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ABSTRACT

Wavelet analysis is a new mathematical tool developed as a unified field of science over the last
decade. As spatially adaptive analytic tools, wavelets are useful for capturing serial correlation
where the spectrum has peaks or kinks, as can arise from persistent /strong dependence, seasonality
or use of seasonal data such as quarterly and monthly data, business cycles, and other kinds of
periodicity. This paper proposes a new class of wavelet-based tests for serial correlation of unknown
form in the estimated residuals of an error component model, where the error components can be
one-way or two-way, the individual and time effects can be fixed or random, the regressors may
contain lagged dependent variables or deterministic/stochastic trending variables. The proposed
tests are applicable to unbalanced heterogenous panel data. They have a convenient null limit
N(0,1) distribution. No formulation of an alternative is required, and the tests are consistent
against serial correlation of unknown form. We propose and justify a data-driven method to choose
the finest scale parameter—the smoothing parameter in wavelet spectral estimation, making the
test procedure completely operational for any finite sample. The data-driven finest scale, in an
automatic manner, converges to zero under the null hypothesis of no serial correlation and grows to
infinity as the sample size increases under the alternative, ensuring the consistency of the proposed
tests. Simulation studies show that the new tests perform rather well in small and finite samples
in comparison with some existing popular tests for panel models and can be used as an effective

evaluation procedure for panel models.

Key Words: FError component, Panel model, Hypothesis testing, Serial correlation of unknown

form, Spectral peak, Unbalanced panel data, Wavelet



1 Introduction

Increasingly available panel data have been widely used in economics and econometrics. They
often provide insights not available in pure time-series or cross-sectional data (e.g., Baltagi 1995,
Granger 1996, Hsiao 1986). This paper proposes a new class of wavelet-based consistent tests for
serial correlation of unknown form in panel data models. It is important to test serial correlation of
unknown form in panel models because the existence of serial correlation will invalidate conventional
tests such as t-tests and F-tests which use standard covariance estimators of parameter estimators,
and will indicate model misspecification when the regressors include lagged dependent variables.
Moreover, the choice of estimation methods may depend upon whether there exists serial correlation
in the errors of panel models. When the errors are serially correlated in panel data models, for
example, the computation of MLE (e.g., Anderson and Hsiao 1982, Hsiao 1986, Binder, Hsiao and
Pesaran 1999) and GMM (e.g., Blundell and Bond 1998) could be rather complicated, and the
feasible GLS estimator will be invalid or have to be modified substantially (e.g., Baltagi and Li
1991). Some inference procedures, such as Breusch and Pagan’s (1980) tests for random effects,
also assume serial uncorrelatedness in the errors of panel data models.

There have been some tests for serial correlation in panel models. Bhargava, Franzini, and
Narendranathan (1982) extended Durbin and Watson’s (1951) test to static panel models. Breusch
and Pagan (1980) propose an LM test for first order serial correlation, assuming no random effects
in an error component model. Baltagi and Li (1991) propose a joint LM test for first order serial
correlation and random effects. Baltagi and Li (1995) further propose a class of LM tests for first
order serial correlation, allowing the presence of random effects or fixed individual effects. Bera,
Sosa-Escudero and Yoon (2000) also propose a convenient OLS-based test for first order serial
dependence by modifying Baltagi and Li’s (1995) LM tests. Li and Hsiao (1998) propose tests for
first order and higher order serial correlation for a semiparametric partially linear panel model.

All of the existing tests for serial correlation in panel models assume a known form of serial
correlation, e.g., an AR(1) or MA(1) model. These tests have optimal power when the data gener-
ating process coincides with the assumed model. They also have good power against many other
alternatives. However, they are not consistent (i.e., do not have asymptotic power 1) against serial
correlation of unknown form. From both theoretical and practical points of view, it is useful to
test serial correlation of unknown form because prior information about the alternative is usually
not available in practice. This is true particularly in the panel context because there may exist
significant nonhomogeneity in the degree of serial correlation across individuals (e.g., Choi 1999).
Moreover, as Granger and Newbold (1977, p. 92) pointed out, the first few lags of OLS residuals of
linear dynamic models often appear to behave like a white noise even under model misspecification,
due to the very nature of the OLS estimation. It is therefore important to check serial correla-
tion at higher order lags. Little effort has been made on specification and evaluation of dynamic

panel models (cf. Granger 1996). Our tests can be used as an evaluation procedure for dynamic



linear panel models. A recent attempt at linear dynamic panel model specification is Hjellvik and
Tjostheim’s (1999) order determination procedure.

Wavelets are newly developed mathematical tools alternative to the Fourier transform. They
are spatially adaptive analytic tools particularly useful for capturing nonsmooth features such as
singularities and nonhomogeneity (e.g., Donoho and Johnstone 1994,1995a,1995b, Donoho, John-
stone and Kerkyacharian 1996, Gao 1997, Hong and Lee 2000, Jensen 2000, Neumann 1996, Lee
and Hong 2000, Ramsey 1999 and the references therein, and Wang 1995). Many economic and
financial time series have a spectrum with peaks and kinks, as can arise from, for example, persis-
tent /strong dependence, business cycles, seasonality or use of seasonal data such as quarterly and
monthly data, as well as other kinds of periodicity (e.g., Bizer and Durlauf 1992, Granger 1969,
Watson 1993). In the panel context, there may also exist significant nonhomogeneity in the degree
of serial correlation across different individuals. Wavelets are ideal tools in these contexts. In this
paper we use wavelets to test serial correlation in the estimated residuals of panel data models. The
panel model, which can be one-way or two-way, covers both balanced and unbalanced panel data;
the individual and time effects can be fixed or random; the regressors may contain lagged dependent
variables or deterministic/stochastic trending variables; and there is no need to require a specific
method for parameter estimation or to know the limiting distribution of parameter estimators.
The proposed tests have a convenient limit N(0,1) distribution, no matter whether the regressors
contain lagged dependent variables or deterministic/stochastic trending variables. In contrast to
Durbin and Watson’s (1951) test and Box and Pierce’s (1970) portmanteau test, model parameter
estimation has no impact on the limit distribution of the proposed test statistics when applied to
dynamic panel models. One can proceed as if model parameters were known and were equal to
the estimates. Unlike the existing popular tests for serial correlation in panel models, we do not
require formulation of an alternative model (e.g., AR(1) or MA(1)), and our tests are consistent
against serial correlation of unknown form. We note that no consistent test for serial correlation of
unknown form was available for panel models.

This paper is a substantive extension, in asymptotic analysis, context and results, of Lee and
Hong (2000), who consider a wavelet test for serial correlation in observed raw pure time-series data
(i.e., not the estimated residual of a time-series model). First, as is well known in the panel literature
(cf. Phillips and Moon 1999, Hahn and Kuersteiner 2000), asymptotic analysis in the double-
indexed panel context is much more involved than in pure time-series analysis. Our asymptotic
theory holds for both large n and large T, where n is the number of individuals and T is an
index for the number of time-series observations. Increasing effort has been devoted to the study
of panel models with both large n and large T', due to the growing use of cross-country data over
time to study growth convergence, international R&D spillover and purchasing power parity. A
distinct feature of our asymptotic analysis is that we treat both n — oo and T' — oo simultaneously,
which complements Phillips and Moon (1999) and Hahn and Kuersteiner’s (2000) joint limit theory



for panel models. Our main theory does not require the ratio n/T goes to 0 or a constant. As
noted earlier, our asymptotic theory shows that the use of the estimated residuals from a possibly
nonstationary panel model rather than the unobservable error series has no impact on the limit
distribution of the proposed test statistics. In addition, we find several interesting features that
are not available in pure time-series analysis. Most remarkably, the limit N(0,1) distribution of
the proposed test statistics is obtained without having to require the finest scale parameter—the
smoothing parameter in wavelet estimation to grow with 7. This not only leads to reasonable
asymptotic approximation in finite samples, but also makes it possible to use data-driven methods
that deliver a fixed finest scale under the null hypothesis of no serial correlation. This is in sharp
contrast to Lee and Hong (2000), where it is required that J — oo as T — oo to achieve asymptotic
normality under the null hypothesis. We further develop and justify a data-driven method to choose
a suitable finest scale, making the proposed tests completely operational in practice. The data-
driven finest scale, in an automatic manner, converges to 0 under the null hypothesis of no serial
correlation and grows to co under the alternative, ensuring consistency against serial correlation
of unknown form. This method is not available elsewhere in the literature and has its own rights
in wavelet spectral estimation. We also find that a heteroskedasticity-corrected test may be less
powerful than a heteroskedasticity-consistent test. This is in contrast to the well-known result in
the context of estimation that heteroskedasticity-corrected estimators (e.g., feasible GLS) are more
efficient than heterokedasticity-consistent estimators (e.g., OLS). Our tests work well for sample
sizes often encountered in economics, but we emphasize that they are best viewed as complements
to rather than competitors of the existing popular tests for serial correlation in panel data models,
because each test has its own attractive merits.

The organization of the paper is as follows. We describe the model and hypotheses of interest
in Section 2, introduce wavelets and test statistics in Section 3, derive the asymptotic distributions
for these tests in Section 4, and establish their consistency in Section 5. Section 6 proposes and
justifies a data-driven method to choose a finest scale. Section 7 presents a simulation study on
the finite sample performance of the proposed tests in comparison with some existing popular tests
for panel models. Section 8 concludes. All proofs are in the Appendix.

Throughout, we use ||A]| to denote the Euclidean norm [tr( A" A)]'/2; < and & to denote the
convergence in distribution and in probability; A* and Re(A) to denote the complex conjugate and
the real part of A; Z ={0,=£1,...} and ZT = {0, 1, ...} to denote the set of integers and the set of
nonnegative integers; and ¢ and C to denote some generic bounded constants that do not depend
on any other index, with 0 < ¢ < C' < co. Unless indicated explicitly, all limits are taken as both
n — oo and T'— oo. A GAUSS program for computing the proposed test statistics is available

from the authors upon request. The user only needs to supply estimated residuals.



2 The Framework

Consider a panel data model
Yie = @+ X3, 0+ pt; + A + v, t=1,..,Tyi=1,...,n, nT,cZ", (2.1)

where Y}, is a scalar, X;; is a px 1 vector of explanatory variables that may contain lagged dependent
variables Yi;_p, (p,h € Z1), o is an intercept, 3 is a p x 1 vector of the slope parameters, y, is the
individual effect, A; is the time effect, and v;; is the error term. We allow fixed effects or random
effects. Throughout, we assume T; = ¢;T for some integer T and ¢; € [c,C]. Thus, we permit
unbalanced panel data. Moreover, we allow Y;;, X;;,« and 3 to depend on both n and T. (For
notational simplicity, we suppress such dependence.)

Throughout, we assume the following conditions on (2.1):

Assumption 1 {Y;, X} are stochastic processes such that (i) for each i, {vy} is covariance-
stationary with E(vy) = 0, E(v3) = 02 € [c,C] and E(v8) € [c,C); (ii) there is no spatial depen-
dence in {vy}, i.e., vy and vjs are independent for all i # j and all t,s; (iii) the individual and

time effects, p; and A, can be stochastic (random effects) or deterministic (fized effects).

No dependence assumptions on {y;} and {\;} are imposed, because they will be differenced
out in the construction of our test statistics. We thus allow {\;} to be serially correlated if \; is
random, and {x;} to be spatially correlated if p; is random. We also allow a certain degree of
heterogeneity in panel data—{Y;, X/, }’ need not be stationary for each i, and the errors {v; } may
have different variances across i. In particular, we allow some nonstationary processes. One example

of nonstationary panel time series is the deterministic trend process (e.g., Kao and Emerson 1999)
Vie = co+yt + 79t 4+ 9t + s+ A+ v (2.2)

This is covered by (2.1) with X = [¢t/T,(t/T)?, ..., (t/T)?]" and § = (T, ..., TP7,)". Note that Xj
and 3 depend on T. Another example is the panel cointegration process (e.g., Phillips and Moon
1999, Kao and Chiang 2000):

Yie = a+vZu + p; + M + v, (2.3)

where Z; = Zijt—1 + i, {eit} is I(0) for each ¢, and {e;+} may or may not be correlated with {v;}.
This process is also covered by (2.1) with X;; = T7'Z;; and 8 = Ty. We will provide regularity
conditions on transformed variables { X;;} and transformed parameters (3.

The parameter vector 3 in (2.1) can be estimated by the popular within estimator

-1

n T1;
B = [ZZ(Xit_Xi_Xt+X)(Xit_Xi_Xt+X),
i=1 t=1

:n T;
><[ZZ(Xit—Xi—Xt-I—X)(Y;t_l_/i_l_/;f+?) . (2.4)

i=1 s=1




where X; = TZ._1 ZtT;l Xit, Xy = n7 130 Xy and X = (nT;)71Y 0, Zf;l X;;. The variables
Y;,Y; and Y are defined in the same ways. In empirical applications one often uses the following
standard covariance estimator of (3 for confidence interval estimation and hypothesis testing:

n T; -1

QB o ZZ(Xit_Xi_Xt+X)(Xit_Xi_Xt+X)l )
i=1 t=1

where 02 = lim,, oo n ! oy 0'22. This covariance estimator is valid when {v;} is homoskedastic
and serially uncorrelated, among other things. The existence of serial correlation, of any form, will
generally invalidate the covariance estimator and thus the inferences based on it. In particular,
the conventional t-tests and F-tests will be misleading. (New procedures using heteroskedasticity
and autocorrelation consistent covariance estimators of parameter estimators are now available,
but these tests are usually over-sized in finite samples even when there exists no serial correlation.
Thus one may like to first check serial correlation to see if conventional tests can be used.) On
the other hand, when the regressors X;; contain lagged dependent variables Yj;_ for h > 0, serial
correlation will render inconsistent the within estimator B for 3, because the orthogonality condition
E(Xitvit) = 0 will not hold in general.

In this paper we are interested in testing whether {v;; } is serially correlated. Suppose that the
covariance-stationary process {vy} has the autocovariance function R; (h) = E(vqvy_jp)), h € Z

and ¢ € Z*, and power spectrum

filw) = (2m)71 i Ri(h)e ™ we[-ma], i=+v-1. (2.5)

h=—o0

The hypotheses of interest are
Hy: Ri(h)=0forall h 0 and all ¢

versus
Ha: Ri(h) # 0 at least for some h # 0 and some 7.

The alternative hypothesis Hy allows some (but not all) of the individual series to be white noises.
More generally, there may exist substantial nonhomogeneity in the degree of serial correlation
across ¢ under H 4. It is highly desirable to develop powerful procedures against H 4, because prior
information about the alternative is usually not available.

Both the autocovariance function R;(h) and the spectral density f;(w) are Fourier transforms
of each other; they contain the same amount of information on serial correlation of {v;}. One can
use R;(h) or f;(w) to test Hy versus H 4. All the existing tests for serial correlation for panel models
are based on R;(h), assuming a common model with some prespecified lags h (e.g., AR(1) and
MA(1)). In this paper we use a spectral approach. Spectral analysis is often used in economic and
econometric analysis (e.g., Bizer and Durlauf 1990, Durlauf 1991, Granger 1969, Watson 1993). It



is a natural and convenient approach to testing serial correlation of unknown form, because f;(w)
contains information on serial correlation at all lags. Under Hy, f;(w) becomes fio(w) = (27) " o?
for all w € [—m,7]. Under Hu, we have fi(w) # (27) lo? at least for some i. Thus, a consistent
test for Hy versus H,4 can be formed by comparing consistent estimators for f;(w) and fip(w). We
will use wavelets to estimate f;(w), which are particularly suitable for economic and financial time

series with spectral peaks and kinks.

3 Wavelet Method

3.1 Wavelets

We first review wavelet analysis briefly. The essence of wavelet analysis is to expand a given function
as a sum of elementary functions called wavelets centered at a sequence of locations. These wavelets
are derived from a single function 9 (-), called the mother wavelet, by translations and dilations.
As a spatially adaptive analytic tool, wavelets are powerful in capturing singularities of nonsmooth
functions, such as spectral peaks and kinks (e.g., Gao 1997, Neumann 1996, Ramsey 1999). Many
economic and financial time series have spectral peaks or kinks, due to strong dependence, business
cycles, seasonality or use of seasonal data such as quarterly and monthly data, and other kinds of
periodicity. Wavelets are quite suitable in these contexts.

We first impose a standard condition on the mother wavelet ¥(-).

Assumption 2 ¢ : R — R is an orthonormal wavelet such that [%_p(x)dx =0, [ | (x)|de <
0o, [*2 w(z)Y(z —k)dz =0 for all k € Z,k # 0, and [*_v¢*(z)dz = 1.

