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Abstract: 
 

Parametric stochastic frontier models yield firm-level conditional distributions of 

inefficiency that are truncated normal. Given these distributions, how should one assess 

and rank firm-level efficiency? This study compares the techniques of estimating a) the 

conditional mean of inefficiency and b) probabilities that firms are most or least efficient. 

Monte Carlo experiments suggest that the efficiency probabilities are more reliable in 

terms of mean absolute percent error when inefficiency has large variation across firms. 

Along the way we tackle some interesting problems associated with simulating and 

assessing estimator performance in the stochastic frontier environment.  
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A Monte Carlo Study of Efficiency Estimates from Frontier Models

1 Introduction

A broad class of fully-parametric stochastic frontier models represent production or cost func-

tions as composed-error regressions and imply that firm-level production or cost efficiency

can be characterized as a truncated (at zero) normal distribution. Whether cross-sectional

or panel data, cost frontier or production frontier, time-invariant or time-varying efficiency,

parametric stochastic frontier models yield inefficiency distributions that are truncated nor-

mal. See, for example, Jondrow et al. (1982), Battese and Coelli (1988), Kumbhakar (1990),

Battese and Coelli (1992), Cuesta (2000), and Greene (2005). After estimating the cost or

production function for a sample of firms, parametric assumptions on the composed error

are typically used to calculate the mean and variance of normal distributions, which (when

truncated at zero) represent the conditional distributions of inefficiency for each firm. There

are currently two very different frequentist approaches used to assess the efficiency of indi-

vidual firms and create an efficiency ranking based on these distributions.1 The traditional

approach of calculating and ranking the conditional means of the truncated distributions is

due to Jondrow et al. (1982) and Battese and Coelli (1988). These are absolute estimates

of efficiency that, when ranked, reveal information on relative magnitudes of realizations

from the truncated normal distributions. Recently, Horrace (2005) calculates probabilities

on relative efficiency that allow statements to be made on which firm (in the sample) is most

1 There is also a Bayesian inference literature for the stochastic frontier model. The techniques either
directly or indirectly provide inference on relative ranks using Bayesian sampling techniques and are a viable
alternative to the results presented here. For example, see Fernandez at al. (2002), Tsionas (2002), Kim
and Schmidt (2000), and Koop et al. (1997).
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A Monte Carlo Study of Efficiency Estimates from Frontier Models

or least efficient. That is, the approach yields statements like, "firm j is most (least) efficient

relative to the rest with probability 0.3." Horrace claims that these efficiency probabilities

are more meaningful than the traditional rankings of conditional means in the sense that

they better summarize information on the relative rankings of the firms from the inefficiency

distributions. In particular, they more accurately and more completely quantify the informa-

tion on realizations from these distributions. The purpose of this study is assess the validity

of this claim via simulation. We find that the probabilities are a more precise summary of

the efficiency information revealed by the distributions.

If parametric frontier models are a correct representation of the data generation mecha-

nism, then all that these models truly identify are the distributions of inefficiency and not

estimates of realizations of inefficiency themselves. With these distributions in-hand it is

then a question of how best to report the information they contain. Using the conditional

mean of the truncated normal distribution as a point estimate of (in)efficiency is potentially

misleading, since a firm’s (in)efficiency is not a parameter per se.2 Even more to the point,

comparing firms by ranking these conditional means compounds the opportunity for misin-

terpretation, because the true efficiency differences across firms may not equal the differences

of the conditional means in any particular sample. This problem was originally addressed

by Horrace and Schmidt (1996), who calculate confidence intervals (percentiles) from the

truncated distributions, and by Bera and Sharma (1999), who calculate the conditional vari-

2 If there were sample realizations of technical inefficiency for each firm, we would naturally estimate some
conditional mean. Here, however, the conditional mean estimate is derived directly from moment conditions
imposed on the estimation problem itself and is, therefore, an artifact of the specification, not a "result" of
the empirical exercise.
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A Monte Carlo Study of Efficiency Estimates from Frontier Models

ances of the distributions. Even then, confidence intervals and conditional variances do not

account for the multiplicity implied by the joint inferential statement that firm A is better

than B, and better than C, and better than D, etc.3 Finally, the conditional means are

often interpreted as a measure of absolute efficiency, based on an out-of-sample standard, but

this interpretation would be wrong if the most efficient firm in the population were actually

part of the sample. Indeed, the idea of ranking efficiency necessarily implies a concern about

relative efficiency, so approaching this with an absolute measure seems misguided.

The efficiency probabilities avoid all the aforementioned difficulties. They recognize that

the point of interest is not ranked parameters but ranked potential realizations from esti-

mated distributions. They implicitly account for the variability of inefficiency and, indeed, all

the moments of the distributions.4 They account for the multiplicity in the efficiency rank

statement by assigning probabilities to joint statements on efficiency differences. Finally,

they are statements on relative (not absolute) differences, which is the correct comparison

for a within sample ranking. The only apparent shortcoming of these probabilities is com-

putational cost; the conditional means involve simple algebra, while the probabilities require

numerically calculating a probability integral.

