not through shared memory. Moreover, the behavior of the system com-

ponents should be described as a finite state machine.

Chapter 4

MPS Verification and Debugging Tool

This chapter introduces a software tool developed to support the proposed framework. The

tool was implemented in Microsoft Visual C# and includes the design, verification, imple-

mentation and debugging phases. A Java version is also under development. The proposed

framework is general such that any model checker can be applied as a verification engine.

In the developed tool, the model checker of choice is SPIN [13]. Figure 4.1 shows a

schematic representation that summarizes the structure of the proposed tool.

The ideal tool for verifying multi-process systems should be easy to use such that it does

not require previous knowledge of mathematical details of formal verification and model

checking but on the other hand it should be powerful and flexible in finding undesired

properties of the system. The tool parts are described in the following sections.

72

4.1 Model Designer 73

Figure 4.1 Proposed tool

4.1 Model Designer

The tool has a main window which allows the user to start building the high-level block

and state-behavioral design of the system. Figure 4.2 shows the window to edit the high-

level block model. The diagram shows the structural design of the simple reliable transfer

protocol described before. To the top, the tools to add blocks and communication channels

between these blocks are given. To the right, a display of the systems properties that will

be added later is shown (Section 4.2)

Each block should have a unique name and can be connected to one or more blocks via

communication channels. Each channel should have a name and a list of messages with

74 Chapter 4 MPS Verification and Debugging Tool

Figure 4.2 High-Level Block diagram of the simple reliable transfer protocol

parameters that this channel can pass. These massages can be added using the form in

Figure 4.3.

Each block has a state behavioral model which can be displayed by a double click on the

block shape. Figure 4.4 shows the behavioral model of block Sender. To the top, the

tools to add states and state transitions are placed. In some cases, local variables should

be added to the state diagram to complete the required functionality. For example, in the

simple Reliable Transfer Protocol, a counter is added to the sender state diagram to keep

track of the number of the conducted trials for sending a data bucket. Figure 4.5 shows the

form used to add a local variable.

4.1 Model Designer 75

Figure 4.3 Channel Editing Form

Each state should have a unique name and can have one or more state transitions. Each

transition can have input event, predicate, list of actions and list of output events. Figure 4.6

shows the form used to update a state transition.

End state: while designing the state-behavior of the system, the user should specify the

control state that can be accepted as a valid termination point. In the verification phase, if

the system terminates at a state that is not labeled as an end state, an error will be reported.

76 Chapter 4 MPS Verification and Debugging Tool

Figure 4.4 State-Behavioral diagram for Sender Block

4.2 Property Editor

Another part of the tool is the Property Editor which allows the user to edit the specifica-

tion properties of the system. As stated earlier, the temporal logic used by SPIN is Linear

Temporal Logic(LTL). Writing correct LTL expressions is not an easy task [35, 65]. Two

modes in writing user defined properties are introduced in this tool: Not-Expert mode and

Expert mode. In the not-Expert mode the hierarchical pattern-based technique discussed

in Chapter 3 is used to help in writing the LTL properties. Figurer 4.7 shows the form to

write an LTL using patterns. The user can choose the required pattern and scope form a

drop-down list. For each chosen pattern and scope, an LTL formula will be displayed to

4.2 Property Editor 77

Figure 4.5 Form to add local variables

the user in addition to the required atomic proposition that should be filled. These atomic

propositions can be chosen from other drop-down lists of all the basic events in the behav-

ioral models and automatic extracted properties as in Section 3.3.1.4. Based on the built

property, the tool will give help in the meaning of the selected property.

The hierarchical property is built up from a set of simple properties, a boolean operator

and a specification pattern. These hierarchical properties can be built using the form in

Figure 4.8.

The Expert mode allows the user to write the property in LTL from scratch. This requires

a background in temporal logic. A syntax check is conducted in the final formula to report

78 Chapter 4 MPS Verification and Debugging Tool

Figure 4.6 State transition editing form

any invalid token or any error in parsing the formula.

4.3 Model Generation

Once the design of the system and its properties are determined, the tool will generate a

PROMELA model that will be given to SPIN for verification. Using the method described

in chapter 3 to design a message passing system, PROMELA code can be generated auto-

matically from the design since the semantics of the modeling approach are closely related

to the semantics of PROMELA language. Each high-level block is translated to a process

in PROMELA such that the process describes the behavior of the block. The mapping

from the block and state-behavioral design of the system to PROMELA is done using the

following rules:

• High-Level Block Design

4.3 Model Generation 79

Figure 4.7 Property Using Patterns Form

– Block→ PROMELA Process

– Block Communication Path→ PROMELA Channel

– Message→ constant in PROMELA

• State-Behavioral Design

– Block DV-CEFSM→ PROMELA Process Body

– State→ Label

– Message Exchange→ PROMELA send(?) and receive(!)

80 Chapter 4 MPS Verification and Debugging Tool

Figure 4.8 Form to build the property hierarchically

– State Transition→ goto statement

– Predicate→ statement guard

– Message Parameters→ process local variables

4.3.1 Translation Steps

The formal approach of translating the design of the system to PROMELA made it pos-

sible to implement a module to generate PROMELA code automatically. Let S is the

presentation of the target system and PModel is the PROMELA model of the generation,

the following are the steps to generate PModel from S:

4.3 Model Generation 81

Step 1: If any block of the system has a hierarchical CEFSM, use the method described in

Section 3.2.4 to flatten the machine.

Step 2: Globally, define a symbolic name for each message in all the communication

channels at the system S using the mtype keyword. For example, the following statement

declare symbolic names for the messages msg1(), mg2(...), mg3(...)

mtype={msg1,msg2,msg3}

Step 3: For each communication channel in S, define a PROMELA channel that can store

messages of type mtype and the communication channel messages parameters type. For

example, if there is a channel chan1 between Block1 and Block2 that can pass the messages

{msg1(byte d), msg2 (bit a)}, this channel will be defined as

chan chan1 = [0] of {mtype, byte, bit}

Step 4: For each block B in the System S, add the process proctype active B() {...} to the

PModel, where B is the name of the block. For example, let the S contains the blocks

Block1, Block2, Block3, then the PModel should contain the following statements:

proctype active Block1() {...}

proctype active Block2() {...}

proctype active Block3() {...}

82 Chapter 4 MPS Verification and Debugging Tool

In PROMELA, the keyword active is used to indicate that a process is required to run

immediately once the PROMELA program starts.

Step 5: For each process p, define the parameters of the corresponding block. These

parameters include the arguments of the incoming and outgoing messages of the block and

any local variables added by the user during the design phase.

Step 6: For each state in the block state machine, write the name of the state as a label in

PModel. In PROMELA the syntax of the label is Label_Name:. The end prefix should be

added to the beginning of the initial and end states labels.

Step 7: For each state in the block state machine, group the outgoing transitions of this

state based on the incoming message in each transition as follows:

• One outgoing transition without predicate : in this case write the following

channelName?incoming_message ->

assertions // if any

list of actions // if any

list of outgoing messages with their corresponding channels i.e.

channelName!outcoming_message // if any

In Promela, the symbol "?" means receive a message through a specific channel while

the symbol "!" means send a message through a specific channel. If this operation is

atomic ,i.e. t=true, the atomic {..} keyword is added around the transition code.

