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ABSTRACT

This paper presents a method of using hardware

redundancy to ease the problem of fault testing in

combinational logic networks. Combinational logic

networks are constructed using dual-mode logic gates.

Initially, it is shown that these networks can be

tested for all single stuck-at-faults using just two

function-independent tests. This method is then ex

tended to detect a large class of multiple faults with

the same two function-independent tests.
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I. INTRODUCTION

Traditionally, logic circuits have been designed with little

regard for the problem of fault testing. Designers have been

concerned with minimizing the complexity of the network and this

was certainly understandable in the period prior to the development

of LSI. When a logic network is small, there are a number of

standard techniques for deriving tests to detect faults [1,2]. As

the size of the network grows, however, the number of test required

may increase very rapidly. More importantly, the complexity of

finding the test set may become prohibitive. As logic component

costs decrease and the difficulty of test generation increases, a

point is reached where logic designers should begin to consider the

possibility of introducing hardware redundancy to simplify testing.

In this paper, we present one such approach based on the

concept of dual-mode logic. The basic idea is to use redundancy

to (1) reduce the number of required tests, and (2) reduce the

complexity of deriving the tests. From a testing standpoint, the

ultimate solution would be a method of designing logic networks

that could be tested using a function-independent test set of minimum

possible size, i.e., a test set that is independent of the logic

function and internal layout of the network. Although this may

appear to be an unrealistic goal, we will show that such a solution

is possible not only for the problem of detecting all single stuck

at-faults (s-a-faults) but also for the problem of detecting large

classes of multiple faults in any combinational network. This is
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achieved through the use of a family of dual-mode gates which

perform the required logic functions in one of the modes while

it is tested in the other mode.

In section II we develop concurrently the theory of the dual

mode gates and the combinational network built with them. We

initially consider the problem of detecting all single s-a-faults

with a function-independent test set and later extend it to

detecting a larger class of s-a-faults. Section III contains the

conclusions and discussion of the results.
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II. THE DUAL-MODE COMBINATIONAL LOGIC NETWORK

In this section we will develop the dual-mode combinational COMe)

network. We will require that this network have the following

properties:

Property 1: Any DMC network can be tested for all single

s-a-faults with the minimum number of tests.

Property 2: The tests are function-independent, i.e.,

independent of the logic function and internal

layout of the network.

Since there are two types of faults, i.e., stuck-at-l (s-a-l)

and stuck-at-O (s-a-O), a minimum of two tests are required to test

any network. Therefore, we will require that the DMC network be

tested for all single s-a-faults with two tests. This requires

that each test must test all the gates of the network simultaneously

for exactly half of the faults associated with each gate.

In a general combinational network containing reconvergent fan-out

a single fault may affect all the data inputs of some gate. This

phenomenon and the constraint that the DMC network be tested for

all single s-a-faults with function-independent tests dictates

that the logic gate with which the DMC network is built must be

tested for all possible data input faults with two tests. Obviously,

the existing logic gates, i.e., AND, OR, NAND, NOR and Exclusive-OR,

do not satisfy the above requirement. Hence, we need to define a new

gate. This gate must also perform the necessary logic functions so

that any general network can be built with it. To define this new
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gate we need the following lemma:

Lemma 1: The necessary and sufficient conditions for the existence

of an n-input, I-output logic gate which can be tested for all

patterns of p or fewer s-a-faults with two tests are:

(i) there exists at least one n-input vector ~ for which the

output is the complement of the output for the complement input §,

(ii) the output for any input n-tuple which is Hamming distance [3]

one through p away from ~ is the complement of the output for §,

(iii) the output for any input n-tuple which is Hamming distance

one through p away from § is the complement of the output for §.

Then, the set {£,~} detects all patterns of p or fewer s-a-faults

in the inputs and output of the gate.

