
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1999

Thoughts on the structure of an MPJ reference implementation Thoughts on the structure of an MPJ reference implementation

Mark Baker
Syracuse University

Bryan Carpenter
Syracuse University, Northeast Parallel Architectures Center, dbc@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Baker, Mark and Carpenter, Bryan, "Thoughts on the structure of an MPJ reference implementation"
(1999). Northeast Parallel Architecture Center. 53.
https://surface.syr.edu/npac/53

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized administrator
of SURFACE. For more information, please contact surface@syr.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215676837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/53?utm_source=surface.syr.edu%2Fnpac%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Thoughts on the structure of anMPJ reference implementationMark Baker and Bryan CarpenterCRPC-TR99803October 1999Center for Research on Parallel ComputationRice University6100 South Main StreetCRPC - MS 41Houston, TX 77005Submitted November 1999

Thoughts on the struture of an MPJ refereneimplementation.Mark Baker�and Bryan CarpenterNPAC at Syrause UniversitySyrause, NY 13244Mark.Baker�port.a.uk,db�npa.syr.eduOtober 28, 1999AbstratWe sketh a proposed referene implementation for MPJ, the JavaGrande Forum's MPI-like message-passing API [9, 3℄. The proposal re-lies heavily on RMI and Jini for �nding omputational resoures, reatingslave proesses, and handling failures. User-level ommuniation is imple-mented eÆiently diretly on top of Java sokets.

�Current address: University of Portsmouth, UK

Contents1 Introdution 32 Some design deisions 43 Overview of the Arhiteture 74 Proess reation and monitoring 84.1 The MPJ daemon . 94.2 The MPJ slave . 104.3 The MPJ lient . 114.4 Handling MPJ aborts|Jini events 124.5 Other failures|Jini leasing . 125 Sketh of a \Devie-Level" API for MPJ 135.1 Minimal API . 135.2 Implementation notes . 145.3 Eager send protool . 145.4 Rendezvous protool . 17

2

1 IntrodutionThe Message-Passing Working Group of the Java Grande Forum was formedabout a year ago as a response to the appearane of several prototype Javabindings for MPI-like libraries. An initial draft for a ommon API spei�ationwas distributed at Superomputing '98. Sine then the working group has metin San Franiso and Syrause. The nasent API is now alled MPJ.Presently there is no omplete implementation of the draft spei�ation. Ourown Java message-passing interfae, mpiJava, is moving towards the \standard".The new version 1.2 of the software supports diret ommuniation of objetsvia objet serialization, whih is an important step towards implementing thespei�ation in [3℄. One a few remaining open questions about the spei�ationhave been resolved, we will release a version 1.3 of mpiJava, implementing thenew API. Most likely this will be the �rst \referene implementation" for thatAPI, although some other groups have related e�orts.The mpiJava wrappers rely on the availability of platform-dependent nativeMPI implementation for the target omputer. While this is a reasonable basisin many ases, the approah has some disadvantages� The two-stage installation proedure|get and build native MPI then in-stall and math Java wrappers|is tedious and probably o�-putting tonew users. Systems like MPICH made onsiderable strides in terms of easeof installation on diverse platforms, but historially software for parallelomputing has been relatively hard to install and on�gure for di�erentplatforms. Presumably this has not failitated its wider uptake. In anyase, the \wrapper" approah to implementing MPJ aggravates mattersbeause it adds one more step to this proess.� On several oasions in the development of mpiJava we saw onits be-tween the JVM environment and the native MPI runtime behaviour. Thesituation has improved, and mpiJava now runs on various ombinationsof JVM and MPI implementation. Some problems remain. A persistentone relates to onurrent operations involving the same Java array. Theseought to be allowed if the onurrent operations refer to disjoint setionsof the array. But the way the Java Native Interfae mehanism interatswith the data in Java arrays means that unexpeted results may our.� Finally, this strategy simply onits with the ethos of Java, where pure-Java, write-one-run-anywhere software is the order of the day.Ideally, the �rst two problems would be addressed by the providers of the originalnative MPI pakage. We envisage that they ould provide a Java interfae bun-dled with their C and Fortran bindings, avoiding the the headahe of separatelyinstalling the native software and Java wrapper. Also they are presumably inthe best position to iron-out low-level onits between the MPI library and theJava runtime. Hene we an only enourage vendors and other providers of MPIsoftware to onsider releasing Java wrapper software (whih ould be based on3