This paper uses Monte Carlo methods to compare the precision of the conditional means

and the probability statements. Since the two techniques and their units of measure are very

different, we employ the unitless mean absolute percentage error (MAPE) to make compar-

3 This has been accomplished in the semi-parametric, fixed-effect specification of the stochastic frontier,
using the theory of multiple comparisons. See Horrace and Schmidt (2000).
4 For example, one might suspect that the skew of a truncated distribution is as important as the mean and
the variance in understanding distributional shape.
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A Monte Carlo Study of Efficiency Estimates from Frontier Models

isons. The simulations also present several complications that underscore the difficulties of

efficiency estimation, in general, and that provide insights into the inherent differences of

the two estimation approaches. These are discussed in the sequel. We find that efficiency

probabilities are more reliable when the variance of technical inefficiency is large; this is the

"usual" case in the sense that it is the only time when estimation of inefficiency is at all

precise and when it may be even warranted. In addition to the MAPE results, we present

mean squared error (MSE) and bias calculations to examine the effects of changes in the

variance parameters and sample sizes on the performance of each estimator (in isolation).

We also demonstrate that relative efficiency probabilities can be made for any subset of the

firms in the sample, where the subset might be selected based on some additional criterion

which does not enter into the frontier estimation. (In fact, we use this technique to simplify

our Monte Carlo study when the number of firms is exceedingly large.) The next section

reviews the stochastic frontier model and defines the estimates to be studied, including the

new subset probabilities. Section 3 contains the Monte Carlo study, and section 4 provides

a final discussion of the results and concludes.

2 Efficiency Estimation

The parametric stochastic frontier model was introduced simultaneously by Aigner, Lovell

and Schmidt (1977) and Meeusen and van den Broeck (1977). Since then, there have been

many re-formulations of the basic model. For example, consider the standard linear frontier

4



A Monte Carlo Study of Efficiency Estimates from Frontier Models

specification for panel data with time-invariant efficiency:

yjt = x0jtβ + vjt ± uj, j = 1, ..., n, t = 1, ..., T, (1)

where yjt is productive output or cost for firm j in period t; xjt is a vector of production or cost

inputs and β is an unknown parameter vector. The vjt ∈ R are random variables representing

shocks to the frontier. Let vjt have an iid zero-mean normal distribution with variance σ2v.

The uj ∈ R+ are random variables representing productive or cost inefficiency, added to

the cost function representation or subtracted from the production function representation.

Let uj have a distribution that is the absolute value of an iid zero-mean normal random

variable with variance σ2u (a half-normal distribution). Additionally, let the xjt, vjt and

uj be independent across j and across t. There are more flexible parameterizations of the

linear model. For example, Kumbhakar (1990), Battese and Coelli (1992), and Cuesta (2000)

consider forms of time-varying efficiency, ujt. Greene (2005) considers an extremely flexible

model that incorporates firm level heterogeneity in addition to the usual error components.

Our selection of the more simple model in equation 1 is merely to parallel the model and

discussions in Horrace (2005) and should not be construed as a limitation on the applicability

of the results that follow. In fact, the inferential procedures detailed herein apply in time-

varying efficiency models, in Greene (2005), or in any frontier model where the conditional

distribution of efficiency is truncated normal (including the case where the unconditional

distribution of efficiency is exponential). Per Jondrow et al. (1982), the distribution of ujt

conditional on �jt = vjt ± ujt is a N(μ∗j, σ
2
∗) random variable truncated below zero. Per

5
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Battese and Coelli (1988), the μ∗j and σ2∗ are:

μ∗j = ±
σ2u�j

σ2u +
σ2v
T

, j = 1, ..., n; (2)

and

σ2∗ =
σ2uσ

2
v

Tσ2u + σ2v
, (3)

where �j = T−1
PT

t=1 �jt. (The right-hand side of equation 2 is "+" for the cost frontier or

"−" for the production frontier) Parametric estimation usually proceeds by corrected GLS

or MLE [e.g. Horrace and Schmidt (1996) for details], yielding estimates bβ, bσ2u, and bσ2v.
Then, defining ejt = yjt−x0jt

bβ, "estimation" of μ∗j and σ2∗ follows by substituting ejt for �jt,
bσ2u for σ2u, and bσ2v for σ2v in equations 2 and 3. Then, for a log-production function, the usual
measure of technical efficiency based on a N(bμ∗j, bσ2∗) assumption is:

bθj = E(exp{−uj}|ej) = exp{−bμ∗j + 12bσ2∗}1− Φ
³bσ∗ − bμ∗jbσ∗

´
1− Φ

³
−bμ∗jbσ∗

´ , j = 1, ..., n. (4)

This is the sample equivalent of θj = E(exp{−uj}|�j), assuming that substitution of ejt

for �jt does not change the shape of the conditional distribution (or at least asymptotically).

Horrace (2005) argues that the point estimate in 4 is "misleading." Granted the shape of

the conditional distribution is truncated normal, but it is unrealistic to think that the first

moment of an asymmetric, truncated distribution can summarize its entire probabilistic

nature. Illustration of this point is the essence of the contributions of Horrace and Schmidt

(1996) and Bera and Sharma (1999): the first moment does not adequately summarize

efficiency, so one should also quantify the second moment by constructing confidence intervals

(Horrace and Schmidt, 1996) or calculating the variance of the truncated distributions (Bera
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and Sharma, 1999). Ideally, one might calculate higher moments as well, particularly odd

moments, which affect the probability of extreme realizations of inefficiency in clear ways.