Proof: This follows immediately from the fact that if any pattern

of p or fewer faults occurs in the input of the gate, then application

of § or ~ will have the effect of applying an input n-tuple Hamming

distance one through p away from § or §. Thus, the output of the

faulty gate will be the complement of the expected output. Since the

output for ~ is different from that for §, a fault in the output

will also be detected. Conversely, conditions (i), (ii) and (iii)

must hold in order that § and § form a complete test set for all

patterns of p or fewer s-a-faults in the inputs and output of the

gate.

Q.E.D.

Observe that a gate that satisfies Lemma 1 must have at least

2p+1 data inputs [3]. In the following theorem we give the
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requirement for the existence of a gate in which all patterns of

faults in the data inputs or output of the gate is detected by only

two tests.

Theorem 1: Any gate must have at least one extra "control" input

to enable all patterns of faults in the data inputs and output to be

detected by two tests.

Proof: Consider any gate with n data inputs only. It cannot

satisfy statements (ii) and (iii) of Lemma 1 simultaneously when

p = n.
Q.E.D.

Theorem 1 essentially implies that it is not enough to have only

data inputs in this new logic gate. Rather, it is necessary to

expand the truth table of this logic gate using at least one extra

"control" input. To guarantee that not all inputs of the gate are

affected by a single fault in a network built with this gate, data

and control inputs of a gate cannot be intermixed or fed from a

common source. Furthermore, since a DMC network must have control

inputs, to minimize the number of extra "control" inputs in the DMC

network we impose the following property:

Property 3: All identical control inputs of gates in a

DMC network must be driven from a common

network input.

In accordance with the requirements of Lemma 1, the truth table of

this logic gate will be as shown in Table I, where {S,S} is one of the
"" rv

possible test sets which detect all patterns of faults in the data

inputs, d1 ,d2 , .•. ,dn . However, a fault in the control input of this
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gate will not be detected by the test set {~,~} since the output

for S or S is unchanged when a fault occurs in the control input, kl •

Hence, the gate described by Table I cannot be used to build a DMC

network.

TABLE I

o

o

o

o

o

o

o

o

1

o

1

o

b

§ b

b

0 1 1 1

1 0 0 0

1 0 0 1 b

1 0 1 0

b

1 1 1 1

So, Table I has to be expanded by introducing a second control

input, k
2

, as shown in Table II, where § = (a l ,a2 ,c l , ••. ,cn ) and

S = (a ,a ,e , ... /e ) are the two tests for the logic gate. It is
~ 1 2 1 n



TABLE II

k1
k

2
d

1
d
n-l

d f
n

a
1

a
2

0 0 0

10 0 1

0 1 0

J
b

a 1
a

2
C

1
cn-l c bn

} b
a

1
a

2
1 1 1

- 0a 1
a 2 0 0

0 0 1

0 1 0

- ba 1
a

2
c

1
C n-l c n

- - - -a 1
a 2 c

1 c n-l c bn

-a 1
a

2 1 1 1

- 0 0a
1

a
2

0

0 0 1

0 1 0

- ba
1

a
2

c
1

cn-l c
n

- - - -a
1

a
2

c
1

cn-l
c b

n

- 1 1 1a
1

a
2

- - 0 0 0a
1

a
2

0 0 1 b

0 1 0

- - - - -a 1
a

2
c

1
c n-l

c bn
}- - 1 1 1 ba 1

a
2

8
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easily seen that {S,S} detects all possible patterns of faults in

the data inputs, dl, ••. ,d
n

and output of the gate defined by Table II,

assuming that the controls, k
l

and k
2

are fault-free. Moreover,

it detects single faults in the control inputs assuming that the data

inputs are fault-free. The above results can be formalized in the

following theorem:

Theorem 2: Two control inputs are necessary and sufficient for

any gate such that:

(i) all pa~terns of faults in the data inputs and output

of the gate can be detected with two tests assuming

that the control inputs are fault-free and

(ii) all single faults in the control inputs can also be

detected by the sarne two tests assuming that all

the data inputs are fault free.

The general class of gates, defined by Table II, will henceforth

be referred to as a 2T(2) gate where the two in the parentheses

refers to the number of control inputs in the gate. We will now

prove some basic properties of the 2T(2) gate to demonstrate that

it is not very suitable for building logic networks.

