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ABSTRACT 

It is well established that older listeners have more difficulty understanding 

speech in background noise than younger listeners (e.g. Dubno et. al., 1984).  Some have 

attributed this increased difficulty to peripheral hearing loss, while others suggest that 

older listeners may perceive listening in noise as difficult and effortful because it requires 

them to exert more cognitive resources (Desjardins et. al., 2009). The purpose of the 

present study was to directly evaluate the relationship between cognitive function, 

listening effort and speech recognition for a group of younger and older normal hearing 

adults, and a group of older adults with hearing impairment, in various types of 

background noise. 

 A dual-task paradigm was used to objectively evaluate listening effort.  The 

primary task required participants to repeat sentences presented in three different 

background noise masker conditions (e.g. Two-Talker (TT), Six-Talker (SIX), Speech-

Shaped Noise (SSN)).  The secondary task was a digital visual pursuit rotor tracking test 

(DPRT), for which participants were instructed to use a computer mouse to track a 

moving target around an ellipse that was displayed on a computer screen. Each task was 

presented separately and concurrently at a fixed speech recognition performance level of 

76% correct. In addition, participants’ subjectively rated how easy it was to listen to the 

sentences in each masker condition on a scale from 0 (e.g. very difficult) to 100 (e.g. very 

easy).   Last, participants completed a battery of cognitive tests which measured working 

memory (Reading Span test), processing speed (DSST) and selective attention (Stroop 

test) ability.   



 
 

Results revealed that participants’ working memory and processing speed ability 

were significantly related to their speech recognition performance in noise in all three 

background noise masker conditions.  Both groups of older participants expended 

significantly more listening effort than younger participants in the SSN and TT masker 

conditions.  For each group of participants, there were no significant differences in 

listening effort measured across the masker conditions, with the exception of the younger 

participants who expended more effort listening in the SIX masker condition compared to 

the SSN condition.  All participants’ listening effort expended on the TT and SSN masker 

conditions was significantly correlated with their working memory and processing speed 

performance. Participants’ subjective ratings of listening effort did not correlate with 

their objective measures of listening effort on any of the listening conditions. Findings 

from the present study indicate that older adults, independent of peripheral hearing loss, 

require more cognitive resources than younger adults to understand speech in background 

noise.   
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LITERATURE REVIEW 

 Sensorineural hearing loss is the third most prevalent chronic condition affecting 

seniors in the United States.  Specifically, 1 in 3 adults over the age of 60 years, and 

approximately 1 in 2 adults over the age of 75 years have a significant hearing loss (NIH, 

2009).  Presbycusis, sensorineural hearing loss due to aging, has been linked to 

degenerative changes in the peripheral auditory nervous system and is associated with 

speech understanding difficulties among older individuals (CHABA, 1988).  However, 

many older participants have poorer speech understanding than would be expected based 

on their audiometric thresholds, especially in background noise (Dubno & Ahlstrom, 

1997).  In fact, older participants with and without hearing impairment have little 

difficulty understanding speech in quiet listening conditions, but often have considerable 

difficulty understanding speech in noisy listening conditions.  This difficulty increases 

when the background noise is speech (Plomp, 1978; Kochkin, 2000).  For example, 

Desjardins and Doherty (2008) examined speech understanding in noise in older and 

younger participants with normal hearing.  They reported that older participants with 

normal hearing use the same listening strategy in quiet, but different listening strategies 

when processing fast speech in noise compared to younger participants.  Listening in 

noise has also been reported to be more effortful and tiresome for older adults with 

normal or near normal hearing thresholds even when they are able to understand what is 

being said (CHABA, 1988). 

  Speech communication is a complex process that involves both peripheral and 

cognitive functions. For example, a participant must have an intact or aided peripheral 

auditory system for sound to be audible.  Then, the participant must have the cognitive 
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function to be able to selectively attend to the sound source, store the information in 

memory, use context cues to resolve ambiguities, and generate responses quickly.  Any 

kind of distortion or limitation of an incoming speech stimulus, such as background 

noise, makes processing speech more cognitively demanding (Gordon-Salant & 

Fitzgibbons, 1997; Wingfield, 2000). Numerous studies have reported that three aspects 

of cognitive function; working memory, processing speed, and selective attention, are 

necessary for effective speech-communication in noise (e.g. Akeroyd, 2008; Humes and 

Coughlin, 2006; Pichora-Fuller, Schneider, and Daneman, 1995).  Unfortunately, these 

aspects of cognitive function have been shown to decline with increasing age (Park, 

1999; Salthouse, 1985).  Thus, listening in noise may be more difficult and effortful for 

older participants because they must exert more cognitive resources in order to maintain 

listening performance comparable to younger normal-hearing participants (Desjardins, et. 

al. 2008; Downs, 1982; Rabbitt, 1968).   

 Desjardins et. al. (2009) examined cortical activity on a speech understanding task 

in younger and older participants with normal hearing using functional magnetic 

resonance imaging (fMRI).  Results revealed greater fMRI neural activity in the inferior 

and mid frontal cortices, bilaterally, in older normal-hearing participants compared to 

younger participants regardless of the fact that the two groups obtained similar speech 

recognition scores on the listening task.  Interestingly, the older participant who obtained 

the lowest behavioral performance score did not recruit these additional neural regions. It 

was concluded that these findings are consistent with the theory of compensatory neural 

recruitment.  That is, the differences in neural activity observed between younger and 

older participants with similar speech recognition scores may reflect increased cognitive 
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compensatory effort by older participants in order to maintain behavioral performance 

levels similar to younger participants. This suggests that the observed age-related changes 

in listening effort may be due to age-related changes in cognitive processing.  

 The increase in cognitive load required for listening in background noise may 

come at the cost of using cognitive processing resources that could have been available 

for other tasks (Tun, O'Kane & Wingfield, 2002).  This can be problematic, because in 

everyday situations, older participants are expected to communicate in noisy listening 

conditions (CHABA, 1988), while performing other tasks.  For example, an older adult‘s 

ability to drive a car or walk on uneven ground may become impaired while they are 

responding to conversational inquires in the presence of a background noise (Li, 

Lindenberger, Freund & Baltes, 2001; Strayer & Johnson, 2001).   

Speech Recognition in the Presence of Background Noise 

 Speech is seldom transmitted in a completely quiet environment. In fact, most 

listening situations have some level of background noise that can distort a speech signal 

by making the less intense portions of the stimulus inaudible (Houtgast & Steeneken, 

1973).  Although young normal-hearing adults can tolerate moderate amounts of noise 

with only minimal degradation of their speech recognition abilities (Olsen, Noffsinger & 

Kurdziel, 1975), older individuals with and without sensorineural hearing loss are more 

susceptible to these distortions (Humes, Dirks, Bell, Ahlstrom, & Kincaid, 1987). 

 To date, a considerable research base has emerged examining the factors that 

contribute to the speech recognition in noise problems that are experienced by older 

people (e.g. Dubno, Dirks, & Morgan, 1984; Frisina & Frisina, 1997; Humes & Roberts, 

1990; Souza & Turner, 1994).  A number of these studies have concluded that the main 



4 
 

factor is deterioration of the peripheral auditory system (e.g. elevated thresholds) which 

can degrade the speech signal available for cognitive processing (e.g. Humes & Roberts, 

1990; Souza & Turner, 1994; Van Rooij & Plomp, 1992).  For example, Humes and 

Roberts (1990) examined monaural and binaural speech identification of young normal-

hearing participants (YNH), elderly hearing impaired participants (EHI), and young 

participants with simulated hearing loss using a noise masker (YHI).  The participants 

were presented nonsense syllables in background noise with and without reverberation.  

Results revealed that the EHI and YHI participants performed similarly on the speech 

identification tasks, but the YNH participants‘ performed better than both the hearing 

impaired groups.  There was a significant correlation between the elderly participants‘ 

average pure-tone threshold levels and their speech identification scores.  Thus, these 

results suggest that the speech understanding difficulties of older participants in noise is, 

at least partially, attributed to peripheral hearing impairment.   

 Souza and Turner (1994) reported similar findings in their study of the effects of 

spectrum noise, a modulated speech spectrum noise, and a 12 multi-talker babble masker 

on the recognition of monosyllabic words for 10 younger normal-hearing participants 

(20-40 years of age) and 10 younger (22-35 years of age) and 10 older (64-77 years of 

age) participants with mild to moderate sensorineural hearing loss. They found that the 

older and younger participants with hearing impairment performed similarly, but more 

poorly than the young normal-hearing participants, on all the background noise 

conditions. They concluded that sensorineural hearing loss, not age, accounted for the 

older participants‘ performance on the speech recognition in noise tasks. 

 However, others contend that pure-tone thresholds alone cannot account for the 
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variance in speech understanding in noise among older participants (Dubno, Dirks, & 

Morgan, 1984; Frisina & Frisina, 1997).  They suggest that the speech understanding 

difficulties of older participants in background noise are due to age-related changes in 

cognitive processing, or to a combination of age-related changes in cognitive processing 

and a decline in peripheral auditory function.  For instance, Dubno, et. al. (1984) 

examined age-related speech recognition performance in quiet and background noise in a 

group of older and younger participants with normal hearing and a group of older and 

younger participants with matched mild sensorineural hearing loss.  They used an 

adaptive procedure to measure the signal-to-noise ratio (SNR) needed to achieve 50% 

recognition for spondaic words, and sentences from the Revised Speech Perception in 

Noise Test (R-SPIN) (Bilger, Neutzel, Rabinowitz & Rzeckzkowski, 1984).  They 

presented the speech stimuli at soft to loud conversational speech levels.  Results 

revealed that all participants with hearing loss performed significantly poorer than their 

normal hearing counterparts in all listening conditions.  Also, the normal hearing and 

hearing impaired older participants in the study performed significantly poorer than their 

younger counterparts in the noise conditions despite equivalent performance in quiet. 

These results suggest that both age and peripheral auditory function contribute to a 

participant‘s ability to understand speech in background noise.  

 Consistent with these results, Frisina and Frisina (1997) reported that older 

participants with and without hearing impairment performed differently than younger 

normal-hearing participants on a sentence in multi-talker noise recognition task.  They 

concluded that both peripheral and central auditory function contribute to the speech 

understanding difficulties of older participants.  Further support for these findings comes 
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from the Gordon-Salant and Fitzgibbons (1997) study that examined age-related 

performance on a low context R-SPIN sentence recognition task. They tested a group of 

older and younger participants with normal hearing and a group of older and younger 

participants with matched sensorineural hearing loss.  They found that older participants‘ 

performed poorer on the sentence recall tasks, independent of peripheral hearing 

impairment, compared to the younger participants. These results suggest that age, not 

peripheral hearing loss, accounted for the older participants‘ lower scores on the sentence 

recognition in noise task.   

 Thus, while it is widely accepted that speech understanding in noise is more 

difficult for older participants compared to younger participants, there is less of a 

consensus as to why older participants have more difficulty understanding speech in 

background noise. In other words, is it more of a cognitive aging effect, a peripheral 

hearing limitation, or a combination of both?  We hypothesize that the answer to this 

question may depend on the type of background noise that is interfering with the target 

speech signal.   

 Certain types of background noises may be more likely to reveal differences in 

speech recognition as a function of age.  Specifically, it is more difficult for older 

participants to understand speech in a background noise of competing talkers than in a 

Gaussian noise (e.g. ―white noise‖) (Helfer & Freyman, 2008).  It is likely that older 

adults have more difficulty understanding speech in this type of noise because while all 

types of background noise produce interference at the auditory periphery, known as 

energetic masking, meaningful sound sources, such as competing talkers, can interfere 

with the processing of the target speech signal at both the auditory peripheral level, due to 
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energetic masking effects, and at the cognitive level due to informational masking effects 

(e.g. Arbogast, Mason, and Kidd, 2005; Brungart, Simpson, Ericson and Scott, 2001; 

Brungart, 2001; Carhart, Tillman and Greetis, 1969; Oh and Lufti, 1998; Freyman, 

Helfer, McCall and Clifton, 1999; Freyman, Balakrishnan, and Helfer, 2004; Helfer and 

Freyman, 2008).  Because older individuals are more likely to have age-related declines 

in cognitive function, they may be more susceptible to the effects of informational 

masking compared to younger participants.    

Informational Maskers 

 In theory, because speech fluctuates over time in spectral composition and 

amplitude, a masker consisting of competing talkers should produce less masking of a 

target signal than a steady state noise (e.g. air conditioner) (Feston & Plomp, 1990).  

Specifically, speech contains pauses in the signal and silence during the beginning of stop 

consonants, as well as very weak consonants such as /f/ and /th/ all which will reduce 

energetic masking.  In addition, the spectrum of the competing speech masker fluctuates 

independently from the spectrum of the target speech such that a low energy high-

frequency /s/ sound in the interfering speech may be present simultaneously with a high 

energy low frequency vowel in the target speech.  Thus, these spectral and amplitude 

fluctuations in the speech masker seemingly provide the participant with brief, but 

numerous, moments of clarity of the target speech signal.  Although speech maskers have 

spectral and temporal fluctuations that can reduce energetic masking, they have been 

shown to be more detrimental to a participant‘s speech understanding than steady state 

interference (e.g. Arbogast, Mason, and Kidd, 2005; Brungart, Simpson, Ericson and 

Scott, 2001; Brungart, 2001; Carhart, Tillman and Greetis, 1969; Oh and Lufti, 1998; 
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Freyman, Helfer, McCall and Clifton, 1999; Freyman, Balakrishnan, and Helfer, 2004; 

Helfer and Freyman, 2008).    