The orthonormality of ¢(-) ensures that the doubly infinite sequence {t,4(-)}, where
Yiple) = 22Dz —k), ke, (3.1)

constitutes an orthonormal basis for Ls(R), the space of square-integrable functions on R (cf.
Daubechies 1992). The integers j and k are called scale and translation parameters. Intuitively,
j localizes analysis in frequency and k localizes analysis in time (or space). This simultaneous
time-frequency decomposition is the key to wavelet analysis, explaining why it is attractive for
approximating nonsmooth functions.

Assumption 2 ensures that the Fourier transform of v(-),
Y(z) = (2m)~Y? / Y(x)e 2 dx, z €R, (3.2)

exists and is continuous in z almost everywhere. Note that 1(0) = (2r)~1/2 75 (x)de = 0, which
implies that ¢(-) must have alternating signs. This is one of the characteristic properties of wavelets

and one reason why wavelets are sensitive to changes or singularities.



The mother wavelet ¥ () can have bounded or unbounded support. A well-known compactly
supported wavelet is the Haar wavelet,
1, 0<z<1/2
ba)=9 -1, 1/2<a<1 (3.3)
0 otherwise.
An example of a wavelet with unbounded support is the Shannan wavelet

_sin(27z) + cos(mx)
m(2x +1) ’

Y(x) = x €R. (3.4)

We impose a condition to ensure that @Z(z) — 0 sufficiently fast as z — oo.

Assumption 3 (i) [{(2)] < C(1 + |2)77 for some T > 3; (ii) ¥(2) = #/2b(2) or P(z) =
—iet#/2p(2), where b(-) is real-valued with b(0) = 0.

Many wavelets satisfy these conditions. One example is the spline wavelets of positive order
m € ZT. For odd m, this family has the form (z) = e*/2b(z), where b(-)is real-valued and
symmetric. For even m, it has the form ¢(z) = —ie!*/2b(z), where b(-) is real-valued and odd
(e.g., Hendndez and Weiss 1996, (2.16), p.161). One member in this family is the first order spline
wavelet, called the Franklin wavelet, whose Fourier transform

int 1/2
_1p8in®(2/4) [ P3(z/4+7/4)
(z/4)? {P3(Z/2)P3(z/4)] ’ (3.5)

where P3(z) = % + 1 cos(2z). Another member is the second order spline wavelet, with

(z) = €2 (2m)

-6 1/2
o) = -t [ B ) y
z) = —ie s : .
o) e [ PGaRG 39
where P5(z) = 3 cos?(22) + 23 cos(2z) + &. Both the Franklin wavelet and the second order

spline wavelet have compact support in the time domain and an exponential decay in the fre-
quency domain (e.g., Hendndez and Weiss 1996, p.149). In fact, the Harr wavelet in (3.3) is
the 0-th order spline wavelet. However, it does not satisfy Assumption 3 because its 1])(2) =
—iet#/2(27)~1/2sin?(2/4) /(2/4) decays to 0 as |z| — oo at the rate of |z| ! only.

3.2 Wavelet Representation of a Spectrum

We now consider wavelet representation of spectral density f;(-) of {v;}. Since f;(+) is 2m-periodic,
it is not square-integrable over R. We need to construct a wavelet basis {W;x(-)} for Lo[—7, 7], the
space of 2m-periodic functions on [—m,7]. Given an orthonormal wavelet basis {1/ (-)} for La(R),

we can construct an orthonormal wavelet basis {¥;(-)} for La[—n, 7], where
— S N w
Ui(w) = (2m) / m:zzoo Yk (% + m) ) w € [—m, 7. (3.7)

7



See, e.g., Daubechies (1992, Ch.9) or Herndndez and Weiss (1996, Ch.4) for more discussion. Since
(3.7) is an infinite sum, it is convenient to use compactly supported wavelets so that only a finite
number of terms are nonzero. Alternatively, if fb() has bounded support, one can compute W ()

from its Fourier transform via the formula
Ujp(w) = (2m) /2 Z U (h)et™, (3.8)

h=—00
where Wj(h) = (2m) /2 [T W (w)e Pdw. By (3.7) and change of variables, we have

U(h) = (2m) 2 (2mh) = e 27hE/2 (970 )93) Y24 (2h /27, (3.9)

Note that the dilation parameter j varies dyadically and the translation parameter k£ varies as the
modulation.

Lee and Hong (2000) show that the spectral density f;(-) in (2.3) can be expressed as

co 2
fz(w) = (27-()_10-22 + Zzaijk\:[jjk<w)a w e [—7’(’,7’(’}, (310)
=0 k=1
where the wavelet coefficient
iji = [T filw)¥p(w)dw. (3.11)

The real-valued coefficients {c;; } are the orthogonal projections of f;(-) on wavelet bases {W¥;z(-)}.
Unlike the Fourier transforms, the wavelet coefficient a;j;, depends on the local behavior of f;(-),
because W, (-) is effectively 0 outside an interval of width 277 centered at k/27. Such a spatial
adoption feature makes it a powerful tool for capturing nonsmooth features.

By Parseval’s identity and (3.8), we can also express a;j; in time domain, namely,
x0 x0
_ A ~ %
aije = (2m) 12 YT Ri(W) W5 (h) = > Ri(h)iy,(27h), (3.12)
h=—o0 h=—o0

where {fbjk()} is given in (3.9). Note that {a;;;} do not represent autocorrelations at different
lags. They are weighted averages of autocorrelations centered at varying locations.
3.3 Wavelet Spectral Density Estimator

Suppose that we have an v/nT-consistent estimator 3 for 3. Put
gy = Uy — Ui — Uz + U, t=1,...,T;,i=1,...,n, (3.13)

. o _ T, o~ - N _ T,
where 4 = Yy — X[, 0,1, =T, 1 oty Gty =n S g, u = (nTy) Y0 > ) G Note that
it is not necessary to center 4; using an intercept estimator &. The demeaned residual v;; has a
zero sample mean. When B is the within estimator in (2.4), 0;; is the well-known within residual.

Of course, we do not requite /3 to be the within estimator.



Now, we define the sample autocovariance function of {v;}

_1 ~ . .
Zt Ih+1 Vit Vit —|n h=0,%+1,...,£(T; - 1). (3.14)

A wavelet estimator of the spectral density f;(-) can be given by

Ji 29
fiw) = @0 TR0 + 303 i Viw),  we [-ml, (3.15)
j=0 k=1
where the empirical wavelet coefficient
Qi = Z Ry (h) g (2mh), (3.16)
h=1-T;

and J; = J;(T;) is the finest scale corresponding to the highest resolution level used in (3.15). The
degree of approximation (or bias) depends on J;. The larger J; is, the smaller the bias of fi(-).
We must let J; — oo as T; — oo to achieve consistency of f,() for f;(-). On the other hand, the
larger J; is, the larger the variance of f;(-). To ensure that the variance of f;(-) is asymptotically
negligible, J; cannot grow too fast. Given each Tj, a suitable J; should be chosen to balance
the variance and the squared bias so that f;(-) will be consistent for fi(-) as T; — oo. There are
totally Z}Jizo 27 = 27itL — 1 empirical wavelet coefficients {@;;x} in (3.15). Thus, the finest scale
J; should be smaller than log,(7; + 1) — 1. Proper conditions on J; will be given to ensure that
the proposed test statistics have a well-defined limit distribution. We allow a different J; for each
i. This is useful from a theoretical point of view because the degree of serial correlation may vary
substantially across . We will also propose an automatic data-driven method to choose J;, which
lets data themselves determine a proper J; given each finite T;. The data-driven finest scale, in an
automatic manner, converges to 0 under Hy and grows to oo under H 4, thus ensuring consistency

against H 4. See Section 6 for more discussion.

3.4 Wavelet-Based Tests

Put Q(f1, f2) = [7 [fi(w) — fa(w)]?dw for any 2m-periodic functions fi(-) and fa(-). To construct

our tests, we use the quadratic form

Ji 2

=) az, (3.17)

7=0 k=1

where fio(w) = (27) 1R;(0) and the second equality follows by Parseval’s identity and the or-
thonormality of wavelet bases {W;;(-)}. Many other divergence measures could also be used, but
the quadratic form Q( fi, fio) is convenient to compute. In particular, there is no need to calculate

numerical integration over w € [—m,7].



We first consider the test statistic
W= (2 n SN e, - | i, (3.18)

where M = Yoy R?(O)M}o, V= oy Rf(O)V;O,

Ti—1

Mg = Y (1—h/T)bs(h,h),

Vz‘O = 42 Z(l - h/Tl)(l - m/ﬂ)b?h(hﬂm)7
h=1m=1

by, (h,m) = 2Relag, (h,m) + a,(h, —m)], az,(h,m) = 2w Y7 N2 (2mh) g (2mm) and ()
is as in (3.9). The standardization factors M and V are the estimators for the mean and variance
of " 27 TiQ(fi, fin)- The factors (1 — h/T;) and (1 —m/T;) are finite sample corrections. Note
that by, (h,m) is readily computable given function ¢(-) and finest scale J;.

Alternatively, we can also use the test statistic:

n Ji 20
. 1 - . ,
Wo= =3 | on T D3 ad — M | Vi, (3.19)
i=1 7=0 k=1

where a;;, = Z;{;lm i)i(h)ﬁ;jk(%rh) is the normalized empirical wavelet coefficient and p;(h) =
R;i(h)/R;(0) is the sample autocorrelation function of {vy}.

Intuitively, W, can be viewed as a heteroskedasticity-corrected test while Wiisa heteroskedasticity-
2

consistent test, where heteroskedasticity arises from two sources: unequal individual variances o;
and different finest scales J;. In Wg, these two forms of heteroskedasticity are corrected first for
each ¢. As will be shown below, both W, and W, are asymptotically N(0, 1) under Hy. Their power
properties, however, generally differ. The heteroskedasticity-robust test Wi may be more powerful
than the heteroskedasticity-consistent test Wo (cf. Section 5). This differs from the well-known re-
sult in the context of estimation that correcting heteroskedasticity leads to more efficient estimation
(e.g., the feasible GLS is more efficient than OLS).

Our tests Wi and W apply to both one-way and two-way error component models. For one-way
component models, however, if one knows A\; = 0, then one can use ¥+ = U — ;. And if one knows
w; = 0, then one can use 0;; = U — 4. The asymptotic distributions of the test statistics remain

unchanged, although their finite sample performances may differ.

4 Asymptotic Distribution

We now derive the asymptotic distribution of Wi and W under Hy. We impose the following

additional assumptions.
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Assumption 4 VnT(( — 3) = Op(1).

Assumption 5 Put fixv(h) = Tz‘_l Zf;hﬂ XitDy_p if b > 0 and fm,(h) = fiwv(—h)/ if h <
0, Tizgo(h) = plimTyp(h), Xy = Xy — Xi — Xy + X and ¥y = vy — 0; — Uy + 0. Then (i)
$up <y SWPr<ner, Ty i EIKal' < C5 (i) supicicy Blllian(R) = Tin(W)|I* < CT;; (i)
> ohe oo [Mizu ()| < C.

We permit but do not require using the popular within estimator B in (2.4). Other estimators
such as OLS, feasible GLS and MLE are allowed as well. Note that the parameter 8 may be a
transformation of the original parameters of interest, as it is in the case with deterministic and
stochastic trending regressors in (2.2) and (2.3). Thus, Assumption 4 implies that the estimators
of original parameters may converge at a rate faster than (n7")~'/2. See Phillips and Moon (1999)

and Kao and Chiang (2000) for more discussion.

Theorem 1 Suppose that Assumptions 1-5 hold and maxi<;<,(2%7)/(n®*+T) — 0 as n — oo and
T — oco. If {vy} is i.i.d. for each i, then W, <, N(0,1) and W <, N(0,1).

A remarkable feature of Theorem 1 is that we permit but do not require J; — oo for any i;
that is, all J; can be fixed as n,T — oo under Hy. This is in sharp contrast to Lee and Hong
(2000), who consider a wavelet-based test for serial correlation in observed raw time-series data
(i.e., not the estimated residual of a time series model), where it is required that J — oo as
T — oo to achieve asymptotic normality. The reason that all J; can be fixed in the present panel
context is that the additional smoothing provided by n ensures asymptotic normality of W, and
Wy even if J; is fixed for all i. Intuitively, Wi and W, are sums of approximately independent
random variables {27T;Q( i, fio) ?_,. By the central limit theorem, they will converge to a normal
distribution with proper mean and variance as n — oco. This occurs no matter whether J; — oo.
(Our proof, of course, does not rely on this simple intuition. Instead, we treat both n — oo and
T — oo simultaneously.) In the pure time-series or pure cross-sectional nonparametric literature it
is often found (e.g., Skaug and Tjgstheim 1993, Hjellvik, Yao and Tjgstheim 1998) that the normal
approximation is inadequate for the finite sample distributions of quadratic forms such as Q( ﬁ-, fio)
with kernel estimators. The latter are usually significantly skewed toward the right tail even when
the sample size is rather large. This occurs because the asymptotic normality of quadratic forms
for pure time-series data or pure cross-sectional data requires the smoothing parameter to grow
or vanish at suitable rates (neither too fast nor too slow) as the sample size increases and the
convergence rate of test statistics delicately depends on the smoothing parameter. The fact that
the asymptotic normality of Wi and Wy does not depend on whether J; — oo suggests that
asymptotic approximation may work reasonably well in the panel context. Indeed, our simulation
studies show that when J = 0, both W, and W, have reasonable sizes in finite samples. Most

importantly, the fact that J; may be fixed for all ¢ allows use of data-driven methods that may
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deliver fixed finest scales under Hy. Sensible data-driven methods may have this feature because
the optimal finest scale under Hy is Jy = 0. We will propose and justify a plug-in method to select
a data-driven finest scale for W1 and Wg, which, in an automatic manner, converges to 0 under Hy
and grows to oo under H 4, thus ensuring consistency against serial correlation of unknown form.
We note that such a data-driven method could not be used for Lee and Hong’s (2000) test in pure
time series, as it requires J — oo under H.

Although we require both T and n grow to oo, we do not impose a restrictive relative speed limit
between them. On the other hand, from the proof of Theorem 1 (cf. Theorem A.1 in the appendix),
we find that the parameter estimation for 3 has no impact on the limit distribution of Wi and Wg,
no matter whether the regressors X;; contain lagged dependent variables or deterministic/stochastic
trending variables. Thus, there is no need to use a specific method to estimate (3 or to know the
limit distribution of 3. This is in contrast to the tests of Durbin and Watson (1951) and Box
and Pierce (1970), whose test statistics or limit distributions should be modified when applied
to the estimated residuals of a covariance-stationary dynamic regression model. If the regressors
contain deterministic or stochastic trending variables, the limit distributions of these tests will
become nonstandard (e.g., Kao and Emerson 1999, Kao and Chiang 2000). Intuitively, although
the parameter estimation for 8 may induce an adjustment of a finite number of degrees of freedom
for Wy and Wg, such an adjustment is asymptotically negligible as n — oo.

The tests Wi and W are applicable for both small and large J;. When (and only when) J; — oo

for all i =1, ...,n, we can use the following simplified versions of test statistics:

Z?:l |:27TT% Z Zk 1 azgk RQ(O)(2J~;+1 — 1)}
2 [Z?ﬂ R(0)(27+1 — 1)} 172

W = (4.1)

and

z”: QWTZ Zk L @G — (277 1)

2(2%+1 — 1)1/2 (4.2)

These tests can be viewed as the generalizations of Lee and Hong’s (2000) test to the estimated
residuals of panel models. The following theorem shows that they are asymptotically N(0,1) under

Hg, but under the condition that J; — oo for all .

Theorem 2 Suppose that Assumptions 1-5 hold, 21 = a;T¥ for a; € [c,C] and v € (0,3),
n/T"logsT — 0, n/TQ(QT_l)_Q(QT_%)” — 0 as n,T — oo, where T > % is as in Assumption 3. If

{vit} is i.i.d. for each i, then Wy -y 2 0, Wa — Wy 20wy LA N(0,1) and Wo 4, N(0,1).

Thus, for large J;, Wi and Ws are asymptotically equivalent to Wi and Wh respectively, and
both are asymptotically N(0, 1) under Hy. However, we now have to impose a restrictive condition
that n cannot grow faster than 7%, where v < % As a consequence, the finite sample performance

of W1 and Ws may not be as good as Wi and W, respectively in finite samples.
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5 Consistency
We now show that W1 and Wg are consistent against H4. We assume the following conditions:

Assumption 6 For each i, {vy} is a mean 0, fourth order stationary process with Y 5o R2(h) <
Candd 2 S0 >S2 ki, k)] < C, where k;(j, k,1) is the fourth order cumulant of the

j=—00

joint distribution of {wi, Wity j, Witt i, Wit1} -
The fourth order cumulant is defined as
Ki(J, K, 1) = E(VitVit4jVit1 kVitr1) — E€it€it+j€ittkeittt), J,k,l €Z,

where {e;;} is a Gaussian process with the same mean and covariances as {v;}. The cumulant
condition in Assumption 6 characterizes the temporal dependence of {v; }. It is a standard condition
in time-series analysis. When {v;} is Gaussian, the cumulant condition holds trivially because
ki(J,k,l) = 0 for all j,k,1 € Z. If for each i, {vi} is a fourth order stationary linear process
with absolutely summable coefficients and i.i.d. innovations whose fourth order moment exists, the
cumulant condition also holds (e.g., Hannan 1970, p.211). More primitive conditions (e.g., strong
mixing) could be imposed, but such primitive conditions would rule out long memory processes.