Lemma 2: In the truth table shown in Table II, there exists at

most one test pattern per segment, as defined by k1 and k 2 for

gates with 2 or more data inputs.

Proof: Without loss of generality, consider the segment

(k
1

,k
2

) = (a1 ,a2 ) in which the test is (a
1

,a2 ,c1 ,···,cn ) = Y1 with

expected output b~ We will prove by contradiction that it is the

only test in the segment. To do so, assume there exists yet another
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(
A A

test a 1 ,a2 ,c l ,··.,cn ) = Y2 in the same segment. We thus have to

consider 2 cases:

(i) Y2 has output b

(ii) Y2 has output b.

In case (i), Y2 having output b contradicts with the requirement

that all patterns Hamming distance one through n from Y
I

and in the

same segment of the truth table as Yl must have output b. In

case (ii), since there are at least 2 data inputs, there exists

patterns other than Yl and Y2 in the same segment that are required

to have output 5 because of Yl and output b because of Y2. Hence

a contradiction.

Q.E.D.

Lemma 2 implies that a 2T(2) gate has at most four tests.

Lemma 3: The knowledge of any of the four tests for a 2T(2) gate

determines the other three.

Proof: Let (a
l
,a

2
,c

l
, •.• ,c

n
) with output b be one of the tests.

By Lemma 1, (al ,a2 ,c
l

, ... ,C
n

) with output 5 is the other member of

the same test set. To detect single s-a-faults in the control inputs,

(a
l
,a

2
,c

l
, .•. ,cn ) and (a

l
,a

2
,c

l
, ,c

n
) must have output 5 while

(al ,a
2
,c

l
, ••• ,C

n
) and (a

l
,a

2
,c

l
, ,C

n
) must have output b. We now

show by contradiction that the two remaining tests are either

{(al ,a
2

,c
l
,···,c

n
), (al ,a

2
,c l ,···,Cn )} or {(al ,a2 ,c l , .•. ,cn ),

(a
l
,a

2
,c

l
, ..• ,C

n
)}. Suppose that one of the remaining tests is

(a
l
,a

2
,e

l
,···,en ) = Yl • If Yl has output b, then considering only

the data inputs, (a l ,a
2
,c

l
, .•• ,cn ) having output b contradicts



11

Lemma 1 for p = n. Similarly, for the case when Y
l

has output

b.

Q.E.D.

Lemma 3 implies that a 2T(2) gate has at most two test sets.

We now show that if a network is constructed with 2T(2} gates,

then it is not always possible to detect all classes of single

s-a-faults.

Theorem 3: In a network constructed with 2T(2} gates any single

s-a-fault that affects a control input of more than one gate is not

always detectable by any function-independent test set of minimum

size.

network of Fig. 1 where both gates

f22

Consider the
d21 ~

d
l1d12

d 13

d23--...............--~
k l
k 2

Proof:

Fig. 1 Network with undetectable control faults.

have common controls. Using Lemma 3, let the two test sets for

with output b
I

, and

~12 = (kl,k2,dll,d12,d13) = (al,a2,cll,c12,c13)
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with output bl . Similarly, let the two test sets for gate 2 be

{§2l'~2l} and {§22'~22}' where

§2l = Ckl,k2,d2l,d22,d23) = Cal,a2,c2l,c22,c23)

with output b 2 , and

with output b 2 .