the publi domain mpiJava, for example) along with their ore software. Ulti-mately, suh pakages would probably represent the fastest, industrial-strengthimplementations of MPJ.Meanwhile, to address the last shortoming listed above, this report onsid-ers prodution of a pure-Java referene implementation for MPJ. Design goalsare that the system should be as easy to install on distributed systems as we anreasonably make it, and that it be suÆiently robust enough to be useable in anInternet environment1. Ease of installation and use are speial onerns to us.We want a pakage that will be useable not only by experiened researhers andengineers, but also in, say, an eduational ontext. A orollary of easy installa-tion is that the software should only depend on other systems that are widelyinstalled. A minimum requirement is a Java development environment, inlud-ing RMI. Beyond this we assume the installation of some Jini software. Thistehnology is relatively new, but it seems likely that it will beome pervasive inJava-aware environments.We are by no means the �rst people to onsider implementing MPI-likefuntionality in pure Java, and working systems have already been reported in[8, 6℄, for example. The goal here is to build on the some lessons learnt in thoseearlier systems, and produe software that is standalone, easy-to-use, robust,and fully implements the spei�ation of [3℄.This reportSetion 2 reviews our design goals, and desribes some deisions followed fromthese goals. Setion 3 reviews the proposed arhiteture. Various distributedprogramming issues posed by omputing in an unreliable environment are dis-ussed in Setion 4, whih overs basi proess reation and monitoring. Thissetion assumes free use of RMI and Jini. Implementation of the message-passing primitives on top of Java sokets and threads is overed in 5.AknowledgementsWe are extremely grateful to Glenn Judd and Kivan Diner, who freely madethe soures of their Java MPI systems available to us. Various ideas from thosesystems have been adopted in the arhiteture desribed here, and the �nalimplementation is likely borrow diretly from those earlier systems.2 Some design deisionsAs noted above, an MPJ \referene implementation" an be implemented asJava wrappers to a native MPI implementation, or it an be implemented in pureJava. It ould also be implemented prinipally in Java with a few simple native1A partiularly strong requirement is that in no irumstanes must the software leaveresoure-wasting orphan proesses lurking after an untidy termination. This unfortunatebehaviour has plagued some implementations of MPI in the past.4

methods to optimize operations (like marshalling arrays of primitive elements)that are diÆult to do eÆiently in Java. In this note we will fous on thelatter possibilities|essentially pure Java, although experiene with DOGMAand other systems strongly suggests that optional native support for marshallingwill be desirable. The aim is to provide an implementation of MPJ that ismaximally portable.We envisage that a user will download a jar-�le of MPJ library lasses ontomahines that may host parallel jobs. Some installation \sript" (preferably aparameterless sript) is run on the potential host mahines. This sript installsa daemon on those mahines (probably by registering a persistent ativatableobjet with an existing rmid daemon). Parallel java odes are ompiled onany host. An mpjrun program invoked on that host transparently loads all theuser's lass �les into JVMs reated on remote hosts by the MPJ daemons, andthe parallel job starts. The only required parameters for the mpjrun programshould be the lass name for the appliation and the number of proessors theappliation is to run on. These seem to be an irreduible minimum set of steps;a onsious goal is that the user need do no more than is absolutely neessarybefore parallel jobs an be ompiled and run.In light of this goal one an sensibly ask if the step of installing a daemon oneah host is essential. On networks of UNIX workstations|an important targetfor us|pakages like MPICH avoid the need for speial daemons by using thersh ommand and its assoiated system daemon. Dispensing with the needfor speial installation proedures on target hosts would be a signi�ant gain insimpliity, so this option needs serious onsideration. In the end we deided thisis probably not the best approah for us. Important targets, notably networksof NT systems, do not provide rsh as standard, and often on UNIX systems theuse of rsh is ompliated by seurity onsiderations. Although neither RMI orJini provide any magi mehanism for onjuring a proess out of nothing on aremote host, RMI does provide a daemon alled rmid for restarting ativatableobjets. These need only be installed on a host one, and an be on�gured tosurvive reboots of the host. We propose to use this Java-entri mehanism, onthe assumption that rmidwill beome as widely run aross Java-aware platformsas rshd is on urrent UNIX systems.An implementation ought to be fault-tolerent in at least the following senses.If a remote host is lost during exeution, either beause a network onnetionbreaks or the host system goes down, or if the JVM running the remote MPJtask halts for some other reason (eg, ourrene of a Java exeption), or if theproess that initiated the MPJ job is killed|in any of these irumstanes|allproesses assoiated with the partiular MPJ job must shut down within some(preferably short) interval of time. On the other hand, unless it is expliitlykilled or its host system goes down altogether, the MPJ daemon on a remote hostshould survive unexpeted termination of any partiular MPJ job. Conurrenttasks assoiated with other MPJ jobs should be una�eted, even if they wereinitiated by the same daemon. These requirements likely put some restritionson the portability of the daemon. They probably imply at least the ability toreate a new JVM on demand, for example by using Runtime.exe to exeute5