Assumption 6 allows long memory processes I(d) with d < 5.

Theorem 3 Put ny = #(Ny) and ¢; = T; /T, where Ny = {i: 0 < i <n,Q(f;, fio) > 0}. Suppose
that Assumptions 1-6 hold, (naT) 1Y% 27 — 0 and J; — oo for all i = 1,..,n as n,T — oo.
Then (a)
(naT)" W21, —n )t Z 2m¢;Q(fi, fio) = 0.
1€Ny4

(b) If in addition 271 = @, T} for all i, where a; € [¢,C] and v € (0,1), then

(AT ™) 7 Wo =yt Y~ w(ei/ai) 2 Q(fis fio) = 0.
1€ENy4

Under Hy, the index set N4 is nonempty, at least for n sufficiently large. It follows that
nzl ZieNA ciQ(fi, fio) > ¢ > 0 for n sufficiently large. Then Theorem 3 implies P[Wl > C(n,T)] —
1and P[Wy > C(n,T)] — 1 under H 4 for any sequence of constants {C'(n,T) = o[naT/(> 1, 27)1/?]}.
Thus, Wl and Wg are consistent against Hy provided (naT )_1 Z?:l 27i — 0 and J; — oo for all
i. Note that to ensure consistency against H 4, we let J; — oo for all ¢ here. This differs from the
situation under Hy, where J; can be fixed for all . The data-driven method we develop in Section
6 will deliver a data-dependent finest scale that, in an automatic manner, converges to 0 under Hj
but grows with 7" under H 4, thus ensuring consistency of Wi and W, against H 4.

Under H4, both W) and W5 diverge to oo at the rate of nsT/(3 7, 2%)1/2. Thus, the larger

the set N4 is, the more powerful Wi and W, are. In fact, the power depends on na/n, the
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proportion of individuals with serial correlation. For 27it! = @, T, the rate naT (>, 2%)"/?
(na/n)nY/2T=+/2 This implies that Wy and Ws have asymptotic power 1 against H4 even if the
proportion n4/n — 0 at a rate slightly slower than n/271%/2_ We further note that for W; and
Wg, serial correlations from different individuals never cancel each other out when some individuals
have positive autocorrelation and some have negative autocorrelation, thanks to the use of the
Lo-norm. In contrast, for some existing popular tests, serial correlations from different individuals
may cancel each other out at least in part when some individuals have positive autocorrelation and
some have negative autocorrelation, leading to low or little power. See Section 7 for examples and
more discussion.

Theorems 1 and 3 imply that for all n and T sufficiently large, the negative values of Wi and
Ws can occur only under Hy. Thus, it is appropriate to use the upper-tailed N(0,1) critical values
for inference. The asymptotic critical value at the 5% level, for example, is 1.645.

As noted earlier, the tests W, and Wy are heteroskedasticity-consistent and heteroskedasticity-
corrected versions respectively. An interesting question is which test, Wi or Wg, is more powerful?
Without loss of generality, we assume 27i*! = @, 7" for all i = 1,....,n, where a; € [c,C] and
v € (0,1). For processes with stronger serial correlation, there is a sharper spectral peak for
fi(+). Consequently, a larger a; will be appropriate. In contrast, for processes with weaker serial
correlation, there is a smoother spectral peak for f;(-). In this case, a smaller a; will be appropriate.

With this rule, we obtain the following:

Theorem 4 Suppose that Assumptions 1-6 hold, n = yT* for some v € (0,00) and ¢ € (0,00),
and 27Tt = a,/TY for a; € [c,C] and v € (0,1). If a; is a monotonically increasing function of
Q(fi, fio) and T; =T for alli =1,...,n, then Wi is more efficient than W in terms of Bahadur’s

asymptotic efficiency criterion.

Bahadur’s (1960) asymptotic slope criterion is pertinent for power comparison of large sample
tests under fixed alternatives. The basic idea is to compare the logarithms of the asymptotic
significance levels (i.e., p-values) of the tests under a fixed alternative. Bahadur’s asymptotic
efficiency is defined as the limit ratio of the sample sizes required by the two tests under comparison
to achieve the same asymptotic significance level (p-value) under a fixed alternative. Geweke (1981),
among others, has used this criterion in econometrics.

Theorem 4 implies that in the context of hypothesis testing, correcting heteroskedasticity does
not necessarily lead to better power. This is in contrast to the well-known result that correcting
heteroskedasticity leads to more efficient estimation. Intuitively, for the test Wa, a larger Q(fi, fio)
is more heavily discounted by /Vig = 2(27it1 — 1)/2[1 4 o(1)] when J; is larger. Thus, it is less
powerful than Wl, which puts uniform weighting to each Q(f, fio). It is of course possible that
Wy is asymptotically less powerful than Wg, as will occur when a; is monotonically decreasing in

Q(fi, fio). However, sensible data-driven methods usually provide such a rule that a; is monoton-
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ically increasing in Q(f;, fio). Note that Wi and Wy may not be asymptotically equally efficient
when J; = J for all i, because heteroskedasticity (07 # %) may exist.

It is also important to note that the asymptotic power of W, and Wa does not depend on wavelet
function ¢(-). In other words, all wavelets satisfying Assumptions 2 and 3 are asymptotically equally
efficient in terms of Bahadur’s criterion. Thus, the choice of ¥(-) is not important. This differs
from the kernel method, where the choice of the kernel function affects the asymptotic power of
the tests (e.g., Hong 1996).

6 Adaptive Choice of Finest Scale

Theorem 1 implies that the choice of J; is not important for the asymptotic normality of Wi and
W,. Both small and large J; can be used. However, the choice of J; may have significant impact
on the power. If J; is fixed and does not grow with T} for all i, for example, W7 and W5 will not
be consistent against serial correlation of unknown form. Therefore, it will be highly desirable to
choose J; via suitable data-driven methods, which let data speak for proper finest scales.

We will develop a data-driven method to select a suitable finest scale. Before discussing a
specific method, we first justify the use of a data-driven finest scale J say. For simplicity and
convenience, we consider a common J for all i here. We use W,(J) and W,(J) to denote the W,
tests using J and J respectively, where c =1, 2.

We impose a condition on the smoothness of () at 0.
Assumption 7 |¢)(z)| < C|z|? for some q € (0, 0).

Theorem 5 Suppose that Assumptions 1-5 and 7 hold, and J is a data-driven finest scale with
2j/2‘] = 1+ 0p(2=7/?), where J is a nonstochastic finest scale such that 22/ /(n* +T) — 0 as
n — oo and T — oo. If {vy} is i.i.d. for each i, then Wi(J) — Wi(J) L 0, Wa(J) — Wa(J) 2 0,
Wi(J) % N(0,1) and Wa(J) % N(0,1).

Thus, the use of J rather than J has no impact on the limit distribution of W7 (J) and Wa(J)
provided that .J converges to .J at a suitable rate. The rate condition 27 /27 — 1 = op(27/2) is
mild. If 27 « T/%, for example, we require 2j/2‘] =14 op(T~V19). If J is fixed (e.g., J = 0),
which occurs under Hy for our data-driven method below, the condition becomes 9/ / 27 L1,

So far very few data-driven methods to choose J are available in the wavelet literature. To the
best of our knowledge, only Walter (1994) proposes a data-driven method to choose a finest scale
for probability density estimation, using an integrated mean square error (IMSE) criterion. The
method can be adapted to choose J in spectral density estimation. It is based on the fact that the
change in the average IMSE of {f;(-)}? , from J — 1 to .J is proportional to n~1 S | 2221 a2,
where &; i, is the empirical wavelet coefficient of f;(-) at scale J. One starts from J = 0 and checks

how IMSE changes from J = 0 to J = 1. The grid search is iterated until one gets the scale J
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at which the average IMSE increases most rapidly. Then, one obtains the finest scale J , which
gives an average IMSE that one cannot improve practically by further increasing J. This method
might be suitable here because it is based on the information of { f;(-)}~; over [—m,7|. However,
no formal results on the rate of Walter’s J is available and it is unknown whether it satisfies the
condition of Theorem 5. Below we develop a data-driven method to choose J that will satisfy the
condition of Theorem 5. For this purpose, we first derive the average asymptotic IMSE formula for
{ fz‘(')}?:p which was not available in the literature. We impose the following additional condition
on {vj}.

Assumption 8 > 7° __|h|?|R;(h)| < C for all i, where q € [1,00) is as in Assumption 7.

This assumption characterizes the smoothness of f;(-). It rules out long memory processes,
because it implies Y 2 R;(h) < C. Under Assumption 8, the g-th order generalized spectral
derivative of f;(w),

£ Y R, weom) (6.1)

h=—o0
exists and is continuous on [—,7].

We also define a measure of the smoothness of ¢ (-) at 0:

___(2me
)\q = —m hm )\( )/‘Z’q, (62)
where A(z) = 2 (2) S ¥(z + 27r). Given Assumption 7, we have A, < co. We will also

assume A\, > 0. For the Franklin wavelet (3.5), ¢ = 2; for the second order spline wavelet (3.6),
q = 3. For the Harr wavelet (3.3), ¢ = 1, but Assumption 3 rules out the Harr wavelet.

To state the next result, we define a pseudo spectral density estimator f;() for fi(-) that is
based on the unobservable error series {vit}rf;l; namely,

Ji 27

fi(w) = (2m) 1R;(0) + ZZ@ijk\ij(w), w € [—m,ml, (6.3)

j=1 k=1
where R(h) = T;_l Zzthrl ’Uitvit,|h| and aijk = }7;;711771 R,(h)fbjk(%rh)
Theorem 6 Suppose that Assumptions 1-8 hold, \; € (0,00), J; — 00,271 /T; — 0 as T; — oo.
Then (a) for each i, Q(fivfi) = Q(fi, fi) + op(27/T; + 2724%), and

B 2J1+1
EQ(fi, f) = =

(b) If in addition J; = J for all i and T;/T = ¢;, then n= 'S Q(fi, fi) = n= 'S Q(fi, fi) +
op(27 /T +27247), and

N1 zn:EQ(ﬁ',fi) _ 712 —1 f2 Ydw + 2724 J+1))\2 12/ f(q)
i=1

+o0(27 /T 4 27247).

" s+ a0 [ (0@ + o2 T, 4 2780%),
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Theorem 6(a) gives the asymptotic IMSE of f;(-), and Theorem 6(b) gives the average asymp-
totic IMSE of {fi(-)}?_,. These results imply that the optimal convergence rates of Q( fis fi) and
n iy Q(f;, fi) are the same as those of Q(f;, f;) and n? S L Q(fi, f;) respectively. The pa-
rameter estimation (B) has no impact on the optimal convergence rates of Q( fi, fi)andn 13" Q( ﬁ-, fi)-
To obtain the optimal finest scale that minimizes the average asymptotic IMSE of {f;(-)}*_, we
differentiate the average asymptotic IMSE in Theorem 6(b) with respect to J and set the derivative
equal to 0. This yields
oo+l _ [2q)\2§0( )T ]1/(2q+1) ’ (6.4)

where

Z/ O/ S [ e
i=1 S

This optimal finest scale, Jy, is infeasible because £;(q) is unknown under H,. However, we can

use some estimator £y(q) and plug it in (6.4). This gives a data-driven finest scale J :

1/(2¢+1)
201 = [2gXo(a)T] (6.5)
Because Jj is a nonnegative integer, we should use
. 1 92
Jop = max 50T 1 log, <2q)\q§0(q)T) —-1/,0¢, (6.6)

where the square bracket denotes the integer part.

We impose the following condition on &,(q) :

Assumption 9 £,(q) —Co(q) = op(T%), where § = 1/2(2q+1) if Co(q) € [¢,C] and § = 1/(2q+1)
if Colg) =0

Note that the condition on &,(q) is more stringent when ,(g) = 0 than when (y(g) # 0, but for
both cases the conditions are mild. We do not require plim&,(2) = ¢,(q) = &,(q), where &,(q) is as
n (6.4). When (and only when) ¢,(q) = &,(q), Jo in (6.6) will converge to the optimal Jy in (6.4).

Corollary 7 Suppose that Assumptions 1-9 hold and Jo is given as in (6.6). If {vy} is i.i.d. for
cach i, then W1(Jo) 5 N(0,1) and Wa(Jo) % N(0,1).

For the estimator £,(q), we can use parametric or nonparametric methods. Such methods
are popular in choosing narrow-band bandwidths in kernel-based spectral density estimation at
frequency 0 (cf. Andrews 1991, Newey and West 1994). The nonparametric method will deliver
asymptotically optimal finest scales, but may be subject to substantial variation in finite samples
and thus leads to less accurate sizes for the tests. The parametric method generally delivers

suboptimal finest scales, but is subject to less variation in finite samples, which lead to better
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sizes for the tests. Here, we use Andrew’s (1991) type parametric plug-in approach and consider a
parametric AR(p;) model for each i:
pi
b=+ > Yinbi—n+eu, t=1,..,Tyi=1.n, (6.7)
h=1
where 0;; = 0 if ¢ < 0. The lag order p; is fixed but may differ across i. In practice, one can use
AIC, BIC or the order determination procedure by Hjellvik and Tjgstheim (1999) to determine p;.
Suppose 7; = (Y50, Yi1» - Vip)' 18 the OLS estimator of v; = (70,741, -+ Vip)'- FOr concreteness, we
consider ¢ = 2 here. An example is the Franklin wavelet in (3.5), whose Ay = (8/3) Y72, (20 + 1) 2

by direct calculation. We have

023 [ [imse] wrsam [ po 69

where fi(w) = (27) 1|1 — b Aine Zh“’]*Q Note that we have used the fact that for ¢ = 2 the
generalized spectral derivative fi( ) (w) = de f,( ). Also, for convenience we have set the estimator
for var(e;;) equal to 1in f;(-). This has no impact at all because the variance estimators will cancel in
the numerator and denominator of (6.8). The estimator £,(2) incorporates information of { fil)
over [—m, 7| rather than at frequency 0 only. We can use one-dimensional numerical integrations
to compute £4(2). We note that £,(2) satisfies Assumption 9 with ¢ = 2 because for parametric
AR(p;) approximations, &,(2) — (o(2) = Op((nT)~/2).

One could also consider a data-driven, individual-specific .J; using the IMSE criterion of f;(-) in
Theorem 6(a). Such an individual-specific J; may effectively capture spatial nonhomogeneity in the
degree of serial correlation across 7. However, more stringent rate conditions on individual-specific
{ji}?zl would be required to ensure that use of them has no impact on the limit distribution of
the test statistics. In particular, these conditions would impose restrictive relative speed limits on
n and T. Moreover, for small and finite samples, {ji}?zl may have wide variations across i, leading
to poor sizes for the tests. Our simulation (not reported) shows that such individual-specific {J; }
lead to strong overrejection for 471 (but not for Wg), and somewhat surprisingly, they may not
necessarily deliver better power than Jo. Thus, we recommend using Jo. Perhaps a compromise is
to develop a data-driven finest J., where ¢ is an index for some suitable groups such as regions and
sectors where all individuals in the same group will have the same finest scale. We leave this for

future research.

7 Monte Carlo Experiment

We now compare the finite sample properties of W and W, with three existing tests for serial
correlation in the panel literature, namely, the Durbin-Watson type test of Bhargava et al. (1982,
BFN), the LM test of Baltagi and Li (1995, BL), and the modified LM test of Bera et al. (2000,

18



BSY). These test statistics are derived for balanced panels and are given below:

S S (i — Dig1)?
BFN = &=l== o — , (7.1)
D i1 D=1 Ui
2 n T ~ 2
BL = nT <Zzl Zt:l v’it”’itl) (7 2)
= e , )
T-1 >ic t:lvzzt
2 A)2
nT (B + T)
(T-1)(1-%)

BSY

(7.3)

where v is the within residual,

PR T/ TR O R DA 1L

S i Uy S Y U
Jr is a T x T matrix of ones, and @; = (@1, ..., %) is the OLS residual vector of individual @
from (2.1) without random effects. Baltagi and Li (1995) and Bera et al. (2000) show respectively
that BL and BSY are asymptotically distributed as x? under Hy. Under Hy, BFN converges to 2,

7

a degenerate distribution. Bhargava et al. (1982) argue that for large n there is a positive serial
correlation if BFN < 2 and suggest using a critical value of 2 for the 5% level (Bhargava et al.
1982, p. 436). We note that for computational simplicity we have used Baltagi and Li’s (1995) LM
test for first order serial correlation assuming the presence of fixed individual effects. This test can
be used for both fixed and random effects models because the within transformation will wipe out
the individual effects even if they are random.