This suggests that the point estimate, bθj, does not adequately account for (or inform our

understanding of) the varying shape of the conditional distribution of u across firms.

Horrace (2005) addresses these shortcomings in bθj by calculating multivariate probabili-
ties conditional on �, given that the distribution of uj is truncated (at zero) normal. These

probabilities are:

P j
max = Pr{uj < ui ∀ i 6= j} j = 1, ...n, (5)

P j
min = Pr{uj > ui ∀ i 6= j} j = 1, ...n, (6)

Notice that there is room for confusion in the notation. The "max" notation in P j
max is

intended to represent the fact that j is "maximally efficient", which happens to coincide

with uj being minimal (uj < ui ∀ i 6= j in a probabilistic sense). The "max" notation

should not be confused with "maximal uj" , which is synonymous with "minimal efficiency".

Similarly, the "min" notation in P j
min represents the fact that j is "minimally efficient"

(uj > ui ∀ i 6= j in a probabilistic sense). Specifically, the probabilities are given by:

P j
max =

Z ∞

0

fuj(u)
nY
i6=j
[1− Fui(u)]du,

and

P j
min =

Z ∞

0

fuj(u)
nY
i6=j

Fui(u)du,

where fuj(u) and Fuj(u) are the probability function and the cumulative distribution function

7
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of a N(μ∗j, σ
2
∗) distribution truncated at zero, respectively. That is,

fuj(u) =
(2πσ2∗)

−1/2 exp{− (u−μ∗j)
2

2σ2∗
}

1− Φ(−μ∗j/σ∗)
,

and

Fuj(u) =
Φ({u− μ∗j}/σ∗)− Φ(−μ∗j/σ∗)

1− Φ(−μ∗j/σ∗)
,

u ∈ R+, where Φ is the cumulative distribution function of the standard normal. The

probabilities in equations 5 and 6 condense all the information on the relative differences of

the distributions of efficiency into a single statement and also account for the multiplicity

of the probability statement on maximal (minimal) efficiency, which the conditional mean

and conditional variance cannot. In particular, they more adequately capture the effect of

the shape of the distribution on the magnitude of a firm’s realization of u than the point

estimates bθj. Estimates of the probabilities, bP j
max and bP j

min follow by substituting estimates

bμ∗j and bσ∗ into equations 5 and 6.
A useful feature of these probabilities is that they are statements of relative efficiency

(efficiency relative to a within sample standard), whereas the typical efficiency measure, bθj,
is a measure of absolute efficiency (efficiency relative to an unobserved population standard).

Relative efficiency is often empirically relevant, as when the research question is about the

most or least efficient firms within an industry. In addition, one may be interested in un-

derstanding relative performance among a subset of the sample of firms j = 1, ...n, based

on a certain information criteria or decision rule. For example, one may be interested in

estimating a cost function for a sample of 500 banks, but then only calculating probabilities

of maximal cost efficiency for a subset of the banks with large assets. That is, one may

8



A Monte Carlo Study of Efficiency Estimates from Frontier Models

be interested in how only the largest banks perform relative to one another, conditional on

a common cost function for all banks. The probabilities P j
max and P j

min will change as the

cardinality of and the membership within this subset changes. Let N = {1, ..., n} be the set

of all firm indices in the sample, and let the subset of interest be JΩ ⊂ N , based on some

external information or decision rule Ω. Then the probabilities in equations 5 and 6 become:

P j
Ωmax =

Z ∞

0

fuj(u)
Y

i6=j, i∈JΩ

[1− Fui(u)]du, (7)

and

P j
Ωmin =

Z ∞

0

fuj(u)
Y

i6=j, i∈JΩ

Fui(u)du, (8)

for all j ∈ JΩ. These will be different, in general, than the probabilities P j
max and P j

min of

Horrace (2005). In fact, the probabilities in equations 5 and 6 are a special case of equations

7 and 8 when JΩ = N . If Ω is empirically relevant, then probabilities like P j
Ωmax (j ∈ JΩ)

may be more useful than P j
max (j ∈ N). Also, experiments on the effects of different Ω and

JΩ on the probabilities in equations 7 and 8 may be of particular interest to empiricists.

These types of experiments flow more naturally from relative efficiency measures like the

probabilities in equations 7 and 8 than they do from absolute efficiency measures like bθ in
equation 4.

The next section examines the small and large sample performance of the estimates of

P j
max, P

j
min and θj via Monte Carlo analysis. For each estimate we calculate MSE and bias for

various sample sizes, (n, T ), and various selections of σ2u/σ
2
v. Reliability comparisons across

the different measures are made using the unitless MAPE.

9
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3 Monte Carlo Experiment

The specification used for the experiment is the production function:

yjt = β0 + β1xjt + vjt − uj. (9)

The regressor x is needed for sampling variability to have a noticeable impact on the estimates

bP j
max and bP j

min. In a model with only a constant term, sampling variability in the estimation

of β0 alone would simply shift all the ejt up or down by the same amount, and the bμ∗j
would all undergo an identical transformation from their true values. Hence, the difference

between any two bμ∗j and bμ∗i would be unchanged, and only sampling variability in the
estimate bσ∗ would affect bP j

Ωmax, and bP j
Ωmin. This is due to the "relative nature" of the

efficiency probability estimates; the absolute estimates bθj are immune to this complication
and could be analyzed without including a regressor in the specification.