the java ommand. This faility is available in the major operating systems wetarget (UNIX and NT).In the initial referene implementation we will probably use Jini tehnology[1,7℄ to failitate loation of remote MPJ daemons and to provide a framework forthe required fault-tolerane. This hoie rests on our guess that in the medium-to-long-term Jini will beome a ubiquitous omponent in Java installations.Hene using Jini paradigms from the start should eventually promote interoper-ability and ompatibility between our software and other systems2. In terms ofour aim to simplify using the system, Jini multiast disovery relieves the userof the need to reate a \hosts" �le de�ning where eah proess of a parallel jobshould be run. If the user atually wants to restrit the hosts, uniast disoveryis available. Of ourse it has not esaped our attention that eventually Jini dis-overy may provide a basis for muh more dynami aess to parallel omputingresoures.Less fundamental assumptions bearing on the organization of the MPJ dae-mon are that standard output (and standard error) streams from all tasks inan MPJ job are merged non-deterministially and opied to the standard out-put of the proess that initiates the job. No guarantees are made about otherIO operations|for now these are system-dependent. Rudimentary support forglobal hekpointing and restarting of interrupted jobs would be useful, althoughwe doubt that hekpointing would happen without expliit invoation in theuser-level ode, or that restarting would happen automatially3.The main role of the MPJ daemons and their assoiated infrastruture isthus to provide an environment onsisting of a group of proesses with theuser-ode loaded and running, and running in a reliable way. As indiatedabove, the proess group is reliable in the sense that no partial failures shouldbe visible to higher levels of the MPJ implementation or the user ode. Asdisussed above, partial failure is the situation where somemembers of a group ofooperating proesses is unable to ontinue beause other members of the grouphave rashed, or the network onnetion between members of the group hasfailed. To quote [11℄: partial failure is a entral reality of distributed omputing.No software tehnology an guarantee the absene of total failures, in whih thewhole MPJ job dies at essentially the same time (and all resoures alloatedby the MPJ system to support the user's job are released). But total failureshould be the only failure mode visible to the higher levels. Thus, to reiterate,a prinipal role of the base layer is to detet partial failures and leanly abortthe whole parallel program when they our4.One a reliable ooon of user proesses has been reated through negoti-ation with the daemons, we have to establish onnetivity. In the referene2In the short-to-medium-term|before Jini software is widely installed|we might have toprovide a \lite" version of MPJ that is unbundled from Jini. Designing for Jini protoolsshould, nevertheless, have a bene�ial inuene on overall robustness and maintainability.Use of Jini implies use of RMI for various management funtions.3Perhaps one ould exploit the two-phase ommit of the Jini transation model to makehekpointing truly fault-tolerant. . .4We notie that an MPJ job as a whole has some harateristis of a single Jini transation.While interesting, this analogy is not learly useful.6

MPJ Device Level

Base Level MPI

High Level MPI

Java Socket and Thread APIs

Process Creation and Monitoring

Communicators

Groups

Byte vector data

Contexts and tags (no communicators)

Collective operations

Process topologies

isend, irecv, waitany, . . .

