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Abstract

This paper develops a novel asymptotic theory for panel models with
common shocks. We assume that contemporaneous correlation can be
generated by both the presence of common regressors among units and
weak spatial dependence among the error terms. Several characteristics of
the panel are considered: cross sectional and time series dimensions can ei-
ther be fixed or large; factors can either be observable or unobservable; the
factor model can describe either cointegration relationship or a spurious
regression, and we also consider the stationary case. We derive the rate
of convergence and the distribution limits for the ordinary least squares
(OLS) estimates of the model parameters under all the aforementioned
cases.
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1 INTRODUCTION
THERE IS A GROWING BODY of literature dealing with limit theory for
nonstationary panels. While the first generation of these contributions as-
sumed independence across units (see for instance Phillips and Moon (1999),
Kao (1999)), in the second generation this assumption is relaxed, and hypoth-
esis testing and estimation methods are evaluated assuming alternative degrees
of cross dependence (see, Bai (2003, 2004), Bai and Ng (2002, 2004), Stock
and Watson (2002)). We can distinguish the case where regressors are cross-
sectionally dependent (see Donald and Lang (2004), Moulton (1990)) from that
where it is the error terms across unit to be dependent (see for instance Bai
and Kao, 2005; Moon and Perron, 2004) or both (see for instance Ahn, Lee and
Schmidt (2001), Pesaran (2005a)).
In this paper we develop a new inferential framework which extends existing

limit theory for panel data models. Phillips and Moon (1999) analyze what
happens in nonstationary panels when both n and T are large. They consider
both cointegrated relationship and spurious regression, getting the seminal re-
sult that as n→∞ a long-run average relationship between two nonstationary
panel vectors exists even when the single units do not cointegrate. A simi-
lar result is also reported in Kao (1999). However, the asymptotics derived in
Phillips and Moon (1999) is based on the assumption of cross section indepen-
dence, albeit the authors point out that their results still hold when some weak
dependence among panel units is allowed. Thus, the case of Phillips and Moon
(1999) with any degree of dependence amongst units has remained largely un-
explored, and it is likely to lead to different asymptotics. Asymptotic normality
may not hold, for example when all or part of the regressors are aggregates, and
may result in mixed asymptotic normality, as Andrews (2005) has demonstrated
in a cross-sectional context. See also the discussion in Moon and Perron (2004).
Recently, Bai (2003, 2004) and Bai and Ng (2004) have developed an inferen-

tial theory for panels where cross sectional dependence is explicitly considered
via factor-loadings representation. In these contributions, however, common
factors are considered as part of the panel covariance structure rather than as
explanatory variables in the regression model. The theory developed in the
aforementioned papers works only when n and T tend to infinity along certain
paths. From standard factor analysis (see e.g., Anderson (1981)) it is well known
that consistent estimation of factors is not possible for a fixed n and consistent
estimation of the loading is not possible for a fixed T .
The main aim of this paper is to propose a novel asymptotic theory for panels

with common shocks. We generalize the limit theory developed by Phillips and
Moon (1999) by employing and extending the theory for factor models in Bai
(2003, 2004) and Bai and Ng (2004). Our asymptotics considers several features
of the underlying model.
First, we assume that contemporaneous correlation can be generated by

both the presence of common regressors (e.g. macro shocks, aggregate fiscal
and monetary policies) among units and weak spatial dependence among the
error terms.
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Second, the common shocks can either be known or unobservable. Com-
mon shocks are likely to be only seldom observable, classical examples being
the capital asset pricing model (CAPM) or index models. Most often, they
are unknown. Classical examples are the cases of index extraction and indica-
tors aggregation in economics (Quah and Sargent (1993), Forni and Reichlin
(1998), Bernanke and Boivin (2000)), while in finance the seminal multifactor
framework of the arbitrage pricing theory (APT) has generated huge number of
contributions in the attempt to identifying the unobserved factors underlying
the behavior of asset returns. Factor models are useful for forecasting purposes,
as well documented in Stock and Watson (1999, 2005). Bai (2003, 2004), Bai
and Ng (2002, 2005) and Boivin and Ng (2005) discuss numerous areas of re-
search where factor models could be employed and some applications in macro
and finance.
Third, in our framework the factor model may describe either a cointegration

relationship or a spurious regression. We also consider the stationary case,
arising e.g. when estimating models using first differenced data.
Fourth, the time series dimension T and the cross-sectional dimension n can

be either fixed or large. We develop our limit theory by considering cases where
the time series dimension T and the number of units n are large and we also
include the case of when either n or T is fixed1.
A short overview of the results we find under the conditions mentioned above

is reported in Table 1 here.

1 It is important to notice that the notion of fixed or ”small” n or T is not well specified.
Pesaran (2005b) cites n < 10 as the case when the number of cross sectional units is small.
More generally, one could think as fixed n or T a number of cross sectional units or time series
observations such that the cross sectional or the time series average is still faraway from the
asymptotic limit, but such definition depends on the degree of cross sectional dependence or
serial correlation in the panel and is therefore of scarce operational use.
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Table 1: Consistency and limiting distribution of β̂OLS : yit = αi + β0Ft + uit,

Ft known Ft unknown

(n, T ) Consistent
Limiting

Distribution
(n, T ) Consistent

Limiting
Distribution

Cointegration: uit ∼ I(0)
Fixed n
T →∞ Yes Mixed Normal (Eq.10) Yes Non Standard (Eq. 47)

Fixed T
n→∞ Yes Mixed Normal (Eq.14) Yes Mixed Normal (Eq.14)

(n, T )→∞ Yes Mixed Normal (Eq.18) √
n/T → 0 Yes Mixed Normal (Eq. 32)√
T/n→ 0 Yes Non Standard (Eq. 34)

Spurious Regression: uit ∼ I(1)
Fixed n
T →∞ No Non Standard (Eq. 12) No Non Standard (Eq. 49)

Fixed T
n→∞ Yes Non Standard (Eq. 16) Yes Non Standard (Eq. 16)

(n, T )→∞ Yes Non Standard (Eq. 20) √
n/T → 0
T/
√
n→ 0√

n/T → 0
Yes Non Standard (Eq. 36)

T 2/
√
n→ 0 Yes Non Standard (Eq. 34)

First Differences: ∆yit = β0∆Ft +∆uit.