Following Olsen, Schmidt and Waldman (1980), we fix the variance of the composed error

term to σ2� = σ2u+σ2v = 1. Hence, the individual variances of vjt and uj may be characterized

by a single parameter–we use the ratio γ = σ2u/σ
2
v. However, unlike the estimates in Olsen,

Schmidt and Waldman (1980), the bθj, bP j
max, and bP j

min are more complicated transformations

of the data, so we cannot say immediately what the effect of changes in σ2� would be.
5

While we estimate the production function in equation 9 for the entire sample, we only

estimate the various efficiency measures for a subset of five randomly chosen firms. This

is done primarily for ease of computation of P j
max and P j

min, which involve integration over

a product of functions, one for each firm in the comparison group. In essence, we calcu-
5 This is particularly difficult to predict for the efficiency probabilities.

10
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late bP j
Ωmax and bP j

Ωmin for j ∈ JΩ where Ω is the rule "randomly select five firms from N ."

Consequently, we only calculate five values of bθj, j ∈ JΩ in each simulation iteration for

comparison. This randomization introduces an additional source of variability into the exer-

cise, which may cause some instability in the convergence results, but the instability is the

price we pay for computational ease. Fortunately, the additional variability is common to

all estimators considered, so any instability will be globally manifest.

3.1 Simulation Procedure

The experiment is designed to assess bθj , bP j
Ωmax, and bP j

Ωmin over a range of common panel

sizes (n and T ) and variance ratios (γ). We use eight panel configurations: T = 5 and

n = 25, 100, 500; T = 10 and n = 25, 100, 500; and T = 20 and n = 25, 100.6 In all cases we

are concerned with the usual panel setting of large n and fixed T , so asymptotic arguments

are along the dimension n. For each panel configuration we conduct simulation exercises for

five variance ratios γ = 0.1, 0.5, 1, 5, and 10, so there are forty simulations in total. For

reasons discussed above, we fix the number of firms for calculation of bθj, bP j
Ωmax, and bP j

Ωmin

to five (randomly selected from N = 1, ..., n) .7

Each iteration within a simulation exercise (indexed by m = 1, . . . ,M), goes through the

following sampling and estimation procedure, which is repeatedM = 5, 000 times. First, the

errors ujm and vjtm are drawn from the appropriate half-normal and normal distributions

(with respective variances σ2u and σ2v), and the regressors xjtm are drawn from an indepen-

6 We omitted N = 500, T = 20 to save computing time.
7 This also allowed us to indirectly examine the validity of the subset efficiency probabilities introduced in
equations 7 and 8.
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dent uniform [0,1] distribution.8 Then yjtm is generated for β0 = 0 and β1 = 1 (the only

parameterization of the conditional mean function considered). Since each �jtm is observed,

we can calculate the true values of μ∗jm and σ∗m for each draw, m. These map into the true

values for θjm, P jm
Ωmax, and P jm

Ωmin for each m, so the "parameters" of interest are not con-

stant acrossm. Estimation of β0m, β1m, and ejtm proceeds with corrected GLS (the "random

effects" estimator).9 After estimating bμ∗jm and bσ∗m, using ejtm for �jtm and bσ2u, bσ2v for σ2u, σ2v
in equations 2 and 3, five firms are randomly selected to produce the subset JΩm ⊂ N . From

these results we calculate estimates bθjm, bP jm
Ωmax, and bP jm

Ωmin for the five firms j ∈ JΩm, using

equations 4, 7, and 8.

In what follows it is very important to remember that the true values θjm, P
jm
Ωmax, and

P jm
Ωmin, j ∈ JΩm are not fixed across iterations, m. (This should be clear, since all three of

these measures are indexed by m.) This produces nonstandard formulae for the MSE, bias,

and MAPE, although their interpretations are, indeed, standard. It also underscores the

difficulties in estimating efficiency in these models: we are trying to make inferences about

the distribution of efficiency for each firm from what amounts to a single draw from the

distribution, and that single draw uj is not even observed; it is merely "estimated" from the

convolution, ejt.

With the results from the 5, 000 iterations for each simulation exercise, we calculate the

mean square error of bθj, bP j
Ωmax, and bP j

Ωmin. Our nonstandard formula is (typically):

MSE(θ̂) =
1

5M

MX
m=1

X
j∈JΩm

(θ̂jm − θjm)
2,

8 We could have allowed the xjtm to be correlated within firms, but did not.
9 When CGLS fails due to σ̂2u < 0, we set σ̂2u = 0, per Waldman (1982)

12
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and similarly for MSE( bPΩmax), and MSE( bPΩmin).10 Even though the MSE is nonstandard

because it includes sampling variability across the true parameters (even asymptotically), it

still seems theoretically sensible. As we shall see, it also produces results that are sensible.

Again, this is an unavoidable feature of efficiency estimation from these models (in general).