Physical process ids (no groups)

Datatypes

exec java MPJSlave

Lookup, leasing, distributed events (Jini)

Serializable objects, RMIClassLoader

MPJ service daemon

All point-to-point modes

All-to-all TCP connections

Input handler threads.

Synchronized methods, wait, notify

Figure 1: Layers of an MPJ referene implementationimplementation this will be based on Java sokets. Reently there has beeninterest in produing Java bindings to VIA [4, 12℄. Eventually this may providea better platform on whih to implement MPI, but for now sokets are the onlyrealisti, portable option. Between the soket API and the MPJ API there willbe an intermediate \MPJ devie" level. This is modelled on the abstrat devieinterfae of MPICH [10℄. Although the role is slightly di�erent here|we don'treally antiipate a need for multiple devie-spei� implementations|this stillseems like a good layer of abstration to have in our design. The API is atu-ally not modelled in detail on the MPICH devie, but the level of operations issimilar.3 Overview of the ArhitetureA possible arhiteture is skethed in Figure 1.The bottom level, proess reation and monitoring, inorporates initial nego-tiation with the MPJ daemon, and low-level servies provided by this daemon,inluding lean termination and routing of output streams. The daemon invokes7

the MPJSlave lass in a new JVM. MPJSlave is responsible for downloading theuser's appliation and starting that appliation. It may also diretly invokeroutines to initialize the message-passing layer. Overall, what this bottom layerprovides to the next layer is a reliable group of proesses with user ode installed.It may also provide some mehanisms|presumably RMI-based (we assume thatthe whole of the bottom layer is built on RMI)|for global synhronization andbroadasting simple information like server port numbers.The next layer manages low-level soket onnetions. It establishes all-to-allTCP soket onnetions between the hosts.The idea of an \MPJ devie" level is modelled on the abstrat devie inter-fae of MPICH. A minimal API inludes non-bloking standard-mode send andreeive operations (analogous to MPI ISEND and MPI IRECV, and various waitoperations|at least operations equivalent to MPI WAITANY and MPI TESTANY).All other point-to-point ommuniation modes an be implemented orretlyand with reasonable eÆieny on top of this minimal set. Unlike the MPICHdevie level, we do not inorporate diret support for groups, ommuniatorsand datatypes at this level (but we do assume support for message ontexts).Message bu�ers will be byte arrays. The devie level is intended to be imple-mented on soket send and rev operations, using standard Java threads andsynhronization methods to ahieve its riher semantis.The next layer is base-level MPJ, whih inludes point-to-point ommu-niations, ommuniators, groups, datatypes and environmental management.On top of this are higher-level MPJ operations inluding the olletive opera-tions. We antiipate that muh of this ode an be implemented by fairly direttransription of the sr subdiretories in the MPICH release|the parts of theMPICH implementation above the abstrat devie level.4 Proess reation and monitoringWe assume that an MPJ program will be written as a lass that extendsMPJAppliation. To simplify downloading we assume that the user lass alsoimplements the Serializable interfae. The main program will be imple-mented as the an instane method main:lass MyMPJApp extends MPJAppliation {publi void main(String [℄ args, Comm world) {...}}The default ommuniator is passed as an argument to main. Note there is noequivalent of MPI INIT or MPI FINALIZE. Their funtionality is absorbed intoode exeuted before and after the user's main method is alled5.In a perfet world we might exeute MyMPJApp by a ommand like5This is a hange to the API of mpiJava [2℄, for example, where the main method is statiand the default ommuniator is a lass variable. The approah here (whih follows morelosely DOGMA [8℄ or JMPI [5℄) seems to �t more naturally with RMI, and allows for thepossibility of running several MPJ proesses as threads in a single JVM, although probablythat won't be supported in the initial referene implementation.8