4.3 Model Generation 83

• More than one outgoing transitions: if a state has more than one outgoing transi-

tions, group these transitions based on the incoming message. The corresponding

PROMELA code is:

if

:: group1

:: group2

...

fi;

Here groupi presents the outgoing transitions with the same incoming message and

different predicates, the following is the code of groupi where the symbol :: is used

to indicate the nondeterminacy of events :

channelName?incoming_message ->

if

:: predicate1

assertions // if any

list of actions // if any

list of outgoing messages with their corresponding

channels i.e. channelName!outcoming_message // if any

:: predicate2

assertions // if any

list of actions // if any

84 Chapter 4 MPS Verification and Debugging Tool

list of outgoing messages with their corresponding

channels i.e. channelName!outcoming_message // if any

...

fi;

4.3.2 Timers in PROMELA

Timer is an important component in modeling most of Message Passing systems. In MPS,

a message may be received later than expected or not received at all. A timer is defined

as a component that is assigned a specific value such that the timer will generate a special

expiration signal when that value exceeded [57]. There are two operations related to the

timer,set(v) and reset(). While, the set(v) assigns the value v to the timer and starts the timer,

the reset() operation stops the timer. Timer is used in the example of the simple reliable

transfer protocol that was discussed in Section 3.2. In that example, to avoid infinite waiting

for an acknowledgment ACK from the receiver B, the sender A starts a timer each time it

sends a message d to B such that if this timer expires before an ACK is received, A will

resend the message. Node A will try to send a message frame N times.

Timer should be translated to PROMELA in order to use SPIN in the verification pro-

cess. PROMELA language does not support timers and timers operations directly [13].

PROMELA has a "timeout" statement which is used to test for a deadlock in the system

and has no relations to timer expiration. An abstraction of a timer is proposed in [66] where

a timer is modeled as a boolean variable. In that abstraction, setting the timer is conducted

4.3 Model Generation 85

by assigning true value to the variable, while resetting the timer is conducted by assigning

its value to false. The generation of the expiration signal is abstracted by testing the value

of the timer. Having a true value at the time of testing means that the timer was set before

and it is expired at this moment. The following PROMELA code shows the modeling of a

timer T:

bool T = false; /*Declare the timer*/

T = true; /* see the timer to value v i.e. set(v)*/

T = false; /*reset the timer i.e. reset()*/

(T == true) /*test timer expiration*/

The above example can be modeled in PROMELA as follows, assuming that A and B are

connected through channel ch:

/*the Sender A*/

bool T = false;

ch!d;

T = true;

if

:: ch?ack;

T = false;

:: (T == true) ->

code to handle the timer expiration

86 Chapter 4 MPS Verification and Debugging Tool

fi;

/* the receiver B */

ch?data;

if

:: ch!ack;

:: skip;

fi;

In the developed tool, dealing with timers as discussed above is hidden from the user.

Figure 4.9 shows the form that is used to add timers to the design.

Figure 4.9 Form to add timers

4.3 Model Generation 87

4.3.3 LTL Properties in PROMELA

In order to verify the properties of the system using SPIN, these properties should be ex-

pressed in LTL as described in Section 2.1.3. These LTL expressions should be converted

to a never claim in PROMELA which is just another process that is executed in lock-step

where a step from the never claim process executes after each step from the system. For

example, going back to the Simple Reliable Transfer protocol described in Section 3.2, let

P is the property that the sender block eventually received the message send form the up-

per block and this message should be followed by sending the message send2L to the lower

block. This property can be expressed in LTL as (<> p∧ [](p→<> q)) where q is the

event that send is received and q is the event that send2L is sent. The corresponding never

claim for this property is generated using SPIN with the -f option for the negation of the

property. Follows is an example of a never process code:

never { /* !(<>p && [](p-><>q)) */

T0_init:

if

:: (! ((p))) -> goto accept_S2

:: (! ((q)) && (p)) -> goto accept_S8

:: (1) -> goto T0_S5

fi;

accept_S2:

88 Chapter 4 MPS Verification and Debugging Tool

if

:: (! ((p))) -> goto accept_S2

fi;

accept_S8:

if

:: (! ((q))) -> goto accept_S8

fi;

T0_S5:

if

:: (! ((q)) && (p)) -> goto accept_S8

:: (1) -> goto T0_S5

fi;

}

In PROMELA model, in order to define p and q in the above example, remote reference

labels [13] are introduced where a label is added right after the occurrence of the corre-

sponding event and the reachability of this label is checked. For example, for the above

property P in the Simple Reliable Transfer protocol, two labels are added to PROMELA

code in the Sender process. The first label label_1 is added right after the statement of

receiving the send message through the UTOS channel while the second label label_2 is

added after sending the message send2L through the STOL channel. The following code

shows these labels:

4.3 Model Generation 89

if

:: UTOS?send(d) ->

label_1: /* added label for verification */

/* do some operations */

STOL!send2L(d,a);

label_2: /* added label for verification */

goto wait;

fi;

The following statements are adding to the beginning of the PROMELA code to define p

and q where Sender is the name of the sender process.

define p Sender@label_1

define q Sender@label_2

In the developed tool, the above process of generating the never claim, adding the veri-

fication labels and adding the parameters definitions are done automatically without any

interaction from the user. Once the user chooses a property to verify, the LTL expression

is converted to never claim and added to the PROMELA model along with the required

definitions.

90 Chapter 4 MPS Verification and Debugging Tool

4.3.4 Correctness of the PROMELA Model Generation

To justify the correctness of the translation steps discussed in Section 4.3.1 to generate a

PROMELA model from the design of a system, the completeness of the translation and the

consistency between the two models are discussed in this section.

4.3.4.1 Completeness

The translation process from the description of a system to a PROMELA model is com-

plete if there is a corresponding mapping for all the elements in the design to PROMELA

language.

Lemma 1. Let S = (B, Ch, G) is the description of the target system, and PModel is the

translated PROMELA mode where B is a set of all the high-level blocks in the system S, Ch

is a set of all the communication channels in the system and their messages and G is a set

of global variables of all the blocks in the system and their initial values. The translation is

complete if the elements B, Ch, G are correctly mapped to PROMELA.

Proof. Steps (2-4) in Section 4.3.1 cover all the elements in S, i.e., ∀ ch ∈Ch a channel is

created in step 3 using chan keyword, ∀ b ∈ B a process proctype b() is created in Step 4

and for each message in S a symbolic name is globally defined using the mtype keyword in

Step 2.

Lemma 2. Given a block b in S and its corresponding process proctype b() in PModel, the

4.3 Model Generation 91

translation of b is complete if all the elements of the DV-CEFSM of b are properly mapped

to PROMELA in PModel.

Proof. The DV-CEFSM of a block b is defined as (S,s0,M, f ,V,send,a). Steps (5-7) in

Section 4.3.1 cover all the elements in DV-CEFSM. In Step 5, the parameters M of the

DV-CEFSM are added to PModel. In Step 6, each state name is converted to a label in

PModel in addition to the end prefix added to the beginning of the initial state s0. In Step

7, the parameters {ss,se, i, p,a,o,d, t,b} of each outgoing transition of a state are mapped

to PROMELA such that an incoming message i is translated to receive (!), a predicate p is

translated to a statement guard and outgoing messages o are translated to send (?). If this

operation is atomic ,i.e. t=true, the atomic {..} keyword is added around the transition code.