For the bias and MAPE, we separately use only the best or worst firms within each

five-firm subsample. This is necessary as the probability statements within a comparison

group automatically sum to one (e.g.,
P

j∈JΩ
bP jm
Ωmax = 1), so there is no average bias for

the whole group for these estimators. This is another artifact of their "relative nature" and

perhaps a nice feature. More specifically, using the population ranking of ujm among the

five randomly selected firms, u[1]m < u[2]m < ... < u[5]m, we calculate the bias and MAPE

of bP [1]m
Ωmax, bP [5]m

Ωmin, θ̂[1]m, and θ̂[5]m for each iteration. Hence, the biases for each extremum

measure are (typically):

Bias(θ̂[1]) =
1

M

MX
m=1

(θ̂[1]m − θ[1]m)

and

Bias(θ̂[5]) =
1

M

MX
m=1

(θ̂[5]m − θ[5]m),

and similarly for Bias( bP [1]
Ωmax), and Bias( bP [5]

Ωmin). We could have selected any firms in the

ranking for this purpose (i.e., [2], [3] or [4]), but the best and the worst seemed appropriate

for evaluating the performance of ranked estimators. Also, the extreme firms map into

efficiency probabilities from the population that tend to be large, precluding a "divide-by-

zero" problem in the MAPE calculation, as we shall see. Bias(θ̂[1]) quantifies the extent to

10We also calculated mean absolute error for each measure, but the results were similar to those for MSE
and are not reported.
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which the estimate of technical efficiency for the most efficient firm in the randomly selected

subsample is mis-measured on average. Similarly, the Bias( bP [1]
Ωmax) quantifies the extent to

which the estimate of the probability of being most efficient for the most efficient firm in the

randomly selected subsample is mis-measured on average. Finally, since the units of θj and

P j
Ωmax are different, the MSE and Bias measures are only relevant for making comparisons

for a single measure (in isolation).

To make comparisons across measures we employ the unitless MAPE (typically):

MAPE(θ̂[w]) =
1

M

MX
m=1

¯̄̄̄
¯ θ̂[w]m − θ[w]m

θ[w]m

¯̄̄̄
¯ w = 1, 5.

With the MAPE, we wish to avoid division by numbers close to zero, so we calculate it only

for bP [1]
Ωmax and bP [5]

Ωmin, the efficiency probability of the most efficient firm and the inefficiency

probability of the least efficient firm, respectively, in the population. That is, efficiency

probabilities, like bP [5]
Ωmax and bP [1]

Ωmin may be very close to zero in the denominator of the

MAPE formula, so it is only calculated for bP [1]
Ωmax and bP [5]

Ωmin, which should both be fairly

large in each draw. The results of the simulations and their discussion follow.

3.2 Results

First, the experiment shows that failure of the CGLS procedure (σ2u < 0) is a problem only

for extremely “noisy” variance ratios (small γ) and for small n in Tables 1-3. There are no

failures with γ > 1, and with γ = 1 only a small number of failures (less that 1%) occur

using the smallest sample n = 25, T = 5.

As expected, theMSE of all measures decreases with increasing n and fixed T . Of course,
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Tables 1-3 do not allow us to make comparisons across measures, since the units are different

across measures. Also, it is not surprising that as the signal-to-noise ratio (σ2u/σ
2
v) increases,

the MSE of the estimates is usually non-increasing, but not always. The MSE (Table 1-3)

of bPΩmax (the probability that j is most efficient) is always non-increasing in γ. However,

this is not true for the MSE of bθ, and bPΩmin. For example, in Table 3 for n = 25 and

moving from γ equal 1 to 5 to 10, the MSE of bθ is increasing from 0.0032 to 0.0048 to

0.0055. Similarly the MSE of bPΩmin is increasing across these γ0s in the same simulations.

(The non-monotonicities are highlighted with asterisks in Table 1-3.) Why might these non-

monotonicities in γ arise? It is well-known that the random effects estimator of β1 is a

weighted sum of the between estimator and the within (or fixed effects) estimator (e.g., see

Hsiao, 1986 p36). The between estimator ignores the within firm variation, σ2u, so when σ2u

is large the random effects estimator places more weight on the within variation and the

random effect estimator is close to the fixed effect estimator. It is also well-known that

the random effects estimator is asymptotically efficient relative to the fixed effects estimator

(e.g., see Baltagi, 2005 p17), so when σ2u is very large, the random effects estimator may

have a larger variance than when σ2u is small. This imprecision feeds into the estimates

bθj, bP j
Ωmax, and bP j

Ωmin, so non-monotonicities in Tables 1-3 may reflect this lack of precision.

Notice that they (highlighted with asterisks) occur primarily for the largest γ (and hence for

largest σ2u).
11 Another factor that may induce the non-monotonicities is the size of σ∗, which

appears as −μ∗j/σ∗ in the formulae for the conditional mean and efficiency probabilities.
11The imprecision may be worsen by the fact that the fixed effects estimator cannot exploit correlations
between x and u, as they have not been built into the DGP.
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For our simulations, the true value of σ∗ reaches a maximum between γ = 0.4 and γ = 0.7

depending on the value of T . Obviously, smaller values of σ̂∗ ceteris paribus inflate any

error in the ratio μ∗j/σ∗, so the estimators may be less precise for large γ. (Of course there

is no way to disentangle this phenomenon from the effect of the random effects estimator

approaching the fixed effects estimator, but it is interesting to note.)