We consider the following three DGPs for the panel data model:

DGP1: X;; is 1(0) :

Yie = o+ 06X+ p; + vit,
Xi = 0.5X51 + 0y

DGP2: X;; is I(1):

Yiie = o+ BXy+p+ vy,
X = Xi—1+ny;

DGP3: X;; is time trend:
Yie = o+ Bt + p; + v,
where 1, *5 U[-0.5,0.5], p; * N(0,02), @« = 5 and 3 = 0.5. The initial values X;o were chosen
0'2 .
as in Baltagi et al. (1992). We let 0 = 02 4+ 03 = 20 and 7 = —% take five different values,
(0,0.05,0.2,0.4,0.6,0.8) . The value of 7 measures the relative strength of random effects (when

7 = 0, there is no random effect). We note that a combination of DGP1 and DGP 3 has been
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used in Baltagi and Li (1995) and Bera et al. (2000). We consider three sample size combinations:

(n,T) =

(25,32), (50,64), (100, 128).

Because the choice of wavelet is not important for our tests W, and W (cf. Section 5), we only

use the Franklin wavelet in (3.5). To examine the impact of the choice of finest scale J, we consider
J =0,1,2 and the data-driven finest scale Jy in (6.6).

. . . iid .
To examine the size of the tests, we consider v;; = e;;, where g;; ~ N (0,1). To examine the

power of the tests, we consider the following processes for {v;} :

AR(1) Alternatives:

\

AR(12

) Alternatives:

AR(12)%:
AR(12)°

AR(12)¢:
AR(12)4 :

AR(12)¢

ARMA (4,4) Alternatives:

ARMA (4,4)% :
ARMA (4,4)°

(

ARMA (4,4)¢ :
ARMA (4,4)4

ARMA (4,4)¢

Vit

Vst

Uit

Vit

(%73

= 0.2v4-1 + €4,
= —0.2v3-1 +€it,
_ { 0.2v5 1 + €4 1=1,.. ,%,
& 1=24+1,...,n,
* 2 (7.4)
o _O-2vit—1 + Eit 2 17 ceey %7
i =241,
_ 0.2v51 + €4 1=1,. %,
—02v1+eqx i=%5+1,..,n
0.1 2}112 1312}11)2,5 n + Eit, i=1,...,n,
—0. 12 1312hvﬂg h+ Eity 1=1,...,n,
{ 0. 1Zh 1 1312th,5 n+ €it, i=1,..,3,
€ i=24+1,...,n,
‘ 2 (7.5)
—012 12 B=hyir b + it i=1,..,%,
Eit i:%+1, N,
0. 12 132hvlt h+€lt7 1= 17"'7%7
—012 Bh i n + Eit, i=g+1,..,n
= —0.4vyg 4 +eci +E58 4, 1=1,...,n,
= 04vy_4+ € —€ix_a, 1=1,...,n
_ { —0.4vit_g + e +et—a, 1=1,...,7,
Eits i=24+1,...n
t 2 (7.6)
. 0'4Uitf4+€it — Eit—4, 1= 17“'7%7
Eit, i:%—l—l, , M,
B —04vy—g +ei +Eit—a, 1=1,..,7,
0.4v44—1 + €it — €it—a, 1= % +1,...,n.
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The first block contains five AR(1) alternatives. For AR(1)* and AR(1)’, all n individuals
follow a positive AR(1) and a negative AR(1) respectively. We call AR(1)® and AR(1)° the “full
positive and full negative AR(1).” For these two alternatives, BL and BSY have optimal power by
design. The wavelet tests do not have advantages because these alternatives have a relatively flat
spectrum. Alternatives AR(1)¢ and AR(1)? are called the “half positive and half negative AR(1)”
respectively, where the first half of the n individuals follow an AR(1) while the second half are
white noises. Alternative AR(1)¢ is a mixed AR(1), where the first half of the n individuals follow
a positive AR(1) while the second half follow a negative AR(1). As will be seen shortly, the wavelet
tests are powerful in detecting such an alternative while BL. and BSY will fail to detect it.

The second block contains various AR(12) alternatives, which can arise from monthly panel
data. Although the autoregressive coefficients are very small at each lag and decay to O linearly
as the lag order increase, the AR(12) alternative has a distinct spectral mode at frequency 0. We
expect that the wavelet tests will be powerful. Both BL and BSY will also have power because
they are based on the first and largest autoregressive coefficient, but they are expected to be less
powerful.

The third block contains various ARMA (4,4) alternatives, which can arise from quarterly panel
data. Such an ARMA(4,4) alternative does not have a spectral peak at frequency 0 because its
autocorrelation decays to 0 exponentially as the lag order increases. However, it displays a seasonal
pattern and has a spectral spike at some nonzero frequencies. We expect that wavelet tests will
also perform well here.

The simulations were performed by an Ultra Enterprise 3000 computer. Random numbers for
error terms, {1n;,&it}, were generated by the GAUSS 3.2.31 random number generators RNDUS
and RNDNS. At each replication, we generated an n(7"+ 1000) length of random numbers and then
split it into n series so that each series had the same mean and variance. The first 1000 observations
were discarded for each series to reduce the impact of the initial observations and to diminish the
dependence between the samples. The number of replication is 1000 for each experiment.

As our simulation studies are rather extensive, we only report the results from DGP1 at the 10%
and 5% levels. The results from DGP2 and SGP3 and for the 1% level are similar; they are available
from the authors upon request. We first examine the empirical sizes of the tests. Using the critical
value suggested by Bhargava et al. (1982, p.436), the BFN test strongly over-rejects Hy. It rejects
Hy up to 67.7%, 66.9% and 64.8% at the 5% level, for example, when (n,T) = (25,32), (50,64) and
(100, 128) respectively, and 7 = 0.2. It appears that the BFN test could not be used in practice. For
this reason, we drop it from comparison. Table 1 presents the sizes of the tests at the 10% and 5%
levels under Hy for (n,T") = (25, 32) and six values of 7. When there is no random effect (7 = 0), the
size of the BSY test is quite reasonable and the best among all the tests. The BL test over-rejects
Hy. Both W1 and Wg under-reject Hy. For other values of 7, as expected from Bera et al.’s (2000)

theory, the size of BSY is sensitive to the choice of 7. When 7 increases, the size distortion (either
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underrejection or overrejection) of the BSY test increases. The BL test still over-rejects Hy for all
7. It should be emphasized here that Baltagi and Li (1995, p.16) has pointed out their LM test for
first order serial correlation assuming the presence of random individual effects has better size than
BL in (7.2). Thus, we expect that the size of their test will improve if the former version is used.
We do not use this version here for computational simplicity, because it would require computation
of MLE and hence lose it simplicity as Bera et al. (2000) point out. On the other hand, Wi and
W, are generally robust to the choice of 7. They have the best sizes when 7 is large. The sizes of
W, and W, are better when smaller J or data-driven Jy is used.

Tables 2 and 3 report the sizes for (n,T) = (50,64) and (100, 128) respectively. Again, BSY
has the best size among all the tests when 7 = 0, but it is sensitive to the choice of 7. BL still
over-rejects Hy for all 7. Now, the sizes of W1 and Wg are substantially improved and reasonable,
especially when data-driven jo or J = 0 is used. Both Wl and Wg have better sizes than BL and
BSY except for 7 = 0. Finally, we note that the empirical sizes of Wi and W, are very similar for
all cases.

We now turn to examine the power of the tests. For a fair comparison, we consider size-corrected
power using empirical critical values. Tables 4 and 5 report the power of the tests at the 5% level
against various AR(1) alternatives for (n,T") = (25,32) and (50, 64), and three values of 7. Table
4 shows the power for (n,7T) = (25,32). Under AR(1)%, the full positive AR(1), BSY is most
powerful, followed very closely by BL. This is expected because both BSY and BL are optimal
against AR(1) by design. The W; and W tests have nontrivial but substantial lower power. This
is because AR(1)* has a relatively flat spectrum and the advantage of wavelets is not displayed.
Under AR(1)°, the full negative AR(1), BL becomes the most powerful. Somewhat surprisingly,
W, and Ws have rather high power and dominate BSY for 7 = 0.4,0.6. This perhaps is because
AR(1)” has a less smooth spectrum than AR(1)%. The power patterns of the tests under AR(1)¢
and AR(1)¢, the half positive and the half negative AR(1) alternatives, are similar to those under
AR(1)* and AR(1)" respectively, except that the power of W, and W5 is getting closer to the most
powerful test (BSY under AR(1)¢ and BL under AR(1)%). Interestingly, both BSY and BL fail to
detect AR(1)¢, the mixture of positive AR(1) and negative AR(1). The W; and W tests are very
powerful against AR(1)¢, indicating that wavelets are rather effective in capturing nonhomogeneous
serial correlations across individuals. It seems that W is slightly more powerful than Ws in most
cases.

Table 5 reports the power for (n,T) = (50,64). Now, the power of W; and W5 increase to 1
or almost 1 against all five AR(1) alternatives, consistent with their consistency property. The BL
and BSY tests have power equal to or close to 1 except for AR(1)¢, against which BL and BSY
have virtually no power.

For all various AR(1) alternatives, the choice of J has significant impact on the power of Wi and

Ws. The choice of J = 0 gives the best power for Wi and Ws against various AR(1) alternatives.
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The data-driven Jy delivers reasonable and robust power in all cases.

Tables 6 and 7 report the power of the tests against various AR(12) alternatives. Again, the
choice of J has significant impact on the power of Wy and Wa. Unlike under AR(1) alternatives,
now a larger J yields better power. The data-driven Jo yields better power than J = 0,1, and 2.
Among all the tests, the Wi and W tests with data-driven Jy have the best power and dominate
BL and BSY against all five AR(12) alternatives. Wavelets are indeed rather powerful in capturing
spectral modes/peaks. Note that W, is more powerful than W that is not predicted from our theory
in Theorem 4. In contrast, BL has low or no power for all cases. BSY has some power against
AR(12)% and AR(12)¢, but has low or little power against AR(12)°, AR(12)¢ and AR(12)¢. We note
that under AR(12)% and AR(12)¢, the power of W; and W when (n,T) = (50,64) is somewhat
lower than when (n,7") = (25,32). This is a small sample phenomenon because each individual
autoregressive coefficient is very small. We examine the power of W, and W, for (n,T) = (100,128)
and find that their power increases to 1 or close to 1 for all AR(12) alternatives.

Tables 8 and 9 report the power of the tests against various ARMA (4,4) alternatives. The {471
and Wg tests with data-driven jo have similar power and are more powerful than BSY and BL. The
BSY test has some power against ARMA(4,4)° and ARMA(4,4)¢ and BL has no lower virtually for
all cases. The choice of J has significant impact on the power of Wi and Wa. The choice of J =
2 gives better power than J = 0,1. Apparently due to the seasonal patterns of the ARMA(4,4)
alternatives, the choice of J = 0,1 yields little or no power for Wy and W, against ARMA (4,4)°
and ARMA(4,4)¢. This gives a warning of the possible consequence of an arbitrary choice of .J.
The data-driven jo, in contrast, is able to adapt to different serial correlation patterns and gives
robust power. This highlights the value of the data-driven finest scale Jp.

In summary, we conclude:

1. The Wy and W tests with data-driven finest scale jo or J = 0 have better sizes in all
scenarios except when there is no random effect (7 = 0). The data-driven finest scale Jy
yields reasonable and robust sizes for Wl and Wg under various cases. The BSY test has the
best size among all the tests under comparison when there is no random effect (7 = 0), but
may under-reject or over-reject Hy for other cases; The BL test displays over-rejections in all

cases.

2. The BSY and BL tests are the most powerful against full AR(1) alternatives. They should be
used if the user has the prior information that the alternative is a first order AR(1)/MA(1)
process that is common for all individuals. On the other hand, both BSY and BL are domi-
nated by the W, and Ws tests with data-driven finest scale Jy under the mixture of positive
AR(1) and negative AR(1). The W; and W5 tests with data-driven Jy also dominate BSY
and BL under various AR(12) and ARMA (4,4) alternatives, where the spectral densities have

distinct modes/peaks and are less smooth than AR(1). Wavelets are indeed a powerful tool
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in capturing serial correlation with nonsmooth spectrum. They are useful when the user has
no prior information about the alternative, or when the alternative has significantly nonho-

mogeneous spectrum across different frequencies or across different individuals.

3. The choice of the finest scale parameter has some impact on the size and a significant impact
on the power of Wi and Ws in small and finite samples. Smaller finest scales yield better size
but may yield better or poorer power, depending on the alternatives. The data-driven finest
scale Jy is able to adapt to the various serial correlation patterns and delivers reasonable sizes

and robust power in most cases.

8 Conclusion

Testing for serial correlation of unknown form for both static and dynamic panel models is impor-
tant. The existence of serial correlation, of any form, will generally invalidate statistical procedures
involving using the standard covariance estimator of parameter estimators. It also indicates dy-
namic model misspecification when the regressors contain lagged dependent variables. This paper
proposes a new class of wavelet-based consistent tests for serial correlation of unknown form for the
estimated residuals of the panel data models. Wavelets are particularly useful for detecting serial
correlation where the spectrum has peaks or kinks, as can arise from persistent /strong dependence,
business cycles, seasonalities or use of seasonal data such as quarterly and monthly data, and other
kinds of periodicity. The new tests have a convenient limit N(0,1) distribution. The limit distribu-
tion of the test statistic is not affected by parameter estimation, even if the regressors contain lagged
dependent variables or deterministic/stochastic trending variables. The proposed tests do not re-
quire formulation of an alternative model, and are consistent against serial correlation of unknown
form. They are applicable to unbalanced heterogeneous panel models. A data-driven method is
developed to select finest scales—the smoothing parameters in wavelet estimation, making the test
procedure entirely operational in practice. The data-driven finest scale, in an automatic manner,
converges to 0 under the null hypothesis of no serial correlation but grows to infinity under the
alternative, ensuring consistency of the proposed tests against serial correlation of unknown form.
We examine the finite sample properties of the proposed tests as compared to some popular existing
tests of serial correlation using Monte Carlo experiments. The results show that the proposed tests
have good size and power in various cases, and can be used as an evaluation procedure for panel

models.
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Appendix

To prove Theorems 1-6 and Corollary 7, we will use the following lemma:

Lemma A.1: Suppose that Assumptions 2 and 3 hold. Let by (h,m) be defined as that used in
(3.18). Then for any J;, T; € Z" and a bounded constant C' € (0,00) that does not depend on i, J;
and T;,

(1) by, (h,m) is real-valued, by, (0,m) = by, (h,0) =0 and bj,(h,m) = by, (m,h);
(i1) 3oy Sy Bl (hym)] < 20D for 0 < v < s

(iii) S r L o, (hym) ]2 < C20HD);
(iv) S ST ST by, (e, m)by, (he,m)||2 < C(J; + 1)27+;

(W) |0 by (hyh) — (25 = 1) < C[(Ji + 1) 4+ 25412741/ T) 27D where T is in Assumption
3;

(vi)] Sp T S b2 (hym) — 2(271 — 1)| < C[(J; + 1)2 + 271 (201 ) 73) D],
(vii) $upy<p mer,—1 [bs;(h,m)| < C(J; + 1);

(viii) supy <per,—1 Yoy [0 (hym)| < C(Ji +1);
Proof of Lemma A.1: Parts (i)—(vi) of this lemma extends Lemma A.1 of Lee and Hong (2000),
who consider the case where J; = J — oo as T; =T — oo (i.e., the case with only one individual).
As a consequence, Lemma A.1 of Lee and Hong (2000) cannot be applied to the present context
because the O(-) and o(-) orders in Lemma A.1 of Lee and Hong (2000) would depend on i and
because we allow both fixed and growing J;. By carefully examining the proof of Lee and Hong
(2000, Appendix B), however, we can replace the O(-) and o(-) orders by the upper-bounds in the
right hand sides of each of parts (ii)—(vi) here. The proof of part (i) is identical to that of Lemma
A.1(i) of Lee and Hong (2000).

For parts (vii) and (viii), there are no counterparts in Lee and Hong (2000). To prove (vii), it
suffices to show max;_7,<p m<t;—1 |aj,(h,m)| < C(J; 4 1), where a;(h,m) is as that used in (3.18).
As in Lee and Hong (2000), we put c;(h,m) = 277 Zijzl ei2n(m=h)k/2! Ghere j € ZT. Then

cj(h,m):{ 1 if m —h = 297 for some r € Z, (A1)

0 otherwise.