F ixed n
T →∞ Yes Normal (Eq. 22) No Degenerate (Eq. 51)

Fixed T
n→∞ Yes Mixed Normal (Eq. 24) Yes Mixed Normal (Eq. 24)

(n, T )→∞ Yes Normal (Eq. 26)
n/T → 0 Yes Degenerate (Eq. 38)
T/n→ 0 Yes Degenerate (Eq. 40)

The remainder of the paper is organized as follows. Section 2 introduces
the model, including a discussion about the relationship with existing models in
the literature, and the main assumptions. The main contribution is reported in
Section 3, where we analyze both the cases of known factors (section 3.1) and
unknown factors (section 3.2), distinguishing the cases of large n and T , finite T
and large n and finite n and large T . Section 4 concludes. Proofs are reported
in the Appendix.
Notation is fairly standard. Throughout we use kAk to denote the Euclidean

norm
p
tr (A0A), ⊗ for the Kronecker product, ”→” to indicate the ordinary

limit, ”⇒” to denote weak convergence, ”À” to denote much greater, ” p→”
to denote convergence in probability, ”=” to denote definitional equivalence.
Stochastic processes such as B (r) on [0, 1] are usually written as B, integrals
such as

R 1
0
B (r) dr as

R
B and stochastic integrals such as

R 1
0
B (r) dB (r) as

4



R
BdB.

2 MODEL SPECIFICATION AND ASSUMP-
TIONS

Consider the following panel regression model with common and idiosyncratic
shocks

yit = αi + β
0
Ft + γ

0
xit + uit (1)

i = 1, ..., n, t = 1, ..., T , where β and γ are (k × 1) and (p× 1) vectors of slope
parameters, respectively, Ft = (F1t, ..., Fkt)

0 is a k× 1 vector of common shocks

Ft = Ft−1 + εt.

xit is a (p× 1) vector of observable I(1) individual-specific regressors,

xit = xit−1 + ²it

and uit and ²it are the error terms.
The main interest of this paper is on the estimation of the common slope

coefficients, β, and thus we do not lose in generality if we restrict our analysis
to the model

yit = αi + β0Ft + uit, (2)

Equation (2) could be either a spurious regression or a cointegration rela-
tionship depending on whether uit is I(1) or I (0), respectively. In this paper,
we analyze both cases. When common shocks are not observable, we assume
that a set of exogenous variables, zit, is observable such that

zit = λ0iFt + eit (3)

where λi is a vector of factor loadings and eit is the idiosyncratic component.
It is important to point out the link between the model consider in (2) here and
those in the literature. Model (2) is in the class of nonstationary panel models
(see Baltagi and Kao (2000) and Breitung and Pesaran (2005) for a survey)
and may also be motivated by Bai (2003, 2004) and Stock and Watson (1999,
2002, 2005). Bai (2003, 2004) assumes β different across i (βi) where βi is the
loading and Ft is the common factor. In our set up, equation (2) represents a
panel regression with common shocks Ft (e.g., macroeconomic variables, latent
factors), as opposed to factor-loading specifications such as in Bai (2003, 2004).
In Stock and Watson’s (2002) setup, yit in (2) (with n = 1) is the time series
variable to be forecasted and zi = (zi1, zi2, ..., ziT )

0
is a n-dimensional multiple

time series of candidate predictors.
The limiting theory for the OLS estimator for β that we use here depends

both on cross-sectional (n) and the time series (T ) dimensions, where in the
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factor analysis setup (e.g., Bai (2003, 2004)), the estimates of βi only depends
on the time series dimension T . More importantly, the common shocks Ft in
(2), the same across units, induces cross-sectional dependence. This issue of
contemporaneous correlation in panels with common regressors has not fully
explored in the panel literature, the only exception being Bai (2005), who con-
siders a concentrated least-squares estimator, and Jin (2005), who considers a
maximum likelihood estimator for a discrete choice nonstationary panels.
Finally, it is worth mentioning that Bai and Kao (2005) study panel cointe-

gration with a factor structure in the error terms (not in the regressors). Pesaran
(2005a) proposes an estimator that allows for multiple factor error structure.
Andrews (2005) studies the ordinary least squares (OLS) estimator with cross-
sectional dependence though only in the context of cross section data.
For estimation and inference purposes, model (2) may be also rewritten in

first-differenced form:
∆yit = β0∆Ft +∆uit. (4)

The OLS estimator for β in equation (2) is given by:

β̂ =

"
nX
i=1

TX
t=1

¡
Ft − F̄

¢ ¡
Ft − F̄

¢0#−1 nX
i=1

TX
t=1

¡
Ft − F̄

¢
yit (5)

where F̄ = T−1
PT
t=1 Ft, or, when using equation (4), by:

β̂
FD

=

"
nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 " nX
i=1

TX
t=1

∆Ft∆yit

#
. (6)

The following set of assumptions are used throughout the paper:

Assumption 1: (a) either (i) (cointegration case) uit = Di (L) ηit, or (ii) (spu-
rious regression case) ∆uit = Fi (L) ηit with Fi (1) 6= 0 and such that

P
i uit ∼

I (1); for both cases, ηit ∼ iid
¡
0,σ2ηi

¢
, with E |ηit|

8 < M ,
P∞
j=0 j |Dij | < M ,P∞

j=0 j |Fij | < M and D2
i (1)σ

2
ηi > 0, F

2
i (1)σ

2
ηi > 0; (b) (time series and cross

sectional correlation) E (uitujs) = τ ij,ts = τ ij,|t−s| and E (∆uit∆ujs) = γij,ts =
γij,|t−s|, with

1

nT

nX
i=1

nX
j=1

TX
t=1

TX
s=1

|τ ij,ts| < M

and (nT )−1
P
i

P
j

P
t

P
s

¯̄
γij,ts

¯̄
< M .

Assumption 2: εt = C (L)wt where C (L) =
P∞
j=0 CjL

j ; (a) wt ∼ iid (0,Σu)
with E kwtk4+δ ≤M for some δ > 0; (b) V ar (∆Ft) = Σ∆F =

P∞
j=0CjΣuC

0
j is

a positive definite matrix; (c) the eigenvalues ofΣ∆F are distinct; (d)
P∞
j=0 j kCjk <

M and (e) C (1) has full rank.

6



Assumption 3: (a) E kF0k4 ≤ M and E |ui0|4 ≤ M , and (b) let Bε be the
Brownian motion associated with the partial sums of εt with covariance matrix
Ωεε; we assume that the eigenvalues of the random matrix

R
BεB

0
ε are distinct

with probability 1.

Assumption 4: The loadings λi are non random quantities such that (a)
kλik ≤M ; (b) either n−1

Pn
i=1 λiλ

0
i = ΣΛ if n is finite, or limn→∞ n

−1Pn
i=1 λiλ

0
i =

ΣΛ, if n → ∞; in both cases, the matrix ΣΛ is positive definite and such that
the eigenvalues of ΣΛΣ∆F are distinct.

Assumption 5: eit = Gi (L) νit where (a) νit ∼ iid
¡
0,σ2vi

¢
, E |vit|8 < M ,P∞

j=0 j |Gij | < M and G2i (1)σ
2
vi > 0; (b) E (νitνjt) = τ ij with

Pn
i=1 |τ ij | ≤

M for all j; (c) E
¯̄
n−1/2

Pn
i=1 [eiseit −E (eiseit)]

¯̄4 ≤ M for every (t, s); (d)
E
£
n−1

Pn
i=1 eiteis

¤
= γs−t,

¯̄
γs−t

¯̄
≤ M for all s and T−1

PT
s=1

PT
t=1

¯̄
γs−t

¯̄
≤

M ; (e) E |ei0|4 ≤M .

Assumption 6: {εt}, {uit} and {eit} are three independent groups.

Assumption 1(a) considers the possibility that equation (2) is either a coin-
tegration or a spurious regression. Processes uit and ∆uit are assumed to be
invertible MA processes as in Bai (2004) and Bai and Ng (2004), in a similar
fashion to processes εt and eit. Assumption 1(b) also considers the presence
of some, limited, cross sectional dependence among the uits or the ∆uits and
therefore it rules out the possibility that all the cross sectional dependence is
taken into account by the common factors Ft - see the related work by Conley
(1999).
Even if it refers to a different framework (panel data with common shocks as

opposed to factor models), we take a position similar to that in Bai (2003, 2004)
and Bai and Ng (2002, 2004). Using the factor models terminology, this means
having a model with an ”approximate factor structure”, e.g., see the discussion
in Chamberlain and Rotschild (1983) and Onatski (2005) - which differs from
a strict common factor model where the uits are assumed to be independent
across i.
The amount of cross sectional dependence we allow for in Assumption 1(b)

is anyway limited, since we have that both
P
i

P
j |τ ij,ts| and

P
i

P
j

¯̄
γij,ts

¯̄
are

O (n) for all pairs (s, t); such requirement is conceptually analogous to the con-
dition of absolute summability of autocovariances in the time series framework,
and it allows for both a Law of Large Numbers and a Central Limit Theorem to
hold for the (rescaled) sequences

Pn
i=1 uit and

Pn
i=1∆uit, since the variances

of both sequences are bounded as n→∞.
Assumption 2 requires that both the short run and the long run variance

of ∆Ft are positive definite (Assumptions 2(b) and 2(e), respectively), and
therefore the possibility of having cointegration among factors is ruled out.
Assumption 2 allows for some weak serial correlation in the dynamics of εt.
This process can be described as invertible MA process, implied by the absolute
summability conditions.
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Assumption 3(a) is a standard initial condition requirement. In Assump-
tion 3(b) the covariance matrix of Bε, Ωεε, is positive definite, as ensured by
Assumption 2(e). Assumption 4 serves to identify the factors, which, merely
for the purpose of a concise discussion, are assumed to be non random. This
requirement could be relaxed, as in Bai (2003, 2004) and Bai and Ng (2004),
assuming that the λis are randomly generated and independent of εt and eit,
and our results would keep holding. Assumption 4(b) ensures that the factor
structure is identifiable. Note that it would be possible to relax this assump-
tion by constraining the minimum eigenvalue of