Lemma 3. Let S is the description of the target system and PModel is the translated

PROMELA model. The translation is complete if ∀ b ∈ B, there exists a process proctype

b() {...} in PModel such that, b() covers the syntactic and static semantics of b.

Proof. From Lemma 2, the translation rules can be applied to all the blocks in S. Therefor,

PModel is a complete translation of S.

4.3.4.2 Consistency

The description of a system S is consistence with its corresponding PROMELA model

PModel if every execution path in S has a corresponding path in PModel.

92 Chapter 4 MPS Verification and Debugging Tool

Lemma 4. Given a System S and a Promela model PModel, the two models are consistence

if the initial behavior of both models are the same.

Proof. For each block b in S, the only initial executable instruction in the corresponding

PModel process is one of the following: (i) if the initial state of the block has no incoming

input message then the sending of the output message is executable, (ii) if the initial state

of the black has an incoming input message then the block has to waits for receiving of this

message.

4.4 Verification

Once the user is done building the system and its required properties, SPIN can be used

to model check the system. Assuming that SPIN is already installed in the machine, the

user should generate PROMELA code using a button in the top bar and specify the path

to save the created file. Verifying the model can be done using a "verify" button which

will run SPIN model checker on the created PROMELA file. To run SPIN as a verifier, the

following three commands should be given to SPIN:

spin -a PROMELA_file_Name

gcc -o pan [Compile-time options] pan.c

pan [Run-time options]

In the developed tool, two types of properties can be verified. The first type is a group of

predefined built-in properties in SPIN such as checking deadlock existence. The second

4.4 Verification 93

type is user defined properties which depend on the application. The next two subsections

explain these types in more details.

4.4.1 User specific LTL Properties

To check a specific user defined property, the user can right click on that property in the

properties panel and choose verify. The result of the verification will be displayed in a mes-

sage box. The compile-time options used with this property are -w -D_POSIX_SOURCE

-DMEMLIM=1024 -DXUSAFE -DNOFAIR while the run-time options are -v -X -m10000

-w19 -a -n -c1.

4.4.2 Built-in Properties

Following is a list of predefined properties that can be checked using SPIN along with the

compile-time and run-time options required to conduct a specific property:

• Assertion Violation: While design a system the user can specify some assertions to

be checked during the verification phase. If any assertion is violated SPIN reports this

problem. The compile-time options used with this property are -w -D_POSIX_SOURCE

-DMEMLIM=1024 -DSAFETY -DNOCLAIM -DXUSAFE -DNOFAIR while the run-

time options are -v -X -m10000 -w19 -E -n -c1

• Dead lock (invalid end state): If a PROMELA process blocked at a state that its

label does not start with the ’end’ prefix, SPIN reports an invalid end state problem

which leads to a deadlock. The compile-time options used with this property are

94 Chapter 4 MPS Verification and Debugging Tool

-w -D_POSIX_SOURCE -DMEMLIM=1024 -DSAFETY -DNOCLAIM -DXUSAFE

-DNOFAIR while the run-time options are -v -X -m10000 -w19 -A -n -c1.

• Acceptance Cycle: During the verification, is SPIN finds a cycle that infinitely of-

ten visits a state which is labeled as acceptance state, an acceptance cycle prob-

lem will be reported. The compile-time options used with this property are -w -

D_POSIX_SOURCE -DMEMLIM=1024 -DNOCLAIM -DXUSAFE -DNOFAIR while

the run-time options are -v -X -m10000 -w19 -a -n -c1.

• Non-Progress Cycle: During the verification, if SPIN finds a cycle that does not

infinitely often visit a state which is labeled as progress state, an Non-Progress cy-

cle problem will be reported. The compile-time options used with this property

are -w -D_POSIX_SOURCE -DMEMLIM=1024 -DNP -DNOCLAIM -DXUSAFE -

DNOFAIR while the run-time options are -v -X -m10000 -w19 -l -n -c1.

Figure 4.10 shows the form used to choose the required property to check. Using the

developed tool, running SPIN verifier is conducted in the background and does not need

any user interaction. Once the user chooses a property to check, the tool generates the

required commands along with the appropriate parameters and passes these commands to

SPIN. The verification output of SPIN looks like the following:

(Spin Version x.x)

+ Partial Order Reduction

4.4 Verification 95

Figure 4.10 Verification Options

Full statespace search for:

never-claim - (none specified)

assertion violations +

acceptance cycles - (not selected)

invalid endstates +

State-vector x byte, depth reached x, errors: x

x states, stored

x states, matched

x transitions (= stored+matched)

x atomic steps

x memory usage (Mbyte)

96 Chapter 4 MPS Verification and Debugging Tool

This output is parsed and a message box will appear to show the results of verification

which can be one of the following: Syntax Error in the model, Acceptance Cycle, Assertion

Violation, Invalid End State (deadlock), Unknown Verification Error or no errors.

4.5 Error Localization

During the verification process, if the model does not satisfy a specific property then SPIN

creates a trial file that contains a counter example that leads to the problem. In most cases,

this trail file is hard to explore and understand. The following code is a segment of a trail

file generated by SPIN for a dead lock property in the Simple Reliable Transfer Protocol

discussed in Section 3.2.

4: proc 2 (Receiver) SRTP.pml:102 Sent ack2L,0 -> queue 1 (RTOL)

5: proc 3 (Lower) SRTP.pml:122 Recv ack2L,0 <- queue 1 (RTOL)

7: proc 2 (Receiver) SRTP.pml:103 Sent receive,0 -> queue 2 (RTOU)

8: proc 0 (Upper) SRTP.pml:21 Recv receive,0 <- queue 2 (RTOU)

...

Each statement in the above code include process id, process name, the name of the trail file,

the number of the line, the received or sent message name, the parameters of the message

and the channel name.

Different graphical tools have been developed to facilitate the studying of trial files. iSpin

[13] is a tool developed by the creator of SPIN to be used as a graphical interface to SPIN.

4.5 Error Localization 97

iSpin, earlier called xSpin, is written in tcl/tk and convert the trail file to Message Sequence

Chart (MSC) to display messages in the trail scenario. St2msc [67] is similar to iSpin but

with additional functionalities such as merging processes in the MSC to easily understand

the chart.

In this research a step forward was taken to help in interpreting the counter example which

is created by SPIN. A Message Sequence Chart (MSC) is generated with a user interaction

ability that allows the user to choose a message in the MSC to show its contents and to map

this message to the original design diagram. This module is called the error localization

module. The error localization module consists of a parser, user interface and a connector.

The parser reads the trail file and identifies the processes and the messages types. The

user interface graphically draws the message sequence chart and the connector connects

the MSC to the original behavioral design (state machines). Moreover, an animation of

the counter example in the original behavioral design is also implemented. This animation

allows the user to go from one transition to another in the counter example. Figure 4.11

shows the trail MSC generated for a deadlock in the Simple Reliable Transfer Protocol

discussed in Section 3.2.