Cf. Priestley (1981, (6.19), p.392). Thus by the definition of a s, (h,m), we have

Ji
jas (hom)| = |21 " c;(h,m)db(2mh/2) " (2mhm /27)
j=0

Ji
< 21y [(2wh/2 ) (2rhm/2)| < C(J; + 1)

J=0
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given |ih(-)| < C as in Assumption 3. For the proof of part (viii), using (A1), we have

T;—1

> ag(hym)| < Z Zy (27h/29)p(2mh )20 + 27r)|

m=1-T; r=—o00 j=0
JZ ~ . J/L ~ .
= ) [W@rh/2)> " h(2nh/2 + 2mr)| < C(Ji + 1)
j=0 j=0

given [¢(-)| < C and sup,g Yo |th(z+27r)| < C as implied by Assumption 3. This completes
the proof. B

A Proof of Theorem 1

Let 94 = vis — U; — Uy + T be as in Assumption 5. We define

dijr = Z Ri(h) . (2h), (A2)
h=1-T;

where R;(h) = T~} ZtT:\hHl UitDi—|n), b = 0,%1,...,£(T; — 1). We show Theorem 1 by proving

Theorems A.1-A.3 below under the conditions of Theorem 1.

Theorem A.1: Let &j, and &, be defined as in (3.16) and (6.3), and Vyp =377 0'?‘/;-07 where
Vio is as in (3.18). Then

Ji 2

_1/2 Z 2Ty Z Z Xijk — zyk - 0.

7=0 k=1
Theorem A.2: Put M,y = > 1 0 Mo, where My is as in (5.18). Then

Ji 2

yoe Z27TTZZQ1]k My | % N(0,1).

7=0 k=1

Theorem A.3: Let M and V be defined as in (3.18). Then Vn}l/Q(Nf—AfnT) 2,0 and V/VnT 2.

Note that for any J; € ZT such that 27it1/T; < 1, we have by Lemma A.1(v,vi)

e @M —1) < Vp <Oy (25 -1, (A3)
i=1 i=1

) (27 -1) < My <C) (27— (A4)
=1 =1

. A2 32 — (AN — )2 A — e )y
Proof of Theorem A.1: Because &;;;, — agy = (Giijk — Quji)” + 2(Qujk — Qujk)Qijk, we shall show

Propositions A.1 and A.2 below under the conditions of Theorem 1.

Proposition A.1: V, 1/22 27TTZ k 1(05ka dijk)? = Op[V,, 1/2"‘("_1"‘7“_1)‘/;%2]-
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Proposition A.2: V_l/2 Sor 2T Z]Ji:() ijzl(éyijk — Qijk) Qi 20.

Proof of Proposition A.1: By straightforward algebra and the definition of v;; in (3.13), we have
by = Uit — X},(B — B). Recalling the definitions of R;(h) in (3.14) and R;(h) as used in (A2), we
can write

~

Ri(h) = Ri(h) = (B=8)Tiz(h)(B—3) — (8 = B)Tizo(h) — (B — B) Tiva(h)

3
> &a(h), say, (A5)
c=1

where flm( ) =T, Zt \h\+1 Ztht AP and as in Assumption 5, f’m)(h) = T;l Zﬁ\h\—&-l Xitﬁit_|h|

and fzvx(h) T Zt |R|+1 Xii— \h\vzt
Next, recalling ¥;; = vy — ¥; — ¥; + ¥ and the definition of R;(h) as used in (6.3), we can write

T;
Ri(h) — Ri(h) = T;! Z (=it — Ty — VitTy_|p| — Velyp || + DVt + 00y )
t=|h|+1
9
Z ), say. (AG6)

Given Ri(h) — Ri(h) = [Ri(h) — Ri(h)] + [Ri(h) — Ri(h)], we have

Qijr — Qiji = Z Z Eai(P) i, (2mh). (A7)
=1 h=1-T;
It follows from the C,-inequality that
Ji 2 Ji 2
DD W LIRS 91D 9EV D 909 D SENCENERS
7j=0 k=1 j=0k=1 [ h=1-T;
= 2821210, say. (A8)

We shall show that V. /2 A, % 0 for 1 < ¢ < 9.

We first consider Al. From (A3) and using the Cauchy-Schwarz inequality twice, we have
s (W] < 118 = BIPIITiza (W] < 118 = 8117 || Tiaa (0)]] (A9)

Let by, (h,m) be defined as in Lemma A.1 (or (3.18)). Then we have

n —1T;—
Vi PlA = v PN Z Zm (R, m)éi( >su<m>‘
7=1 h=1 m=1
n —17;— 1/2 1/2
1 2
< VB -l ZEZ Zb{ (h m>] ZTSHFM H‘*]
=1 h=1 m=1
= Op(n=3/?), (A10)



given Lemma A.1(vi), (A3), Assumptions 3 and 4, T; < CT and o7 € [c,C].
Next, we consider the second term As in (A8). Recalling I'jzy (h) = plimp oo Tivo (h), we have

&5i(h) = (8 = B)Tizu(h) + (B = B [Tizo (h) — Tigo (R)]- (A11)
It follows that
g ¥ 2
Ay < 287 Z%T > Z Lizo (h)h 1 (27h)
5=0 k=1 |[h=1-T
g 20 || T—1 A 2
+2/16 - AII? ZQWT YD1 D [Miow(h) = Tiwo (W)} (27h)
§=0 k=1 llh=1-T
= 2||3 -4 ]V11+2H6—6H2]Wg, say. (A12)
We now consider M in (A12). Let Afj”k = [T fizo(w)¥jp(w)dw be the wavelet coefficient of the

cross-spectral density fi,(w) = (2m)71Y 50 I’m(h) ~% Then A =20 oo Liaw(h )wjk(27rh)
by Parsavel’s identity, and

Z Tivo ()05 (27h) = ATl + > Tigy(R) iy, (2701),

h=1—T; |h|>T;

It follows by the Cauchy-Schwarz inequality that

Ji 2 Ji 27
M < 2227@ ZZIIAZ”kII2+2Z2wT S TP D> [d(2mh)?
7=0 k=1 |h|>T; =0 k=1 |n|>T;
= O(nT) + o[nT (27 /T)*"] = O(nT) (A13)

given 27 /T — 0, where J = max;<;<,(J;) and we used the facts that (i) Z;-]LO Z ||AZ]/,€||2 =
(2m)7E 375 |ITizw(R)]|? < C by Parseval’s identity and Assumption 5; (ii) >zt Liaw (R N2 =
o(T~1) given Assumption 5 and T; = ¢;T > ¢T; and (iii) given Assumption 3,

Ji 2
SN Wuperh))? < QWZ > [p(erh/2) < CZ D @rh/Y)H < O T
=0 k=1 h>|T;| 3=0|h|>T; 3=0|h|>T;

For the second term Ms in (A12), we have

n —17T;—
i=1  h=1 m=1
n —-17T;-1
= - Z > \in(h,m)\] = Op[(nT) ™ Var] (A14)
i=1 h=1 m=1
given Lemma A.1(ii), (A3) and Assumption 5. Combining (A12)—(A14) yields
V.2 Ay = Op(V.?) + Op[(nT) "'V 2. (A15)
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Using more tedious but analogous reasoning, we have for the third term Asz in (AG6),
Vo2 Ag = 0p(V ) + Op[(nT) V2. (A16)

Now we consider the fourth term A, in (A8). By the Cauchy-Schwarz inequality and the fact
that for each i, {v;} is i.i.d. with Ev§ < C, we have E(03|T; ! Zt il v || T ZtTimH vit]) <
CT; 2 for h,m > 0. Tt follows from Markov’s inequality, Lemma A.1(ii) and (A3) that

IZ’U“ levzt

n T;—1T;—1

VA < ‘WZT SN by (hym)|e? T,

h=1 m=1 t=h+1 t=m-+1
n T;—1T;—
= Op |V PT 1Y > Z b5, (h,m ] = Op(T V). (A17)
i=1 h=1 m=1

Similarly, using more tedious but analogous reasoning to that for A4, we have
V.2 A5 = Op(T V2. (A18)

Next, for the sixth term A6 in (A8), noting that v;; and v, j are independent for A > 0
under Hy, we have E(|v,_,0; m||T Zt htl v2t||T Zt a1 Vit]) < C’n‘lel for h,m > 0 by the
Cauchy-Schwarz inequality and Ev§, < C. It follows that

V2 Ag = Op(n V2. (A19)
Similarly, we can also obtain
—-1/2 —1y,1/2
V A7 Op(n VnT ) (AQO)

Finally, because E(92|T; Zﬁhﬂ v || T Zﬁmﬂ vi|]) < On T2 for h,m > 0 under Hy, we
have

VA, =0p [(nT)—lv;ﬂ . c=809. (A21)
Collecting (A8), (A10) and (A15)-(A21), we obtain the desired result that

Ji 2

—1/2227@ 3N (@ — aie)? = 0plVg P+ (T 0TV

7=0 k=1

Proof of Proposition A.2: Using (A7), we can write

Ji 27 J, 2
ZQTFT ZZ azgk azgk azgk = Z ZQTFT ZZ Z écz ’lvb]k 27Th) @ij
7=0 k=1 c=1 7=0 k=1 | h=1-T;
= 2807 say. (A22)
c=1
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From the Cauchy-Schwarz inequality, (A10) and (A21), we have

- 1/2
Vo (211 + As + Ag) (Z 21T, Zza%)

7=0 k=1

1/2

IA

)51 + bg +59)

= Op[ V" + (Var/nT)M2), (A23)

where V1 3" | 27T, Z Zk 1%, = Op(1) by Markov’s inequality, Lemma A.1(v), (A4) and
the fact that EaZ, < CT; 'S0 i, (2mh) 2.
Next, we consider the second term 85 in (A22). Using (A11), we write

ijk —

[

by = (B-0) Z%T ZZ{ Z Tizo(h) 4 27rh)] ik

j=0k=1 | h=1-T;

20 T,—1
+(5-9) Zsz ZZ{ S [Pisolh) — Tisulh )}wzwh)}aijk
h=

7=0 k=1 —T;
= (B—P)Mz+ (38— B) M, say. (A24)

For the first term Mg, noting that {a;x} is a zero-mean sequence independent across i, we obtain

Ji 2
EN3 Z @rT)E > Y { Z Lizo (W) 27?’%)] Qijk

2

j=0 k=1 |h=1-T;

T—17T—1 2

ZZszhm zwv )Rz( )

h=1 m=1

n
- 2 TE
AT T

TR ST S b )b ) [T ()l (2)] ERE)

i=1 h1=1ho=1m=1

n 1 2 -1 2
< D ol DY |Tiw(h)] sup | Y b3 (h,m)
i=1 h—1 1<h<Ti-1 |,

n

TZ(Ji +1)2

=1

= 0 = O(TVyur)

given Assumption 5, Lemma A.1(viii) and (A3). It follows from Chebyshev’s inequality that
Vit (B = BY M = Op(n™'72). (A25)
For the second term My in (A24), we have

[

1/2
Vo P18 — BY Ma| < V22115 - 6181y (Zmzz%k) = Op|(nT) "'V, 7). (A26)

j=0 k=1

where My = Op[(nT) 1V;r] as shown in (A14). Collecting (A24)-(A26), we have

V. 28y = Op(n=1%) + Op[(nT) V2. (A27)
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Similarly, we have
Vo283 = Op(n= %) + 0p[(nT) V17 (A28)
We now consider &4 in (A22). We write 64 = Y% | T} Z%;ll ST by (hym)E g (h) Ry(m). Tt
follows that
Ti—1Ty—1 T;—1 Ti—1

B, = ZZTTI SN0 bui(ha,ma)by (he, mo) El€y; () Ri(ma)€y(ho) Ri(my)].

=1 [=1 h1=1ho=1m1=1mao=1

(A29)
Put 7;(h) = ~T;! Y iepy1 Vit- Then given the definition of €4;(h) in (A4), we can write £,;(h) =

0;0;(h). Thus, for ¢ = [, we have
(Bl () Bilm) € (o) Ri(ma)] | < OT7 2217302, (A30)
by the Cauchy-Schwarz inequality and the fact that when {v;} is i.i.d. for each ¢,
(B (R m)]| < (B0} 2B} ()2 [ERNm)] V2 < CT; 2,
For i # 1, £4;(h1)Ri(my) is independent of &, (he)R;(ms), so we have
| Bl () Ri ()& (he) Rulma)| = | ElE () Ri(mo) Bl (ha) Ri(my)]| < CTT*T, - (A3Y)

where we used the fact that for A,m >0

<CT?

7/ 7/
—3
g g g UZtUiSUiTUiT—m]

t=1 s=h+17=m—+1

given that {vy} is i.i.d. with E(v§) < C for each i. Combining (A29)—(A31) and using Lemma
A.1(ii) and (A3), we obtain

|ElEw(h) Ri(m)]| = |Elosvi(h) Ri(m

2 2

. n T;—1T;—1 n T;—117;—1
Esy < CT™ Y D) oy (hm)l| +CT7> ) Z!bji(h,m)\]
i=1 [ h=1 m=1 i=1 h=1 m=1

< C@27)T)Var + CT VY,
where, as before, J = maxj<;<,(J;). Hence, by Chebyshev’s inequality, we have
Vo284 = 0p(27/2)T? + V2 T). (A32)
Similarly, we can obtain
V%85 = 0p (272 )TV + V2 /T). (A33)
Next, we consider &g. Write 65 = S leggl STy (hym)ég;(h) Ri(m), where Eg;(h) =
TZ._1 ZtT;h 41 VitDtp @S before. Then we have

Ti—-1T:—1 T;—-1 T;—1

E(56 ZZTT; Z Z Z Z by, (h1,m1)bg, (ho,m2)E EGz’(hl)E@(ml)EGZ(hQ)Rl(mQ)]'

=1 1=1 h1=1ho=1m1=1mo=1

(A34)
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For i = [, we have

1/2
Bl&gi () Ri(my)Eei(he) Ri(ma)]| < { Elég(ha) R (m1)| Elég,(ho) R2m2)]} < OT; 207!, (A35)

where E[Ezz(h)];’f(m)} < [Eégi(h)ERf(m)]l/Q < CT; ?n~! given Assumption 1(b) and that {v;}
is i.i.d. for each 7 (so that U; and v;_j are independent for A > 0). For ¢ # [, we write vy_j, =
O p(i, 1) +n" (v p+vy_n), where vy (i,1) =n~! ZZ:LC#,Z Vet 1, is independent of (v p, vy p)-
Then we have for ¢ # [,

Blggi(h1) Ri(ma)i(ha) Ru(ma)]|

= lT_ Z Z /Uztl ml)vltg Rl (mQ)/l_)tl*hl q_th*hQ]

=h1+1ta=ho+1

= |5t Z Z 1" 2Elvi, Ri(ma)vie, Ri(me) (Vie,—ny + Vity—hy ) (Vity—hy + Vitz—1y )]
=h1+1ta=ho+1

= 'L Y ) 0T Evi v Ri(ma) | Elvi, ity -, Ri(mo)]
ti=hi1+1ta=ho+1

+ 1—;'711—}71 Z Z n_QE[U’itl /U’it27h2E(ml)]E[vltgvltlfhl Rl (m2)]
=h1+1to=ho+1

< CT; 1t *2, (A36)

where | Elvit, vie—n, Ri(ma)]| = |17 Y205, 11 E(Vitieg—ng VisVis—my)| < CT;
Combining (A34)—(A36) and Lemma A.1(ii) and (A3) we have

) n [T,-1T—1 n Ti—1Ti—1 2
Ebg < Cn7 Y 1D 0N (bu(h,m)] —|—C’n_2 [Z > lbs(h,m)
i=1 Lh=1 m=1 i=1 h=1 m=1

< CE7T)Vour +Cn~ 2V
It follows by Chebyshev’s inequality and 27 /n — 0 that
V%6 = 0p(27/2) TV + V2 m) B 0. (A37)

Similarly, we have
V%8 = 0p(272) TV + V2 ) B 0 (A38)

Collecting (A23), (A27), (A28), (A32), (A33), (A37) and (A38) yields the desired result of Propo-
sition A.2. &

Proof of Theorem A.2: Recalling the definition of &;j;;, in (6.3), we can write

Ji 20 n T—-1T-1 n
ZM d Y ag, = ZT >N b (h,m)Ri(h)Ry(m) = > (Ai + B, — Ba — Byi), (A39)
7=0 k=1 = h=1 m=1 =1
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where we have

17— T t—1 T; s—1
A — -1 § : 2 : 2 :
Ai = in h m + Vit Vit —jVisVis—m
t=

h=1 m=1 2 s=1 s=2 t=1
—17T;— T t—1
= 2T 1 Z Z le h m Z Vit Ut —5VisVis—m (by symmetry of in('a ))
h=1 m=1 t=2 s=1
—1T;—
By = 17! Z Z by, (h,m ngtvitfhvit—ma
/L A
h=1 m=1
T—1T-1 h T;
By = T;_l Z in(h,m) Z Z VitVit—hVisVis—m,
h=1m=1 t=1 s=m—+1
T—1T-1 T;
B3, = T;l sz h m szztvzt hUisVis—m-
h=1m=1 t=1 s=1

Proposition A.3 shows that the statistic .7 | A; dominates the other terms in (A39).
Proposition A.3: V_I/Q(Zle 2T Z Zk 1 a — Myr) = _1/2 Dy A+ op(1).