 Carhart, Tillman, and Greetis (1969) examined speech intelligibility in young 

normal hearing adults using a speech masker, and non-meaningful modulated noises.  

Results revealed that the speech masker produced more masking than the modulated 

noise masker.  They concluded that the excess masking caused by the speech masker was 

due to the participants‘ difficulty extracting the target speech from the complex masker of 

voices.  They used the term ―perceptual masking‖ to describe this phenomena, which is 

typically now referred to as informational masking.   

 Informational masking of a target speech signal is more likely to occur when the 

target and masker are similar to one another.  For example, there should be more 

informational masking when both the target talker and the masker talker are of the same 

gender (e.g. they are both female voices).  This is primarily because the amount of 

informational masking increases when there is confusion about which of two or more 

talkers is actually the ―target‖.  Brungart (2001) measured the speech intelligibility of 

young normal-hearing participants using target phrases masked by a single competing 

masker phrase that was either the same-talker, same-sex of the talker, or different-sex of 

the talker.  The results revealed that the amount of informational masking increased as 

the target and masker voices became more similar.  In a follow up study, Brungart, 

Simpson, Ericson, and Scott (2001) examined young normal hearing participants‘ ability 

to understand a target phrase masked by a 3-talker or 4-talker masker phrase with the 

same-talker, same-sex talker, and different-sex target and masker talkers.  Consistent with 

the previous results, the target phrase was least intelligible when the target and masker 
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phrases were spoken by the same talker.  The authors concluded that auditory factors 

such as, the vocal characteristics of the target and masker talkers, play an important role 

in the segregation of speech signals in multi-talker environments.  

 In addition to the vocal similarity between target and masker talkers, the number 

of talkers in a speech masker has also been shown to affect the amount of informational 

masking.  Freyman, Balakrishnan, and Helfer (2004) investigated the number of talkers 

that produce maximum informational masking in young normal-hearing participants‘ 

recognition of nonsense sentences.  Participants were presented nonsense sentences, 

spoken by a female talker, in the presence of 1, 2, 4, 6, and 10 female talkers reciting 

similar nonsense sentences.  Results revealed that the two-talker masker was the most 

effective masker.  The authors contend that a two-talker masker caused more competition 

for attention of the target speech signal than the one talker masker.  However, as the 

number of talkers in the masker increased beyond two, the masker became more like 

general babble, and the similarity of the masker and target decreased, thus decreasing the 

amount of informational masking.  This result is consistent with several other studies 

which reported that two-talker maskers produced the greatest amount of informational 

masking compared to one and three-talker maskers, respectively (e.g. Brungart et. al., 

2001; Freyman et. al., 1999; 2001; Hall et. al., 2002). 

Informational Masking and Hearing Loss 

 Informational masking effects have been shown to differ among normal hearing 

and hearing impaired participants (Arbogast, Mason, and Kidd, 2005; Hornsby, Ricketts 

and Johnson, 2006).  Specifically, informational masking has less of a negative effect on 

hearing impaired participants than age-matched normal-hearing participants. Arbogast, 
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Mason, and Kidd (2005) investigated informational and energetic maskers in age 

matched normal-hearing and hearing impaired participants between the ages of 21 to 79 

years on a closed-set sentence recognition task.  Results revealed that masking effects 

were greatest for all participants with the informational masker compared to the energetic 

masker, but that informational masking was less for the group of hearing impaired 

participants.  The authors stated that the results could have been partially attributed to the 

differences in masker sensation level (SL) between the normal hearing and hearing 

impaired participants.  Specifically, the hearing impaired group of participants was, on 

average, tested at a lower SL than the normal hearing group of participants.   

 Alexander and Lutfi (2004) examined informational and energetic masking 

effects using non speech stimuli in normal hearing and hearing impaired participants.  

Participants‘ thresholds for a 2000 Hz pure-tone were measured in the presence of a 

masker designed to produce varying amounts of informational masking.  Results revealed 

that informational masking decreased when the 2000 Hz tone was presented at lower 

sensation levels.  When tested at equal SLs, informational masking had a similar effect on 

participants with normal hearing and participants with hearing impairment.  However, in 

many studies the speech signals are presented at fixed overall intensity levels. As a result, 

the SL is typically lower for the hearing impaired participants, which may decrease the 

amount of informational masking.   

Informational Masking and Age 

 In listening environments containing multiple talkers, age-related changes may be 

caused by increased sensitivity to energetic masking, increased susceptibility to 

informational masking (e.g. confusion between the target voice and masking voices) 
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and/or cognitive deficits. To better understand the contributions of these factors, Li, 

Daneman, Qi, and Schneider (2004) examined energetic and informational masking in 

younger (19-22 years old) and older (63 to 75 years old) adults with normal hearing.  

They measured participants‘ ability to understand nonsense sentences spoken by a female 

talker in the presence of a female two-talker masker of nonsense sentences and a speech 

shaped noise.  Results revealed that speech recognition performance was poorer for all 

participants in the two-talker masker than the speech shaped noise condition. Equivalent 

amounts of informational masking effects were observed in both the younger and older 

groups. Thus, they concluded that cognitive interference from a two-talker informational 

masker was the same for both younger and older adults.  

 Recently, Agus, Akeroyd, Gatehouse, and Warden (2009) measured the effects of 

age on informational masking of speech in 8 young normal-hearing participants and 20 

older (51-80 years of age) participants with pure-tone thresholds varying from normal 

hearing to a moderate high frequency hearing loss.  Participants‘ speech recognition for 

sentences spoken by a male talker was measured in the presence of sentences spoken by 

the same male talker and a white noise.  Results revealed equal amounts of informational 

masking for both older and younger participants, but smaller informational masking 

effects for the older participants with poorer audiometric thresholds.  The authors 

concluded that younger and older participants are equally susceptible to informational 

masking.   

  Helfer and Freyman (2008) examined informational masking effects in a group of 

12 younger normal hearing participants (mean age 22.67 years) and 12 older participants 

(61-81 years old) with pure tone thresholds varying from normal hearing to a moderate 
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high frequency hearing loss.  Participants‘ speech recognition was measured using topic 

based sentences spoken by a female talker in the presence of a female two-talker masker, 

a male two-talker masker, and a speech shaped noise.  Results revealed that older 

participants‘ speech recognition performance was significantly poorer in all three masker 

conditions, with the largest difference in the male two-talker condition compared to the 

younger participants.  The authors suggest that the older participants‘ poorer performance 

may be due, at least partially, to age-related changes in cognitive function.   

 Tillman, Carhart, and Nicholls (1973) studied the effect of age on informational 

masking in 10 normal hearing younger participants and 45 older participants (age 63-85 

years) with normal or near normal (i.e. spondee thresholds < 30 dB HL in the poorer ear) 

hearing thresholds. Participants‘ speech recognition for spondee words spoken by a male 

talker was measured in the presence of sentences spoken by a male talker (e.g. 

informational masker), and a modulated white noise (e.g. energetic masker).  They found 

that all participants‘ speech recognition performance was poorer in the presence of the 

informational masker than the energetic masker.  However, the older participants‘ 

performance was poorer for the informational masking condition compared to the 

younger participants.  Thus, the authors concluded that older participants were more 

susceptible to informational masking of speech than younger participants.  Results from 

this study suggest that older participants are able to preserve their speech recognition 

performance in simple background noise (e.g. white noise) listening conditions, but as the 

listening situation becomes more complex (e.g. cognitively demanding) older participants 

perform poorer than younger participants. 
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 One limitation in the studies discussed above is that only overall percent correct 

scores on speech recognition tasks were reported. Unfortunately this type of assessment 

provides only a general measure of the differences in participants‘ speech perception 

abilities, offering little insight into the underlying mechanisms that may contribute to 

differences in participants‘ performance scores. For example, it has been previously 

shown that participants‘ can obtain the same overall speech recognition scores but use 

different listening strategies from each other to perform the same listening task (Doherty 

& Lutfi, 1996). Furthermore, some masking studies discussed above did not carefully 

control for differences in hearing threshold levels and none of the studies directly 

assessed any aspect of the participants‘ cognitive function, which is believed to play a 

strong role in informational masking. 

Cognition and Speech Perception in Older Adults       

 Speech understanding is a complex process that involves not only the perception 

and identification of individual speech sounds and words, but also the integration of 

successively heard words, phrases, and sentences in order for a participant to arrive at a 

coherent and accurate representation of the message communicated. Thus, it is highly 

likely that age-related changes in cognitive function could affect the speech 

understanding of older adults in background noise.  In fact, some specific cognitive 

abilities have been shown to be inherently involved in the processing of speech 

(Wingfield, 2000), which have also been shown to decline with age (Park, 1999; 

Salthouse, 1985). Specifically, the cognitive processes of working memory, perceptual 

processing speed, and selective attention have all been shown to contribute to 

participants‘ speech understanding performance (Akeroyd, 2008; Cleary, Pisoni & Geers, 
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2001; Larsby, Hallgren, Lyxell, 2008; Pichora-Fuller, Schneider, Daneman, 1995; 

Salthouse, 1985).  Unfortunately, these three cognitive skills have also been shown to 

deteriorate with age (e.g. Li et al, 2001; Salthouse, 1996; Wingfield & Tun, 2001).  

 Thus, in the current study we will examine how these three aspects of cognitive 

function (i.e. working memory, processing speed, and selective attention) affect speech 

understanding in noise for a group of older and younger participants.  Although, all of 

these cognitive functions are needed for processing speech in any noise (e.g. energetic or 

informational), they are likely to play a greater role when listening in background noises 

that have more informational masking. 

Working Memory 

 Working memory is a system for the temporary storage, management, and 

manipulation of information required for carrying out complex cognitive tasks such as 

language comprehension (Baddeley & Hitch, 1974).  For example, working memory is 

used in language comprehension to retain earlier parts of a spoken message until they can 

be integrated with the later parts.  Thus, working memory is needed to hold new 

information that has been given to us, but also to integrate it with the old information 

(Salthouse, 1985).  Models of working memory assume that when the capacity limits of 

working memory are exceeded due to processing demands, either comprehension will 

become slowed or errors will occur.  Thus, when older adults hear short sentences with 

reasonably simple syntax, their comprehension of the speech content is quite good.  

However, as the length and complexity of sentences increase, older adults have 

significantly more difficulty comprehending sentences than younger adults (Gordon-
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Salant & Fitzgibbons, 1997; Wingfield, 2000). That is, added memory demands have a 

detrimental effect on elderly participants‘ sentence recall abilities.  

 When an incoming speech stimulus is distorted or limited, such as from a 

background noise, speech processing becomes more cognitively demanding. Thus, 

listening to speech in background noise could have a detrimental effect on a participant‘s 

working memory performance.  Pichora-Fuller, Schneider, and Daneman (1995) 

examined the contribution of working memory on speech understanding in noise for 16 

younger (19-23) and 16 older (64-77) participants with normal hearing.  Participants were 

presented R-SPIN sentences in quiet and in 12-talker babble noise at multiple SNRs.  

They were asked to repeat the final word in the sentence, as well as maintain a number of 

final words in memory so that they could be recalled at the end of a fixed number of 

sentences. In half of the sentences, the final word was predictable from the context of the 

sentence (high context), and in half of the sentences the final word was unpredictable 

(low context).  Results revealed that both younger and older participants recalled fewer 

final words in noise, but the older participants recalled even fewer final words than 

younger participants.  Older participants derived more benefit from context cues to 

understand the signal in noise than younger participants, as evidenced by differences 

between psychometric functions for high and low context sentences. The authors 

concluded that the results from this study suggest that older participants require 

additional processing resources when listening becomes difficult (e.g. due to noise).   

 Consistent with these results, Murphy, Craik, Li and Schneider (2000) examined 

the effects of aging and background noise (e.g. 12 talker babble noise) on working 

memory performance in younger participants with normal hearing and older participants 
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with a moderate high frequency hearing loss on a paired associate recall task.  They 

found that the performance of older adults in quiet was nearly equivalent to that of the 

younger adults‘ performance in noise.  They concluded that both aging and noise impair 

encoding in memory. Unfortunately, because the authors did not control for differences in 

hearing threshold between the younger and older groups of participants, it remains 

unclear whether working memory performance  was impaired by a degraded sensory 

representation (e.g. high-frequency hearing loss), or as a function of reduced cognitive 

processing resources.   

 Working memory performance can be assessed by a variety of tasks including 

span tests, and object re-ordering tasks.  However, age-effects in working memory 

performance have been shown to be most prominent on complex working memory tasks 

such as The Reading Span test (Daneman and Carpentar, 1980;  Ronnberg, 1989).  The 

Reading Span test is a measure of working memory that taxes the combined processing 

and storage capacity of working memory.  On the Reading Span test, participants are 

presented with sentences and asked to simultaneously comprehend them and store the 

final word in the sentence for retrieval after a specified block of sentences are presented.  