Why is the probability bP [1]
Ωmax non-increasing in γ? More accurately, why is the maximal

efficiency probability immune to the variability of the random effects estimator when γ is

large? When γ (and hence σ2u) is large, the probability of u[1] << uj, j 6= [1] is large, so that

differences in μ̂∗[1] and μ̂∗j, j 6= [1] tend to be large. The efficiency probabilities are based on

differences of these means (μ̂∗[1]− μ̂∗j) and their relative variability. When the differences are

large, the ability of the probabilities to distinguish the efficiency distributions is improved.

It must be the case that this ability to distinguish outweighs the increased variability in the

random effects estimator. Of course this phenomenon does not occur for bP [5]
Ωmin. Why? It

may be related to the shape of the half normal distribution from whence the realizations of

u come. The distribution has most of its mass in the left tail (u = 0). As σ2u gets large the

right tail of the distribution becomes more uniform while the left tail maintains some of its

shape. Realizations from the left tail of the distribution are more "informative" (to borrow

a word form the Bayesians) than from the right tail. Therefore differences relative to the

in the right tail, u[1] − uj, may be smaller in magnitude than differences relative to the left

tail, u[5]− uj. Hence, it may be "easier" for bP [1]Ωmax to distinguishing (μ̂∗[1]− μ̂∗j) than bP [5]
Ωmin

to distinguish (μ̂∗[5] − μ̂∗j). Another (perhaps more plausible reason) is approximation error
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in Φ(−μ∗j/σ∗) caused by very large (in absolute value) μ[5]/σ∗. Since bP [1]
Ωmax follows from

relatively small μ[1]/σ∗, it is immune to approximation error. In fact, absent approximation

error, we believe that bP [5]Ωmin would exhibit the same monotonicities as bP [1]
Ωmax.

The results for the MSE in Tables 1-3 are similar (for the most part) to the Bias results

in Tables 4-6, which are tabulated for extreme-efficiency firms ([1] and [5]) from the ranked

subsample of five. As expected, the biases of all measures are non-increasing in n (in absolute

value), and they are generally decreasing in γ with a few exceptions that are similar in nature

to those of Tables 1-3. While the imprecision of the random effects estimator for large σ2u

manifests itself in the variance of the efficiency estimates and, hence, the MSE of each

estimator (Tables 1-3), it may also effect the bias of the estimates in this exercise. To see

this, remember that that the nonstandard bias formula is not based on a fixed parameter

across all 5,000 draws. Our formulation does not "average out" deviations around a fixed

parameter, so the possibility for large deviations persists. These persistent deviations may

appear as bias in our results. Notice also that the probability measures are always negatively

biased, while the conditional mean measures are always positively biased. We suspect that

this reversal comes from the fact that the probabilities are based on the distribution of u

while the conditional means are based on the distribution of exp{−u}. Across Tables 4-6,

only bθ[5] is uniformly improving in both n and γ (in the sense that the absolute value of the

bias is non-increasing). However, comparisons of the bias across different measures is not

possible due to inconsistency of the units of measure.

To make comparisons across different measures, mean absolute percentage errors (MAPE)
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for the extreme ends of the population order statistic are presented in Tables 7-9. Across

all three tables the results are clear: MAPE( bP [1]
Ωmax) is less than MAPE(bθ[1]) for values of

γ > 1, and MAPE( bP [5]
Ωmin) is less than MAPE(bθ[5]) for values of γ > 0.1. In other words,

the probabilities are out-performing the conditional mean measures, when the variance of

inefficiency, σ2u, is large. For example in Table 7, n = 25, γ = 5.0, the MAPE for bθ[1], bθ[5],
bP [1]
Ωmax, bP [5]

Ωmin are 0.0890, 0.1633, 0.0688 and 0.0347, respectively. Our results are complicated

by the fact that MAPE( bP [5]Ωmin) had extremely large values in some simulations with large

γ. These instances are indicated in the tables with double asterisks (**) and were due to a

few draws where the true values of u[5]m were so large, that they generated approximation

errors in the computer calculations of the probabilities. (This is the same approximation

error discussed for the MSE, but made worse since we are now selecting u[5].) This is an

unfortunate feature of the probabilities, but it is purely computational in nature (i.e., it

could be corrected with a more accurate algorithm for calculating Φ). As for monotonicities

in the MAPE, all measures improve with n as expected. Both bP [1]Ωmax and bP [5]Ωmin appear to

have MAPE non-increasing in γ as well, except in one case for bP [5]Ωmin (and this may be due

to approximation error in Φ). The MAPE of bθ[1] and bθ[5] reaches a minimum MAPE at or

below γ = 1 in all panel configurations.