Next, we decompose A; into the terms with ¢ — s > ¢; and t — s < ¢;, for some ¢; € Z* :

1T1 7, t— qz_l
A, = 21t Z Z by, (h,m) Z Z +Z Z Vit Vit —hVisVis—m
h=1 m=1 t=q;+2 s=1 t=2 s=max(t—q;,1)
= B@ +B4i; say. (A40)

Furthermore, we decompose

¢ G q; n—1 T t—qi—1
Bz’ = Z Z +Z Z Z Z sz h m Z Z VitVit—hVisUVis—m
h=1m=1 h=1m=¢;+1 h=¢;+1m=1 t=q;+2 s=1
= UZ + 352' + B@i, say. (A41>

where Bs; and B’& are the contributions from m > ¢; and h > q; respectively.
Proposition A.4 below shows that Y7, A; can be approximated arbitrarily well by -7 U;

under proper conditions on g;.

Proposition A.4: Suppose that Assumptions 2-3 hold, 22j/T —0,q; = ¢i(T;) — 00,q;/27 — o0
and ¢2/T; — 0, where J = maxi<i<n(J;). If {vit} is i.i.d. for each i, then Vn}l/Q Y A; =
Vor " i Ui+ op(1).

It is much easier to show the asymptotic normality of 327, U; than of 37| A;, because for U;,
{vitvy—_p} and {v;svis—m} are independent given t — s > ¢; and 0 < h,m < ¢;.

Proposition A.5: Under the conditions of Proposition A.4, Var /var(d U;) — 1 and Vn}l/Q oy U; %
N(0,1).
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Propositions A.3—A.5 and Slutsky Theorem imply Theorem A.2. We now prove Propositions
A3-Ab.

Proof of Proposition A.3: Recalling the definition of M, in Theorem A.2. By (A39), we obtain

n Ji 20 n n n n
S 201> ady — Mur | =) A+ (Bu—0iMg) =Y By— Y B,
i=1 7=0 k=1 i=1 i=1 i=1 i=1

We shall show (i) V. 2(S3%, Bys — Myr) B 0; (i) Vo2 2 S0, Boy B 0; (i) V2 S, By B 0.
(i) Observe that Bh- has the similar structure as By, in Lee and Hong (2000). (Note that the
sample size n in Lee and Hong (2000) corresponds to our T; here.) Following Lee and Hong’s (2000)

reasoning and using Lemma A.1(ii), we can obtain that for each i and for T; sufficiently large

T;—1T;—1 T;—-17;-1
E(By; — EBy;)? < CT; ! ZZ\bLhm] <227 /1) 3" N by (hym)).
h=1 m=1 h=1 m=1

Also, because By; is a sequence independent across ¢, we have

T;—1T1T;-1

ZEBh EBu)? <2/ 3TN by (hym)| = O(Vir2?/T)
h=1

i=1

n

Z(Bu - EBlz

=1

E

m=1

given (A3). Hence, by Chebyshev’s inequality, Y ;- ; EBi; = My and 227 /T — 0, we have
1/2(2? L Bii — M) = Op[(27/T)"/?] = 0p(1). This completes the proof for (i).

(11) Next, we consider Bs;. Following Lee and Hong’s (2000) reasoning, we have EBZ <

1[ Zm_l by, (h,m)|]®. Then by the fact that By; is a zero-mean sequence independent

across 1, Lemma A.1(ii) and (A3), we have

n Ti—l Ti—l

E (Z BQZ) ZEBQZ <C¥/T1) )Y DD by (hym) = 0[(2¥ /T)V,r).
i=1 i=1 i=1 h=1 m=1
Hence, by Chebyshev’s inequality and 227 /T — 0, we obtain Vn}l/ 2 oy By 5 0.
(iii) By reasoning similar to (ii), we can obtain Vn}l/zégi =0p(27)TYV%) = 0p(1). M
Proof of Proposition A.4: Given (A39) and (A41), we have A; = U, + By; —}—BM +Bﬁi. It suffices
to show Vn}l/Q Sy B 20 for ¢ = 4,5,6.
(i) We first consider By; as in (A40). From Lee and Hong’s (2000, proof of Theorem 1) reasoning,

we have for each ¢ and for T; sufficiently large

T, —1T;—1 T;,—1T;—1
EBjr, < Clai/Ti) | Y > by (h,m) <O2 2’ /T) )Y > [bs(hm),
h=1 m=1 h=1 m=1

where § = maxi<;<n(¢;) and the last inequality follows from Lemma A.1(ii). Hence, using the fact

that {By} is a zero-mean sequence independent across i, Lemma A.1(ii) and A(3), we have for all
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T; sufficiently large,

n Ti—l Ti—l

E <ZB4> ZEB4, <C@/1)Y" 3" 3 by, (hym)| = O(Var @2’ /T0).

i=1 h=1 m=1

This, Chebyshev’s inequality, §%/T — 0 and 22/ /T — 0, imply Vn}l/ 2 Dy By 5 o0.
(ii) Next, we consider Bs; as in (A41). By the definition of by,(h,m), the Cauchy-Schwarz

inequality and Assumption 3, we obtain

T—1T-1
EB:, = of b2 (h,m) < CZ > [p(2mm/27)?
h=1m>gq; Jj=0m>gq;
Ji
< CQ ’27’(777//2]‘ 27 < CQQQTJ'”/QQT 1.
Jj=0m>q;

Therefore, E(3." | Bs;)? = S\ EB2 < C(27 /qo)2 =1 32", 27 where qp = minj<i<n(gi). It
follows by Chebyshev’s inequality and 27 /gy — 0 that Vn}l/Q S Bsi = 0p[(27 /g0)> 1] = op(1).
(iii) Finally, we consider Bg;, as in (A41). Following Lee and Hong’s (2000, proof of Theorem

1) reasoning and using Lemma A.1(ii), we obtain

T—1T—1 2
EBg < C2*™gm ot | Z b, (h, m)|]
h=1 m=1
—1T;—
< 02520 Jg) L+ C thm
h 1 m=1

Thus, V,, 1/2 A; Bgi = Op[(27 q0)*T 27 /T)1/2 £>0‘by Chebyshev’s inequality, (A3 ,2j qo —
i=1
0 and 22‘] /T — 0, This completes the proof. B

Proof of Proposition A.5: We write U; = T[l ZtT;qﬁQ Ujt, where

qi

Ui = 2vy Zvit—hHi,tfqifl(h)a (A42)

h=1
Hipgi-1(h) = 31 05, (hym)Sis—g—1(m) and Ss—g,—1(m) = S i g0is—m. Then we have
U= Zt - Uy, Where T = maxi<i<n(T3), U, =>" Uyl(q; <t <T;), and 1(-) is the indicator

function.
Put 7 = Q.- ; Fit, where Fy; is the sigma field generated by {v;s,s < ¢t} ;. Because {vjvy_p}
is independent of H;; 4,_1(h) for 0 < h < ¢, {Us, Fi—1} is an adapted martingale difference

sequence, with

T T n
Y - Y BUP- Y N EUDMG<i<T)
t=qo+2 t=qo+2 i=1
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= 2201 —q/T)(1 - (¢ +1)/T) ZZzﬁ (h,m)
h=1m=1
n T;,—1 Tlfl
= 4> o [1+0(1)] = Vyr[1 + o(1)] (A43)
i=1  h=1 m=1
given ¢; — 00, q;/2% — o0, @/T — 0. It follows that V,,7/EU? — 1.
We now apply Brown’s (1971) martingale limit theorem by verifying his two conditions: (i)
var—2(U )Zt o2 E{UA1[|U;] > evar'/?(U)]} — 0forall e > 0; (i) var—2(U%)T 23 }_ 012 E(U3Fi-1)
£> 1. Given (A41), we first verify (i) by showing that V2 Zt o2 EU} — 0. Given t, {Uy} is a

zero-mean independent sequence across ¢, so we have

n 2

EUL <O |Y T BEUH U <t <T)
i=1
Moreover, following Lee and Hong’s (2000, proof of Theorem 1) reasoning, we can obtain that for
each i and for T; sufficiently large, EUj, < Ct? Y% | _1 b5, (h,m). Tt follows that V7, Zt L EUL =
O(T~1) — 0. Hence, condition (i) holds.

Next, we verify (i) by showing that V 2E(U? — EU?) — 0, where U? = Zt 4012 E(U3Fi1),
BUAF-1) = B{T S0, Uid(a < t < TOEF-) = S0, T B(UFae) (e < ¢ < T0),
where the second equality follows from the facts that for each ¢, {U;} is a zero-mean sequence
independent across i, and that for each i, {U, Fi;—1} is a martingale difference sequence. Lee and
Hong (2000, p. 27) show that for each ¢ and for T; sufficiently large,

2 1T 2

Zthm

h=1 m=1

T;

E Z {E(Uz%w:-i,tfl) - EUZQt] Q/T
t=¢q;+2

+O(J; +1)27

It follows that for 7" sufficiently large,

T;

2
E(0*-£0%) = B|Y S (BUFiens) - B} =Y _E{ > [BUHFim) - BU]]
i=1 t=q;+2 i=1 t=q;+2
2 n
+CY (i +1)2”

i=1

T;—11T;—1

< C@T)y | Y Y Ibs(hm)

=1 [h=1 m=1
< C(@/T)Vir + C(J + 1) Var,

n

where the second equality follows from the fact that {ZtT;qi 1ol E(UZ|Fiu—1) — EUZ)} is a zero-

mean independent sequence across i, and the last inequality follows from Lemma A.1(ii) and

(A3). Consequently, given 32/T — 0 and 227 /T — 0, we have V. 2E(U? — EU%)? = O(g/T) +
OV 23" (J;+1)2%] — 0 as n, T — oo. Thus, condition (ii) hold, and so V/ 1/2U — N(0,1) by

Brown’s Theorem. B
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Proof of Theorem A.3: (i) Recalling the definition of M and Mz, we have

T;—1 n T;—1
M= Myr = Y [Ri(0) = R(0)]* Y by, (h,h) +2 [Ri(0) = Ri(0)]Ri(0) Y by, (h,h)
i h=1 i=1 h=1

= Ms + 2Ms, say. (A44)

n T;—1 n T;—1
Ms < 4) [Ri(0) = Ri(0)* D by, (h,h) +4) [Ri(0) = Ri(0)* D by, (h, h)
i=1 h=1 =1 h=1
n Ti—1
+4 "[Ri(0) = Ri(0)]* ) " by, (h, h) = 4Ny + 4Msz + 4Ms3, say. (A45)
=1 h=1

Using (A3), the Cauchy-Schwarz inequality, Assumptions 4 and 5, Lemma A.1(v) and (A4), we

have

n Ti—
Vo "My < 4V |15 = BlI* Y IPiwa(O)II* Y ba(hyh)
=1 h=1
n Ti—l
—1/2 ~
AV 218 = BIP  ITian O S b, (B, 1)
=1 h=1

41— AP S [Eas O 3 balh ) = Op{(nT) Vi (A0
=1

Similarly, using (A4), the Cauchy-Schwarz inequality, and Markov’s inequality, the i.i.d. property
of {v;; } for each ¢, and the spatial independence between {v;; } and {v;s} for all ¢ # j, we can obtain
E[R;(0) — R;(0)]? < O(T; 2 4+ n~'T; 1). Tt follows from Markov’s inequality, the Cauchy-Schwarz
inequality, Lemma A.1(v) and (A4) that

Vo2V sy = Op[(T~2 + 0T YV 7). (A47)
Using Markov’s inequality, E[R;(0) — R;(0)]? < CT; !, Lemma A.1(v) and (A4), we have
Vo 2N = Op(T V). (A48)
Combining (A46)—(A48) and V,,7/T? — 0, we obtain
V2N = Op(T~'VHE) = op(1). (A49)

Next, we consider the second term Mg in (A44). We write

n

Ti—1 n Ti—1
Mg = ) [Ri(0) = Ri(0)]R:i(0) Y _ by, (h,h) + Y [Ri(0) — Ri(0)]Ri(0) Y _ b, (h, 1)
h=1

i—1 h=1 i—1
+ 3 [Ri(0) — Ri(0)]Rs(0) Y _ by, (h, h) = Mgy + Mez + Mgs, say. (A50)
i1
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Using (A5) with 2 = 0, Assumptions 4 and 5, Lemma A.1(v) and (A3), we have

Vi M| < Vo5 - BIIZIIRm )R (0 Zlehh
V18 - 6!\2!\Fm JIRi(0 meh

+VA 1B - BHZHFM )| R:(0 ZbJZhh = Op[(nT)~"2V.117](A51)

Also, using (A6) with h = 0, E[R;(0) — R;(0)]*> < C(T; * + (nT;)~"), the Cauchy-Schwarz
inequality and Markov’s inequality, Lemma A.1(ii) and (A4), we have

V2| Mey| = Op[T VY2 + (nT) V2V, 7). (A52)

Finally, noting that R;(0) — R;(0) is a zero-mean sequence independent across i, we have

n 17— 17—
EMg = Y E[Ri(0) - Ri(0 {Z be,l (h,h)| <CT~ 12 [Z Zle (h h]
i=1 h=1 m=1 i=1 [h=1 m=1
n T;—1T;—1

< 273N S bbb,

i=1 h=1 m=1

where the last two equalities follows by Lemma A.1(v) and (A4). It follows by Chebyshev’s in-
equality that
Vo2 Mg = Op(27/2)TV/2), (A53)

Collecting (A50)-(A53) and 227 /T — 0 yields V. /2N 2 0. This, together with (A44) and (A49),
implies V/*(M — Myz) £ 0. This proves (i).
(ii) The proof for V/V,r % 1 is analogous to (i). We thus omit it here. W

B Proof of Theorem 2

To conserve space, we only show for ;. The proof for Wy is similar. Put M = 327, ]3322 (0)(27i1 —
1) and V =437 | R}(0)(27+! — 1). Then we can write

= = = M~M/ /=, /=

Wi — Wi = (ﬁ/\f— 1) + NG (\/;/\/;) ,

1%
where M and V are as in (3.18). Because W) = Op(1) by Theorem 1, Vn}l/z(]ﬁ[ — Myr) % 0 and
V /Viir B 1 by Theorem A.3, it suffices for W1 — W, & 0and Wy -5 N(0,1) if (i) V., /> (M~ M) B
0 and (i) V/Vpr 2 1.
We first show (i). Following the reasoning analogous to the proof of Theorem A.3, we obtain

Vn}l/Q(]V[ — M%) %0, where MY, =37 0427+ —1). Thus, it remains to show Vn}l/z (M2, —
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M,,r) — 0. This follows from Lemma A.1(v), 2%*! = a;T% ,n/T" logi T — 0 and n/TQ(QT_l)_Q(QT_%)V —

0 because

Vo' | My — MYy |

IA

cv.

i(JZ- +1)+ (27)7)@ D zn: 2%]
=1

i=1
< Cwn'?T7/?ogy(T) + Cnl/Q/T[(szl)f(QP%)”] — 0.

Now we show (ii). Put V. = Y7 1 0%(27it1 —1). Following reasoning analogous to that for

Theorem A.3, we can obtain Vj,r/ Vr?T 1. It remains to show V,7/V%. — 1. This follows from

Lemma A.1(vi) and J; — oo, because

Vo Vi = Var| <OV

zn:(Ji +1)2+(27/7)@ D zn: 2%] -0

i=1 i=1

where V.1 3% | (J; +1)? — 0 given (A3) and J; — oco. Note that we only require J; — oo for (ii).
|

C Proof of Theorem 3

Recall the definition of M and V as in (3.18). Following reasoning analogous to that of Theorem
A.3, we can obtain M = M,r[1 + op(1)] and V = V,p[1 + op(1)]. It follows that

Ji 29
(nAT) "WV, = (nsT)~ Z 2T, ) ) ady, +op(1 (A54)
7=0 k=1

given M,y = O(V,r) by (A3) and A(4), and VnT/nAT — 0 by (A3) and (naT)~1>°0 270 — 0. 1t
remains to show (i) (naT)~1 Y ", 27T; Z L (af Qi oz”k) £0; (i) n b Y0, 2Ty Z Zk 1 aljk
= (naT) 30 27 Q(f;, fio) +o(1), Where a5, is defined in (3.11) or (3.12).