MPJServiceMPJService MPJService

MPJClient

MPJSlaveMPJSlaveMPJSlaveMPJSlave MPJSlave

MPJClient

Jini Lookup Services

Figure 2: Independent lients may �nd MPJServie daemons through the Jinilookup servie. Eah daemon may spawn several slaves.java MyMPJApp -np 8where the -np option spei�es the number of proessors on whih the programis to exeute. This isn't quite pratial, beause there is no obvious way fora generi stati main method (de�ned in the base lass MPJAppliation) todisover the atual sublass that the java ommand was started with6. So itannot dispath instanes of MyMPJApp to remote mahines. Probably we haveto settle instead forjava MPJClient MyMPJApp -np 8where now MPJClient is a separate library lass that is responsible for startinginstanes of the MyMPJApp on 8 remote mahines.4.1 The MPJ daemonThe MPJ daemon must be installed on any mahine that an host an MPJproess. It will be realized as an instane of the lass MPJServie. It is likelyto be an ativatable remote objet registered with a system rmid daemon7.The MPJ daemon exeutes the Jini disovery protools and registers itself withavailable Jini lookup servies, whih we assume are aessible as part of thestandard system environment (Figure 2).The API of MPJServie inludes a reateSlave remote method all, alongthe lines:6The args array passed to main only holds ommand-line arguments after MyMPJApp.7Using an ativatable objet is not essential, but it an redue resoures onsumed by adaemon that is not in use, and provides an automati way for the daemon to be restartedafter rashes of the host system. 9

lass MPJServie extends Remote {publi MPJSlave reateSlave(MPJClient lient, ...)throws RemoteExeption {...}}In normal operation, a all to reateSlave will behave essentially as:int slaveID = SlaveTable.alloateID() ;String md = "java MPJSlaveImpl " + slaveID + " " + registryPort ;Proess hild = Runtime.getRuntime().exe(md) ;... fork a monitor threadSlaveTable.waitFor(slaveID) ; // Wait for all-bak from slave.return SlaveTable.getSlaveObjet(slaveID) ;The data struture SlaveTable is a table of slave proesses urrently managedby the daemon. The daemon passes the id of the new slave into the javaommand that starts the slave running. We assume the daemon is running anRMI registry, in whih it publishes itself. The port of this registry is passed tothe slave as a seond argument. The �rst ations of the slave objet are to lookup its master in the registry, then all bak to the master and install a remotereferene to itself (the slave) in the master's slave table8. The monitor threadin the daemon behaves essentially as:DataInputStream stdout = new DataInputStream(hild.getInputStream()) ;// Forward standard output from hildString line ;while ((line = stdout.readLine()) != null)lient.println(line) ;hild.waitFor() ;Output is multiplexed to the lient by alling a remote println method on thelient.The net e�et is that the lient reeives a remote referene to a new slaveobjet running in a private JVM. In pratise a remote destroySlave methodthat invokes the Proess.destroy method will probably be needed as well.4.2 The MPJ slaveThe implementation lass assoiated with the MPJSlave interfae normally be-haves as follows (shematially):publi lass MPJSlaveImpl extends UniastRemoteObjet {publi stati void main(String args [℄) {8Not its RMI registry! 10

int slaveID = Integer.parseInt(args [0℄) ;String masterPort = args [1℄ ;MPJServie master =(MPJServie) Naming.lookup("rmi://loalhost:" + args [1℄ +"/MPJServie") ;master.addSlave(int slaveID, int new MPJSlaveImpl()) ;}publi runTask(MPJAppliation task, String [℄ args, ...)throws RemoteExeption {... reate default ommuniator, `world'task.main(world, args) ;}}The main method reates a remote objet and \registers" it with its daemon byalling a remote method addSlave on the master. Later the lient alls bakwith the runTask method, passing an instane of the atual user lass. Beausethis is a serializable objet it is passed by value to the remote runTask method.Importantly, the byte ode for the user lass will be loaded by RMIClassLoaderfrom the ode-base spei�ed in the serialized objet. As disussed below, thiswill be the URL of a proess serving a (typially very muh stripped-down)subset of the HTTP protool.Hene, using the dynami lass-loading mehanisms provided as standard inRMI, we ensure that all user ode is automatially available to the remote host.4.3 The MPJ lientIn pseudoode, the normal behaviour of the lient is:reate an `MPJClient' remote objet for all-bak by slavesdisover Jini lookup servies and reate table, `daemons',of P remote referenes to suitable `MPJServie' objetsfor i = 0..P-1 do {slaves [i℄ = daemons [i℄.reateSlave(lientObjet, ...) ;}reate an instane, `task', of user's `MPJAppliation' lassfor i = 0..P-1 in parallel threads do {slaves [i℄.runTask(task, args) ;}destroy slaves 11