4 Conclusions

This study provides evidence on the sampling performance of two very different technical

efficiency estimators that are used to assess absolute and relative firm-level efficiency, based
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on parametric stochastic frontier models. We find that both the traditional conditional

mean estimates and the efficiency probabilities appear to be monotonically more precise as

n increase. However, the effect of the variance ratio (γ = σ2u/σ
2
v) is more complicated. The

efficiency probabilities out-perform the conditional mean when γ is greater than one. This

is the empirically (and theoretically) important case for the frontier model. Our precision

assessments are based on the unitless mean absolute percentage error, the only measure that

could be used for comparison of these different estimators.

We are aware that we have introduced two other source of variability in our study. One

follows from the quantities of interest varying overm, and the other follows from our random

sample of five firms for each m to calculate the measures of interest. The first source of

variability could not be avoided and underscores the fact that efficiency "estimates" are not

estimates of traditional population parameters. They are, in fact, proxies for an unobserved

realization from inefficiency distributions. This is precisely the challenge that the frontier

literature presents, and it is manifest in our study. The second source of variability was

included by choice to relieve some computational burden. However, this variability is purely

random and effects the all efficiency estimators in similar ways. Finally, approximation error

in calculating Φ may have invalidated (or precluded) simulation results for the largest values

of γ, but the results for moderate values of γ are to be believed.

In conclusion, we argue for use of efficiency probabilities rather than the conditional

means of firm-specific inefficiency distributions to assess firm-level efficiency and its rank.

Beyond the philosophical justifications, we find evidence that the probabilities out-perform
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the conditional means in terms of mean absolute percentage error when the signal-to-noise

ratio of inefficiency is high. We encourage the continued use and study of the probabilities

in future applied and theoretical work.
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Table 1. Mean squared error, T = 5.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 COLS failure rate 0.3332 0.0454 0.0024 0 0

bθj 0.0223 0.0145 0.0065 0.0046 0.0051*

bP j
Ωmax 0.0031 0.0021 0.0011 0.0007 0.0007

bP j
Ωmin 0.0053 0.0030 0.0010 0.0003 0.0002

100 COLS failure rate 0.1624 0 0 0 0

bθj 0.0116 0.0020 0.0012 0.0010 0.0012*

bP j
Ωmax 0.0016 0.0003 0.0002 0.0002 0.0002

bP j
Ωmin 0.0030 0.0004 0.0002 0.0001 0.0001

500 COLS failure rate 0.0110 0 0 0 0

bθj 0.0025 0.0004 0.0002 0.0002 0.0002

bP j
Ωmax 0.0004 0.0001 0.0000 0.0000 0.0000

bP j
Ωmin 0.0007 0.0001 0.0000 0.0000 0.0000

* - indicates a non-montonicity in γ.
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Table 2. Mean squared error, T = 10.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 COLS failure rate 0.1942 0.0026 0 0 0

bθj 0.0134 0.0052 0.0038 0.0045* 0.0051*

bP j
Ωmax 0.0028 0.0009 0.0006 0.0005 0.0004

bP j
Ωmin 0.0047 0.0007 0.0002 0.0001 0.0007*

100 COLS failure rate 0.0312 0 0 0 0

bθj 0.0041 0.0010 0.0009 0.0011 0.0013*

bP j
Ωmax 0.0009 0.0002 0.0001 0.0001 0.0001

bP j
Ωmin 0.0015 0.0001 0.0001 0.0000 0.0004*

500 COLS failure rate 0 0 0 0 0

bθj 0.0006 0.0002 0.0002 0.0002 0.0003*

bP j
Ωmax 0.0001 0.0000 0.0000 0.0000 0.0000

bP j
Ωmin 0.0002 0.0000 0.0000 0.0000 0.0002*

* - indicates a non-monotonicity in γ.
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Table 3. Mean squared error, T = 20.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 COLS failure rate 0.0572 0.0004 0 0 0

bθj 0.0063 0.0030 0.0032* 0.0048* 0.0055*

bP j
Ωmax 0.0019 0.0005 0.0004 0.0003 0.0003

bP j
Ωmin 0.0028 0.0002 0.0001 0.0006* 0.0051*

100 COLS failure rate 0 0 0 0 0

bθj 0.0011 0.0007 0.0008* 0.0012* 0.0014*

bP j
Ωmax 0.0003 0.0001 0.0001 0.0001 0.0001

bP j
Ωmin 0.0003 0.0000 0.0000 0.0002* 0.0031*

* - indicates a non-monotonicity in γ.
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Table 4. Bias at maximal or minimal efficiency, T = 5.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.0396 0.0251 0.0097 0.0068 0.0081

bP [1]
Ωmax -0.0043 -0.0092 -0.0050 -0.0017 -0.0029

bθ[5] 0.0346 0.0436 0.0225 0.0077 0.0062

bP [5]
Ωmin -0.0082 -0.0161 -0.0084 -0.0009 -0.0009

100 bθ[1] 0.0281 0.0040 0.0026 0.0015 0.0003

bP [1]
Ωmax -0.0033 -0.0012 -0.0014 -0.0009 -0.0004

bθ[5] 0.0297 0.0077 0.0058 0.0020 0.0010

bP [5]
Ωmin -0.0086 -0.0026 -0.0017 -0.0002 -0.0003

500 bθ[1] 0.0069 0.0004 0.0003 0.0004 0.0003

bP [1]
Ωmax -0.0011 -0.0003 -0.0002 -0.0002 0.0000

bθ[5] 0.0079 0.0011 0.0008 0.0004 0.0003

bP [5]
Ωmin -0.0024 -0.0004 -0.0003 0.0000 0.0000
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Table 5. Bias at maximal or minimal efficiency, T = 10.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.0321 0.0102 0.0074 0.0041 0.0084