The figure shows four processes with messages interactions between these processes that

lead to a deadlock. Choosing any one of these messages will display the source, destination,

channel name and the contents of the message. Drawing the MSC can be done either step

by step or at once.

98 Chapter 4 MPS Verification and Debugging Tool

Figure 4.11 The Trail Message Sequence Chart

To help in locating the source of the problem, a further step is conducted by linking the

message sequence chart of the counter example to the original design. Choosing a message

in the MSC allows the user to display the same message in either its source or its destination

state diagram such that the corresponding state transition will be displayed in red color.

Figure 4.12 shows an example where the transition that contains the send(byte d) message

is marked. Moreover, an animation of the counter example can be run in the behavioral

design.

white

4.6 Code Generation 99

Figure 4.12 Linking the MSC to the original design

4.6 Code Generation

In the developed tool, a module to generate C# code for the system design is built. This

module uses the state design pattern discussed in Section 3.5. A single file will be generated

for each block in the system. If a transition in the design has a break point, the correspond-

ing generated code of this transition will be proceeded by the following statement to allow

a break during the execution in the debugging mode.

#if DEBUG
System.Diagnostics.Debugger.Break();

#endif

100 Chapter 4 MPS Verification and Debugging Tool

4.7 Debugging

Conventional IDE debuggers give the developer the ability to monitor the execution of a

software system and set break points at specific points in the code to pause the execution

at these points. These debuggers are useful in debugging single process application but

provide no special help for systems with more than one process. In the developed tool a

further step is taken to help the developer benefit from the proposed verification approach

through the debuggers. Figure 4.13 shows an example of a transition with a break point

such that when a system pauses at the corresponding code of the transition, the code will

be linked to the break point in the diagram. In this way the user can benefit from the

conventional debugger, e.g. Visual studio debugger, in monitoring the values of the local

variables of the process and benefit from the tool in linking the code to the original design

in order to give a high level picture of the system execution.

4.8 Summary

This chapter presented a graphical software tool that supports the proposed approach in

Chapter 3. The tool, which was developed in Microsoft C#, includes the following phases:

system design, description of the properties, model generation, verification, code genera-

tion, error localization and debugging. SPIN model checker used as the verification engine.

4.8 Summary 101

Figure 4.13 Inserting a break point to a state transition in the design

Chapter 5

Case Study

As a case study, the connection establishment phase of the Transmission Control Protocol

(TCP) will be verified using the proposed approach.

5.1 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is the most broadly used transport protocol in the

Internet. It guarantees a reliable data transfer between machines such that data will be de-

livered in order without duplication or loss. TCP was described using message sequence

diagram and finite state machine [68]. Many modifications and improvements have been

conducted in the protocol over years [69–75]. TCP has a connection management pro-

tocol for establishing and terminating the connections along with data transfer protocol

for reliable data transfer. This research will focus on the modeling and verification of the

102

5.1 Transmission Control Protocol (TCP) 103

connection management protocol in order to verify its correctness.

5.1.1 TCP connection management

In TCP, before data can be sent between any two machines, a connection between these

machines needs to be set up by exchanging special messages. TCP connection is full du-

plex i.e. data can flow in both direction concurrently and independently. After finishing

sending data TCP machines close the connection and release resources. The procedures of

establishing and closing the connection are called TCP connection management.

Connection Establishment

Assume a process running in one machine A wants to start a connection with a process

running in another machine B. A’s application process should first inform the A’s TCP that

it wants to start a connection with a process in machine B. The TCP in machine A proceeds

to establish a TCP connection with the TCP in machine B following these steps [76]:

1. A’s TCP sends a special initial TCP segment to B’s TCP. This segment has the SYN

bit of the flag segment header set to 1 and has a random initial sequence number

A_ISN.

2. Assuming B’s TCP receives the segment from A, B allocates the required TCP

buffers and variables to the connection and sends a TCP segment to A which has

the SYN bit set to 1, the acknowledgment field set to A_ISN+1 and a random se-

104 Chapter 5 Case Study

lected initial sequence number for B i.e. B_ISN. This segment is called SYNACK

segment.

3. Upon receiving the SYNACK segment, A also allocates buffers and variables for the

connection and then sends a segment to B that has the SYN bit set to 0, sequence

number equals A_ISN+1 and acknowledgment number equals B_ISN+1.

Once these three steps are conducted, the connection is established between the two ma-

chines and they can send segments containing data to each other. Since three segments are

sent between the two machines to establish the connection, this process is often referred to

as three-way handshaking [76]. Figure 5.1 shows this process. This way of establishing

the connection is called client-server connection, since one machine initiates the connec-

tion(client) and the other responses (server). Figure 5.2 and Figure 5.3 show the state

diagram of TCP Server and Client respectively,

Host A Host B
Time

Send SYN seq=x

Receive SYN + ACK

Send ACK y+1

Receive SYN

Send SYN seq=y, ACK x+1

Receive ACK

In the Network

Figure 5.1 TCP three-way handshaking [76]

5.1 Transmission Control Protocol (TCP) 105

white

PassiveOpen

ACK/-

SYN/SYN+ACK

SYN/SYN+ACK Timeout/SYN+ACK

SYN/SYN+ACK Accepted ACK/-

ESTABLISHED

SYN-RCVD

LISTEN

CLOSED

Figure 5.2 State diagram of TCP Server

ActiveOpen/SYN

Timeout/SYN

Accepted SYN+ACK/ACK

SYN+ACK/SYN

SYN+ACK/ACK
ESTABLISHED

SYN-SENT

CLOSED

Not-Accepted

Duplicate

Not-Duplicate SYN+ACK/SYN

Figure 5.3 State diagram of TCP Client

TCP allows both sides to start a connection simultaneously. In this case each machine sends

a SYN segment to the other side and enters SYN_SENT state. Upon receiving the SYN

message, each machine responds with SYNACK message and goes to SYN_RCVD state.

After receiving SYNACK from the other machine, each side will go to ESTABLISHED

indicating the connection is now set up. Figure 5.4 shows this connection.

During the life of a TCP connection, the TCP protocol running in each machine makes

106 Chapter 5 Case Study

TCP Entity 1 TCP Entity 2

CLOSED CLOSED

SYN-SENT

SYN-RCVD

ESTABLISHED

SYN-SENT

SYN-RCVD

ESTABLISHED

SYN (ISS1)
SYN (ISS2)

SYNACK (ISS2, ISS1+1)

SYNACK (ISS1, ISS2+1)

(active open)
(active open)

Figure 5.4 Simultaneous TCP three-way handshaking [76]

transitions between several TCP states. Figure 5.5 shows the state machine of the TCP.

Please not that this diagram is only a summary of the TCP transitions and is not the total

specification of the TCP [68].

5.1.2 Modeling TCP

In this case study, only the client-server connection approach of the TCP three-way hand-

shaking will be considered. A model of the TCP will be built using the structural and

behavioral design described in Section 3.2.