The lient must arrange for any byte ode on the urrent CLASSPATH tobe available via HTTP from a URL spei�ed in the rmi.server.ode.baseproperty of the lient JVM. In the usual way, this URL will be embedded in theserialized task objet passed to the slave. A likely arrangement is for the lientproess itself to serve the neessary parts of the HTTP protool.In the normal ase, the P threads terminate when the remote runTaskmeth-ods all omplete. The MPJ lient proess then terminates. As mentioned earlier,the lient objet provides a remote println method, whih simply opies itsargument to System.out.4.4 Handling MPJ aborts|Jini eventsIf any slave JVM terminates unexpetedly while the runTask method is inprogress, a RemoteExeption will be passed to the thread that started theremote all. The thread should ath the exeption, and generate an MPJAbortevent. This is a Jini remote event|a sublass of RemoteEvent. Early in theproess of reating a slave, the MPJ daemons will have registered themselveswith the lient as handlers for MPJAbort events. Their notify method willapply the destroy method to the appropriate slave Proess objet.Hene if any slave aborts (while the network onnetion stays good), allremaining slave proesses assoiated with the job are immediately destroyed.4.5 Other failures|Jini leasingThe distributed event mehanism an rapidly lean up proesses in the asewhere some slaves disappear unexpetedly, but it annot generally relaim re-soures in the ase where the lient proess is killed during exeution of an MPJjob, or the daemon proess is killed while it has some ative slaves, or in thease of network failures that don't diretly a�et the lient. There is a dangerthat orphaned slave proesses will be left running in the network.The solution is to use the Jini leasing paradigm. The lient leases the serviesof eah daemon for some interval, and ontinues renewing leases until all slavesterminate, at whih point it anels its leases. If the lient proess is killed(or it onnetion to the slave mahine fails), its leases will expire. If a lient'slease expires the daemon applies the destroy method to the appropriate slaveProess objet.If a user program deadloks, it is assumed that the user eventually notiesthis fat and kills the lient proess. Soon after, the lient's leases expire, andthe orphaned slaves are destroyed. We antiipate that lease periods will berelatively short by Jini standards|perhaps on the order of 60 seonds.This doesn't deal with the (presumably less ommon) ase where a daemonis killed while it is serviing some MPJ job, but the slave ontinues to run. Todeal with this ase a daemon may lease the servie of its own slave proessesimmediately after reating them. Should the daemon die, its leases on its slavesexpire, and the slaves self-destrut. 12

5 Sketh of a \Devie-Level" API for MPJIn this setion we turn to the issue of how to implement MPJ one a reliablegroup of proesses has been established. Whereas the previous setion was on-erned with true distributed programming where partial failure an overriding on-ern, this setion is, properly speaking, onerned with onurrent programmingwithin a single JVM, and (to a lesser extent, as it happens) message-passing par-allel programming in a reliable environment. These are three somewhat distintsoftware disiplines.We assume that the MPJ user-level API will be implemented on top of a\devie-level" API, roughly orresponding to the MPID layer in MPICH. Thefollowing properties are onsidered to be desirable for the devie-level API:1. It should be implementable on the standard Java API for TCP sokets.In the absene of selet, this essentially fores introdution of at leastone reeive thread for eah input soket onnetion.2. It should be eÆiently implementable (and probably will be implemented)with preisely this minimum required number of threads.3. It should be eÆiently implementable with at least two protools:a) The naive eager-send protool, assuming reeiver threads have unlim-ited bu�ering.b) A ready-to-send/ready-to-reeive/rendezvous protool requiring re-eiver threads only have enough bu�ering to queue unservied \ready"messages.4. The basi operations will inlude isend, irev and waitany (plus someother \wait" and \test" operations). These suÆe to build legal imple-mentations of all the MPI ommuniation modes. Optimized entry pointsfor the other modes an be added later.5. (Probably) all handling of groups and ommuniators will be outside thedevie level. The devie level only has to orretly interpret absoluteproess ids and integer ontexts from ommuniators.6. (Maybe) all handling of user-bu�er datatypes is outside the devie level.The devie level only deals with byte vetors.5.1 Minimal APIThe methods isend and irev return ommuniation request objets. A set ofthese request objets an then be passed to the waitany method, whih waitsuntil one of them ompletes. In priniple any number of user threads are allowed(but we assume that a partiular request objet will not appear onurrently inwaitany alls being exeuted in di�erent threads).13