We first show (i). Because

(naT) IZQWTX:Z ik — ij = (naT)” Z27TTi:Za’3k azjk

7=0 k=1 7=0 k=1

2(naT)~ ZQWT ZZ Qijh — k) i ABD)

j=0 k=1

it suffices to show that the first term vanishes in probability. That the second term vanishes in prob-
ability then follows by the Cauchy-Schwarz inequality and the fact that (nAT) " Y% | 27T} > ik afj e <

C'sup;en, Q(fi, fo) < C2. Noting &jp — e = (Quji — Qyji) + (@i — ij), we obtain

Ji 2 Ji 2 Ji 2
ZQWT ZZ Qg — ozwk < QZQWT ZZ Gk — Qlijk) 24 QZQWT ZZ Qijk — ozwk
7=0 k=1 7=0 k=1 7=0 k=1
= 2Ms + 2M’72, say. (A56)
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For the first term in (A56), we note that Proposition A.1 continues to hold under Assumptions 1-6
(the proof is similar but more tedious than under the condition that {v;} is i.i.d. for each i.) It
follows that

My = Op[(naT) ™t + (nanT) " Wpr + (naT?) Wl (A57)

For the second term in (A56), we further decompose

Jp 29 Ji 29
My < 2227@ > (aik — Eag)® +2 Z27rT 3 (Baje — oun)?
Jj=0 k=1 7=0 k=1
= 2]\/[721 + 2]Vf722, say. (A58)

We now consider the first term in (A58). Under Assumption 6, we have sup, <<, _qvar[R;(h)] <
CT; !, which follows from >°7° | R?(h) < C, DT o D o0 2l [Ki(J, B, 1) < € and

var {R;i(h)} =T, Z (1= |U|/T3) {R2(1) + Ri(l — h)R;(1 + h) + ki (h, 1,1+ h) } .

1=1-T;

Cf. Hannan (1970, p.209). Therefore, we have

n  T;-1T;—1

My = Y TiY > by(h,mE{[R ()] [Ri(m) — Ri(m)]}

=1 h=1 m=1

i T
< E su Ua?" b . h m)| = ABQ
- 21: o ;;' 5 (h,m)| = O(Var). (A59)

For the second term in (A58), noting that |Fajx — | < TS0 \hRi(h){bjk(%rh) |, we have

n J; 2 T;—1 e}
My < ZZZQWTfl Z {Z h2|¢jk(27fh)|2]
=1 j=1 k=1 _h:l—Ti h=—o
= 0[@2¥/1)3"2%| = o(Vur) (A60)

given 227 /T — 0 and Assumption A.3. The latter ensures

Ji 20 [o']

3 z_: 2| (2mh)|? < Zz?v [%/23 > (27rh/2ﬂ‘)2|¢(27rh/2j)|2] = (2%,

7=0 k=1 h=1-T; h=—00

where (27/27) 3252 ___(21h/27)2|b(2mh/29)|? < C %, 22/(1+|2])*dz < oo given T > 2.
It follows by Markov’s inequality and (A59)—(A60) that

(nAT) ™ My = Op[(naT) ™ WVpr). (A61)
Combining (A57)—(A61) and V,,7/(naT) — 0, we then obtain (i).
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Next, we show (ii). This follows immediately because the cumulative squared bias

co 20 Ji 2
nAT 1227TT Zza"?k nAT ZQWTZZQZJK
7=0 k=1 J=0 k=1
o o
= (nuT) 1227TT Z Zauk<Csup Z Za”k—>0
j=J;i+1 k=1 YERA G g1 k=1

as minj<;<,(J;) — oo and Q;(f;, fo) = Z] 0 Zk 1 ozwk < C. This completes the proof for W,. m

D Proof of Theorem 4

Given T; = ¢;T and 27iT! = ¢;TY, we have 27/iT! = b, T", where b; = a;c/. Then as T — oo,

:n‘li(r?(?”“ - <_1208b> 1+ 0(1)] = BT*1 + (1))

where b=n"13", 65b;. It follows from Theorem 2 and V/V%, —P 1 that

(naT)7 QT P Wi = nyt Y @Q(fi, fio) + op(1), (A62)
i€Ny
nAT)_l(Z_)TV)l/QWQ = nZl Z ;_)b CzQz+OP(1) (A63)

For ¢ = 1,2, we put Sq(f) = —2In[1 — ®(WW,)], the minus twice the logarithm of the asymptotic
p-value of the test statistic W. Because In[l — ®(z)] = —322[1 + o(1)] as z — +oo, where ®(-) is
the N(0,1) CDF (cf. Bahadur 1960, Section 5), it follows from (A62) and A(63) that

- 2
(naT) 21785 = |03t Y Qi fo) | +op(1), (A64)
i€N»4
- 2
(naT)~T"S\7 = 12 czcz (fir fio)| +op(1). (AG5)
i€Ny

Suppose that {7 ) }"(1) nd {T(2 }”(2) are two sequences of sample sizes used for W and

W, respectively so that S((1)T(1)/ — 1 as nM n®@ 7MW and T3 — co. Then Bahadur’s

n(Q)T(Z)
asymptotic relative efficiency of Wi to Wa

n(2) (2) 1 n(2) ‘ (2) (2)
! i T, i—1 Ci)n T
o) = ST
Xis1 (ot it Cz‘)n(l)T(l)
14k
I T(2) 1+k limy, 00 + ZZ 1 L c;Q(fi, fio) 3=
im T(1) N limy,— 0o % Z’i:l CiQ(fz’, fio) )
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where the third equality follows from n(©) = w[T(C)]"‘ for ¢ = 1,2, and the last equality follows from
(A64) and (A65). It follows that BE(W; : Wa) > 1if Q(f;, fio)/vbi > Q(f, fjo)/+/b; > 1, which
occurs when a; is a monotonically increasing function of Q(f;, fio) and ¢; = ¢ (i.e., T; = T) for all

i. In this case, therefore, Wj is asymptotically more powerful than W,. |

E Proof of Theorem 5

For space, we only consider Wj(J) here. The proof for Wa(.J) is similar. We write

W(J)-W(J) =

vy {zm S ) N <J>]} W - A
j=J k

Given W1 (J) = Op(1) by Theorem 1 and V/(J)/Vyp —P 1 by Theorem A3, it sufﬁces for W(J) —

W(J) 2 0and W(J) % N(0,1) if (i) V{0 20T S0 — [NI(J)=M(7)]} 2 0 and

(i) V())/V () + 1

We first show (i ) Decompose

ZQWT ZZ Qijk = ZQWT ZZ &g, — Qin)” Z27TT 22%1«

j=J k=1 j=dJ k=1 j=J k=1

—l-QZQTFT ZZ Qiijk — Qijk) Qijk

j=J k=1
= G +Gy+ 2G3, say. (A66)

zgk

For the first term in (A66), we write
J n J 2 R R
Z 2rT; ZZ Oéljk Oéwk — Z 21T Z Z(dwk — @Z'jk)Q = Gq1 — Gao. (A67)
§=0 k=1 i=1 §=0 k=1

By Proposition A.1, we have Vn}l/ Qélg 2. 0. For the first term in (A67), we have for any given
constants M > 0 and € > 0,

P (éll > e) <p (én > e, M27/2127 127 — 1| < e) P (MQJ/2|2j/2J 1> e) . (A68)

For any given constants M,e > 0, the second term in (A68) vanishes to 0 as n,T — oo given
2J/2\2j/2‘] — 1] =P 0. For the first term, given ]WQJ/QIQj/QJ — 1] <'¢, we have for all n and all T;
sufficiently large,

[logy 27 (14€/M27/2)] 97

1/2G11 < Vo 1/2 ZQWE Z Z(&ijk — Qyji)”
i=1 =0 k=1
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J4+1 27

_1/2 ZQWT Z Z azyk O[”k = Op(l)

7=0 k=1

by Proposition A.1. Therefore, we have
V. 2G = op(1). (A69)

Next, we consider Gs in (A66). We write

n —17T;—

Co = SIS ST A Rm) [y ) — by ()]

=1 h=1 m=1

n n T;—1
= ) o} Z i(h,h) = by(h, )]+ [T R (h) — o] [bj(h, k) = by(h, h)]
i=1  h=1 i=1 h=1
n —1 h-1
+2 ZT Z Z Ri(h bj(h,m) —by(h,m)] by symmetry of by(-,-)
i=1  h=1m=1
= (a1 + G + 2Ga3, say. (A70)

For the last term Ga3 in (A70) we have for any constants M > 0 and € > 0
P (vn;l/2|é23| > e) < PV Gos| > €, M27/2127 )27 — 1] < ¢)
+P <MQJ/2]2J/2J —1 > e) . (AT1)

Again, the second term here vanishes to 0 as n,T — oco. Put T' = max;<;<,(T}), as before. For the
first term, given M27/ 2|2J /27 — 1| <, we have for all n and T sufficiently large,

=1-T

[logg 27 (14-¢/M27/2)]

> |a;(h, m)]|

j=llogy 27 (1—¢/M27/2)]

zn: 1(h < T;)1(m < T)T;Ri(h)Ri(m)

=1

E|Gos3

IN

h
1/2
< 20n1/22‘]+16/]w2‘]/2 = o(VA?)

as M — oo, where a;j(h,m) is defined as that used in (3.18) and we used the fact that for all n and
T sufficiently large,

T—1 T—1 [logy 2’ (1+e/M27/?)]

>, >, |a;(h, m)|
=1

h=1-T m=1-T j=[logy 27 (1—¢/M?27/2)]

T-1  T—1 [logy2”i(14+¢/M27/2)]

-y ¥ 3 ‘cj(h,m)iL(Qﬂh/Qj){ﬁ*(%Tm/?))

h=1-T m=1-T j=[logy 27i (1—¢/M27/2)]

—_

IN

[logg 27 (14¢/M27/2)] T-1 o
C >y 27 {23’ > 1&(27rh/2j)} {Z \&(2wh/2ﬂ'+2w)\]

j=[log, 27 (1—e/M?27/2)] h=1-T r=—oo

IN

C27¢/ M2’/ (A72)
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given (A1) and Assumption 3, where c;(h,m) is as that used in (Al). Therefore, the first term in

(A71) also vanishes to 0. Consequently, we have
V. /2Gos = op(1). (A73)
Similarly, we can also obtain
V 1/2 G22 = Op(l) (A74)

and

Vi { G — [NI(J) = 21()]} = Vn}”zf]o? — RZ(0)] [b;(h,h) = bs(h,h)] = op(1).  (AT5)

=1
where =1 3°"_ | [R?(0) — 0] = Op[(nT)~"/?] given Assumptions 1, 4 and 5, and that {v;} is i.i.d.
for each 4. It follows from (A70) and (A73)—(A75) that
Vi { G = IS = N1(7)]} 2 0. (AT6)

Next, by the Cauchy-Schwarz inequality and (A69), we have

/2, _ A N\ 1/2
Vi #lGal < (ViP6n) T (V1)
= OplVyp "'+ (T2 4 n™ 2V i op(n!/) = o0p(1) (AT7)
by Proposition A.1 and the fact that n_l/QVn}l/zég = n_l/QVn}l/Q(égl + Gog + Ggg) 20 given

(A73), (A74) and n Y/ 2Vn_Tl/ 2Gar B0 (as can be shown using reasoning similar to that for Ga3).
Combining (A66), (A69), (A76) and (A77), we obtain result (i):

Vo Z%T ZZ a2y, — [M(J) — M(J)] 3 = op(1).
j=J k
(ii) To show V(J)/V(J) = 1 + op(1), it suffices to show V(J)/Vur 2 1 given V(J)/Vyr 2 1
by Theorem A.3. Recalling the definitions of V(j ) and V,,, we can use the reasoning analogous to
that for é23 to obtain

T,—1T;-1
[f/(j) - nT} [V =V R4 0) =1 3" [b(h,m) — by(h,m)] = op(1),
=1 h=1 m=1
where we used the facts that n=1 Y7 [R4(0) — %] = Op[(nT) /2] (as can be shown given As-

sumptions 1, 4 and 5 and that {v;;} is i.i.d.), and (A72). Thus, V(J)/V(J) —1 £ 0. It follows that
[V(J)/V(J) = 1]Wi(J) £ 0 given Wi(J) = Op(1) by Theorem 1. Therefore, (ii) holds, and we
have Wi (J) — Wi(J) 2 0, and Wi (J) <, N(0,1). This completes the proof. W
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F Proof of Theorem 6

To conserve space, we shall prove for (b) only; the proof for (a) is similar and simpler. (i) We first
show 11 S, Q(fir £i) = n TSy Q(fey fi) + 0p(27 /T +2-207). Write

n

WY (@£ - Q8] = e e Y [ ) - ) ~ A
= Q1 +20Q,, say. (AT8)

For the first term in (A78), by Parseval’s identity, Proposition A.1 (which, as noted earlier, continues
to hold given Assumptions A.1-A.6), and V,pr x n27/F! we have

n J

2J
Qu=n"Y " (Qijr — aigr)? = Op[(nT) " +27/nT + 27 /T? = 0p(27/T) (A79)

i=1 j=0 k=1
as n,T — oo . For the second term, we have Qo = op(27/T + 27247) by the Cauchy-Schwarz
inequality, (A79) and the fact that n= 1Y%  Q(f;, ;) = Op(27/T + 27247), which follows by
Markov’s inequality and n 1" | EQ(fi, fi) = O(27/T +2247). The latter is to be shown below.
To compute n=t 3" | EQ(f;, f;), we write

’1ZEQ firfi) = ’1ZEQ foEf) + *1262 Ef;, fi)- (A80)

We first consider the second term in (A80). Put Bi(w) =222 ;4 Z 1 @k Vi (w). Then

‘IZQ Efi f;) = —12/ B (w)dw + n~ IZZZ Bk — aige)?, (A81)

=1 j=0 k=1
Using (3.10), (3.11) and (3.14), and recalling the definition of c¢;(h,m) as used in (A1), we have

Bilw) = Y Z[Z Ri(h ¢]k27rh] [ > dp2mm)e ]
j=J+1k=1 Lh=— m=—00

- Z Z Z R;i(h Cj (h,m)y (27Th/2j)¢*(27rm/2j)€fimw

j=J+1 h=—00 m=—00

= Z Z Z Ri(h)d(2wh)27)h(2mh) 2 + 27r)e 12w 1y (A1)

j=J4+1h=—c0r=—00

— Z Z & 27Th —ihw
j=J4+1h=—0c0
— (2n)i1 - 279) i pin 3 GO ARTN) | i

, 1—2-9|2rh/2i]4
J—J+1 h=—00

= 279UHD) (o)~ Z |h|9R;(R)e M [1 + o(1)]

h=—0o0

= 279U+ £19 ()[1 + o(1))],
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where f(@(.) is defined in (6.1) and o(1) is uniform in i and w € [—,7]. It follows that
nt Z B2 dw = 272007 \2 7 Z / () * do + o(272). (A82)

For the second term in (A79), we have

n J 2 n J 27 T;—1
nIY NN (Bag —ougr)? = nty Y 70 ) |hRi(h)dy(2nh) + > Ri(h)ji(2mh)
i=1 j=0 k=1 i=1 j=0 k=1 h=1-T; |R|>T;
n T;—1T;—1
< 4ACn Y TN |hRi(hymBRi(m)by(h,m)
=1 h=1 m=1
= O[(J+1)/T?) (A83)

given Lemma A.1(vii) and > 72 |hR;(h)| < C as implied by Assumption 8.

Finally, we consider the first term in (A80), the variance factor. We write

n n T;—1 T;—1
n_IZEQ(fhEﬁ) = n_lz Z Z sz(ham)Cov[R(h)aél(m)}

i=1 i=1 h=1— sz=1 T.b

SR 9 VI STCRZE o [

i=1 h=1-T; m=1-T}
X [Ri(DRi(l +m — h) + Ri(l + m)R;(l — h) + k;(l, h,m — h)]

= Vi +Vig + Vis, say,

where the function
l, ifl >0
nl) =< 0, fh-m<Ii<0
—l+h—m, if —(T;—h)+1<I<h—m.