Since this network must be tested for all single s-a-faults

with two tests, both gates must be tested simultaneously by each

-test. Suppose a single s-a-fault occurs in k 2 which affects both

gates and one of the tests that can be applied is §ll in gate 1

and ~21 in gate 2, i.e., the pattern applied to the network is

(kl,k2,dll,d12,d13,d21,d23) = (al,a2,cll,c12,c13,c21,c23>. This

implies that the expected output b
i

of gate 1 equals the required

logic value c 22 in input d 22 of gate 2. Then, expected network

output is b 2 • The fault in k 2 makes the output of gate 1 bl •

Thus, the pattern applied to gate 2 is Cal,a2,c2l,c22,c23). Since,

this pattern is Hamming distance one way from 8 22 , by Lemma 1, the

output of the network would still be b 2 . Hence, this fault will not

be detected. Similarly, we can show that this fault is undetectable

even when the alternative set of tests, i.e., ~12 for gate 1 and

§22 for gate 2, is used. Lemma 3 shows that there exists a second

choice for test sets {§12'§12} and {§22'§22}. However, by a similar

argument iL can be shown that this second choice of tests will not

detect at least a single s-a-fault in kl if it affects both gates.

Q.E.D.
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Evidently, a single fault in a control that affects two or more

gates can always be detected if the output of the gate in the

presence of the above fault is the complement of the expected output,

independent of the data inputs. Thus, in relation to test

§1 = (2 1 ,a
2

,c
1
,···,c

n
) for the 2T(2) gate in Table II, a single

s-a-a
l

fault in k
l

or a single s-a-a
2

fault in k
2

that affects more

than one gate in a network would be detected if for all rows in

segments of the truth table in Table II defined by (kl ,k
2

) = (a l ,a2 )

and (k
l

,k2 ) = (a l ,a2 ), the output of the 2T(2) gate is b. But a

similar condition arising out of a single s-a-a1 fault in k 1 or

a single s-a-a2 fault in k
2

requires all rows in segments (a
l

,a
2

)

and (a
l
,a

2
) to have output b so that these faults can be detected

by the test §l = (a l ,a2 ,cl ,···,Cn ). This conflict in requirement not

only shows that it is physically impossible to detect all single

control input faults that affect more than one gate in any general

network but more importantly, it shows that the test requirements

for any pair of tests for a 2T(2) gate tend to encroach on each other,

i.e., there is not enough Hamming distance between the two tests.

Consider then the gate with three controls, k
I

, k
2

and k
3

.

Suppose (kl,k2,k3,dl,···,dn) = (al,a2,a3,cl, ... ,cn) = § with

output b is one test and (kl,k2,k3,dl,···,dn) = (al,a2,a3,cI'··.'Cn) = §

with output b is the other test from the same test set. Then, if

all rows of segments (al ,a
2
,a

3
), (a

l
,a

2
,a

3
) and (a

l
,a

2
,a

3
) have out

put b and if all rows of segments (a
l
,a

2
,a

3
), (a

l
,a

2
,a

3
) and

(a l ,a
2
,a 3 ) have output b, as shown in Table III, then all single

faults in any control which affect one or more gates in a network

built with 2T(3) gates will be detected. Furthermore, by Lemma 1,

all patterns of data input and output faults in the gate specified by

Table III can be detected with the test set {~,§}.



TABLE III

k1 k 2
k

3
d 1 d f

n

a 1
a

2
a

3
0 0 } b

a 1
a

2
a

3
c

1
C b

n

} b
a 1

a
2

a
3

1 1

- ba
1

a
2

a
3

0 0

-a 1
a

2
a

3 1 1 b

-a
1

a
2

a
3

0 0 b

- 1 ba
1

a
2

a
3

1

- ba
1

a
2

a
3

0 a

-a
1

a
2

a
3

1 1 b

- -
a 1

a
2

a
3 a 0 b

- -a 1
a

2
a 3 1 1 b

-
a 1

a
2

a
3 0 ... 0 b..

-
a 1

a
2

a
3

1 1 b

-
a 1

a
2

a
3

0 0 b

-
a

1
a

2
a

3
1 1 b

- - -a
1

a
2

a
3

0 0 } b
- - - - ba

1
a

2
a

3
c

1
C

n }- - b
a

1
a

2
a

3
1 1

14
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We will show that in order to test with two function-independent

tests for all single s-a-faults in any network built with 2T(3)

gates, the tests Sand S must be completely specified in the data

inputs and outputs.