5.2 Implementation notesA ommuniation request is pending if the ommuniation has not yet started.As a matter of taste, the implementations of the minimal API skethed heredo not use polling to implement their \wait" methods. If a waitany methodspeifying a partiular request has been invoked, a wait-objet may be assoi-ated with that request. Any wait-objet provides a synh() method, whihimplements barrier synhronization between preisely two threads. This an beimplemented as follows:lass Wait {void synhronized int synh() {if(waiting) {waiting = false ;notify() ;}else {waiting = true ;wait() ;}}boolean waiting = false ;}Wait-objets are used for synhronization between input-handlers and user thr-eads. In pratise wait-objets will ontain extra �elds relating to nominatedand seleted sets of request objets, and these �elds will provide a hannel ofommuniation between input-handlers and user threads.Besides wait-objets, the priniple means of synhronization is mutual ex-lusion on a single lok that ontrols aess to the ommuniation sets|datastrutures desribing the ongoing ommuniations. The ommuniation sets in-lude the input-bu�er and the pending-request-set. The input-bu�er ontainsmessages that have been aepted by the input handlers, but not yet onsumedby the user threads. Depending on the protool, the input-bu�er may holdrequest-to-send messages and/or omplete messages ontaining user data. Thepending-request-set, as its name implies, is the set of ommuniation requestobjets that are urrently pending.The input-handlers are threads|one per input soket onnetion. Thesehandle all input from sokets. All output to sokets ours in the ontext ofuser threads.5.3 Eager send protoolMessages are sent immediately by isend, assuming unlimited spae for data inthe input bu�er. In pratise this protool is most suitable for short messages.14

isend:send the messagereturn a non-pending (ompleted) request objetFigure 3: Pseudoode for isend method (eager protool)
irev:lok ommuniation-setsif irev mathes some message in the input buffer {opy data into user-bufferaquire a non-pending (ompleted) request objet}elseput a request objet in the pending-request-setunlok ommuniation-setsreturn the request objetFigure 4: Pseudoode for irev method (eager protool)
waitany:lok ommuniation-setsif all of the speified set of requests are pendingassoiate one wait-objet with all speified requestsunlok ommuniation-setsif all the requests were pending`synh()' on wait-objetelseselet one of the non-pending requestsFigure 5: Pseudoode for waitany method (eager protool)

15

loop {reeive headerlok ommuniation-setsif message mathes some request in pending-request-set {reeive data into user-bufferremove the request from the pending-request-setif the request has an assoiated wait-objet {dissoiate that wait-objet from all requests`synh()' on wait-objet}}elsereeive data into input-bufferunlok ommuniation-sets} Figure 6: Pseudoode for input handler threads (eager protool)

16

5.4 Rendezvous protoolThis assumes the protool:1. soure sends ready-to-send2. destination sends ready-to-reeive3. data is exhangedData is never bu�ered, although ready-to-send messages may be. This protoolis likely to be more eÆient for long messages, beause it eliminates the needto opy data from input-bu�er to user spae. A ready-to-reeive message aninlude an identi�er for the request objet at the reeiving end. The sending endan reet this id in the header of the data paket, allowing the input handlerat the reeiving end to retrieve the relevant request when the data arrives.