Pn
i=1 λiλ

0
i to tend to infinity as

n → ∞, as pointed out by Onatski (2005). This structure would allow factors
to be less pervasive than in our framework, thereby allowing the idiosyncratic
component eit in equation (3) to have a greater impact in explaining the con-
temporaneous correlation among the zits. Nonetheless, this would be made at
the price of losing the possibility to model the zit as a serially correlated process,
whilst in our framework some limited time series and cross sectional dependence
in model (3) is allowed for - as one could realize from Assumption 5. As pointed
out in Bai (2003), the conditions in Assumption 5 are fairly general and al-
low for consistency and distribution results to hold for the principal component
estimator.
Assumption 6 also rules out the existence of any form of dependence between

factors Ft and uit. Therefore, it is a stronger requirement than the simple lack
of correlation, and we need it in order to prove the main results in our paper.
The following definitions are employed throughout the paper. B̄ε (r) is the

demeaned Brownian motion associated to the partial sums of Ft, i.e., B̄ε (r) =

Bε (r) −
R 1
0
Bε (r) dr. Let hi (h∆i ) and hij (h

∆
ij) be the long run variance for

uit (∆uit) and the long run covariance between processes uit and ujt (∆uit and
∆ujt) - we have hij =

PT
t=1

PT
s=1 τ ij,ts and h

∆
ij =

PT
t=1

PT
s=1 γij,ts. Also, let

h̄ = limn→∞ n
−1Pn

i=1

Pn
j=1 hij and h̄

∆ = limn→∞ n
−1Pn

i=1

Pn
j=1 h

∆
ij . Last,

the following variances arising from cross sectional aggregation of the uits and
the ∆uits are often used in our results: τ̄ ts = limn→∞ n

−1Pn
i=1

Pn
j=1 τ ij,ts,

and γ̄ts = limn→∞ n
−1Pn

i=1

Pn
j=1 γij,ts.

3 ASYMPTOTIC THEORY
The main objective of this paper is to derive the rate of convergence and limiting

distribution of β̂ and β̂
FD
, by considering several features of (2) and (4):

1. the factors Ft can either be known or (more likely) unobservable. The

asymptotics of β̂ and β̂
FD

are affected by the estimation errors if we
replace Ft by its estimate bFt;

2. the relationship described by equation (2) can be either a cointegration
relationship or a spurious regression. As pointed out by Kao (1999) and
Phillips and Moon (1999), convergence is obtained at rate

√
n in panel

spurious regression models and
√
nT for panel cointegrated models. In
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this paper, we are going to face a similar issue, which is compounded by
the presence of common shocks in the panel regression (2);

3. the time series dimension T and the cross-sectional dimension n can be ei-
ther fixed or large. Asymptotics are likely to change depending on whether
one considers either dimension T or n large, keeping the other one fixed,
or whether both n and T are allowed to tend to infinity.

We first start with the exploration of the case of known common shocks
(Section 3.1) and then move to the case of unknown common shocks (Section
3.2).

3.1 Known Ft
In the case when Ft is known we have:

β̂ − β =

"
nX
i=1

TX
t=1

WtW
0
t

#−1 " nX
i=1

TX
t=1

Wtuit

#
, (7)

where Wt = Ft − F̄ , and

β̂
FD − β =

"
nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 " nX
i=1

TX
t=1

∆Ft∆uit

#
. (8)

The convergence rate and the limiting distribution for β̂ are now stated in
the following theorem.

Theorem 1 Suppose Assumptions 1-6 hold, and let Z ∼ N (0, Ik) be indepen-
dent of the σ-field generated by the common shocks Ft.
For fixed n and T →∞

β̂ − β = Op
¡
T−1

¢
(9)

T
³
β̂ − β

´
⇒ 1

n

µZ
B̄εB̄

0
ε

¶−1/2⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

Z (10)

if equation (2) is a cointegration relationship, and

β̂ − β = Op (1) , (11)

³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

(12)

if (2) is a spurious regression.
For fixed T and n→∞, we have

β̂ − β = Op

³
n−1/2

´
, (13)

9



√
n
³
β̂ − β

´
⇒
Ã

TX
t=1

WtW
0
t

!−1Ã TX
t=1

TX
s=1

WtW
0
sτ̄ ts

!1/2
Z, (14)

if (2) is a cointegration regression, whilst if it is a spurious relationship we have

β̂ − β = Op

³
n−1/2

´
, (15)

√
n
³
β̂ − β

´
⇒
Ã

TX
t=1

WtW
0
t

!−1Ã TX
t=1

Wtūt

!
, (16)

where ūt = limn→∞ n−1/2
Pn

i=1 uit.
When (n, T )→∞, one has

β̂ − β = Op

³
n−1/2T−1

´
, (17)

√
nT
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1/2p
h̄Z, (18)

if equation (2) is a cointegration relationship and

β̂ − β = Op

³
n−1/2

´
, (19)

√
n
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶p
h̄∆, (20)

if it is a spurious regression.