5.1.2.1 TCP Structural Design

TCP has two peer TCP entities communicating via a lossy channel and interacting with

their application processes. Client and Server structural blocks are required to commu-

nicate with each other. To simulate the lossy channel, a Lower block is required which

receives from Client and sends to Server and vice versa. An Upper block is required to

5.1 Transmission Control Protocol (TCP) 107

appl:passive open

ESTABLISHED

LISTEN

CLOSED

starting point

send: <nothing>

SYN-RCVD SYN-SENT

CLOSE-WAIT

LAST-ACKCLOSINGFIN-WAIT-1

TIME-WAITFIN-WAIT-2

passive open

active open

data transfer state

simultanous close

recv: SYN send: SYN,ACK

recv: RST

appl: send data

send: SYN

recv: SYN

send: SYN, ACK
simultanous open

rec
v: SYN, ACK

recv: FIN
send: ACK

recv: ACK
send: <nothing>

recv: FIN
send: ACK

recv: ACK
send: <nothing>

recv: FIN, ACK

send: ACK

ap
pl: clo

se

sen
d: FIN

active close

appl: close

send: FIN

recv: FIN
send: ACK

appl: close

send: FIN

sen
d: ACK

recv: ACK

send: <nothing>

appl: active open

send: SYN

recv: ACK
send: <nothing>

appl: close

or timeout

timeout

send: RST

Figure 5.5 Finite State Diagram of TCP [76]

generate the user calls to both Client and Server. Figure 5.6 illustrates the system.

Using the tool, each one of these blocks are added to the structural diagram, and channels

between these blocks are added to specify the type of connection messages that can be

sent between any two blocks. For example, in both the channels Upper2Client and Up-

per2Server, the messages that can be sent are: ActiveOpen, PassiveOpen and Close. While

108 Chapter 5 Case Study

User 1

TCP 1

IP Service Provider

User 2

TCP 2

Figure 5.6 Structural Diagram of TCP

in the channels Client2Lower, Server2Lower, Lower2Client and Lower2Server, the mes-

sage TCP (bit SYN, bit ACK, byte seqnum, byte acknum) can be sent. Figure 5.7 shows the

structural diagram built using the tool.

5.1.2.2 TCP Behavioral Design

After the Structural design is done, the behavior of each block was described as DV-CEFSM

(Section 3.2.2). Figure 5.8 shows the state diagram of the Client block of the TCP 3-way

handshaking protocol built using the tool.

5.1.3 PROMELA Model Generation

The PROMELA model of TCP is generated automatically using the tool. The PROMELA

model has four processes (one for each block). The full model code is given in appendix

A.

5.1 Transmission Control Protocol (TCP) 109

Figure 5.7 Building Structural Diagram of TCP

5.1.4 Verification

As SPIN is built in the tool, it can be used to validate the TCP model. TCP has some cor-

rectness requirements that should be checked in the verification process. Each one of these

properties is described below along with its pattern and LTL formalization as discussed in

chapter 3:

1. Deadlock Free: the model should be free of deadlock. This property is verified using

by SPIN by checking that all PROMELA processes terminate at an end state.

2. No unexecutable code

110 Chapter 5 Case Study

Figure 5.8 Behavioral Diagram of TCP Client

3. The Client should eventually receive ActiveOpen request, checking this property is

important since it is required to start the three-way handshaking process. This prop-

erty can be formalized using the global existence pattern (Section 3.3.1.1.3) and the

LTL expression for this is : <>(P) where P represents the reception of message

ActiveOpen.

4. The Server should eventually receive PassiveOpen request. Same as previous prop-

erty, checking this property is important since it is required to start the three-way

handshaking.The LTL expression for this is : <>(P) where P represents the recep-

tion of message PassiveOpen.

5.1 Transmission Control Protocol (TCP) 111

5. The connection should eventually be established. This means that Client and Server

should eventually enter the ESTABLISHED state. The LTL expression for this is

: <>(P∧Q) where P represents Client in ESTABLISHED state and Q represents

Server in the ESTABLISHED state.

The TCP model as built in Section 5.1.2 in free of deadlocks and cycles and all the model

code is executed. Both property 4 and 5 are proven to be true. Property 6 (the establishment

of the connection) is not proven to be true. SPIN generates an error trace which shows that

the SYN message sent from the Client is lost at the lower layer repeatedly without any

progress. One solution to solve this problem is to limit the number of trials of resending

the messages. So, when a message is lost consecutively for more than a specific number ,

the sender gives up and the communication process stops.

Chapter 6

Conclusions and Future Work

This dissertation has addressed the problem of designing, verifying and debugging state

based message passing systems (MPS). It is well recognized that the development of these

types of applications is an error-prone process. The target system is modeled using an

abstract communication blocks and hierarchical Designed for-Verification extended finite

state machine (HDV-EFSM) that was developed in this research. A procedure to auto-

matically generate formal models in a MC language is proposed. To simplify writing the

required properties of the system, a new method based on choosing from a pre-determined

set of patterns in concurrent communication properties is proposed. Once the model and

the properties of the system are generated, a model checker is used to verify the correct-

ness of the proposed system and ensure its compliance with specifications. In case of any

inconsistencies found, the error source will be automatically localized using an algorithm

112

6.1 Summary of Contributions 113

that was developed for this purpose. A skeleton code of the system that includes the correct

design specifications is generated in a general programming language i.e. Microsoft C#,

Java, etc., moreover, the ability to debug the code using a conventional IDE while tracing

the debugging process back to the original design was established. The framework was

applied in the form of a software tool and successfully implemented in several case stud-

ies. The proposed framework and the developed software tool can be considered as a key

solution for message passing systems design and verification. Using this research results,

the techniques and design principles of the proposed framework contribute strongly toward

a better development experience through providing an easy, cost effective, and comprehen-

sive method that filled the existing gap between MC and IDE and will enable efficient and

effective MPS design, verification and debugging than before.

6.1 Summary of Contributions

The main contributions of this research can be summarized in the following:

• A comprehensive framework to help in design, verify, implement and debug message

passing systems.

• A multi-level graphical approach to design state-based message passing systems.

• A Hierarchical Designed-for-Verification extended finite state machine (HDV-EFSM)

to assist in designing complex systems with too many states.

• A set of hierarchical event-based and time-based patterns, identified in this research

114 Chapter 6 Conclusions and Future Work

and gathered from literature, for concurrent properties is proposed along with a map-

ping between these patterns to linear temporal logic (LTL).

• A tool environment to support the proposed approach where SPIN model checker was

used as a verification engine along with a formal approach for translating the design

system to PROMELA language (the input of SPIN) and to a general programming

language e.g., C# or Java.

• A procedure to integrate an IDE to the developed tool during the debugging mode

and switch between the graphical system design and its code implementation.

6.2 Future Work

As the size and complexity of software systems increase, a need for tools to help in design

and verify such systems increases. This research proposed a framework in this direction.

Following are some ideas to extend this work.

• Incorporate other model checkers, such as Blast [11] and Chess [12] to the developed

tool.

• Make any changes in the generated code reflected to the corresponding graphical

design.

• Extend available Development Environments (IDEs), e.g., Visual Studio and Eclipse,

by incorporating the developed tool as add-in.

• Apply the proposed framework to other case studies.

Bibliography

[1] M. Yabandeh, N. Kenzevic, D. Kostic, and V. Kuncak, “Predicting and Preventing In-

consistencies in Deployed Distributed Systems,” In ACM Transactions on Computer

Systems, 28 (2010).