17

isend:lok ommuniation-setsput a send request objet in the pending-request-setunlok ommuniation-setssend a ready-to-send messagereturn the request objetFigure 7: Pseudoode for isend method (rendezvous protool)irev:lok ommuniation-setsif irev mathes a ready-to-send message in the input bufferaquire a non-pending request objetelseput a reeive request objet in the pending-request-setunlok ommuniation-setsreturn the request objetFigure 8: Pseudoode for irev method (rendezvous protool)waitany:lok ommuniation-setsif all of the speified set of requests are pendingassoiate one wait-objet with all speified requestsunlok ommuniation-setsif all the requests were pending`synh()' on wait-objetelseselet one of the non-pending requestsif seleted request was a reeive request {assoiate a wait-objet with the requestsend a ready-to-reeive message (ontaining id of request)`synh()' on wait-objet (waiting for data)}if seleted request was a send requestsend the dataFigure 9: Pseudoode for waitany method (rendezvous protool)18

input handler threads:loop {reeive headerlok ommuniation-setsif message is a ready-to-send message {if header mathes some reeive request in pending-request-set {remove the mathing request from the pending-request-setif the request has an assoiated wait-objet {dissoiate the assoiated wait-objet from all requests`synh()' on wait-objet}}elseput the ready-to-send message in the input buffer}if message is a ready-to-reeive message {remove the mathing request from the pending-request-setif the request has an assoiated wait-objet {dissoiate that wait-objet from all requests`synh()' on wait-objet}}if message is data {reeive the data`synh()' on wait-objet in request (identified in header)}unlok ommuniation-sets}Figure 10: Pseudoode for input handler threads (rendezvous protool)
19

Referenes[1℄ Ken Arnold, Bryan O'Sullivan, Robert W. Sheier, Jim Waldo, and AnnWollrath. The Jini Spei�ation. Addison Wesley, 1999.[2℄ Mark Baker, Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and XinyingLi. mpiJava: A Java interfae to MPI. In First UK Workshop on Javafor High Performane Network Computing, Europar '98, September 1998.http://www.s.f.a.uk/hpjworkshop/.[3℄ Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Ge-o�rey Fox. MPI for Java: Position doument and draft API spei�a-tion. Tehnial Report JGF-TR-3, Java Grande Forum, November 1998.http://www.javagrande.org/.[4℄ Chi-Chao Chang and Thorsten von Eiken. Interfaing Java to the VirtualInterfae Arhiteture. In ACM 1999 Java Grande Conferene. ACM Press,June 1999.[5℄ George Crawford III, Yoginder Dandass, and Anthony Skjellum. The JMPIommerial message passing environment and spei�ation: Requirements,design, motivations, strategies, and target users.http://www.mpi-softteh.om/publiations.[6℄ Kivan Diner. jmpi and a performane instrumentation analysis andvisualization tool for jmpi. In First UK Workshop on Java forHigh Performane Network Computing, Europar '98, September 1998.http://www.s.f.a.uk/hpjworkshop/.[7℄ W. Keith Edwards. Core Jini. Prentie Hall, 1999.[8℄ Glenn Judd, Mark Clement, and Quinn Snell. DOGMA: Distributed objetgroup management arhiteture. In ACM 1998 Workshop on Java forHigh-Performane Network Computing. Palo Alto, February 1998, volume10(11-13) of Conurreny: Pratie and Experiene, 1998.[9℄ Message Passing Interfae Forum. MPI: A Message-Passing Inter-fae Standard. University of Tenessee, Knoxville, TN, June 1995.http://www.ms.anl.gov/mpi.[10℄ MPICH|a portable implementation of MPI.http://www.ms.anl.gov/mpi/mpih/.[11℄ Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendall. A note on dis-tributed omputing. Tehnial Report SMLI TR-94-29, Sun MirosystemsLaboratories, 1994. Reprinted in [1℄.[12℄ Matt Welsh. Using Java to make servers sream. Invited talk at ACM 1999Java Grande Conferene, San Franiso, CA, June, 1999.20

	Thoughts on the structure of an MPJ reference implementation
	Recommended Citation

	tmp.1285694644.pdf.r6E12