Theorem 4: For any network built with 2T(3) gates to be tested

for all single s-a-faults with two function-independent tests, one

test for the 2T(3) gate must have (dl, ,d
n

) = (0, ... ,0) with

output 0 and the other (d1, ... ,dn ) = (1, ,1) with output 1.

Proof: This proof uses the fact that since a gate is the most

elementary network, function-independent testing implies that all

gates with the same number of inputs must have the same test sets.

Now, consider the network of Fig. 2 built with 2T(3) gates.

f4

d 21
d 22
d

31 .~-----t--+-..............
d

32

Fig. 2 Network 1.

Suppose that one of the tests for gate 1 is

§l = (kl,k2,k3,dll,dI2) = (al ,a2 ,a3 ,O,I). Then since all the gates

have common controls and have to be tested simulataneously, the

corresponding required tests for gates 2 and 3 are, respectively:
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and

Thus, the test applied to network 1 is,

Since this test must be function-independent, it must be able to

test the network of Fig. 3. But since T has an odd number of D's

and 1'5, gates 1 and 2 of Fig. 3 cannot have identical patterns

applied to their respective inputs. But since both gates have common

controls, both must have the same pattern applied to their inputs

.....--
-

1

......~ d 31 ,--H ---
d32 - 3 .-- 2 --

,...,...~

- ~.... ,.....,
l a 4

:1"

Fig. 3 Network 2.

to be tested simultaneously. Hence,! cannot test both gates 1 and 2

together thus contradicting the assumption that the network can be

tested with two tests. Hence, the tests for the 2T(3) gates must

In order to show that the test in which (d1,···,dn ) = (0, ••• ,0)

must have output 0 and the test in which (d1 , • • · ,dn
) = (1, ••• ,1)

must have output 1 we have to show that for any network constructed



17

with 2T(3) gates, the data inputs have to be either all -D's or

all -l's during a test. Consider the network of Fig. 2 again.

Suppose one of the tests for network 3 is

(kl,k2,k3,dll,d12,d21,d22,d31,d32) = (a1 ,a2 ,a3 ,O,O,1,1,O,O).

Then, since this test must be function-independent, it must also

test network 2 of Fig. 3. However that implies that either gate 1

or gate 2 of network 2 would have a pattern of D's and l's which

contradicts the first part of this theorem. Finally, consider

network 3 of Fig. 4. Suppose (kl,k2,k3,dll,d12,d22) = (a1 ,a2 ,a3 ,0,O,O)

is one of the tests. Then, this test must test both gates

d11
d 12 1

d
21

d
22 d 22 2 f

Fig. 4 Network 3

simultaneously but if gate 1 of network 3 has output 1, then gate

2 will not be tested. Hence, this network cannot be tested with

two tests which is a contradiction.

Q.E.D.

As a consequence of the above theorem, the truth table for

a 2T(3) gate is converted to the form in Table IV. Evidently, there



TABLE IV

k1 k 2 k
3

d
1 d

n-l
d fn

a
1

a
2

a 0 0 0 0
3

a
1

a
2

a
3

0 0 1 1

a
1

a
2

a
3

1 1 1 1

- 0a 1
a

2
a

3
0 0 1

- 1a
1

a
2

a
3

1 1 1

-a
1

a
2

a
3

0 0 0 1

-a
1

a
2

a
3

1 1 1 1

-a
1

a
2

a
3

0 0 0 1

- 1a 1
a

2
a

3
1 1 1

- -a 1 a
2

a
3

0 0 0 0·
- - ·

a 1
a

2
a

3
1 1 1 6

-a
1

a
2

a
3

0 0 0 0

- - 1a 1
a

2
a

3
1 1 0

-a
1

a
2

a
3

0 0 0 0

- - ·a
1

a
2

a
3

1 1 1 0

- - -a
1

a
2

a
3

0 0 0 0

- - - ·a 1
a

2
a

3
1 1 0 0

- - - 1a
1

a
2

a
3

1 1 1

18
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OR function and (k1 ,k2 ,k
3