Proof. See Appendix.
Equations (9)-(12) are the standard superconsistency and inconsistency re-

sults in the literature. With respect to the speed of convergence, when (n, T )→
∞ our results in equations (17) and (19) lead to the same orders as in Phillips
and Moon (1999) and Kao (1999) for both the cointegration and the spurious
regression case. Consistency is achieved under the spurious regression case as
well, where the rate of convergence is

√
n. This result, which follows the seminal

contributions of Kao (1999) and Phillips and Moon (1999), is reinforced for the
case when T is fixed and n → ∞. Equations (13) and (15) prove that irre-
spective of model (2) to be a cointegration regression or a spurious regression,
large n allows for consistency to hold. It is worth observing the complicated
distribution that arises when T is finite; this is essentially due, as outlined in
the proof, to the presence of serial correlation in the uits.
For the case of n and T large, the rate of convergence for β̂ is the same

as in Phillips and Moon (1999) under the case of contemporaneous indepen-
dence across units, but the limiting distributions in equations (18) and (20)
differ and are mixed normal rather than normal as in the Phillips and Moon
(1999) case. The mixed normality is due to both Ft being nonstationary and
common across units, as can be seen by considering equation (14) for T →∞.

10



The design matrix
¡
nT 2

¢−1Pn
i=1

PT
t=1 FtF

0
t = T

−2PT
t=1 FtF

0
t converge in dis-

tribution to a random matrix, namely
R
B̄εB̄

0
ε, rather than to a constant. Of

course,
¡
nT 2

¢−1Pn
i=1

PT
t=1 FtF

0
t would converge to a constant (in probability)

if Ft were not common shocks, i.e., if Ft were replaced by, say, Fit.

The convergence rates and the limiting distributions for β̂
FD

are reported
in the following theorem.

Theorem 2 Suppose Assumptions 1-6 hold and let Z ∼ N (0, Ik) be indepen-
dent of the σ-field generated by ∆Ft.
For fixed n and T →∞

β̂
FD − β = Op

³
T−1/2

´
, (21)

√
T
³
β̂
FD − β

´
⇒ n−1Σ

−1/2
∆F

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Z. (22)

For T fixed and n→∞, we have

β̂
FD − β = Op

³
n−1/2

´
, (23)

√
n
³
β̂
FD − β

´
⇒
Ã

TX
t=1

∆Ft∆F
0
t

!−1Ã TX
t=1

TX
s=1

∆Ft∆F
0
sγ̄ts

!
Z. (24)

When (n, T )→∞, one has

β̂
FD − β = Op

³
n−1/2T−1/2

´
, (25)

√
nT
³
β̂
FD − β

´
⇒ Σ−1/2∆F

p
h̄∆Z. (26)

Proof. See Appendix.
The results were derived for the case of no serial correlation. The presence

of time dependence in general involves a more complicated expression of the
limiting distributions, but rates of convergence would not be affected. Note
also that since the first differenced model is always stationary, irrespective of
whether equation (2) is a cointegration equation or a spurious regression, one

can always apply the CLT to obtain the limiting distribution of β̂
FD − β; this

is indirectly shown by the rate of convergence for the case when (n, T ) → ∞,
equal to

√
nT .

It is worth noticing the remarkable result in equation (26): one would expect

the limiting distribution of β̂
FD−β to be mixed normal given the strong depen-

dence across units due to the terms ∆Ft∆uit sharing the common element ∆Ft
across i, as we showed in (24) with large n and fixed T . However, the common

11



shocks are found not to play any role in the case of large n and large T . This
result is discussed thoroughly in the proofs of Theorems 1 and 2. and can also
be seen in equation (24) which gives the limiting distribution for T fixed and
n→∞. The design matrix T−1

PT
t=1∆Ft∆F

0
t is a random matrix for all finite

values of T . However, standard application of the LLN (its validity is ensured
by Assumption 2) shows that the design matrix converges to a constant matrix
as T →∞. Therefore, the mixed normality arising for finite T is wiped away by
the smoothing over time as well. Asymptotic normality is therefore determined
merely by design matrix T−1

PT
t=1∆Ft∆F

0
t being constant asymptotically.

3.2 Unknown Ft
We turn now to the case when common shocks are unknown and thus they need

to be estimated. The asymptotics of β̂ and β̂
FD

are affected by the errors in
estimating factors Ft.
Let F̂t be an estimate of the factor. Denote Ŵt = F̂t − T−1

PT
t=1 F̂t. Esti-

mations of β using the model in levels (β̂) or first differences (β̂
FD
) respectively

are now given by:

β̂ =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1 " nX
i=1

TX
t=1

Ŵtyit

#
, (27)

and

β̂
FD

=

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1 " nX
i=1

TX
t=1

∆F̂t∆yit

#
, (28)

with estimation errors:

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
, (29)

β̂
FD − βFD =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

(30)

In what follows, for the purpose of a concise discussion, we assume the
number of factors k to be known2. We like to emphasize that this is does not
lead to any loss of generality since the distribution of the estimated factors does

2An issue of importance that arises within this framework and that needs tackling prior to
estimating the common components Ft is to determine their number, k. In light of some recent
contributions, e.g., see Bai and Ng (2002) and Onatski (2005), it is natural to refer to model
(3) in order to extract both the common factors Ft and their number k. It is worth pointing
out though that determining k crucially depends on whether both n and T are large or if
either dimension is fixed. Under all cases, the literature provides methodologies to estimate
k consistently, i.e. to obtain an estimate k̂ such that, as either (n, T ) →∞ or, alternatively,

12



not depend on whether k is known or estimated, and therefore the estimation
error that arises from using k̂ instead of k does not play any role as long as k̂
is consistent, e.g., see Bai (2003, p. 143, note 5) for an elegant proof of this
statement.