Cf. Priestley (1981, p.326). Given Assumption 6 and Lemma A.1(vii), we have |Va;| < C(J + 1)
and |V3;| < C(J 4 1). For the first term V3;, we can write

Vi = Zszhh 121—11/7’122 +ZZbJ (h,h+1)T, 12& i(l+)

h=1—T; holr|=1
= Tt - Z R2(h) 4+ O[(J +1)/T}],
h=—o0
where we have used Lemma A.1(v) for the first term, which corresponds to h = m; the second term
corresponds to h # m and it is O[(J + 1)/T] uniformly in ¢ given > ;> |R;(h)| < C and Lemma
A.1(v). It follows that as J — oo

”ZEQ fiEf) = ”Z | s o). (As4)
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Collecting (A82)—(A84) and J — oo, we obtain

2J+1

nlﬁ;E@@,ﬁ) - *12 f2 Jdw + 277 \on 12 /

+o(27 /T + 2 2qJ). u

G Proof of Corollary 7

The result follows immediately from Theorem 5 because Assumption 9 implies 27 /27 —1 =

op(T Y224ty = op(2-7/2), where the nonstochastic finest scale J is given by 271 = max{[20:A2(,(q)

The latter satisfies the conditions of Theorem 5. l
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Table 1: Empirical Size of Tests at the 10% and 5% Levels : (n, T) = (25, 32)

J T Wi, W, BL BSY r Wi W, BL BSY
0 0 64 55 244 110 005 6.0 57 232 82
1 57 AT 51 46

10% 2 50 42 6.3 4.5
Jo 54 55 6.3 4.7
0 43 35 160 5.1 31 30 146 35
1 31 25 28 1.9

5% 2 27 26 34 24
Jo 3.0 26 40 2.3
0 02 41 52 266 6.0 04 57 60 232 65
1 41 4.1 55 4.9

10% 2 34 3.7 59 5.1
Jo 54 55 6.3 4.7
0 21 31 163 2.7 33 29 146 25
1 19 1.6 35 23

5% 2 20 1.7 35 29
Jo 30 2.6 40 23
0 06 62 52 266 9.7 08 55 60 256 20.6
1 45 35 49 3.9

10% 2 43 34 39 38
Jo 48 4.9 64 5.6
0 32 26 163 20 33 28 162 150
1 1.7 1.6 22 24

5% 2 21 1.7 1.8 2.2
Jo 24 2.6 3.6 26

Note:

(a) W1 and W are given in (3.18) and (3.19) using the Franklin wavelet;

(b) J denotes the finest scale; Jo denotes the data-driven finest scale given in (6.6);
(c) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(d) The number of iterations is 1000.



Table 2: Empirical Size of Tests at the 10% and 5% Levels : (n, T) = (50, 64)

J 7 W, W, BL BSY r Wi W, BL BSY
0 0 81 7.9 24 108 005 66 68 225 8.9
1 61 5.7 58 6.0

10% 2 52 5.3 49 5.7
Jo 88 7.9 79 8.2
0 42 38 154 52 29 34 145 3.5
1 33 3.3 27 3.0

5% 2 26 25 28 2.7
Jo 46 4.3 4.0 3.7
0 02 76 7.2 231 6.1 04 68 6.7 244 5.6
1 76 6.2 60 65

10% 2 60 5.4 60 6.2
Jo 88 7.9 79 82
0 42 37 157 28 37 39 154 1.8
1 36 32 33 35

5% 2 29 26 34 29
Jo 46 4.3 40 3.7
0 06 85 86 250 93 08 7.7 79 223 17.1
1 83 8.0 75 6.0

10% 2 65 5.2 6.1 5.5
Jo 91 85 88 88
0 50 55 167 1.7 39 38 133 0.5
1 52 46 36 26

5% 2 35 24 25 2.5
Jo 47 40 53 5.3

Notes:

(a) W1 and W are given in (3.18) and (3.19) using the Franklin wavelet;

(b) J denotes the finest scale; Jo denotes the data-driven finest scale given in (6.6);
(c) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(d) The number of iterations is 1000.



Table 3: Empirical Size of Tests at the 10% and 5% Levels : (n, T) = (100, 128)

~

J r W, W, BL BSY r W, W, BL BSY
0 0 85 87 231 97 005 71 68 235 6.8
1 69 75 69 6.0

10% 2 56 4.9 51 5.3
Jo 8.6 9.4 82 75
0 50 5.1 153 4.9 37 36 1538 3.1
1 42 4.0 31 29

5% 2 23 22 32 3.2
Jo 51 5.1 41 40
0 02 85 85 219 60 04 7.6 80 255 45
1 72 74 70 7.1

10% 2 53 5.3 6.7 68
Jo 86 9.4 82 75
0 40 36 143 28 39 37 16.8 11
1 33 4.0 36 3.7

5% 2 28 23 39 33
Jo 51 5.1 41 4.0
0 06 83 81 240 82 08 88 7.7 239 14.9
1 80 7.0 60 5.1

10% 2 68 6.2 53 5.4
Jo 89 8.7 91 96
0 45 41 152 19 39 37 149 0.9
1 34 41 24 24

5% 2 32 36 26 2.5
Jo 42 3.8 48 4.9

Notes:

(a) Wi and Wy are given in (3.18) and (3.19) using the Franklin wavelet;

(b) J denotes the finest scale; Jo denotes the data-driven finest scale given in (6.6);
(c¢) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(d) The number of iterations is 1000.



Table 4: Size-Corrected Power of Tests at the 5% Level Under AR(1): (n, T) = (25, 32)

J Wi W, BL BSY W; W, BL BSY W; W, BL BSY
T 0.2 0.4 0.6
0 692 569 955 100.0 65.0 535 956 100.0 63.0 556 96.0 100.0
1 458 34.9 405 325 449 370
AR(1)® 2 439 327 342 28.0 39.1 348
Jo 452 345 417 37.3 67.3 57.7
T 0.2 0.4 0.6
0 986 980 100.0 988 984 97.7 100.0 575 982 978 100 5.1
1 919 89.1 89.2 88.1 91.4 89.8
AR(1)® 2 832 768 751 727 79.4 785
Jo 841 833 828 84.0 67.3 57.7
T 0.2 0.4 0.6
0 340 252 180 81.3 298 233 197 816 288 248 212 786
1 231 173 19.0 15.6 21.8 189
AR(1)¢ 2 234 149 15.8  13.0 19.0 164
Jo 215 15.9 189 16.9 231 16.5
T 0.2 0.4 0.6
0 797 709 85.7 472 756 69.2 87.0 6.9 748 705 876 04
1 60.6 535 552 50.6 59.1  54.9
AR(D)Y 2 501 39.2 420 35.2 458 41.6
Jo 565 48.0 534  49.7 67.3 577
T 0.2 0.4 0.6
0 913 892 112 52 892 890 11.8 44 891 888 123 3.0
1 767 704 724 678 757 718
AR(1)®* 2 676 57.7 578 535 628 60.3
Jo 710 650 678 66.6 67.3 577
Notes:

a) Alternatives AR(1)?® - AR(1)¢ are given in (7.4);

b) W, and W are given in (3.18) and (3.19) using the Franklin wavelet;

d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(

( A

(c) J denotes the finest scale; Jo denotes the data-driven finest scale given in (6.6);
(

(

e) The number of iterations is 1000.



Table 5: Size-Corrected Power of Tests at the 5% Level Under AR(1): (n, T) = (50,64)

J W, W, BL BSY W; W, BL BSY W; W, BL BSY
T 0.2 0.4 0.6
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 100.0 100.0  100.0 100.0  100.0
AR(1)® 2 994 994 998  98.7 99.2  99.4
Jo 100.0 100.0 100.0  100.0 99.8  100.0
T 0.2 0.4 0.6
0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1 100.0 100.0 100.0  100.0 100.0  100.0
AR(1)® 2 100.0 100.0 100.0  100.0 100.0  100.0
Jo 100.0 100.0 100.0  100.0 100.0  100.0
T 0.2 0.4 0.6
0 963 959 985 1000 971 961 985 100.0 961 949 981 100
1 902 880 90.9  86.0 88.7 88.1
AR(1) 2 765 721 778 68.9 75.0  64.9
Jo 909 897 904  89.7 75.0 724
T 0.2 0.4 0.6
0 1000 99.8 1000 989 1000 99.8 100.0 65.7 1000 99.8 1000 0.9
1 985 982 98.7  98.0 98.3  98.2
AR(D? 2 927 918 932  89.7 91.8  87.5
Jo 982 981 98.0 98.1 984 985
T 0.2 0.4 0.6
0 1000 1000 7.3 6.8 1000 100.0 80 81 1000 100.0 64 6.6
1 100.0 100.0 100.0  100.0 100.0  100.0
AR(1)¢ 2 997 998 100.0 998 98.7  99.4
Jo 100.0 100.0 100.0  100.0 100.0  100.0
Notes:

a) Alternatives AR(1)® - AR(1)€ are given in (7.4);
b) Wi and Wy are given in (3.18) and (3.19) using the Franklin wavelet;

d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(
(
(¢) J denotes the finest scale; Jy denotes the data-driven finest scale given in (6.6);
(
(

e) The number of iterations is 1000.



Table 6: Size-Corrected Power of Tests at the 5% Level Under AR(12): (n, T) = (25, 32)

J W; W, BL BSY W; W, BL BSY W; W, BL BSY

T 0.2 0.4 0.6
0 716 736 237 743 620 69.0 250 73.7 665 757 258 70.1
1 775 80.1 72.8 T7.6 76.4  81.1
AR(12)% 2 828 849 75.9 83.1 79.3  86.2
Jo 688 76.1 65.7 83.1 70.0 77.4
T 0.2 0.4 0.6
0 398 420 207 59 366 404 216 28 351 397 228 2.6
1 547 619 49.9 59.4 53.9 635
AR(12)® 2 680 737 56.9  69.9 61.8 75.6
Jo 667 TT.7 63.4 79.2 68.4 788
T 0.2 0.4 0.6
0 526 558 42 383 480 53.6 45 384 467 528 51  36.6
1 619 69.7 57.3  66.8 61.0 71.6
AR(12)¢ 2 730 782 63.3 744 67.6  79.0
Jo 654 741 62.9 75.6 67.7 75.4
T 0.2 0.4 0.6
0 384 409 133 7.3 335 394 147 57 326 394 158 46
1 499 57.7 44.5  54.7 487  59.4
AR(12)¢ 2 655 712 542 66.5 59.9 727
Jo 637 746 61.3 76.6 65.3 75.8
T 0.2 0.4 0.6
0 400 410 223 59 368 393 240 22 351 390 252 1.7
1 553 629 48.6  58.7 54.3  64.9
AR(12)° 2 703 753 582 718 63.7 76.6
Jo 676 777 65.1 78.6 68.7 783
Notes

a) Alternatives AR12(1)? - AR12(1)® are given in (7.5);
b) Wi and W are given in (3.18) and (3.19) using the Franklin wavelet;

(
(
(¢) J denotes the finest scale; Jo denotes the data-driven finest scale given in (6.6);
(d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(

e) The number of iterations is 1000.



Table 7: Size-Corrected Power of Tests at the 5% Level Under AR(12): (n, T) = (50,64)

J W, W, BL BSY W; W, BL BSY W; W, BL BSY
T 0.2 0.4 0.6
0 99.7 998 994 1000 99.8 998 994 999 99.7 998 99.3 100.0
1 100.0 100.0 100.0  100.0 100.0  100.0
AR(12)* 2 1000 100.0 100.0  100.0 100.0  100.0
Jo 100.0 100.0 100.0  100.0 100.0  100.0
T 0.2 0.4 0.6
0 968 967 80 446 97.8 968 9.0 497 96,6 960 7.1 444
1 995  99.6 99.6  99.6 99.3  99.0
AR(12)> 2 1000 100.0 100.0  100.0 100.0  100.0
Jo 998 99.7 998 997 99.6  99.7
T 0.2 0.4 0.6
0 933 921 530 928 946 922 538 943 931 90.6 50.3 926
1 982 081 982  98.0 97.6  87.4
AR(12)¢ 2 990  99.1 99.1  99.0 99.0  99.1
Jo 985 981 98.6  98.1 98.3  98.1
T 0 0.2 0.4
0 281 307 259 43 336 310 269 17 270 262 236 09
1 412 464 431 459 36.9  39.2
AR(12)Y 2 562 598 578  56.6 534 59.9
Jo 475 511 478 520 46.0 502
T 0 0.2 0.4
0 355 393 584 172 41.0 400 61.2 08 345 346 549 0.0
1 534 573 554 57.2 498 516
AR(12)® 2 688 728 69.7  69.6 67.0 730
Jo  59.0 624 59.3  62.2 57.9  62.2
Note:

a) Alternatives AR12(1)® - AR12(1)€ are given in (7.5);
b) W1 and W, are given in (3.18) and (3.19) using the Franklin wavelet;

(
(
(¢) J denotes the finest scale; Jy denotes the data-driven finest scale given in (6.6);
(d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(

e) The number of iterations is 1000.



Table 8: Size Corrected Power of Tests at the 5% Level Under ARMA(4, 4): (n, T) = (25, 32)
J Wi W, BL BSY W; W, BL BSY W; W, BL BSY

T 0.2 0.4 0.6

0 323 273 9.0 5.8 286 258 10.0 8.7 280 26.7 108 4.0

1 615 61.7 55.1  58.9 59.4 63.5
ARMA(4,4)* 2 783 744 69.9 70.9 74.2  76.0

jo 73.9 743 72.5 753 75.2 750

T 0.2 0.4 0.6

0 116 78 31 227 94 73 32 284 84 75 39 186

1 20 11 1.2 0.9 1.7 1.2
ARMA(4,4)b 2 777 742 68.7 68.2 72.9 76.7

jo 63.0 62.3 60.1 63.8 64.0 64.8

T 0.2 0.4 0.6

0 252 191 7.7 93 216 179 86 124 212 189 94 7.2

1 411 35.1 35.7 317 39.7 335
ARMA(4,4)¢ 2 570 44.1 46.0 39.5 50.8 46.6

jo 50.8 42.8 48.0 44.0 52.3 43.6

T 0.2 0.4 0.6

0 108 82 41 177 93 77 46 236 88 80 50 133

1 36 39 23 34 34 43
ARMA(4,4)d 2 57.6 457 47.0 39.0 51.8 474

jo 439 354 40.7 33.8 45.0 36.9

T 0.2 0.4 0.6

0 203 165 40 120 173 143 50 172 16.6 16.1 5.2 9.2

1 210 204 16.9 18.4 20.2 220
ARMA(4,4)¢ 2 794 755 69.5 71.2 743 773

jo 66.8 68.1 64.3 69.7 67.3 67.8
Notes

a) Alternatives ARMA(4,4)% - ARMA(4,4)¢ are given in (7.6);
b) Wi and W are given in (3.18) and (3.19) using the Franklin wavelet;

(
(
(c¢) J denotes the finest scale; Jg denotes the data-driven finest scale given in (6.6);
(d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(

e) The number of iterations is 1000.



Table 9: Size-Corrected Power of Tests at the 5% Level Under ARMA(4, 4): (n, T) = (50,64)

J W, W, BL BSY W; W, BL BSY W, W, BL BSY

T 0.2 0.4 0.6

0 408 453 121 50 456 459 129 98 398 404 100 4.5

1 897 920 905  92.0 87.6 898
ARMA(4,4)* 2 100.0 100.0 100.0  100.0 100.0  100.0

o 99.0  99.2 99.0  99.2 99.0  99.1

T 0.2 0.4 0.6

0 88 96 24 237 107 99 27 359 84 73 15 225

1 03 03 03 03 02 02
ARMA(4.4)° 2 100.0 100.0 100.0  100.0 100.0  100.0

o 983 631 98.3 983 982 983

T 0.2 0.4 0.6

0 270 242 97 67 320 246 104 140 259 212 82 6.5

1 651 59.6 66.6  59.3 620 522
ARMA(4,4)° 2 100.0 100.0 100.0  99.8 100.0  100.0

o 90.0 88.8 91.0  89.0 908  88.8

T 0.2 0.4 0.6

0 76 87 40 164 111 92 43 295 71 59 28 156

1 1.2 20 14 20 09 13
ARMA(4,4)¢ 2 1000  99.7 100.0 995 100.0  99.7

o 917 914 91.7 914 91.7 914

T 0.2 0.4 0.6

0 224 247 55 120 259 252 57 217 218 218 46 10.7

1 293 335 31.0 331 252 286
ARMA(4,4)¢ 2 100.0 100.0 100.0  100.0 100.0  100.0

Jo 981 981 98.1  98.1 98.0  98.1
Notes:

a) Alternatives ARMA (4,4)® - ARMA(4,4)¢ are given in (7.6);
b) Wi and Wy are given in (3.18) and (3.19) using the Franklin wavelet;

(
(
(¢) J denotes the finest scale; Jy denotes the data-driven finest scale given in (6.6);
(d) BL denotes the Baltagi and Li test; BSY denotes the Bera et al. test;

(

e) The number of iterations is 1000.
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