) = (a
1
,a

2
,a

3
) which is an AND function,

that can be used to build some network. But since neither is

a functionally complete set, the 2T(3) gate cannot be used to build

any general network. Hence, we expand Table IV using another

control k 4 such that the resulting truth table, shown in Table V,

contains all the features of Table IV and has one or more segments

to accommodate different logic functions. Note that Theorem 4

can be extended to show that the test patterns needed to test a

2T(4) gate, as described in Table V, must be

(kl,k2,k3,k4,dl, ,d4) = (a1 ,a
2

,a 3 ,a4 ,O, ... ,O) with output ° and

(kl,k2,k3,k4,dl, ,dn) = (a
1
,a2 ,a3 ,a

4
,1, ••. ,I) with output 1.

Table V shows that the 2T(4) gate has two modes of operation, i.e.,

test mode for testing and normal mode for some logic function.

Evidently, any network built with 2T(4) gates will also have

two modes of operation. Henceforth, these networks will be referred

as DMC networks. Table V represents a family of logic gates in

normal mode and hence any network can be converted to a DMC network

by a one-to-one replacement of a conventional logic gate with an

equivalent 2T(4) gate such that all gates in the network can share

the same control inputs. Since all the gates in a DMC network

must share the same controls and all 2T(4) gates must be tested

simultaneously, then the tests for an m-data input DMC network must

be:

!o = (kl,k2,k3,k4,dl,···,dm) = (a
1

,a
2
,a

3
,a

4
,O, ... ,O)

and

!O = (kl,k2,k3,k4,dl,···,dm) = (a
1
,a

2
,a

3
,a4 ,1, .•• ,I)
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Note that for a fault-free DMC network the expected logic value

at any network output when !o is applied is 0 and 1 when ~o is

applied.

Theorem 5: In any DMC network built with 2T(4) gates, the test

set {!O'~o} will detect any pattern of s-a-faults provided that

faults in the control lines affect at most one control input of

any 2T(4) gate.

Proof: Any fault in a network output is detectable by the test

set {!o'!O} since the expected output for !O is the complement

of that for !o. So without loss of generality, we will consider

that the outputs of the network are fault-free. Moreover, we will

concern ourselves only with faults appearing at the inputs of

2T(4) gates since a fault that appears in the output of a gate is

indistinguishable from the corresponding faults at the inputs to

the gates fed by that output. Also faults in control lines that

affect more than one gate can be considered as distributed faults

in control inputs of the same gates.

So, consider any pattern of s-a-faults in the network provided

that faults in the control lines affect at most one control input

of any 2T(4) gate. There exists at least one faulty gate with at

least one fault in its inputs such that all gates in the path from

this faultygate to a network output are fault free. Since there

can be at most one fault in the control inputs of this faulty gate,

then as Table V shows, !o or !o will force an erroneous logic

value at the output of this gate which will be propagated to the
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network output via the fault-free path.

Q.E.D.

As a consequence of Theorem 5 we have the following corollary:

Corollary 1: In any DMC network built with 2T(4) gates, the test

set {!O'!O} will detect all single s-a-faults.

Observe that there is at least one pair of control line faults

that can transfer any DMC network or parts of it from test mode

to normal mode during testing. When that happens, the output of the

network for inputs !o or ~o becomes dependent on the network

function and layout. Hence, the output of this faulty network is not

always the complement of its expected output for the test patterns.

The following example illustrates the above argument. For this

example we assume a
1

= a
2

= a
3

= a
4

= 0 and that segment

(k
l

,k
2

,k
3
,k

4
) = (l,l,O,O) realizes a NAND gate. Then a s-a-l fault

at points a and S of Network 4 in Fig. 5 cannot be detected by

test set {!O'!O}.