3.2.1 The case of n and T large

In this section, we estimate the common shocks Ft using the principal component
estimator. This means minimizing either

Vb (k) =
1

nT

nX
i=1

TX
t=1

¡
zit − λ0iFt

¢2
,

when considering Ft in levels, or

Va (k) =
1

nT

nX
i=1

TX
t=1

¡
∆zit − λ0i∆Ft

¢2
when estimating factors ∆Ft from the first differenced version of model (3).
Consider the T × n matrix Z = (z1, ..., zT )

0, and the T × k matrix of factors
F = (F1, F2, ..., FT )

0. Then each objective function Va (k) or Vb (k) can be
minimized by concentrating out λ and using the normalizations ∆F 0∆F/T = Ik
or F 0F/T 2 = Ik. The estimated factor matrices, denoted as ∆F̂ and F̂ , are√
T times eigenvectors corresponding to the k largest eigenvalues of the T × T

matrices ∆Z∆Z0 or ZZ0. It is well known that the solutions to the above
minimization problems are not unique, e.g., when estimating factors∆Ft and Ft,
these are not directly identifiable even though they are up to a transformation.
In our setup, the knowledge of H1∆Ft, H1Ft and H2λi is as good as knowing
∆Ft, Ft, and λi. For sake of notational simplicity, in what follows we shall
assume that H1 (k × k) and H2 (n× n) are identity matrices.
The convergence rate and the limiting distribution for β̂ are in the following

theorem.

Theorem 3 Suppose Assumptions 1-6 hold.
Let equation (2) be a cointegration relationship:
if
√
n/T → 0

β̂ − β = Op

³
n−1/2T−1

´
, (31)

max {n, T}→∞ and min {n, T} is fixed, it holds that P
h
k̂ = k

i
= 1 and P

h
k̂ 6= k

i
= op (1).

Most often these methods treat estimation of k as a either model selection or a rank estimation
problem, thereby employing some information criteria. For the case of either n or T fixed, the
contributions by Lewbel (1991), Donald (1997) and Cragg and Donald (1997) ensure consistent
estimation of the either the rank of the n×n matrix

P
t ztz

0
t with zt ≡ [z1t, ..., znt]

0 or of the
T × T matrix

P
i ziz

0
i with zi ≡ [zi1, ..., ziT ]

0, depending on whether n or T is fixed. When
(n, T )→∞, the aforementioned procedures are no longer usable to obtain a consistent k̂ and
Bai and Ng (2002) propose a consistent estimator for k - see also Onatski (2005). Note that
assumptions 2-6 in our settings ensure the applicability of these methods to equation (3), as
it can be immediately verified.
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√
nT
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1/2 ∙p
h̄Z1 +

q
β0Q̃BΓQ̃0BβZ2

¸
; (32)

if T/
√
n→ 0

β̂ − β = Op
¡
T−2

¢
, (33)

T 2
³
β̂ − β

´
⇒ 1

2
σ2e

∙Z
B̄εB̄

0
ε

¸−1
Ωεε; (34)

where Z1 ∼ N1 (0, Ik) and Z2 ∼ N2 (0, Ik) are independent, the random matrix
Q̃B is defined as

T−2
TX
t=1

ŴtW
0
t ⇒ Q̃B,

and

Γ = lim
n→∞

n−1
nX
i=1

nX
j=1

λiλ
0
jE (eitejt) ,

σ2e = lim
n→∞

1

n

nX
i=1

σ2ei,

where σ2ei is the long run variance of process {eit}.
Let equation (2) be a spurious regression:
if
√
n/T → 0, or T/

√
n→ 0 and

√
n/T 2 → 0

β̂ − β = Op

³
n−1/2

´
, (35)

√
n
³
β̂ − β

´
⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶p
h̄∆; (36)

if T 2/
√
n→ 0, then (33) and (34) hold.

Proof. See Appendix.
Consistency is ensured in both cases, even though T/

√
n → 0 results in a

slower (than in the case of
√
n/T → 0) rate of convergence and in a degenerate

behavior of the numerator of β̂ − β. This is anyway not surprising given that
the factors estimation errors (see Bai and Ng (2002), and Bai (2004) can be
decomposed in several terms of different asymptotic stochastic magnitude, which
have an impact only on the numerator. Notice the consequence of equation (2)
being a spurious regression: as long as the number of cross sectional units is
not exceedingly large, the classical

√
n consistency holds, and we have the same

limiting distribution as in equation (20). When n is far larger than T , we have
the same result as if relationship (2) were a cointegration relationship.
See below for the case when

√
n/T tends to a constant.

The convergence rate and the limiting distribution for β̂
FD

are in the fol-
lowing theorem.

14



Theorem 4 Suppose Assumptions 1-2 and 4-6 hold.
If nT → 0

β̂
FD − βFD = Op

³
n−1/2T−1/2

´
, (37)

√
nT
³
β̂
FD − βFD

´
p→ Σ−1∆FQV −1β (38)

where V is the probability limit of the diagonal matrix consisting of the first k
eigenvalues of (nT )−1∆Z∆Z0 in decreasing order, and

Q = p limT−3/2
TX
s=1

TX
t=1

∆F̂t∆F̃
0
sn
−1

"
nX
i=1

¡
eiteis − γs−t

¢#
.

If Tn → 0

β̂
FD − βFD = Op

¡
T−1

¢
, (39)

T
³
β̂
FD − βFD

´
p→ h̄eV

−1β, (40)

where h̄e is the long-run variance of the process limn→∞ n−1/2
Pn
i=1 eit.