Performance on the Reading Span test has been shown to be significantly correlated with 

a participant‘s ability to understand spoken discourse (Akeryod, 2008).  In addition, the 

Reading Span test has been widely used in behavioral cognitive aging (Verhaeghen & 

Salthouse, 1997) and speech perception (e.g. Lunner et. al., 2007) studies.  Thus, a digital 

version of The Reading Span test (Ronnberg, 1989) was used in the current study.     

Perceptual Processing Speed 
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 Perceptual processing speed refers to the rate at which necessary cognitive 

processing operations must be performed for the accurate perception of an incoming 

signal.  Speech comprehension is based on a transient acoustic signal whose rate is 

largely controlled by the talker, not the participant.  In order for a participant to 

effectively comprehend a message, the incoming auditory input must be analyzed, 

segmented, and processed for structure and meaning, all while new information continues 

to arrive.  These cognitive processes must occur quickly because conversational speaking 

rates often exceed 200 words per minute (Miller, Grosjean & Lomanto, 1984).   

 In general, many studies contend that a slowing of processing speed is the primary 

reason for age-related decline in cognitive function (Cerella, 1985; Myerson, Ferraro, 

Hale, & Lima, 1992). Furthermore, it has been hypothesized that overall cognitive 

performance is degraded when processing is slow because relevant operations cannot be 

successfully executed and the products of early processing may no longer be available 

when later processing is complete (Salthouse, 1985). In addition, it is thought that as a 

task becomes more difficult or complex, requiring an individual to expend more 

cognitive resources, older adults‘ speed of processing will be slowed.  

 Several studies have investigated the relationship between slower speed of 

information processing and speech recognition (e.g. Gordon-Salant & Fitzgibbons, 1997; 

1999; 2001; Wingfield et. al., 1985). Wingfield et. al. (1985) hypothesized than an age-

related decline in processing speed would be detrimental to the rapid decoding and 

construction of meaning required for on-line processing of fluent speech. They conducted 

several experiments using time-compressed speech.   Time compressing speech is an 

effective method of temporally degrading a speech signal without affecting the pitch and 
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prosody of the original signal.  In addition, time-compression reduces the redundancy of 

acoustic cues in speech and causes the acoustic cues for consonant identification to 

become more transient (Letowski & Poch 1996). Wingfield et. al. (1985) concluded that 

time-compression has its effect more from removing normally available processing time 

than by degrading the speech signal itself.  In contrast, Gordon-Salant and Fitzgibbons 

(2001) suggested that older participants have difficulty in recognizing fast speech due to 

trouble in processing the brief, limited acoustic cues for consonants inherent in rapid 

speech.  Overall, however, both suggest that there is an age-related decline in the rate of 

information processing in older participants. In addition, further evidence for age-related 

slow down in processing comes from several auditory evoked potential (AEP) studies.  

These studies have shown age-related prolongations in latency measures of cortical 

evoked potentials (e.g. P300, AMLR, and ALR) (Pfefferbaum, 1980; Goodin, 1978; 

Vander Werff & Burns, 2009).  

 While processing speed can be assessed using a variety of tasks, one of the most 

widely used behavioral instruments is the Digit Symbol Substitution Test (DSST) from 

the Wechsler Adult Intelligence Scale-III (Wechsler, 1981).  Strong correlations have 

been reported in the literature for performance scores on the DSST and age (Birren, 1965; 

Salthouse, 1992) and with other measures that involve perceptual speed of processing 

(Salthouse, 2000; Sliwinski & Buschke, 1999).  For example, Hoyer, Stawski, 

Wasylysshyn, and Verhaeghen (2004) found that in an analysis of effect sizes for age 

reported in 141 studies, age accounted for 86% of the variance in DSST scores. In 

addition, the DSST is easy and quick to administer.  Thus, we used the DSST in the 

current study to measure perceptual processing speed. 
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Selective Attention 

 Selective attention is an essential component of day-to-day functioning that 

enables individuals to preferentially process high priority signals at the expense of less 

task-relevant information. In other words, when an individual selectively attends, they 

actively filter stimulus information in order to select only relevant information for 

processing. Selective attention is required when listening to speech in the presence of 

background noise in order for a participant to attend to the target signal and ignore or 

suppress the background noise.  In fact, the classic example of selective attention is the 

―cocktail party problem‖ originally described by Cherry (1953) who wrote, ―How do we 

recognize what one person is saying when others are speaking at the same time (the 

―cocktail party problem‖)?   

 Several studies have shown that the ability to selectively attend to visual or 

auditory stimuli is impaired by the aging process (e.g., Alain, Ogawa, & Woods, 1996; 

Allen, Weber, & Madden, 1994; Barr & Giambra, 1990; Karayanidis, Andrews, Ward, & 

Michie, 1995; Madden, 1990; McCalley, Bouwhuis, & Juola, 1995). It has been 

hypothesized that this age-related decrease in selective attention is due to a decrease in 

inhibitory processing with aging (e.g. Hartman & Hasher, 1991; McDowd & Shaw, 2000; 

Troyer, Leach, & Strauss, 2006).  In other words, older adults are not as effective in 

filtering irrelevant stimuli.  For example, it has been shown that older adults have more 

difficulty in detecting infrequent auditory targets embedded in a sequence of distracters 

than younger adults (Alain et al., 1996; Karayanidis et al., 1995).   

 Humes, Lee, and Coughlin (2006) examined auditory attention in 10 young 

normal-hearing participants (21 to 34 years old) and 13 older hearing impaired 
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participants (61 to 81 years old) on a sentence recognition task where the target sentences 

were spoken by one talker and a second talker produced a very similar competing 

sentence.  Results revealed that the older participants performed significantly worse than 

the younger participants on all measures of auditory attention. Interestingly, correlational 

analysis suggested that the individual differences in attention performance were strongly 

associated with individual differences in working memory performance on the digit span 

subtest of the WAIS-III (Wechsler, 1981).  

Age-related changes in selective attention are frequently evaluated in the 

cognitive aging literature using the Stroop test (Stroop, 1935).  In fact, the Stroop test 

(Stroop, 1935) has been one of the most widely used behavioral measures of selective 

attention for the past 70 years (MacLeod, 1991).  The Stroop effect was first described in 

1935 by J. Ridley Stroop. In his experiment, Stroop had people read aloud color words 

(e.g., ―red‖, ―blue‖, ―green‖, etc...) that were presented in different colored fonts (e.g. the 

word ―red‖ was printed in blue ink). The main finding from his study was that when 

people had to say the name of the font color, they were faster to respond when the color 

of the word matched the color of the font, and slower when these mismatched. The 

slowed responding is considered by many to be evidence of interference between 

cognitive processes. Many studies have shown that Stroop test is sensitive to identifying 

age related differences in selective attention (see review by McDowd & Shaw, 2000). 

Thus, the Stroop test was used in the current study to measure selective attention in older 

and younger adults.  

 In summary, the interference of background noise on a participant‘s ability to 

understand speech may be related to the degree of cognitive load in the task.  That is, 
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listening in unfavorable listening conditions (e.g. noise) may require a participant to use 

more cognitive resources (e.g. working memory, processing speed, and selective 

attention) than when listening in quiet.  When a participant must expend more cognitive 

resources in order to understand speech in the presence of a background noise, the 

listening task will become more effortful.   

Listening Effort 

 Listening effort refers to the cognitive resource requirements necessary for an 

individual to understand speech (Broadbent, 1958; Downs, 1982; Feuerstein, 1988).  

Listening to speech in the presence of background noise may require participants to use 

more cognitive resources because when a signal is noisy, the participant must remove 

ambiguity and recover the information in the signal that has been degraded by the noise.   

 The most common behavioral method used for assessing listening effort is a dual-

task paradigm (Broadbent, 1958).  This method is based on the theory that the brain has a 

limited capacity to respond to all sensory systems and this capacity is allocated across 

systems on an as needed basis (Kahneman, 1973). As the cognitive demands for one task 

increase, so does its share of cognitive resources.  This in turn reduces the resources 

available for an individual to simultaneously perform a second task (Downs & Crum, 

1978; Rabbitt, 1968).   

 The decrease in secondary task performance is interpreted as evidence of 

increased cognitive effort (Downs & Crum, 1978; Rabbitt, 1968) which is referred to as 

listening effort when the primary task is an auditory task.  Thus, the dual-task method 

uses two-tasks; a primary task and a secondary task (Rabbitt, 1968). Performance on the 

primary task is presumed to use the majority of mental capacity and the remaining mental 
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capacity is used to perform the secondary task. When the primary task is made more 

difficult, less mental capacity remains for completion of the secondary task, which 

hinders performance on the secondary task.  This decrease in secondary task performance 

is interpreted as increased listening effort (Broadbent, 1958; Downs & Crum, 1978; 

Rabbitt, 1968). 

 In a classic experiment of listening effort, Broadbent (1958) used a dual-task 

paradigm to examine speech discrimination performance under different listening 

conditions (e.g. quiet and background noise).  Young normal-hearing participants were 

presented speech in background noise at multiple SNRs.  Results revealed that 

participants‘ speech intelligibility scores remained unchanged across SNR conditions. 

However, the changes in SNR resulted in changes in performance on a concurrent 

measure of effort, a high speed tracking task. He concluded that speech intelligibility 

scores across conditions were obtained at the expense of unequal amounts of effort 

exerted by the participant.  Thus, when the listening condition was more difficult, the 

participant exerted more effort to maintain their speech intelligibility performance.  

Broadbent concluded that the results from this experiment stress the importance of using 

multiple measures to assess speech understanding.  In other words, assessing participants‘ 

speech understanding solely using speech intelligibility scores may be misleading.  

 Rabbitt (1968) hypothesized that the extra effort expended by a participant to 

discriminate speech in the presence of background noise can reduce ―cognitive effort 

reserves‖ required to perform cognitive operations on an incoming speech signal, such as 

storing information into memory. Thus, he hypothesized that the increased difficulty of 

speech recognition in noise may interfere with participants‘ cognitive processing. Results 
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from his study revealed that an individual‘s ability to remember words was impaired in 

noisy listening conditions, even when the noise did not interfere with their speech 

recognition performance.   

 In recent years, dual-task paradigms have been used in several auditory (e.g. 

Sarampalis, Kalluri, Edwards, Hafter, 2009; Downs, 1982; Feuerstein, 1992; Hicks and 

Tharpe, 2002; Rakerd, Seitz, Whearty, 1996; Tun, McCoy & Wingfield, 2009) and 

speech production (e.g. Kemper, Schmalzried, Herman, Leedahl and Mohankumar, 2009) 

studies.  For example, Sarampalis et. al. (2009) used a dual-task experiment to examine 

the benefit of a digital noise-reduction algorithm (NR) in hearing aids for a group of 

normal-hearing young participants.  Participants were asked to perform two dual-task 

experiments with and without NR. In the first experiment, the participants‘ primary task 

was to repeat R-SPIN sentences that were played to them in the presence of a 12 talker 

babble noise at various SNRs, and the secondary task was to repeat back the final words 

of a block of eight R-SPIN sentences after all eight sentences were presented.  In the 

second experiment, the participants‘ primary task was to repeat back words presented at 

various SNRs, and the secondary task was to perform a visual reaction time task in which 

the participant was instructed to press an arrow button that pointed towards a number 

when it was an even numbered digit, and to press an arrow button that pointed away 

when it was an odd numbered digit.  Results revealed that participants‘ recognition of R-

SPIN sentences (e.g. the primary task) decreased as the SNR decreased (making the 

primary task more difficult).  Participants‘ recognition performance on the primary task 

stayed constant across SNRs with and without NR, but performance on the secondary 

task (e.g. memory recall task) was different.  That is, when tested with NR, the 
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participants‘ performance on the secondary task was significantly improved in the 

difficult SNR conditions than without NR. This suggests that NR reduced listening effort 

which freed up cognitive processing resources the participant could use for performing 

other tasks, in this case a working memory task.  The authors contend that future hearing 

aid research should include objective measures of listening effort. If speech recognition 

performance were the only measure used to assess this NR algorithm, one would have 

concluded that NR has no affect on participants‘ performance in background noise when 

in fact it reduced listening effort. 

 Downs (1982) examined the effects of hearing aid use on measures of speech 

discrimination and listening effort in hearing-impaired individuals using a dual-task 

paradigm procedure.  Participants were presented lists of CNC words in a multi-talker 

babble at 0 dB SNR with and without their hearing aids on, while simultaneously 

responding to a visual probe reaction time task.  Results revealed that hearing impaired 

participants had faster reaction times on the visual probe task when they wore their 

hearing aids.  The author concluded that hearing aids can reduce listening effort for 

hearing impaired individuals.  Hicks and Tharpe (2002) used the same dual task paradigm 

as Downs (1982) to determine if children with hearing loss expend more effort than 

children with normal-hearing when listening under adverse conditions than when 

listening under more favorable conditions.  The children with hearing loss expended 

more effort than the children with normal hearing on the speech in noise task even though 

they obtained similar speech discrimination scores.   