[2] P. Camara, M. Gallardo, P. Merino, and D. Sanan, “Checking the reliability of socket

based communication software,” In International Journal of Software Tools for Tech-

nology Transfer, 11 (2009).

[3] A. Sobeih, M. Viswanatha, D. Marinov, and J. C. Hou, “Finding Bugs in Network

Protocols Using Simulation Code and Protocol-Specific Heuristics,” In Lecture Notes

in computer Science, (2005).

[4] D. Engler and M. Musuvathi, “Static analysis versus Software model checking in

finding bugs,” In Lecture Notes in computer Science, (2004).

[5] W. Zhou, O. Sokolsky, B. Thau, and I. Lee, “DMaC: Distributed Monitoring and

115

116 BIBLIOGRAPHY

Checking,” In Lecture Notes in computer Science, (2009).

[6] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking (MIT Press, Cambridge,

MA, 1999).

[7] “Virtual debugger for stream applications,” .

[8] E. M. Clarke, O. Grumberg, and D. Peled, Distributed network systems: from con-

cepts to implementation (MIT Press, Cambridge, MA, 2004).

[9] K. S., “emantical Analysis of Modal Logic,” Zeitschrift fÃijr Mathe Mtische Logik

und Grundlagen der Mathematik 9, 67–96 (1963).

[10] A. Bier, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded Model Check-

ing,” Advances in Computers 58 (2003).

[11] D. Beyer, T. Henzinger, R. Jhala, and R. Majumdar, “The software model checker

BLAST,” International Journal of Software Tools Technology Transfer (2007).

[12] M. Musuvathi, S. Qadeer, and T. Ball, “CHESS: A Systematic Testing Tool for Con-

current Software,” Microsoft Research Technical Report MSR-TR-2007-149 (2007).

[13] G. J. Holzmann, The SPIN Model Checker: Primer and Reference Manual (Addison-

Wesley, 2004).

[14] M. CALDER and A. MILLER, “Analysing a basic call protocol using promela/xspin,”

BIBLIOGRAPHY 117

In Proceedings of Fourth SPIN Workshop, (Paris, France, 1998).

[15] T. GARCIA-FANJUL and J. CORRALES, “Formal verification and simulation of the

netbill protocol using spin,” In Proceedings of Fourth SPIN Workshop, (Paris, France,

1998).

[16] C. Braga and A. Sztajnberg, “Towards a rewriting semantics for a software architec-

ture description language,” In Electron. Notes Theor. Comput, 95, 148–168 (2003).

[17] C. T., “Modeling and Verification of a Multiprocessor Realtime OS Kernel,” In In

International Conference on Formal Description Techniques, (1994).

[18] D. G. and J. J., “Modeling and verification of the RUBIS Kernel with Spin,” In In

International Spin Workshop, (1995).

[19] P. R., P. D., T. K., and H. G., “Process sleep and wakeup on shared-memory multipro-

cessors,” In EurOpen Conference, (1991).

[20] T. P., T. J., M. J., L. J., C. A., and B. G., “Formal methods: A practical tool for OS

implementors,” In Hot Topics in Operating Systems, (1997).

[21] K. Havelund, “Java PathFinder, "A Translator from Java to Promela",” Theoretical

and Practical Aspects of SPIN Model Checking (1999).

[22] G. J. Holzmann, “Logic Verification of ANSI-C Code with Spin,” SPIN 1885, 131–

118 BIBLIOGRAPHY

147 (2000).

[23] G. J. Holzmann and M. Smith, “Software model checking. Extracting verification

models from source code,” In Proc. PSTV/FORTE99, (Dordrecht, 1999).

[24] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Robby, and H. Zheng, “Bandera:

extracting finite state models from java source code,” In Proceeding of the 22nd In-

ternational Conference on Software Engineering, ACM Press (London, 2000).

[25] T. SHI and X. HE, “A methodology for dependability and performability analysis in

SAM,” In DSN, pp. 679–688 (2003).

[26] R. ALLEN and D. GARLAN, “A formal basis for architectural connection,” ACM

Transactions Software Engineering Methodology 6 (1997).

[27] P. Inverardi, H. Muccini, and P. Pelliccione, “Automated check of architectural models

consistency using spin,” In In: Proceedings of the 16th IEEE International Confer-

ence on Automated Software Engineering, pp. 346–349 (2001).

[28] P. Bose, “Automated translation of uml models of architectures for verification and

simulation using spin,” In In: Proceedings of the 14th IEEE International Conference

on Automated Software Engineering, pp. 102–109 (1999).

[29] J. Lilius and I. Paltor, “vUML: A Tool for Verifying UML Models,” In Proceedings of

the 14th IEEE international conference on Automated software engineering, (1999).

BIBLIOGRAPHY 119

[30] Y. Byun, “A Tool support for Design and Validation of Communication Protocol using

State Transition Diagrams,” In International Conference on information Technology,

(2007).

[31] M. Musuvathi, D. Park, A. Choou, D. Engler, and D. Dill, “CMC: a pragmatic ap-

proach to model checking real code,” In In: Proceedings of the 5th symposium on

Operating systems design and implementation, ACM pp. 75–88 (New York, 2002).

[32] T. Ball, B. Cook, V. Levin, and S. Rajamani, “SLAM and static driver verifier: tech-

nology transfer of formal methods inside microsoft,” In IFM, (Springer, Heidelberg,

2004).

[33] W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking programs,” In Pro-

ceeding of the 15th International Conference on Automated Software Engineering,

pp. 3–12 (2000).

[34] P. Godefroid, “Model checking for programming languages using verisoft,” In Pro-

ceedings of the 24th ACM Symposium on Principles of Programming Languages,

(1997).

[35] G. Holzmann, “The logic of bugs,” In: FSE Foundations of Software Engineering.

(2002).

[36] Y. S. Ramakrishna, P. MelliarSmith, L. E. Moser, L. K. Dillon, and G. Kutty, “Really

120 BIBLIOGRAPHY

visual temporal reasoning,” In in 14th IEEE Real Time Systems Symposium, pp. 262–

273 (1993).

[37] W. Damm and D. Hare, “Lscs: Breathing life into message sequence charts,” In For-

mal Methods in System Design, 19, 45–80 (2001).

[38] M. H. Smith, G. J. mann, and K. Etessami, “Events and constraints: A graphical

editor for capturing logic requirements of programs,” In in Fifth IEEE International

Symposium on Requirements Engineering, (2001).

[39] A. B. Bugerya, “Interactive Debugging of Parallel Programs: Distributed Scheme of

Interacting Components,” Programming and Computer Software 34, 154–159 (2008).

[40] V. Samofalov, V. Kryukov, B. Kuhn, S. Zheltov, A. Konovalov, and J. DeSouza, “Au-

tomated correctness Analysis of MPI Programs with Intel Message Checker,” In Proc.

Int. Conf. ParCo, 33, 901–907 (2005).

[41] V. F. Aleksakhin, K. Efimkin, V. Ilyakov, V. A. Kryukov, M. Kuleshova, and Y. L.

Sazanov, “Tools for Debugging MPI Programs in the DVM System,” In Research

Service on the Internet, Trudy Vserossiiskoi Nauchnoi Konferentsii, pp. 113–115

(Moscow, 2005).