Proof. See Appendix.
Notice that in this case we have degenerate limiting distributions, despite

having consistent estimates.
The condition n/T → 0 means that T is much larger than n, which in turn

implies a panel where time series observations outnumber the cross sectional
units. In such a case, we still have consistency. The condition T/n→ 0 implies
that the number of units n is far larger than T . In such a case, consistency is
ensured, even though at a ”slow” rate, given by T . In this case the impact of
n becomes ineffective, just as in Bai (2003, 2004) and Bai and Ng (2002, 2004),
where consistency depends on the minimum between T and n or some functions
of them. Further, the distribution limit is degenerate, and therefore convergence
in distribution can be achieved at a slower speed than Op

¡
T−1

¢
.

Finally, it can be observed that in both Theorems 3 and 4, the boundary
cases

√
n/T → τ or n/T → τ 0 (for τ and τ 0 are constants), are implicitly

analyzed. In these cases, the limit distributions are given by the sum of the
limit distributions in equations (32)-(34) and (38)-(40), respectively..

3.2.2 The case of T fixed and n large

When T is fixed and n is large, consistent estimation of factors is still possible,
see e.g. Connor and Korajzcyk (1986) and Bai (2003). However, the following
restriction is necessary:

Assumption 7: E (eiteis) = 0 for all t 6= s.

Assumption 7 rules out the possibility of serial correlation in the data gen-
erating process of the eit, and therefore this is a constraint on Assumption 5(d).
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However, contemporaneous correlation and cross sectional heteroscedasticity are
preserved.
Under Assumptions 4-7, we know that factors estimation is

√
n consistent,

i.e. we have both
F̂t − Ft = Op

³
n−1/2

´
and

∆F̂t −∆Ft = Op
³
n−1/2

´
for all t.
Theorems (5) and (6) do not anyway require

√
n consistency, since they

ensure the consistency of the OLS estimates β̂ and β̂
FD

for any consistent
estimate of the factors, irrespective of the rate of convergence.

Theorem 5 Suppose Assumptions 1-7 hold; then for every consistent estimator
F̂t of Ft and for fixed T and n → ∞ we have the same results as in equations
(13)-(16).

Proof. See Appendix.

Theorem 6 Suppose Assumptions 1-7 hold; then for every consistent estimator
∆F̂t of ∆Ft and for fixed T and n→∞ we have the same results as in equations
(23) and (24).

Proof. See Appendix.
In both cases we have the same results as we would have if the Fts were

observable. Therefore, when T is fixed, having large n makes it indifferent to
use observed or estimated factors as long as factors are estimated consistently.

3.2.3 The case of n fixed and T large

In what follows, we provide a new inferential theory for the case when factors
are unknown and the cross-sectional dimension n is finite. This case has not
been explored in the literature, the only exception being Gonzalo and Granger
(1995). Our contribution is aimed at making the estimated factors usable in a
regression framework.

Rewriting model (3) in the vector form, one gets:

zt = ΛFt + et, (41)

where zt = (z1t, ..., znt)
0, et = [e1t, ..., ent]

0, and Λ = (λ1,λ2, ...,λn)
0. Here

too one can estimate Λ using the principal components estimator. A feasible
estimator of Λ, Λ̂, is given by the

√
n times the eigenvectors corresponding

to the k largest eigenvalues of Z0Z. Notice that this estimator exploits the
normalization Λ̂0Λ̂/n = Ik, and it turns out to be computationally convenient
for the case of n < T . For sake of the notation, and without loss of generality,
from Assumption 4 we assume henceforth that n−1

Pn
i=1 λiλ

0
i = Ik.

The following theorem characterizes consistency and limiting distribution of
Λ̂.
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Proposition 1 Under Assumptions 3-6 we have

Λ̂− Λ = Op
¡
T−1

¢
, (42)

T
³
Λ̂− Λ

´
⇒

∙
In − n−1Λ

Z
BεB

0
εΛ

0
¸µZ

dWeB
0
ε

¶µZ
BεB

0
ε

¶−1
−n−1Λ

µZ
dWeB

0
ε

¶
Λ

+n−1
∙
In − 2n−1Λ

Z
BεB

0
εΛ

0
¸
ΩeΛ, (43)

where We is the Wiener process associated to the partial sums of et and Ωe =
E (ete

0
t).

Proof. See Appendix.
Note that in this case we have a T -consistent estimate of the factor loadings,

even though the principal component estimator of Ft is not consistent (see Bai
(2004) and Proposition 2 below) when n is finite.
Henceforth, for sake of notation, we refer to the limiting distribution of

T
³
Λ̂− Λ

´
as D1

Λ , i.e. T
³
Λ̂− Λ

´
⇒ D1

Λ. Given the restriction Λ̂
0Λ̂/n = Ik,

the OLS estimator of Ft, obtained regressing the zts on the estimated loadings
Λ̂, is

F̂t = n
−1Λ̂0zt.

The following Proposition characterizes (the inconsistency of) this estimator:

Proposition 2 Consider F̂t = n−1Λ̂0zt, and also the first difference estimator,
∆F̂t = n

−1Λ̂0∆zt. Then

max
1≤t≤T

°°°F̂t − Ft°°° = Op (1) , (44)

and
max
1≤t≤T

°°°∆F̂t −∆Ft°°° = Op (1) (45)

uniformly in t.

Proof. See Appendix.
From Proposition 2 we note that the estimates of the factors and of their

first difference are inconsistent. However this inconsistency has no impact on

the consistency of β̂ and β̂
FD
, though it affects their asymptotic law. See the

proofs of Theorems 7 and 8.