 Rakerd et. al. (1996) also examined effortful listening using a dual-task paradigm 

in a group of normal hearing and a group of hearing impaired participants.  Participants 
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were required to listen to passages of speech while memorizing a list of digits to be 

recalled after the entire speech passage was presented.  Results revealed that participants 

with hearing loss demonstrated significantly more effort listening to passages than 

normal hearing participants, as indicated by their poorer performance on the digit 

memorization task. The authors concluded that peripheral hearing loss increases the 

demand for cognitive resources thus increasing listening effort.  Consistent with these 

results, Tun et. al. (2009) reported that listening effort increased for a group of hearing 

impaired participants when recalling word lists at a sound intensity level that ensured 

audibility. 

 Recently, Kemper, et. al. (2009) introduced a visual rotor tracking task, as a 

secondary task in a dual-task paradigm to measure effort in younger and older adults. The 

visual tracking task is a Digital Pursuit Rotor Tracking task (DPRT) developed by the 

Digital Electronics and Engineering Core in the Center for Biobehavioral Neurosciences 

in Communication Disorders at the University of Kansas (Kieweg, 2009).  The DPRT is a 

digital version of the classic pursuit rotor tracking task (McNemar & Biel, 1939) and 

consists of an elliptical track, and a circular target that rotates along the track, digitally 

displayed on a computer monitor. Participants are instructed to use the computer mouse 

to position a pair of cross-hairs over the target. Once the target begins to move around the 

ellipse, the participant must track the moving target on the computer screen by using the 

mouse to keep the cross-hairs superimposed on the target. The amount of time the 

participants‘ moved off the target and the distance they were off from the target are 

stored in a data file for each participant.    
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 In the current study, we used a dual-task paradigm to assess listening effort in 

younger and older participants on a speech understanding in noise task.  Specifically, we 

used the DPRT as the secondary task and sentence recognition in noise as the primary 

task of a dual-task paradigm. We selected the DPRT to use as the secondary task in this 

study because 1) it has been successfully used in dual-task paradigms with younger and 

older adults (e.g. Kemper et. al., 2009), 2) performance on the task can be time-locked to 

performance on a speech discrimination test, 3) participants can be trained in a few 

minutes to perform the DPRT and 4) scoring of the task allows the examiner to control 

for baseline differences in individual performance.   

 In the above discussion of listening effort, the focus has been on studies that have 

reported objective measures of listening effort.  However, there have been several other 

studies which have reported subjective measures of listening effort, referred to as ―ease of 

listening‖ (Feuerstein, 1992; Hicks & Tharpe, 2002).  Ease of listening is the perceived 

difficulty of a listening situation by the participant, and is typically measured using 

subjective magnitude estimation scales (Feuerstein, 1992).  Magnitude estimations are 

made by exposing subjects to various conditions of the stimulus and having them provide 

a number, of their choosing, which best describes the level of the stimulus on the 

dimension being scaled (e.g. ease of listening, loudness, clarity, etc.). Unfortunately, a 

drawback to this procedure is that different subjects may use highly disparate number 

systems for their judgments.  For example, some subjects may choose to limit their 

responses to a 1 to 5 range, others may use 0 to 1,000, and some may choose to use both 

positive and negative values. Such disparities can complicate comparison of data across 

subjects.  Geller and Margolis (1984) suggested that restricted magnitude estimation 
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(RME) should be used for subjective judgments.  Specifically, they suggested using a 

scale from 0 to 100 with the upper and lower limits defined in terms of the scaling 

dimension.   They speculated that this type of scale would provide subjects with 

sufficient freedom of choice while at the same time keeping the rating values 

manageable.   

 Feuerstein (1992) used restricted magnitude estimation (RME) procedure to 

examine perceived ease of listening in 48 young normal-hearing participants on a speech 

in noise task under binaural and two simulated unilateral conductive hearing loss 

(monaural) conditions.  The subjects were required to rate ease of listening for each R-

SPIN sentence list (e.g. 50 sentences) using a scale of 0 to 100, with 0 being defined as 

very, very easy and 100 being defined as very, very difficult. Results revealed that there 

was a significant decrease in perceived ease of listening for both simulated conductive 

hearing loss conditions compared to the binaural hearing condition.  

 In the current study, we were interested in using the RME procedure to assess 

perceived ease of listening in younger and older participants in order to determine if there 

is an association between subjective (e.g. RME) and objective (dual-task paradigm) 

measures of listening effort.  Currently, measuring listening effort is difficult and 

relatively non-existent in clinical audiological practice. If the RME procedure is highly 

correlated with participants‘ performance on the proposed dual-task paradigm, this 

procedure could potentially be used clinically to assess listening effort.   

  In summary, the difficulty older participants have understanding speech in 

background noise has received considerable attention in the literature in terms of the 

types of noises that are most detrimental to speech recognition (Helfer & Freyman, 
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2008), and the differences in signal-to-noise-ratios that are required for older and younger 

participants to obtain similar speech recognition scores (Pichora-Fuller et. al., 1995).  

However, the effect of noise on listening effort has received less attention, and is 

typically discussed more subjectively as self reports (Benter et. al., 2008).  Thus, few 

auditory studies have objectively examined age-related effects on listening effort, and to 

date, no studies have directly examined the effect of different background noise maskers 

on listening effort.   

SPECIFIC OBJECTIVES 

 The purpose of the present study was: 1) to directly evaluate the relationship 

between measures of cognitive function and speech understanding in background noise, 

and 2) to objectively and subjectively measure the listening effort young normal-hearing, 

old normal-hearing, and old hearing-impaired participants expend on a speech and noise 

listening task using background noises that represent a continuum of difficulty ranging 

from most difficult (TT) to least difficult (SSN).  Specifically, the following hypotheses 

were tested: 

Hypothesis 1. There is a significant association between participants‘ performance 

on a speech recognition in noise test and the Reading Span test, the DSST, and the 

Stroop test. 

Hypothesis 2. As the masker condition becomes more difficult (SSN,SIX, TT) 

listening effort will increase, but the increase will be greater for older participants 

than younger participants. 

Hypothesis 3. Listening effort will be significantly correlated with participants‘ 

performance on the Reading Span test, the DSST, and the Stroop test.  



29 
 

Hypothesis 4. There is a significant association between objective and subjective 

measures of listening effort. 

EXPERIMENTAL DESIGN AND METHODS   

Participants 

 Forty six adults participated in this study: 15 young normal-hearing (YNH) 18-25 

years of age (Mean (M) = 21.66, Standard Deviation (SD) = 2.66), 15 older normal 

hearing (ONH) 55-77 years of age (M = 66.86, SD = 6.7), and 16 older hearing impaired 

(OHI) 59-76 years of age (M = 68.18, SD = 4.62).  The sample size for this study was 

based on an a priori power analysis of an ANOVA (difference in means =10, standard 

deviation = 8.5 (Kemper et. al., 2009) using alpha = .05 and power = .8 (Cohen, 1988).  

YNH and ONH participants had hearing thresholds < 25 dB HL from 250 Hz through 

4000 Hz (ANSI, 2003), bilaterally.  Older hearing impaired participants had bilateral 

sensorineural hearing loss with hearing thresholds < 75 dB HL at all octave audiometric 

test frequencies and no more than a 15 dB difference in thresholds between ears at any 

test frequency. In addition, all OHI participants were experienced hearing aid users and 

wore hearing aids, bilaterally, for at least six months prior to participation.  Figure 1. 

shows mean pure-tone thresholds of the YNH and  ONH participants, and mean unaided 

and aided pure-tone thresholds of the OHI participants averaged across the left and right 

ears, respectively.  

All participants in this study were native speakers of English, had normal or 

corrected normal vision (e.g. 20/40 acuity) according to the Snellen eye chart, and had 

good to excellent sentence recognition scores (>80%) in quiet.  Older participants were  
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Figure 1. Mean pure-tone thresholds (in dB HL) averaged across the right and left ears 

for 15 YNH (triangles) and 15 ONH (circles), and unaided (squares) and aided (triangles) 

thresholds for 16 OHI (squares, unaided) participants, respectively. Error bars represent 

±1 SD.  
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 recruited from Syracuse University‘s Gebbie Hearing Clinic, senior centers in the 

Syracuse area and the Hearing Science Lab Database.  Younger participants were 

recruited from the university community.  Participants were paid an hourly wage for their 

participation in the study.  

Listening Materials 

Speech Stimuli 

 The Revised Speech Perception in Noise (R-SPIN) Test (Bilger, Neutzel, 

Rabinowitz, and Rzeczkowski, 1984) spoken by a female talker was used as the speech 

recognition material for this study.  The sentences were recorded and digitized using the 

Computerized Speech Lab, CSL-4500 (Kay Elemetrics, 2008) at a 44,100 Hz sampling 

rate. The R-SPIN was chosen for use in this study because it contains both high and low 

context sentences which are more representative of the types of speech in noise people 

encounter in ―real life‖ situations.  

 The R-SPIN consists of eight lists of 50 sentences (400 total sentences). Each 50 

sentence list contains 25 high context sentences where the sentence final-word is 

predictable from the sentence context (e.g. I cut my finger with a knife) and 25 low 

context sentences where the sentence final-word is not predictable (e.g. I am thinking 

about the knife). The lists have been reported to be equivalent in difficulty and have high 

test re-test reliability (Bilger et. al., 1984).  The high and low context sentences are 

presented in a fixed pseudorandom order.  The target word is always the final word in the 

sentence.  Scores are reported as the percent of target words the participant identified 

correctly. 

Background Noise  
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 The R-SPIN sentences were presented to participants in three background noises: 

female two-talker babble (TT), female six-talker babble (SIX), and a speech spectrum 

shaped noise (SSN).  All three noises were spectrally shaped using Adobe Audition 3.0 

(Adobe Systems Incorporated, 2007) to be equal to the Long Term Average Speech 

Spectrum (LTASS) of the 400 R-SPIN sentences (see figure 2.). Thus, these noises are 

spectrally similar but represent a continuum of masking difficulty, from most difficult 

(e.g. female two-talker babble), to least difficult (e.g. speech shaped noise).  The R-SPIN 

sentences and the three noise maskers (e.g. SSN, SIX, TT) were normalized to the same 

root-mean-square (RMS) pressure level using Praat computer software (Praat Language 

Lab ©2006).  

Female two-talker babble (TT)  

 A babble of two female voices reciting nonsense sentences was used as the 

background noise for the TT condition.   The TT noise was created by Freyman, Helfer, 

and Balakrishnan (2007). They individually recorded two different female talkers reciting 

discrete nonsense sentences in a 16 bit format at a 22 kHz sampling rate.  The sentences 

were then edited to create continuous 35 second streams of speech for each talker.  The 

RMS outputs of the individual speech streams were equated with one another and then 

combined together to generate the two-talker masker.  The 35 second stream of two-

talker babble was then concatenated using Praat (Praat Language Lab ©2006) to produce 

a 5 minute stream of babble.  The two-talker babble and the R-SPIN were then combined 

together and recorded on CD using Adobe Audition 3.0 (Adobe Systems Incorporated, 

2007) in a 16 bit format at a 22 kHz sampling rate.  A two-talker female masker was 

chosen for this study because it has been shown to produce a large amount of  
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Figure 2. Long Term Average Speech Spectrum (LTASS) of the TT (triangle), SIX 

(circle), and SSN (square) maskers, and R-SPIN sentences (diamond).  
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informational masking when the target speech is also a female talker (e.g. Freyman et. al., 

2004; Helfer and Freyman, 2008).   

Female six-talker babble (SIX) 

 A babble of six female voices reciting sentences was used as the background 

noise for the SIX condition.  The SIX babble was recorded and edited by Freyman et. al. 

(2007) and recorded onto a CD in the same manner as described above. A six-talker 

female masker was chosen because several studies have shown that when the speech in 

the masker cannot be clearly understood (e.g. six talker masker), it is easier for a 

participant to recognize the target signal than if the speech masker could be understood 

clearly (e.g. two talker masker) (e.g. Freyman, et. al., 2001; Freyman et. al., 2004).  The 

six individual talkers create mutual masking of one another, thus appearing less like 

individual streams of speech, because the additional masker waveforms fill in temporal 

and spectral gaps in the signal.  

Speech Spectrum Noise (SSN)  

 A spectrally shaped noise was generated in MATLAB using a 16 bit, 44. 1 kHz 

sampling rate, by passing a Gaussian noise through an FIR filter with a magnitude 

response equal to the Long Term Average Speech Spectrum (LTASS) of the 400 R-SPIN 

sentences.  The SSN and the R-SPIN were then combined together and recorded on CD 

using a 16 bit format at a 22 kHz sampling rate using Adobe Audition 3.0 (Adobe 

Systems Incorporated, 2007).  The SSN masker should produce the least amount of 

informational masking in this study.  