1

\
\
S

.........
I I t.~

2

Fig. 5 Network 4

3 f
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A diff~re~t way to explain the above phenomenon is to note that,

given any class of control line faults, the Hamming distance

between the test modes and normal mode, as defined by their control

values, must be large enough such that the above class of faults

can never transfer the network from test mode to normal mode

during testing. Two conclusions can be drawn from this fact. First,

at least four control inputs are required to detect all single

s-a-faults in any network. Reduction of the number of controls

cannot be achieved by enlarging the test set since for any network

with 3 controls or less, there exists at least one single fault

that will transfer the network, or parts of it, to normal mode

during testing. Any additional tests to detect such a fault would

depend on the function and layout of the network and hence cannot

be function-independent.

The above discussion can be formalized in the following

theorem:

Theorem 6: The necessary and sufficient conditon for a network

so that all single s-a-faults can be detected with a function

independent test set is that the network must have at least four

controls.

Second, the concept of Hamming distance between test modes

and normal mode, as defined by their control values, implies that

if this distance is increased, more control faults can be detected.

Ideally, normal mode should be equidistant from either test mode

since fault detection capability is always expressed in terms of
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the smallest number of faults, all classes of which can be

detected. Thus, if there are r control inputs in each gate of a

network, then the optimum distance between normal mode and one

of the test modes should be Lr/2J which is also the minimum number

of faults that will transfer a network from test mode to normal mode.

Hence, the maximum number of faults occurring at the control inputs

of any 2T(r) gate in any network that can be detected is,

t = Lr/2J - 1 = L(r-2)/2J

Now, generalizing the results from a network with four controls

to one with r controls, we obtain the following theorem:

Theorem 7:

(i) The necessary and sufficient condition for a network so

that all patterns of t or fewer s-a-faults can be

detected with a function-independent test set is

that the network must have at least r = 2t+2 controls

(ii) In any m-data input DMC network built with 2T(r)

gates in which the Hamming distance between normal

mode and any test mode, as defined by their control

values, is at least Lr/2J, the test set {!O'!o} where

!o = (k1,···,kr,dl,···,dm) = (a1,···,ar,O, ... ,O), will

detect any pattern of faults provided that faults in

control lines affect at most t = L<r-2)/2J control

inputs of any 2T(r) gate.
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(iii) In any m-data input DMC network, the test set {~O'!O}

will detect all patterns of t or fewer s-a-faults.

The above theorem can be proven in a manner analogous to that

for t = 1.



26

III. CONCLUSIONS AND DISCUSSION

In this paper we have presented a family of 2T(r) gates which

has r control inputs and which has two modes of operation- test

mode for testing and normal mode for logic operation. We have

shown that we can construct DMC networks with 2T(r) gates, which

can be tested with two function-independent tests for all patterns

of s-a-faults as long as no gate has more than t = L(r-2)/2J control

faults, provided no control inputs and data inputs are driven from

a common source. We have also shown that r = 2t+2 is the minimum

number of controls that a network must have in order to be tested

for all pattern of t or fewer s-a-faults with function-independent

tests.

Note that the segment of the truth table for the 2T(r) gate

which contains the test with the all-O pattern in the data inputs

represents an OR function of the data inputs. The segment that

contains the test with the all-l pattern in the data inputs

represents an AND function of the data inputs. Thus, during test

mode, any DMC network is transformed into a network of only OR

gates in terms of the data inputs of the network when !o is

applied. The same network is transformed into a network of only

AND gates in terms of the data inputs of the network when !o
is applied. This fact explains why logical redundancies which may

exist in any DMC network in normal mode and which leave untestable

faults in an equivalent conventional network, become invisible and

do not affect testing of the DMC network for all specified faults.



27

One must note that we have considered only faults that occur

at the inputs or output of a gate. We have not investigated

whether there is any fault internal to the 2T(r) gate which does

not manifest itself as a s-a-fault at an input or output of the gate

since the effect of such a fault is dependent on the specific

realization of the gate on a LSI chip. In defense of our approach,

it can be said that if any fault does exist that does not appear

outside the gate, it may be possible either to interconnect the

internal elements of the gates in such a way that if an undetectable

fault occurs, it also causes a detectable fault to occur, or to

use redundancy in interconnections to reduce the probability of

such an undetectable failure.
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