bP [1]
Ωmax -0.0071 -0.0050 -0.0041 -0.0021 -0.0025

bθ[5] 0.0351 0.0213 0.0144 0.0055 0.0050

bP [5]
Ωmin -0.0131 -0.0071 -0.0025 -0.0004 -0.0026

100 bθ[1] 0.0105 0.0019 0.0016 0.0017 0.0015

bP [1]
Ωmax -0.0031 -0.0011 -0.0012 -0.0004 -0.0007

bθ[5] 0.0137 0.0047 0.0033 0.0017 0.0011

bP [5]
Ωmin -0.0070 -0.0014 -0.0006 -0.0001 -0.0004

500 bθ[1] 0.0017 0.0003 0.0003 0.0006 -0.0003

bP [1]
Ωmax -0.0003 -0.0002 -0.0001 0.0001 -0.0001

bθ[5] 0.0023 0.0008 0.0006 0.0002 0.0000

bP [5]
Ωmin -0.0010 -0.0001 -0.0001 -0.0001 -0.0009
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Table 6. Bias at maximal or minimal efficiency, T = 20.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.0153 0.0053 0.0049 0.0034 0.0052

bP [1]
Ωmax -0.0078 -0.0031 -0.0026 -0.0020 -0.0016

bθ[5] 0.0233 0.0117 0.0087 0.0043 0.0043

bP [5]
Ωmin -0.0157 -0.0027 -0.0010 -0.0013 -0.0019

100 bθ[1] 0.0032 0.0017 0.0015 0.0002 0.0002

bP [1]
Ωmax -0.0013 -0.0010 -0.0007 -0.0006 0.0002

bθ[5] 0.0055 0.0031 0.0021 0.0010 0.0010

bP [5]
Ωmin -0.0031 -0.0006 -0.0001 -0.0009 -0.0017
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Table 7. MAPE at maximal or minimal efficiency, T = 5.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.1344 0.0911 0.0731 0.0890 0.1044

bP [1]
Ωmax 0.1960 0.1339 0.1119 0.0688 0.0616

bθ[5] 0.1943 0.2170 0.1875 0.1633 0.1651

bP [5]
Ωmin 0.2455 0.1461 0.0912 0.0347 0.0266

100 bθ[1] 0.0865 0.0363 0.0336 0.0422 0.0494

bP [1]
Ωmax 0.1258 0.0582 0.0471 0.0355 0.0315

bθ[5] 0.1255 0.0934 0.0862 0.0769 0.0780

bP [5]
Ωmin 0.1673 0.0565 0.0368 0.0176 0.0135

500 bθ[1] 0.0360 0.0157 0.0145 0.0192 0.0219

bP [1]
Ωmax 0.0579 0.0244 0.0209 0.0166 0.0137

bθ[5] 0.0551 0.0405 0.0376 0.0347 0.0343

bP [5]
Ωmin 0.0727 0.0239 0.0165 0.0077 0.0053
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Table 8. MAPE at maximal or minimal efficiency, T = 10.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.0872 0.0561 0.0588 0.0925 0.1067

bP [1]
Ωmax 0.1650 0.0908 0.0718 0.0494 0.0389

bθ[5] 0.1478 0.1398 0.1342 0.1447 0.1498

bP [5]
Ωmin 0.2065 0.0679 0.0409 0.0174 **

100 bθ[1] 0.0408 0.0253 0.0286 0.0458 0.0523

bP [1]
Ωmax 0.0822 0.0403 0.0345 0.0259 0.0216

bθ[5] 0.0781 0.0641 0.0634 0.0714 0.0735

bP [5]
Ωmin 0.0989 0.0280 0.0184 0.0088 **

500 bθ[1] 0.0162 0.0114 0.0124 0.0201 0.0234

bP [1]
Ωmax 0.0335 0.0176 0.0151 0.0109 0.0092

bθ[5] 0.0319 0.0279 0.0277 0.0313 0.0324

bP [5]
Ωmin 0.0403 0.0119 0.0081 0.0037 **
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Table 9. MAPE at maximal or minimal efficiency, T = 20.

Variance Ratio (γ = σ2u
σ2v
)

n Statistic 0.1 0.5 1.0 5.0 10

25 bθ[1] 0.0493 0.0448 0.0561 0.0973 0.1130

bP [1]
Ωmax 0.1233 0.0638 0.0568 0.0339 0.0278

bθ[5] 0.1073 0.1005 0.1070 0.1346 0.1464

bP [5]
Ωmin 0.1326 0.0301 0.0194 ** **

100 bθ[1] 0.0201 0.0220 0.0276 0.0474 0.0558

bP [1]
Ωmax 0.0507 0.0313 0.0268 0.0185 0.0142

bθ[5] 0.0473 0.0476 0.0520 0.0662 0.0708

bP [5]
Ωmin 0.0496 0.0140 0.0093 0.0225 **
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