Visual Tracking   

 The Digital Pursuit Rotor Tracking (DPRT) program (Digital Electronics and 
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Engineering Core, University of Kansas, 2009) was used to measure visual motor 

tracking.  The DPRT is a digital version of the classic pursuit rotor tracking task 

(McNemar & Biel, 1939).  The DPRT was developed using LAB VIEW software 

(National Instruments, 2009) and consists of an elliptical track with a circle shaped target 

that rotates along the track and is displayed on a computer monitor.  On a given trial, a 

participant used a cordless laser computer mouse to position a cursor over the target.  

When positioned completely over the target, the target color changed from red to green 

and began to move along the elliptical track. As the target moved along the elliptical 

track, the participant tracked the moving target by keeping the cursor placed directly over 

the target.  The DPRT program sampled the location of the cursor and recorded if the 

participant was on the target, or off the target, and computed the distance they were off 

the target.  Thus, a score for time on target (%), and tracking error (the distance in pixels 

from the target to the cursor) for each sentence was stored in a data file for each 

participant.  

 The speed at which the target rotated around the ellipse (revolutions per minute) 

was determined prior to experimental testing for each participant during a DPRT practice 

test session.  Participants practiced the DPRT to determine the tracking speed that was 

required for them to stay on target approximately 80% of the time (Kemper et. al., 2009). 

This level of baseline tracking performance was selected based on previously reported 

results using the DPRT with younger and older participants (Kemper et. al., 2009). In 

addition, establishing a baseline level of 80% time on target equated the difficulty of the 

secondary task across the three groups of participants, as well as avoided any floor and 

ceiling effects on performance.   
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 During the practice session participants initially performed the DPRT for 30 

seconds and then received feedback on their tracking performance. A 2 up/1 down 

staircase training procedure was used to manipulate the tracking speed on successive 30-

second trials.  For each successive trial, the tracking speed was increased by 10% if the 

average time on target was 80% or better for the previous trial. If the average time on 

target was less than 80%, the tracking speed was decreased by 5% on the next successive 

trial.  The staircase procedure continued until the tracking speed remained relatively 

constant around the same value, moving up and down past this value three times.  

Subjective Listening Effort 

 A restricted magnitude estimation scale (Geller and Margolis, 1984) was used to 

measure subjective listening effort.  Participants were instructed to rate how easy it was 

to listen to R-SPIN sentences presented in the three background noise maskers (SSN, 

SIX, TT).  Specifically, they rated listening ease from 0, representing ‗very, very 

difficult‘ to 100 representing ‗very, very easy listening‘(Feuerstein, 1990; Geller and 

Margolis, 1984),   Once they assigned a value, participants were asked to write the value 

on a 3 x5 index card and turn the card face down before the next block of R-SPIN 

sentences was presented. A separate card was used for each list of sentences presented. 

Cognitive Assessment  

Working Memory 

 The digital version of The Reading Span Test (Daneman and Carpenter, 1980; 

Rönnberg et al., 1989) was used to assess participants‘ working memory function. In the 

Reading Span Test, participants were presented sentences one word at a time, at a rate of 

one word per 0.80 seconds, on a computer screen. All sentences consisted of a noun, a 
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verb, and an object. Half of the sentences presented were nonsense (e.g., ―The train sang 

a song‖), and half were meaningful sentences (e.g. ―The girl brushed her teeth‖).  After 

each sentence, the participant was required to respond ―yes‖ verbally for a meaningful 

sentence and ―no‖ verbally for a nonsense sentence, during a 1.75-sec interval after each 

sentence.  The ―yes and no‖ responses are not formally scored as correct or incorrect, but 

are meant to ensure that the participant is attending to the entire sentence, not just the 

initial and final words.  

 Blocks of three, four, five, and six sentences were presented to participants. Each 

block was presented three times to each participant for a total of 54 test sentences (e.g. 3 

blocks of 3 sentences = 9 sentences; 3 blocks of 4 sentences =12 sentences; 3 blocks of 5 

sentences = 15 sentences; 3 blocks of 6 sentences = 18 sentences). When all of the 

sentences in a single block were presented, the software paused and the word ―RECALL‖ 

was displayed on the computer screen. The experimenter said either ―First‖ or ―Last‖ in a 

randomized manner and the participant recalled as many first or last words as possible in 

any order.  After the participant recalled as many words as possible, the experimenter 

continued the test with a new sequence of sentences.  Performance was determined by the 

percent of correctly recalled words.    

Processing Speed  

 The Digit Symbol Substitution test (DSST) from the Wechsler Adult Intelligence 

Scale-III (WAIS-III; Wechsler, 1981) was used to assess participants‘ perceptual speed of 

processing. In the DSST, participants were presented with a sheet of paper that has a code 

table displaying pairs of digits (1-9) and symbols. Beneath the code table are rows of 

double boxes with the digit in the top box and nothing in the bottom box (see figure 3). 
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The participants were asked to use the code table to determine which symbols were 

associated with each digit and to write as many symbols as possible in the empty boxes in 

a 120-s period. The number of correct symbols is the score for this task. The DSST was 

administered to participants in a paper and pencil format following the standardized test 

instructions for administration.  The DSST was chosen because scores on the DSST have 

been shown to exhibit strong correlations with measures that involve perceptual speed of 

processing (Salthouse, 2000; Sliwinski & Buschke, 1999).  

Selective Attention 

 The Stroop test (Stroop, 1935) was used to assess participants‘ selective attention.  

Participants were presented a paper version of the Stroop test which consists of a list of 

words that are the names of colors printed in a color of ink different from the color name 

they represent (e.g. the word RED printed in GREEN ink), and a list of ― * ‗s‖ printed in 

different color ink. Participants were given 45 seconds to name the color of ink of the 

series of *‘s, and an additional 45 seconds to name the color of ink of the printed words, 

as quickly as they could.  If the participant made an error, the examiner said ―No‖, and 

the participant corrected the error and then continued with the test.  Scores were 

calculated based on the number of words, and the number of *‘s correctly named.  An 

interference score was calculated using the following formula:  Interference = (number of 

*‗s – number of color names) /number of *‗s x 100 (adapted from Kemper et. al., 2009). 

Procedure 

 The Snellen vision screening test was administered first.  For participants who  
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Figure 3.  Example of a portion of the DSST score sheet 
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passed the vision screening, air-conduction thresholds at octave frequencies between 0.25 

kHz and 8 kHz and bone conduction thresholds at octave frequencies between .5 kHz and  

2000 k Hz were measured in a double-walled, sound-proof booth using a GSI-16 

audiometer with TDH-50 supra-aural earphones (American National Standards Institute, 

2004).  Sentence recognition testing in quiet was then conducted at 70 dB SPL using 25 

sentences from the Connected Speech Test (Cox et. al., 1988) presented through a 

speaker located 1 meter directly in front of the participant (0 degree azimuth).  

Participants were then seated in a quiet room and administered the three cognitive test 

measures (e.g. The Reading Span test, The DSST, and the Stroop test) in a randomized 

order.   

Prior to dual-task testing, primary and secondary task baseline test measures were 

obtained.  The primary-task baseline measure, which consisted of sentence recognition in 

noise performance, was obtained first.  Lists of R-SPIN sentences were presented to 

participants in the presence of a background noise masker (SSN, SIX, TT) in a 

randomized order at 70 dBSPL via a Sony multi-disc CD changer (Sony electronics Inc., 

2011) routed through a GSI-16 audiometer to GSI loudspeakers located 1 meter, at ear 

level, to the left and right of the participant‘s head (45 degrees azimuth).  Participants 

were required to repeat back each sentence they heard during a 4 second silent interval 

that followed the presentation of each sentence.  Performance was scored as the percent 

of final sentence words the participant repeated correctly.   

During a practice primary-task test session, the level of the masker noise was 

adjusted by the examiner to determine the SNR required for each participant to obtain 

approximately 76% correct on the speech recognition in noise task. A fixed overall 
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percent correct performance level was chosen to equate the difficulty of the primary task 

across the three groups of participants, and to avoid any potential floor and ceiling 

effects.  All further sentence recognition in noise testing in this study was conducted for 

each participant using these SNR values. After practice primary task testing, participants 

were presented one list of 50 R-SPIN sentences at 70 dB SPL in each speech noise 

masker condition (e.g. SSN, SIX, TT) at the SNR determined in the practice test session. 

Presentation order of the background noise conditions and sentence lists were randomly 

selected for each participant. Percentage correct was considered the baseline speech 

recognition in noise score.  After each list of 50 R-SPIN sentences was presented, 

participants were asked to rate on a scale of 0 to 100 how easy it was for them to listen to 

the sentences as described in the subjective listening effort section above.  

The secondary-task baseline was then obtained.  The secondary task baseline was 

participants‘ performance on the DPRT measured in quiet.  Participants completed the 

DPRT practice test session first, and then completed a 5 minute DPRT baseline test 

session as described in the DPRT section above. The DPRT was displayed on a 20‖ Dell 

high-definition flat screen monitor placed in front of the participant on a small table. The 

participants‘ average time on target (TOT, %), and distance off the target (pixels) was 

recorded, and considered the baseline DPRT scores. 

Following baseline measurements, the dual-task paradigm was explained and 

administered to participants.  Participants were instructed that repeating the sentences 

was their main task, but that they should also continue tracking the moving target on the 

computer monitor as best they could (Downs, 1982; Feuerstein, 1988; Hicks and Tharpe, 

2002).   During a practice dual-task session, participants repeated 10 R-SPIN sentences in 
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the presence of the SSN and simultaneously tracked the moving target on the ellipse 

displayed on the computer screen. Upon completion of the practice session, participants 

were presented 1 list (e.g. 50 sentences) of the R-SPIN sentences in each of the three 

background noise conditions (TT, SIX, SSN) with no one list repeated during any of the 

testing.  Presentation order of the background noise conditions and sentence lists were 

randomly selected for each participant. Participants were required to repeat back each 

sentence during the 4 second silent interval that followed the presentation of each 

sentence.  Listening and repeating the sentence were done while continuously tracking 

the moving target on the computer screen.  Percentage correct scores, time on target (%) 

and distance from target (pixels) were recorded for each list of R-SPIN sentences 

presented. These scores were considered the dual-task performance scores. All testing 

was completed in two two-hour test sessions.  

 OHI participants performed the procedure described above with Audiosync Now 

NT behind-the-ear (BTE) hearing aids coupled to disposable canal earmolds with no 

venting, bilaterally. Noise reduction algorithms and directional microphones were 

disabled in the hearing aids during all testing.  The gain of the hearing aids was 

determined based on the Desired Sensation Level (DSL) prescriptive method (Scollie et. 

al., 2005).  The DSL targets were generated using the Starkey Inspire 2009 software in 

NOAH, and verified with the Audioscan Verifit VF-1 real ear system (Dorchester, 

Ontario Canada).  The frequency response of the hearing aids was adjusted as necessary 

so that the insertion gain was within 5 dB across the prescribed values for 250, 500, 1000, 

2000 Hz, and within 10 dB for 4000 Hz and 6000 Hz at an input signal of 70 dB SPL for 

each OHI participant.   
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Mean aided and unaided audiometric thresholds for the OHI participants and 

mean unaided thresholds for the YNH and ONH participants from 250 Hz through 4000 

Hz averaged across the right and left ears are shown in figure 1.  OHI participants‘ mean 

aided thresholds were compared to the mean unaided thresholds of the YNH and ONH 

participants using a univariate GLM analysis.  Results revealed significant [F (2, 45) = 

31.8, p = .001] differences in hearing thresholds among the three groups of participants.  

Specifically, post-hoc multiple comparisons, using a Bonferroni adjusted critical alpha 

level, showed that YNH participants had significantly (p =.001) better (e.g. lower) 

audiometric thresholds than both groups of older participants from 250 Hz through 4000 

Hz.   However, there were no significant (p > .05) differences between the ONH 

participants‘ thresholds and the OHI participants‘ mean aided thresholds except at 4000 

Hz, where the OHI participants had significantly (p = .001) poorer (e.g. higher) 

thresholds than the ONH participants.   

In this study, the purpose of the hearing aids was to ensure that the speech 

presented during testing was audible to the OHI participants. Audibility was calculated 

using the Speech Intelligibility Index (SII).  The SII, is a measure, ranging between 0.0 

and 1.0 that is highly correlated with the intelligibility of speech (ANSI, S3.5, 1997), and 

can be used to predict speech recognition scores for specific speech materials (Sherbecoe 

and Studebaker 2003). In this study, SII scores were computed for all participants using 

the online calculation procedure based on the ANSI S3.5-1997 (Methods for Calculation 

of the Speech Intelligibility Index, ANSI, 1997).  SII scores ranged from 0.64 to 0.84 

(M= .7314, SD = .05) for the OHI participants, from .8214 to .8468 for the ONH 

participants (M = .8382, SD = .009) and from .8466 to .8468 for the YNH participants 

http://www.ansi.org/
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(M= .8467, SD = .00007).  These SII scores correspond to 99% speech intelligibility for 

the OHI participants and 100% speech intelligibility for the YNH and ONH participants 

for R-SPIN sentences presented in quiet (Sherbecoe and Studebaker 2003).  Thus, despite 

significant differences in hearing threshold levels between the participant groups, speech 

was audible for all participants in this study.  