[42] “HP Visual Threads,” http://www1.hp.com/products/software/visualthreads .

[43] “Intel Thread Checker,” http://www.intel.com/cd/software/products/asmo-na/eng/

http://www1.hp.com/products/software/visualthreads
http://www1.hp.com/products/software/visualthreads
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm

BIBLIOGRAPHY 121

threading/286406.htm .

[44] “DVM System,” http://www.keldysh.ru/dvm .

[45] “TotalView,” http://www.etnus.com/TotalView .

[46] M. Kovalenko, “Interactive Debugging of MPI Programs Using the Parallel TDB De-

bugger,” In Research Service on the Internet, Trudy Vserossiiskoi Nauchnoi Konfer-

entsii, pp. 115–119 (Moscow, 2005).

[47] R. Hood, “The p2d2 Project: Building a Portable Distributed Debugger,” In Proc. of

the ACM SIGMETRICS Symposium on Parallel and Distributed Tools, pp. 127–136

(Philadelphia, 1996).

[48] “DDBG,” http://doi.acm.org/10.1145/238020.238058 .

[49] “Allinea DDT,” http://www.allinea.com .

[50] A. Al-Shabibi, S. Gerlach, R. Hersch, and B. Schaeli, “A Debugger for Flow Graph

Based Parallel Applications,” In Proceedings of the ACM International Symposium

on Software Testing and Analysis, (2007).

[51] B. Schaeli, A. Al-Shabibi, and R. Hersch, “Visual Debugging of MPI Applications,”

In 15th European PVM/MPI User Group Meeting (EuroPVM/MPI), (Ireland, 2008).

[52] Microsoft, “Microsoft Visual Studio 2010 Overview,” .

http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.intel.com/cd/software/products/asmo-na/eng/thre ading/286406.htm
http://www.keldysh.ru/dvm
http://www.keldysh.ru/dvm
http://www.etnus.com/TotalView
http://www.etnus.com/TotalView
http://doi.acm.org/10.1145/238020.238058
http://doi.acm.org/10.1145/238020.238058
http://www.allinea.com
http://www.allinea.com

122 BIBLIOGRAPHY

[53] T. Stanley, T. Close, and M. S. Miller, “Causeway: A message-oriented distributed

debugger,” Technical report, HPL-2009-78, HP Laboratories (2009).

[54] W. D. Pauw, M. LeÅčia, B. Gedik, H. Andrade, A. Frenkiel, M. Pfeifer, and D. Sow,

“Visual Debugging for Stream Processing Applications,” Lecture Notes in Computer

Science (2010).

[55] D. Rosenblum, “Formal methods and testing: Why the state-of-the-art is not the state-

of-the-practice,” In ACM SIGSOFT Software Engineering, 21, 7–15 (1996).

[56] D. Lee and M. Yannakakis, “Principles and methods of testing finite state machines-

A survey,” In In Proceedings of the IEEE, pp. 1090–1123 (1996).

[57] J. Ellsberger, D. Hogrefe, and A. Sarma, SDL: Formal Object-Oriented Language for

Communication Systems (Prentice-Hall, New York, 1997).

[58] C. A. Petri, “Kommunikation mit Automaten,” New York: Griffiss Air Force Base,

Technical Report RADC-TR-65–377 1 (1966).

[59] K. Jensen and L. M. Kristensen, Coloured Petri Nets, Modeling and Validation of

Concurrent Systems (Springer Verlag Monograph, 2008).

[60] G. J. Holzmann, Design and Validation of Computer Protocols (Prentice Hall, 1991).

[61] R. Alur and M. Yannakakis, “Model checking of hierarchical state machines,” In Pro-

BIBLIOGRAPHY 123

ceedings of the 6th ACM SIGSOFT international symposium on Foundations of soft-

ware engineering, (1998).

[62] M. Dwyer, G. Avrunin, and J. Corbett, “Property specification patterns for finite-state

verification,” In Proceedings of the Second Workshop on Formal Methods in Software

Practice, pp. 7–15 (1998).

[63] S. Konrad and B.Cheng, “Real-time Specification Patterns,” In Proceeding of the 27th

International Conference of Software Engineering, (2005).

[64] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software (Addison-Wesley, Reading MA, 1995).

[65] M. Dwyer, G. Avrunin, and J. Corbett, “Patterns in property specifications for finite-

state verification,” In Proceedings of the 21st international conference on Software

engineering, (1999).

[66] B. D., D. D., H. L., and S. N., “Model checking SDL with Spin,” In Tools and Algo-

rithms for Construction and Analysis of Systems, (Springer, Germany, 2000).

[67] T. Kovse, B. Vlaovic, A. Vreze, and Z. Brezocnik, “Spin Trail to Message Sequence

Chart Conversion Tool,” In The 10th International Conference on Telecommunica-

tions, (2009).

[68] J. Postel, “Transmission Control Protocol. RFC 793,” IETF (1981).

124 BIBLIOGRAPHY

[69] J. Postel, “Requirements for Internet Host Communication Layers. RFC 1122,” IETF

(1989).

[70] S. Floyd and T. Henderson, “The New Reno Modification to TCP’s Fast Recovery

Algorithm. RFC 2582,” IETF (1999).

[71] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control. Request for Com-

ments 2581,” IETF (1999).

[72] V. Paxson, “Known TCP Implementation Problems. RFC 2525,” IETF (1999).

[73] V. Jacobson and R. Braden, “TCP Extensions for Long-Delay Paths. RFC 1072,”

IETF (1988).

[74] V. Jacobson, R. Braden, and L. Zhang, “TCP Extension for High Speed Paths. RFC

1185,” IETF (1990).

[75] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High Performance.

RFC 1323,” IETF (1992).

[76] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach Featuring the

Internet (Addison-Wesley, 2005).

Appendix A

PROMELA Code

#define BUFSIZE 0

#define TIMER bool

mtype = {ActiveOpen, CloseClient, PassiveOpen, CloseServer, C2LTCP, L2CTCP, S2LTCP, L2STCP};

chan Upper2Client = [BUFSIZE] of {mtype};
chan Upper2Server = [BUFSIZE] of {mtype};
chan Client2Lower = [BUFSIZE] of {mtype, bit, bit, byte, byte};
chan Lower2Client = [BUFSIZE] of {mtype, bit, bit, byte, byte};
chan Server2Lower = [BUFSIZE] of {mtype, bit, bit, byte, byte};
chan Lower2Server = [BUFSIZE] of {mtype, bit, bit, byte, byte};

active proctype Upper ()
{

Start:
end:

if
::Upper2Client!ActiveOpen;
::Upper2Server!PassiveOpen;
::Upper2Client!CloseClient;

125

126 Chapter A PROMELA Code

::Upper2Server!CloseServer;
fi;

label_0:
label_1:

goto Start;

}

active proctype Client ()
{

TIMER T1=0;
byte Client_seqnum=0;
byte Server_seqnum=0;
bit SYN;
bit ACK;
byte seqnum;
byte acknum;

Closed:
end:

Upper2Client?ActiveOpen ->
label_2:

ACK=0;
SYN=1;
seqnum=Client_seqnum;
T1=1;
Client2Lower!C2LTCP(SYN,ACK,seqnum,acknum);

label_3:
goto SYN_SENT;

SYN_SENT:
if
::Upper2Client?CloseClient ->

label_4:
label_5:

goto Closed;

::T1->
label_6:

ACK=0;
SYN=1;
seqnum=Client_seqnum;
T1=0;

127

Client2Lower!C2LTCP(SYN,ACK,seqnum,acknum);
label_7:

goto SYN_SENT;

::Lower2Client?L2CTCP(SYN,ACK,seqnum,acknum) ->
if
:: acknum==Client_seqnum+1 && SYN==1 && ACK==1 ->

label_8:
ACK=1;
SYN=0;
Server_seqnum=seqnum;
Client_seqnum=Client_seqnum+1;
seqnum=Client_seqnum;
acknum=Server_seqnum+1;
Client2Lower!C2LTCP(SYN,ACK,seqnum,acknum);

label_9:
goto endCEstablished;

:: acknum!=Client_seqnum ->
label_10:
label_11:

goto SYN_SENT;

fi;

fi;

endCEstablished:
Lower2Client?L2CTCP(SYN,ACK,seqnum,acknum) ->

if
:: ACK==1 && SYN==1 && acknum==Client_seqnum-1 ->

label_12:
ACK=1;
Server_seqnum=seqnum;
seqnum=Client_seqnum;
acknum=Server_seqnum+1;
Client2Lower!C2LTCP(SYN,ACK,seqnum,acknum);

label_13:
goto endCEstablished;

:: acknum!=Client_seqnum-1 ->
label_14:

SYN=1;

128 Chapter A PROMELA Code

ACK=0;
Client_seqnum = Client_seqnum-1;
acknum=seqnum;
seqnum=Client_seqnum;
Client2Lower!C2LTCP(SYN,ACK,seqnum,acknum);

label_15:
goto SYN_SENT;

fi;

}

active proctype Server ()
{

TIMER T2=0;
byte Client_seqnum=0;
byte Server_seqnum=0;
bit SYN;
bit ACK;
byte seqnum;
byte acknum;

Closed:
end:

Upper2Server?PassiveOpen ->
label_16:
label_17:

goto Listen;

Listen:
Lower2Server?L2STCP(SYN,ACK,seqnum,acknum) ->

if
:: ACK==1 ->

label_18:
label_19:

goto Listen;

:: SYN==1 ->
label_20:

ACK=1;
Client_seqnum=seqnum;
seqnum=Server_seqnum;
acknum=Client_seqnum+1;

129

T2=1;
Server2Lower!S2LTCP(SYN,ACK,seqnum,acknum);

label_21:
goto SYN_RCVD;

fi;

SYN_RCVD:
if
::T2->

label_22:
SYN=1;
ACK=1;
seqnum=Server_seqnum;
acknum=Client_seqnum+1;
Server2Lower!S2LTCP(SYN,ACK,seqnum,acknum);

label_23:
goto SYN_RCVD;

::Lower2Server?L2STCP(SYN,ACK,seqnum,acknum) ->
if
:: SYN==1 && seqnum==Client_seqnum ->

label_24:
ACK=1;
seqnum=Server_seqnum;
acknum=Client_seqnum+1;
Server2Lower!S2LTCP(SYN,ACK,seqnum,acknum);

label_25:
goto SYN_RCVD;

:: SYN==1 && seqnum!=Client_seqnum ->
label_26:

ACK=1;
Client_seqnum=seqnum;
seqnum=Server_seqnum;
acknum=Client_seqnum+1;
Server2Lower!S2LTCP(SYN,ACK,seqnum,acknum);

label_27:
goto SYN_RCVD;

:: ACK==1 && acknum==Server_seqnum+1 ->
label_28:
label_29:

130 Chapter A PROMELA Code

goto endSEstablished;

fi;

fi;

endSEstablished:
skip;

}

active proctype Lower ()
{

bit SYN;
bit ACK;
byte seqnum;
byte acknum;

Start:
end:

if
::Client2Lower?C2LTCP(SYN,ACK,seqnum,acknum) ->

label_30:
if

::skip;
::Lower2Server!L2STCP(SYN,ACK,seqnum,acknum);

fi;
label_31:

goto Start;

::Server2Lower?S2LTCP(SYN,ACK,seqnum,acknum) ->
label_32:

if
::skip;
::Lower2Client!L2CTCP(SYN,ACK,seqnum,acknum);

fi;
label_33:

goto Start;

fi;
}

131

white white white white white white VITA

NAME OF AUTHOR: Rajaa Alqudah

PLACE OF BIRTH: Ayn Janna, Jordan

DATE OF BIRTH: August 6, 1980

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

white Syracuse University, Syracuse, NY

white Northeastern University, Boston, MA

white Yarmouk University, Irbid, Jordan

DEGREES AWARDED:

white Master of Science in Computer Engineering, 2007, Northeastern University

white Bachelor of Science in Computer Engineering, 2003, Yarmouk University

PROFESSIONAL EXPERIENCE:

white Teaching Assistant, Department of Electrical Engineering and Computer Science
white (EECS), Syracuse University, 2008 - 2011

white Lab Engineer, Department of Computer Engineering, Yarmouk University, white
white 2003-2005

	State-Based Techniques For Designing, Verifying And Debugging Message Passing Systems
	Recommended Citation

	Abstract
	Title Page
	List of Figures
	List of Tables
	Acknowledgments
	Acknowledgments
	1 Introduction
	1.1 Background
	1.1.1 Message Passing Systems
	1.1.2 Software Verification
	1.1.3 Model Checking

	1.2 Motivations and Contributions
	1.3 Dissertation Outline

	2 Review of Literature
	2.1 Model Checking in Software Verification
	2.1.1 Modeling System Specifications
	2.1.2 Systems Properties
	2.1.3 Model Checking Tools

	2.2 Debugging multi process applications

	3 A Framework for Message Passing Systems Development
	3.1 Overview
	3.2 System Design
	3.2.1 High-Level Block Design
	3.2.2 State-Behavioral Description
	3.2.3 Comparing to Petri Nets
	3.2.4 Hierarchical Designed-For-Verification CEFSM

	3.3 Concurrent Property Specifications
	3.3.1 Pattern based properties

	3.4 Model Generation and Verification
	3.5 Code Generation
	3.6 Debugging
	3.7 Summary

	4 MPS Verification and Debugging Tool
	4.1 Model Designer
	4.2 Property Editor
	4.3 Model Generation
	4.3.1 Translation Steps
	4.3.2 Timers in PROMELA
	4.3.3 LTL Properties in PROMELA
	4.3.4 Correctness of the PROMELA Model Generation

	4.4 Verification
	4.4.1 User specific LTL Properties
	4.4.2 Built-in Properties

	4.5 Error Localization
	4.6 Code Generation
	4.7 Debugging
	4.8 Summary

	5 Case Study
	5.1 Transmission Control Protocol (TCP)
	5.1.1 TCP connection management
	5.1.2 Modeling TCP
	5.1.3 PROMELA Model Generation
	5.1.4 Verification

	6 Conclusions and Future Work
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography
	A PROMELA Code
	Index