Data Analysis 

  Statistical Analysis of the data was performed using the SAS v9.1.3 (SAS, Cary, 

North Carolina) and SPSS v16. (SPSS Inc.,Chicago Ill.) software.  Listening effort was 

analyzed using a split-plot Analysis of Variance (ANOVA) with masker condition (TT, 

SIX, SSN), as the nested subplot factor, and group (YNH, ONH, OHI) as the whole plot 

factor. Cognitive function was analyzed using a one-way ANOVA with the cognitive test 

score (Reading Span test, DSST, Stroop Test) as the dependent variable and group as the 

factor. The relationship between cognitive function and listening effort was assessed 

using Pearson Correlations.  A 0.05 significance level was used for all analyses.  

RESULTS 

Cognitive Measures 

Participants in this study were given a battery of cognitive tests designed to 

measure working memory (Reading Span test), processing speed (DSST) and selective 

attention (Stroop test). Mean scores and standard deviations on the three cognitive tests 

are shown for the three groups of participants in Table 1.  
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Table 1. Means and standard deviations on the cognitive test measures for the young 

normal hearing (YNH), older normal hearing (ONH), and older hearing impaired (OHI) 

groups. 

 
 

On all three tests the YNH participants performed better than the ONH and/or the 

OHI participants, except on the interference measure of the Stroop test.    The group 

means for the cognitive measures were compared using a series of one-way analysis of 

variance (ANOVA) analyses with group as the between subjects factor.  The ANOVAs 

showed significant differences among the three groups of participants for the Reading 

Span test [F (2, 46) = 6.16, p = .004], the DSST [F (2, 46) = 25.18, p = .001], and the 

non-word [F (2, 46) = 18.73 p = .001], color-word [F (2, 46) = 37.35, p = .001] and 

interference scores [F (2, 46) = 4.5, p = .016] on the Stroop test.   
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Post hoc multiple comparisons using a Bonferroni adjusted critical alpha level 

were performed to further examine the effect of group. Results revealed a significant 

difference (p = .003) in Reading Span scores between the YNH and OHI groups. 

Specifically, the OHI participants recalled fewer words correctly on the Reading Span 

Test compared to the YNH participants in the study. However, there were no significant 

differences (p >.05) in Reading Span scores between the two older groups (e.g. ONH and 

OHI) or between the ONH and the YNH participants.   

The YNH group of participants scored significantly higher (p = .001) on the 

DSST (i.e. indicating faster perceptual processing speed) compared to both groups of 

older participants (e.g. ONH and OHI). Also, ONH participants scored significantly (p = 

.043) higher on the DSST compared to OHI participants.   

YNH participants named significantly more blocks of non-words (p< .05) and 

color-words (p<.05) (i.e. indicating better performance) on the Stroop test compared to 

ONH and OHI participants.  OHI participants named significantly (p =.003) fewer blocks 

of non-words than the ONH participants.  The only significant difference in interference 

scores on the Stroop test was between the two groups of older participants. Specifically, 

ONH participants had significantly (p = .02) higher interference scores (i.e. a higher score 

indicates poorer performance) compared to the OHI participants.   

Baseline Measures 

Primary Task Performance 

        The SNR was adjusted so that participants‘ performance on the primary task 

baseline condition, sentence recognition in background noise, was approximately 76% in 
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each of the three background noise masker conditions.  Mean percent correct scores on 

the sentence recognition task are shown for the three masker conditions in Table 2.  

 

Table 2. Means and standard deviations on the sentence recognition task for the young 

normal hearing (YNH), older normal hearing (ONH), and older hearing impaired (OHI) 

groups for the three masker conditions.

 
 

A two-way ANOVA using the factors group and masker revealed no significant 

(p >.05) differences in primary task speech recognition scores within or between the three 

groups of participants.  Thus, equivalent performance on the task by the three groups of 

participants was successfully achieved. 

The mean SNRs for each group of participants needed to obtain the ~76% correct 

scores on the sentence recognition in noise task are shown in Figure 4.  The SNR group 

means were compared using a split-plot ANOVA with group as the whole plot factor and 

background noise masker and as the sub-plot factor. Results revealed significant main 

effects of background noise masker [F (2, 129) = 82.4, p = .001] and group [F (2, 129) = 

90.647, p = .001], but there was no significant (p > .05) interaction between group and 

background noise masker.  To further examine the effect of masker and group, post hoc 

pair-wise comparisons using a Bonferroni adjusted critical alpha level were performed.  

Results indicated that all participants needed significantly (p =.001) more favorable SNRs  
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Figure 4. Mean signal-to-noise ratios (SNR) for 15 YNH (circles), 15 ONH (triangles), 

and 16 OHI (squares) for the three background noise masker conditions. Error bars 

represent +/- one standard error from the mean. 
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to obtain 76% on the R-SPIN in the TT and SIX masker conditions compared to the SSN 

condition, but the most favorable SNRs were required for the TT condition.  This 

indicates that the TT condition was the most difficult for all the participants.  Compared 

to the YNH participants, both groups of older participants needed significantly (p = .000) 

more favorable SNRs in all three masker conditions to achieve ~76% sentence 

recognition score.  The OHI participants required the most favorable SNRs (p = .000) in 

all masker conditions compared to YNH and ONH participants.  

 The relationship between participants‘ cognitive function and speech 

understanding performance (e.g. SNRs) in background noise was evaluated using a series 

of Pearson correlations. See table 3. for the Pearson correlations and p-values in this 

analysis.   

Table 3. Pearson correlations (r), and p-values (p) of the variables in the analysis. 

 

 There was a significant relationship between SNRs in the three background noise 

masker conditions and participants‘ performance on the Reading Span test, the DSST, 

and the non-word and color-word measures of the Stroop test.  However, there was no 

significant (p > .05) relationship between participants‘ speech understanding in 
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background noise and the interference measure of the Stroop test.  

 During primary-task baseline testing, participants were asked to subjectively rate 

the difficulty of the sentence recognition in noise task from 100 (―very, very easy‖) to 0 

(―very, very difficult‖) in each background noise masker condition (SSN, SIX, TT).  

Mean perceived ease of listening rating scores for the TT, SIX, and SSN maskers for the 

three groups of participants are plotted in Figure 5. Group means for perceived ease of 

listening ratings were compared using a split-plot ANOVA analysis with the whole plot 

factor of group and the sub-plot factor background noise masker. Results revealed 

significant main effects of background noise masker [F (2, 129) = 27.4, p = .000] and 

group [F (2, 129) = 7.45, p = .001]. There was no significant (p > .05) interaction 

between group and background noise  

Secondary Task Performance  

          Participants initially practiced the DPRT to determine the tracking speed that was 

required for them to achieve a time on target score of approximately 80% in the 

secondary-task baseline DPRT condition (e.g. performing the DPRT in silence).  Mean 

tracking speeds were 1.85 (SD = .67), 0.88 (SD = .17), and 1.29 (SD = .37) for the YNH, 

ONH, and OHI groups, respectively.  There was a significant difference [one-way 

ANOVA; F (2, 44) = 16.9, p = .001] in tracking speeds across the three groups of 

participants.  Post hoc multiple comparisons using a Bonferroni adjusted critical alpha 

level revealed that the YNH participants‘ tracking speed was significantly faster (p = 

.001) than both groups of older participants. However, there was no significant difference 

(p > .05) in tracking speed between the two older groups.   
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Figure 5. Mean perceived ease of listening rating scores for 15 YNH (triangles), 15 ONH 

(circles), and 16 OHI (squares) for the three background noise masker conditions. Error 

bars represent +/- one standard error from the mean.  
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Baseline time on target scores were 77.6% (SD = 4.1), 82.3% (SD = 2.1), and 80.03% 

(SD = 4.5) for the YNH, ONH, and OHI groups, respectively. A one-way ANOVA [F (2, 

44) = 5.8, p = .004] showed a significant difference in baseline time on target scores 

between the groups.  Specifically, post hoc multiple comparisons using a Bonferroni 

adjusted critical alpha level, revealed that time on target scores were significantly 

different between the younger and older normal hearing participants.  Baseline tracking 

error scores (distance from target measured in pixels) were 12.8 (SD = 1.6), 26.7 (SD = 

9.9) and 24 (SD = 8.8) for the YNH, ONH, and OHI groups, respectively. Tracking error 

for the younger participants was significantly lower than that of the two groups of older 

participants but, there was no difference in tracking error scores between the two groups 

of older adults [one-way ANOVA; F (2,44) = 13.5, p = .001; post-hoc multiple 

comparison using Bonferroni adjusted critical alpha level, p= .001].  Thus, when the 

participants were off the target during baseline testing, older participants were off by a 

significantly greater distance than younger participants. 

Experimental Measures 

Dual-Task Performance 

 In a dual-task paradigm it is critical that a participant‘s performance on the 

primary task (e.g. speech recognition in noise) remains stable throughout the experiment. 

This is because listening effort is calculated as the change in a participant‘s performance 

on the secondary task (e.g. DPRT) from the baseline to the dual-task condition, while 

their performance on the primary task remains constant. To ensure the participants in this 

study maintained their performance on the primary task, we compared their speech 

recognition scores obtained on the baseline primary task and dual-task conditions (see 
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Figure 6).  A series of paired samples t-tests were used to compare baseline primary task 

sentence recognition scores in each background noise condition to participants‘ sentence 

recognition scores in three background noises in the dual-task condition.  Results 

revealed no significant (p > .05) differences in sentence recognition scores between the 

primary task and dual-task scores in the SSN (t = -1.979), SIX (t = -1.86) and TT (t = -

.047) masker conditions.  Using a split-plot ANOVA, group means for sentence 

recognition scores in the dual-task condition were compared using the whole plot factor 

group and the sub-plot factor background noise masker. Results revealed that there were 

no significant (p > .05) differences in sentence recognition scores on the dual-task within 

or between the three groups of participants.  Thus, there were no significant differences 

between speech recognition scores within or between the three groups of participants.  

 Listening effort in this study was calculated as the change in DPRT performance 

from the secondary baseline task (e.g.  DPRT performance obtained quiet without any 

speech signal) to the dual-task condition.  To control for differences in baseline DPRT 

performance among individual participants, listening effort was computed using the 

formula: 

 Listening effort = 100 * (Baseline – Dual Task) / Baseline (Adapted from Kemper et. al., 

2009).  

 Initially, listening effort was computed individually for both measures of tracking 

performance (time on target (%) and distance from target (pixels)). However, no 

significant (p > .05) changes in the distance from target scores were observed between 

the dual-task and secondary-task baseline conditions and therefore not given any further  
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Figure 6. Mean sentence recognition scores in the primary-task (circles) and the dual-

task (triangles) conditions for all 46 participants  for the three background noise maskers. 

Error bars represent +/- one standard deviation from the mean.  
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consideration.  

   Mean listening effort scores for the TT, SIX, and SSN maskers for the three 

groups of participants are plotted in Figure 7.  To compare differences in listening effort 

across the three groups of participants, a 3x3x2x2 split-plot ANOVA was performed on 

the factors background noise masker (e.g. TT, SIX, SSN), linguistic context cues (high 

context and low context), response type (listening and verbal repeating) and group (e.g. 

YNH, ONH, OHI).  Results indicated a significant  

interaction of masker x group [F (4, 473) = 7.21, p < .001] and significant main effects of 

group [F (2, 43) = 4.29, p = .0201] and response type [F (1, 473 = 34.87, p < .0001].       

Post-hoc pair wise comparisons using a Tukey‘s adjusted critical alpha level to 

control for experimentwise error indicated that YNH participants exerted significantly (p 

= .018) more effort in the SIX masker condition compared to the SSN and TT conditions. 

ONH and OHI participants‘ expended significantly (p< .05) more effort than YNH 

participants when processing speech in background noise in the TT and SSN masker 

conditions relative to the SIX condition.  However, there was no significant difference in 

listening effort between the two groups of older participants and the YNH participants in 

the SIX masker condition, or between the ONH and OHI groups for any of the masker 

conditions. This suggests that aging is the primary reason why the older participants 

exerted more listening effort than the younger participants. 

On any sentence recognition task, participants must listen to the sentence 

presented and then verbally repeat the sentence.  To compare the listening effort 

expended on the sentence recognition in noise task when the participant listened to the 

sentence to when they verbally repeated the sentence, listening effort was calculated  
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Figure 7. Mean objective listening effort scores for  the 15 YNH (triangles), 15 ONH 

(circles) and the 16 OHI (squares) participants  for the three background noise masker 

conditions. Error bars represent +/- one standard error from the mean.  
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separately for each. These measures were included in the analysis above as the factor 

―response type‖.  All three groups of participants expended significantly more listening 

effort, across the three masker conditions, when listening to sentences compared to when 

they verbally repeated the sentences (see figure 8).   

 To compare participants‘ speech recognition performance for high verses low 

context sentences, percent correct scores were calculated separately for the high and low 

context subsets of each R-SPIN sentence list.  All three groups of participants in this 

study scored better on the high context compared to the low context sentences.  

Specifically, the differences in percent correct scores for the high and low context 

sentences were 17.71 (SD= 12.25), 8 (SD = 11. 59) and 22 (SD = 10.01) for the YNH 

group, 24.31 (SD = 9.7), 27.07 (SD = 10.3), and 28.30 (SD = 6.8) for the ONH group, 

and 24.92 (SD = 9.95), 22.42 (SD = 8.45) and 25.14 (SD = 7.59) for the OHI group on 

the TT, SIX, and SSN masker conditions, respectively. 

The group means for the difference in sentence recognition scores for the high 

and low context conditions were compared using a split-plot ANOVA with the factors 

whole plot factor group and sub-plot factor background noise masker.  Results revealed 

significant main effects for masker [F (2, 113) = 3.83, p = .025] and group [F (2, 113) = 

13.386, p = .001].  The interaction between group and masker was not significant (p > 

.05).  Post-hoc pair wise comparisons using a Bonferroni adjusted critical alpha level 

indicated that the difference between high and low context performance scores was 

significantly (p = .020) less for the SIX masker condition compared to the SSN condition.  

However, there were no significant (p >.05) difference between the TT and SIX or the TT  
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Figure 8. Mean listening effort scores collapsed across all three masker conditions for all 

46 participants when listening and verbally repeating R-Spin sentences. Error bars 

represent +/- 1 standard error of the mean.  
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and SSN masker conditions. Both groups of older participants (ONH and OHI) had 

significantly (p = .000) greater differences in performance scores between the high and 

low context conditions compared to the YNH participants.  However, there was no 

significant (p > .05) differences in scores between the two older groups.  This suggests 

that the older participants, independent of peripheral hearing impairment, benefited more 

from the contextual cues in the sentences than the younger participants.   

Despite significant differences in percent correct scores for the high and low 

context conditions, there were no differences in the amount of listening effort 

participants‘ expended on the high and low context sentences of the R-SPIN across 

masker conditions for all three groups of participants (see figure 9).   

  To examine how individual differences in cognitive ability affect listening effort, 

a series of Pearson correlations were used to determine the strength of association 

between the variables listening effort and participants‘ performance on the three 

cognitive tests, the Reading Span, the DSST, and the Stroop (see Table 4).  

Table 4. Pearson correlations (r), and p-values (p) of the variables in the analysis. 
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Figure 9. Mean listening effort scores collapsed across all three masker conditions for all 

46 participants for high and low context R-Spin sentences. Error bars represent +/- 1 

standard error of the mean.  
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Results revealed that listening effort in the SSN condition was significantly (p< .05) 

negatively correlated with participants‘ performance on the Reading Span test, the DSST, 

and the non-word and color-word measures of the Stroop test.  In addition, listening 

effort in the TT condition was significantly (p < .05) negatively correlated with 

participants‘ performance on the Reading span test, and the non-word measure of the 

Stroop test.  There were no significant (p > .05) correlations observed between listening 

effort in the SIX condition and participants‘ performance on any of the cognitive 

measures in this study. 

 YNH participants perceived, based on their subjective ratings, the listening tasks 

to be more difficult than was objectively measured using the dual-task paradigm, and 

ONH and OHI participants perceived the listening tasks to be less difficult than was 

objectively measured.  The relationship between objective and subjective measures of 

listening effort was examined using a Pearson correlation.  Results revealed there were no 

significant (p >.05) correlations between subjective ease of listening rating scores and 

objective listening effort scores in any of the three background noise masker conditions.  

DISCUSSION 

In the present study we examined the association between cognitive function, 

listening effort and speech recognition in background noise in younger and older listeners 

with normal hearing and older listeners with hearing impairment. To better understand 

this complex relationship, we used traditional speech recognition in noise tasks, cognitive 

measures, and measures of subjective and objective listening effort.    

Speech Recognition in Noise 
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 Findings from the present study support the complaint often cited by older adults 

that understanding speech in noisy listening situations can be challenging.  Specifically, 

both groups of older individuals in this study (e.g. ONH, OHI) had more difficulty 

understanding sentences in non-speech (SSN) and speech (SIX, TT) background noise 

maskers compared to younger individuals.  Specifically, the older participants‘ required 

significantly more favorable SNRs in all three background noise masker conditions 

compared to the younger participants to obtain the same recognition score.  As was 

expected, the older participants with hearing loss had the most difficulty across all the 

listening conditions, and thus required the most favorable SNRs of the three groups.  

The connection between age and speech understanding in noise has been reported 

in several studies (e.g. CHABA, 1988; Frisina & Frisina, 1997; Dubno et. al. (1984); 

Gordon-Salant & Fitzgibbons, 1999).  In general, these studies suggest an individual‘s 

ability to understand speech in background noise decreases with age because cognitive 

function declines with age (Baltes & Lindenberger, 1997).  For example, Gordon-Salant 

& Fitzgibbons (1999) found that older listeners, independent of peripheral hearing 

impairment, performed more poorly on a sentence recognition in noise task than younger 

listeners. They concluded that age-related changes in speech recognition performance 

were most likely associated with deterioration of cognitive processing mechanisms due to 

age. Other studies, however, have not found a significant relationship between age and 

speech understanding (e.g. Humes & Roberts, 1990; Souza & Turner, 1994).  These 

studies contend that older listeners‘ difficulty understanding speech in noise is due to 

elevated peripheral hearing thresholds.  Thus, while it is widely cited in the literature that 

speech recognition in noise is more difficult for older participants compared to their 
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younger counterparts (e.g. CHABA, 1988; Frisina & Frisina, 1997; Dubno et. al., 1984; 

Gordon-Salant & Fitzgibbons, 1997; Humes & Roberts, 1990; Souza & Turner, 1994), 

there is less of a consensus among researchers as to why older participants have more 

difficulty understanding speech in background noise. 

In the current study we found that older listeners, in general, had more difficulty 

understanding speech in noise than younger listeners, but the older listeners with hearing 

loss had the most difficulty understanding speech across all listening conditions.  This 

suggests that a combination of peripheral hearing loss and age-related cognitive changes 

contribute to older listeners‘ difficulty understanding speech in noise.  If older listeners‘ 

increased difficulty understanding speech in noise could be accounted for entirely by 

peripheral hearing loss, then we should not have observed any differences in speech in 

noise performance between the younger and older normal hearing groups.  However, this 

was not the case.   

Background Noise Maskers 

  In the current study, we assessed speech understanding in noise using three 

different background noise maskers (e.g. SSN, SIX, TT) that represent a continuum of 

masking difficulty from the least difficult non-speech masker (e.g. SSN) to most difficult 

two- talker masker (e.g. TT).  Other studies using similar background noise maskers (e.g. 

Freyman et. al., 1999; 2007) have also shown that a two-talker female masker will create 

the most difficult listening condition when the target is a female talker due to the addition 

of  informational masking (e.g. Freyman et. al., 2004; Helfer and Freyman, 2008; Yost, 

Dye, & Sheft, 1996).    For example, when speech is presented in a competing speech 

environment (e.g. TT), masking processes exist beyond those normally attributable to 
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traditional energetic masking.  This additional informational masking is thought to 

interfere with the processing of the target signal at more of a cognitive level.  

The greatest amount of informational masking occurs when confusion between 

the target and masker voices is greatest (Freyman et. al., 1999).  This is consistent with 

our finding that all three groups of participants (e.g. YNH, ONH, OHI) required the most 

favorable SNRs in the TT masker condition and the least favorable SNRs in the SSN 

masker condition, to achieve the same overall performance score (e.g. 76% correct).  In 

fact, our results are consistent with numerous studies (e.g. Arbogast, Mason, and Kidd, 

2005; Brungart, Simpson, Ericson and Scott, 2001; Brungart, 2001; Carhart, Tillman and 

Greetis, 1969; Oh and Lufti, 1998; Freyman, Helfer, McCall and Clifton, 1999; Freyman, 

Balakrishnan, and Helfer, 2004; Helfer and Freyman, 2008) that have shown listeners 

experience more difficulty understanding a target speech signal when it is presented in a 

background noise of two competing talkers compared to more than two-talkers (e.g. SIX) 

and non-speech noises (e.g. SSN).   

 To evaluate the role informational masking may have played in the present study, 

we compared the difference in SNRs between the two-talker (TT) and speech-shaped 

noise (SSN) listening conditions for each participant.  We selected these two conditions 

because the TT masker has been shown to have the most informational masking and the 

SSN masker the least (Freyman et. al., 2007). A one-Way ANOVA revealed a significant 

[F (2, 45) = 5.334, p = .009] difference across the three participant groups. Post hoc 

multiple comparisons, using a Bonferroni adjusted critical alpha level, showed that the 

ONH participants had a greater difference in SNRs (5.63 dB, SD = 1.31) between the TT 

and SSN conditions compared to the YNH (4.13 dB, SD= 1.72), and the OHI (3.86 dB, 
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SD = 1.8) participants.  There was no significant (p>.05) difference between 

informational masking effects for the YNH and OHI groups. This suggests that the ONH 

participants in our study were most susceptible to the effects of informational masking. 

This finding is consistent with Tillman, Carhart, and Nicholls (1973) who found that 

older participants with normal hearing are more susceptible to informational masking of 

speech than younger participants.  

  Several studies have shown that hearing impaired listeners, independent of age, 

are less susceptible to the effects of informational masking than listeners with normal 

hearing (e.g. Alexander and Lutfi, 2004; Arbogast, Mason, and Kidd, 2005; Hornsby, 

Ricketts and Johnson, 2006).  It has been suggested that differences in masker sensation 

levels (SL) may account for these differences (Alexander and Lutfi, 2004; Arbogast, 

Mason, and Kidd, 2005).  Specifically, the smaller the SL (i.e. the range between a 

participant‘s hearing threshold and the presentation level of the signal), the smaller the 

informational masking effects.  This may account for why the hearing impaired 

participants in the current study obtained the smallest difference in SNRs between the TT 

and SSN masker conditions.  Thus, although the OHI participants in our study wore 

bilateral hearing aids to ensure audibility, their aided hearing thresholds above 2000 Hz 

were poorer than the hearing thresholds of the other two groups of participants (See 

figure 1).  Given that we used a fixed presentation level, it is possible that differences in 

SL may have influenced our results.   

 We did not specifically measure or control for SLs in this study, because our 

primary purpose was to examine the relationship between speech recognition and 

cognition among older and younger listeners, not to explicitly measure the effects of 
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informational masking.  Thus, rather than equating SLs between groups, we were more 

interested in maximizing the audibility of speech presented at a normal conversational 

level. 

Cognitive Function 

  In the current study, we measured three aspects of cognitive function, working 

memory, processing speed and selective attention, all of which have been shown to be 

important for understanding speech as well as to deteriorate with age (CHABA, 1988).  

Consistent with other studies (e.g. Hoyer et. al., 2004; Kemper et. al., 2008; Salthouse, 

1985),  the older participants in our study showed reduced working memory, processing 

speed and selective attention abilities compared to the younger participants.  Most 

interestingly, the results from our study confirm that there is a significant relationship 

between participants‘ cognitive function (i.e working memory and processing speed) and 

speech recognition performance in non-speech and speech background noise maskers.  

Our finding is consistent with studies that have shown a significant correlation between 

speech recognition in noise and working memory (e.g. Akeroyd, 2008; Foo et. al., 2007; 

Lunner, 2003; Rudner et. al., 2007; Rudner et. al., 2008) and perceptual processing speed 

(e.g. Wingfield et. al., 1985).   

Somewhat surprising was the lack of a relationship between participants‘ selective 

attention, as measured by the interference score on the Stroop test, and their speech 

recognition performance in noise score. One exception, was the significant relationship 

between OHI participants‘ speech understanding performance in the SSN condition and 

their interference score on the Stroop test (r = -.657, p = .004).  Intuitively, proficiency in 

being able to selectively attend to a target should be important for all listeners in 



67 
 

discriminating between a target voice and a background noise masker. However, our 

results suggests that participants‘ working memory and processing speed  abilities are 

more predictive of speech understanding performance in noise than selective attention.   

Objective Listening Effort 

  In the current study, we used a dual-task paradigm to assess objective listening 

effort in younger and older participants on a speech recognition in noise task.  

Specifically, we used a visual rotor tracking task (i.e DPRT) as the secondary task, and a 

sentence recognition in noise test as the primary task.  Listening effort was calculated as 

the change in a participant‘s performance on the secondary task (DPRT) from the 

baseline to the dual-task condition, while performance on the primary task remained 

constant.   We found that the older participants‘ (ONH, OHI) expended significantly 

more listening effort to understand speech in the TT and SSN background noise masker 

conditions than the younger participants. Thus, older adults needed to expend more effort 

than younger adults to obtain similar speech recognition scores (e.g. ~76%) on the TT 

and SSN masker conditions.  This finding is consistent with fMRI studies that have 

shown increased neural activation in the cognitive brain regions (e.g. prefrontal cortex) of 

older adults‘ who are able to obtain similar performance scores on a speech recognition in 

noise task as younger adults (Desjardins et. al., 2009; Wong et. al., 2009). Interestingly, 

no significant difference in listening effort was observed between the ONH and OHI 

participants in this study.  This suggests that the older adults, independent of peripheral 

hearing loss, required more cognitive resources to understand speech in background 

noise, which left them with fewer resources to perform the secondary task (e.g. DPRT), 

than younger adults. 
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 The listening effort results from this study demonstrate that overall percent 

correct scores on speech recognition tasks provide only a general measure of listeners‘ 

speech perception abilities.  They do not provide insight into the factors that contribute to 

a listener‘s performance score (e.g. listening effort).  For example, the older and younger 

listeners in this study achieved the same percent correct scores (~76%) on the sentence 

recognition in noise tasks.  Based on speech recognition scores alone, one would 

conclude that there was no difference in these participants‘ ability to understand speech 

in background noise. However, the older participants‘ in this study expended 

approximately eight times more effort than the younger participants to obtain a 76% 

correct score on the SSN masker condition.  If this were a real life listening situation, one 

could imagine the older person would fatigue sooner than the younger listener and stop 

engaging in the listening situation. 

 Thus, this finding highlights the importance of instituting multiple measures of 

speech recognition performance (e.g. speech recognition and listening effort) into clinical 

and research audiological practice.  Currently, speech recognition testing is an integral 

part of a hearing evaluation however, assessing listening effort is not.  When speech 

recognition ability is based solely on a listener‘s speech recognition score, it could 

mislead the clinician or researcher to assume an individual has little difficulty 

understanding speech in noise, when in fact it could be very challenging for the 

individual. 

 Several listening effort and speech recognition in noise studies have reported 

similar decrements on secondary task performance (e.g. Sarampalis, Kalluri, Edwards, 

Hafter, 2009; Downs, 1982; Gosselin and Gagne, 2010).  Most recently, Gosselin and 
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Gagne (2010) used a dual-task paradigm to investigate listening effort and speech 

recognition in noise for younger and older adults.  The primary task was a closed set 

sentence recognition test presented in a pink noise masker at a fixed SNR (e.g. -12 SNR) 

and at an equated performance level of 80%.  The secondary task was a vibro-tactile 

pattern recognition test on which participants were asked to identify pulse combinations 

(e.g. long-short-long) emanating from a vibrating device that they held in their hand.  

Listening effort was defined as the change in the participant‘s performance from the 

baseline to the dual-task condition on the secondary vibro-tactile test.  They found that 

older adults expended more listening effort than younger adults in both the fixed SNR 

and equated performance conditions.  They concluded that this increased listening effort 

was likely due to a combination of age-related changes in sensory and cognitive function.  

However, such an interpretation is difficult because the authors did not control for 

sensory function (i.e. hearing threshold level were only screened at 25 dBHL from 250 to 

2000 Hz).  In addition, they did not employ any formal measures of cognitive function, 

they only screened for gross cognitive impairment.   

 The general trend reported by Gosselin and Gagne (2010) that older adults expend 

more listening effort than younger adults when understanding speech in a non-speech 

background noise is consistent with our results.  It would be interesting to compare the 

amount of listening effort expended by the younger and older adults in the two studies 

however, because the methods were different across studies it is not possible.   Although 

both studies used a dual-task paradigm and quantified listening effort as the difference 

between the baseline secondary task and dual-task conditions, the secondary tasks used in 

the two studies were very different.  Specifically, in our study we used a visual tracking 
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task (DPRT), and Gosselin and Gagne used a tactile task.  Unfortunately, because 

objectively measuring listening effort is relatively new in audiology, standard methods of 

measurement do not exist.   Thus, it is challenging and often impossible to make direct 

comparisons across studies. 

 Although only assumed in many studies, we directly measured a relationship 

between listening effort on a speech recognition in noise task and cognitive ability.  

Specifically, the listening effort participants‘ expended on the sentence recognition in 

noise task in SSN and TT masker conditions was significantly associated with their 

working memory, and processing speed performance.  This result is consistent with the 

many studies that have suggested listening in noise is more difficult and effortful for 

older participants because they must exert more cognitive resources to maintain listening 

performance similar to younger normal-hearing participants (Desjardins, et. al. 2009; 

Hallgren, Larsby, Lyxell & Arlinger, 2005; Humes, 2007).  

 Further support for our finding comes from a recent MRI study (Wong et. al., 

2010) which reported a strong relationship between speech recognition in noise and 

cognitive function. Specifically, Wong et. al. (2010) examined speech recognition in 

noise in a group of older and younger adults with normal hearing thresholds using 

behavioral and MRI measures.  They found that older adults who performed poorest on 

the behavioral speech understanding in noise task had a smaller prefrontal cortex volume 

and thickness compared to younger and older listeners who performed best on the speech 

recognition in noise task. They describe their results as consistent with the neural 

compensation hypothesis, which states that some older adults are able to compensate for 

declines in performance by recruiting more general cognitive areas of the brain (e.g. 
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prefrontal cortex).   

 It was surprising that the only significant difference in listening effort across the 

three masker conditions, despite significant differences in SNRs, was between the SSN 

and SIX masker conditions for the YNH group of participants.  Specifically, the YNH 

group expended more listening effort on the SIX masker condition than the SSN 

condition.  We expected that all participants would expend more effort on the most 

―difficult‖ masker condition (e.g. TT). One explanation may be that the DPRT baseline of 

80% time-on-target was too easy for participants, and therefore, not sensitive enough to 

detect differences in effort across the masker conditions.  For example, if the baseline 

level was too easy, it is likely that changes in DPRT performance (e.g. listening effort) 

would occur only if there were very large differences in the difficulty between conditions.  

In the current study, however, there were relatively small differences (e.g. only 2-5 dB 

SNR) in difficulty between the conditions.   

  We chose to use a DPRT baseline level of 80% time-on-target performance in this 

study based on previously reported DPRT results from younger and older participants 

(Kemper et. al., 2009). Our study, however, was the first to use the DPRT to measure 

effort on a listening task and the first to measure listening effort across different masker 

conditions.  By using this baseline level, we were able to equate the difficulty of the 

secondary task across the three groups of participants, and avoid floor and ceiling effects 

on performance.  However, in future studies,  it may be beneficial to perform more 

extensive pilot testing of DPRT baseline performance levels in order to determine the 

best level for detecting small changes in listening effort across masker conditions. 

  Another possible reason why we did not find significant differences in listening 
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effort across the three masker conditions was because we equated the participants‘ 

performance (76%) on the primary speech recognition in noise task.  Specifically, the 

examiner adjusted the SNRs for each participant in each masker condition to generate 

approximately 76% correct scores on the task. We chose to equate performance across 

the three groups of participants and the three masker conditions to make the primary task 

equally difficult, and to avoid any potential floor and ceiling effects.  However, if we had 

used a fixed SNR across the masker conditions, simulating more real world listening 

conditions, the TT listening condition would have been more difficult compared to the 

SSN condition, and more difficult for the OHI group compared to the YNH group. For 

example, one OHI participant in this study required the SNR to be adjusted 5 dB between 

the SSN and TT masker conditions. In theory, if we had used a fixed SNR in this study, 

the difference in performance between these two masker conditions could have been as 

much as 50% (Duquesnoy, 1983).  Thus, by using a fixed SNR, we would have expected 

to observe greater differences in listening effort across the masker conditions, but at the 

same time we would have likely encountered floor effects.   

Listening vs. Repeating Sentences 

  To better understand how listeners‘ process speech in noise we measured listening 

effort while they were listening to the sentence and when they were verbally repeating the 

sentence (e.g. responding).  We found that all listeners expended more effort when 

listening to the sentences compared to when they verbally repeated the sentences.  This 

was consistent across participant groups and masker type for high and low context 

sentences.  Thus, the participants‘ general processing strategy was to expend more 

processing resources when the sentences were initially presented and fewer resources 
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when they repeated the sentences back.  Thus, participants were able to expend the 

majority of processing resources to decipher rather than to produce the sentence. If the 

listeners in this study had neurological impairments or articulation disorders then this 

strategy may have been different. 

Contextual Cues 

  To compare participants‘ speech recognition performance for high verses low 

context sentences, percent correct scores were calculated separately for the high and low 

context subsets of each R-SPIN sentence list.  Results showed that all three groups of 

participants in this study scored significantly better on the high context compared to the 

low context sentences.  However, the difference between high and low context scores 

was significantly greater for both groups of older participants compared to the younger 

participants.  This suggests that the older participants, independent of peripheral hearing 

impairment, benefited more from the contextual cues in the sentences than the younger 

participants. 

 That is, the older adults with and without hearing impairment derived more 

benefit from the contextual cues in the sentences than the younger adults.  Pichora-Fuller 

et. al. (1995) reported a similar result regarding younger and older listeners‘ ability to 

process high and low context sentences in background noise.  Specifically, they found a 

significant difference in the psychometric functions for high and low context SPIN 

sentences in younger and older adults.  They concluded that in difficult listening 

situations, older listeners must rely more on the context in sentences to decipher the 

target signal than younger listeners. Furthermore, they state that older adults‘ reliance on 

contextual cues requires them to expend greater listening effort to understand speech in 
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background noise compared to younger adults. 

 If this assumption is true, we would have expected to observe a significant 

difference in listening effort between the older and younger participant groups, which we 

did. However, we did not observe any difference when we measured listening effort 

separately for the high and low context sentences across or within the participant groups.  

 Initially, we assumed that the low context sentences, which were significantly 

more difficult to recognize than the high context sentences, would require participants‘ to 

expend more listening effort to process.  However, based on Pichora-Fuller et. al. ‗s 

(1995) assumption, the high context sentences should have required participants to 

expend more listening effort to process the contextual information. Although we did 

observe a difference in overall listening effort across the younger and older participant 

groups, that is both groups of older participants expended significantly more listening 

effort understanding speech in background noise compared to the younger participants,  

the listening effort for the high and low context sentences was the same.  Again this may 

be because the relatively high baseline performance (e.g. 80% TOT) we selected for the 

DPRT was not sensitive enough to pick up a difference in listening effort between the 

high and low context sentence conditions.  

Subjective Listening Effort 

  We  asked participants‘ to subjectively rate how easy it was to listen to sentences 

in each of the three background noise masker conditions using a scale of 0 to 100, with 0 

being defined as very, very difficult and 100 being defined as very, very easy.  All three 

participant groups rated the SSN masker condition the easiest and TT masker condition to 

be the most difficult.  Thus, the participants‘ ratings were consistent with the continuum 
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of difficulty across the masker conditions.  Interestingly, the OHI group rated listening to 

be relatively easier across all three masker conditions compared to the ONH and YNH 

groups.  We assumed that the OHI group would rate the three listening tasks to be the 

most difficult compared to the ONH and YNH groups, because they required the most 

favorable SNRs across the masker conditions. However, perhaps because the OHI 

participants find noisy everyday listening situations to be extremely challenging, our 

SNR adjustment to make speech recognition 76% correct was easier for them than they 

are typically used to when listening in noise in ―real life‖..   

 We found no significant relationship between objective measures of listening 

effort (e.g. changes in DPRT performance) and subjective ease of listening ratings 

regardless of masker condition or participant group.  Specifically, the YNH participants 

subjectively rated the listening in noise task to be more effortful in all three masker 

conditions, compared to their objective listening effort scores.  Conversely, the older 

participants (ONH and OHI) subjectively rated the listening in noise task to be less 

effortful across the three masker conditions compared to their respective objective 

listening effort scores.  This finding is consistent with several studies which have 

examined objective and subjective measures of listening effort in adults (e.g. Downs & 

Crum, 1978; Feuerstein, 1992; Gosslein & Gagne, 2010).  For example, Feurerstein 

(1992) used a subjective rating scale ranging from difficult (e.g. 0) to easy (e.g. 100) to 

examine perceived ease of listening, and a reaction time task to measure objective 

listening effort. He found that while the ease of listening ratings were correlated with 

performance accuracy on the primary speech task, objective measures of listening effort 

were not correlated with subjective ratings. He suggested that while subjective ease of 
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listening ratings may provide an indication of one‘s perception of effort or ease of 

listening in a listening situation, they do not appear to reflect the availability or demand 

on processing resources (Wickens, 1992).  In other words, although listeners may expend 

more resources to recognize speech in noise they may not always be able to perceive this 

increase.    

CONCLUSIONS 

 In summary, the primary findings from this study are: 

1) Older listeners with and without hearing loss expend significantly more objective 

listening effort than younger listeners to obtain the same speech recognition score 

in a TT and SSN background noise.   

2) Older listeners, regardless of peripheral hearing impairment, expend the same 

objective listening effort to understand speech spoken in both  speech and non-

speech background noise maskers. 

3) Working memory and processing speed are significantly associated with speech 

recognition performance in noise (speech and non-speech) for both younger and 

older listeners. 

4)  Working memory and processing speed are significantly correlated with 

objective listening effort on speech in noise recognition tasks (two-talker and 

speech-shaped noise maskers). 

5) The amount of listening effort adults expend on a speech in noise task differs 

based on whether it is quantified using a subjective or objective measure of 
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listening effort. 
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