The convergence rate and the limiting distribution for β̂ are in the following
theorem.
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Theorem 7 For the estimator β̂, we have:

β̂ − β = Op
¡
T−1

¢
, (46)

T
³
β̂ − β

´
⇒ n−1

∙Z
B̄εB̄

0
ε

¸−1⎧⎪⎨⎪⎩
R
B̄εdBu

³Pn
i=1

Pn
j=1 hij

´1/2
−
¡
1− n−1

¢
×£R

B̄εB̄
0
εβ + T

−1D1
ΛΛ
R
B̄εB̄

0
εβ + Λ

0 R dB̄eB̄0εβ¤+
n−1

£
T−1

R
B̄εB̄

0
εΛ

0D10
Λβ + Λ

0ΣeΛβ +
R
B̄εdB̄

0
eΛβ

¤
⎫⎪⎬⎪⎭ ,

(47)
where B̄e is the demeaned Brownian motion associated to the partial sums of et
and Σe = V ar (et). When this is a spurious relationship, one gets

β̂ − β = Op (1) , (48)

β̂ − β ⇒
µZ

B̄εB̄
0
ε

¶−1µZ
B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

. (49)

Proof. See Appendix.
Note that even though common shocks cannot be estimated consistently, β̂

is consistent when (2) represents a cointegration relationship but inconsistent
when (2) represents a spurious regression. Factor estimation has an impact on
the limit distribution of β̂ − β when equation (2) is a cointegration regression -
see equation (47) above. On the other hand, it does not affect the asymptotic
distribution when equation (2) is a spurious regression - see equation (49). This
can be seen comparing the two distribution limits with equations (10) and (12)
respectively, where factors are assumed to be known.
Equations (47) and (49) show an important common feature of this theo-

retical framework. Only the numerators of equation (47) and (49) depend on
whether equation (2) is a cointegrating or spurious regression, whilst the de-
nominators are not affected. This is due to the fact (detailed in the proof)
that though F̂t is not a consistent estimator for Ft, the quantity

P
F̂tF̂

0
t is a

consistent estimator for
P
FtF

0
t for any consistent estimator of the loadings Λ̂.

The convergence rate and the limiting distribution for β̂
FD

are in the fol-
lowing theorem.

Theorem 8 For the first difference estimator β̂
FD
, we have:

β̂
FD − βFD = Op (1) , (50)

and
β̂
FD − βFD

p→ −β + n [Λ0Σ∆zΛ]−1Σ∆Fβ, (51)

where Σ∆e = V ar (∆et) and Σ∆z = ΛΣ∆FΛ0 +Σ∆e.

Proof. See Appendix.
The estimator β̂

FD
is inconsistent. As detailed in the proof, this is due to

the two terms
P
∆Ft∆F

0
t and

P
∆et∆e

0
t having the same asymptotic order,
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rather than to the factor estimates being inconsistent. Also, this hold for any
consistent estimator Λ̂ (see discussion in the proof).

Theorems 7 and 8 hold if equation (3) represents a cointegration relationship.
We now turn to evaluate the case of eit ∼ I (1).

Extension to the case where (3) is a spurious regression

If equation (3) is a spurious regression, then factors have to be estimated using
the approach in Bai (2003). Let us consider the first differenced version of
equation (3), i.e.∆zt = Λ∆Ft + ∆et, and let ∆Z = [∆z1, ...,∆zt]

0. Then Λ
can be estimated via principal components obtaining Λ̂FD, with normalization
Λ̂FD0Λ̂FD/n = Ik. Under Assumptions 2 and 4-6, the estimated loadings are of
asymptotic magnitude Λ̂FD − Λ = Op (1) - see Theorem 2 in Bai (2003).
The factors are estimated as

F̂t = n
−1Λ̂FD0zt.

The rate of convergence and the limiting distribution of β̂ and β̂
FD

are reported
in the following theorem.

Theorem 9 Let equation (3) be a spurious regression and let D2
Λ be the distri-

bution limit of Λ̂FD, i.e. Λ̂FD ⇒ D2
Λ. Then

β̂ − β = Op (1) , (52)

irrespective of whether equation (2) is a cointegration equation or spurious re-
gression; let B̄z be the demeaned Brownian motion associated to the partial sums
of zt; the distribution limit is equal to

β̂ − β ⇒ −β + n
µ
D20
Λ

Z
B̄zB̄

0
zD

2
Λ

¶−1
D20
Λ

Z
B̄zB̄

0
εβ (53)

when equation (2) is a cointegration relationship, whilst if it represents a spuri-
ous regression it holds that

β̂−β ⇒ −β+n
µ
D20
Λ

Z
B̄zB̄

0
zD

2
Λ

¶−1
D20
Λ

⎡⎣Z B̄zB̄
0
εβ +

Z
B̄zBu

Ã
nX
i=1

nX
i=1

h∆ij

!1/2⎤⎦ .
(54)

With respect to β̂
FD
, we have:

β̂
FD − βFD = Op (1) , (55)

β̂
FD − βFD ⇒ −β + n

¡
D20
ΛΣ∆zD

2
Λ

¢−1
D20
ΛΛΣ∆Fβ. (56)
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Proof. See Appendix.
When factors are estimated from a spurious regression, consistency of the

OLS estimates of β is lost irrespective of whether model (2) is stationary or
cointegrating or spurious relationship. eit ∼ I (1) has also an impact on the
limiting distributions, since in this case we have to take account the asymptotic
law of Λ̂ as well.
The rate of convergence of both β̂

FD−βFD and β̂−β is Op (1), even though
the estimated factors have different stochastic magnitudes as shown in Lemma
4 in Appendix.

4 CONCLUSION
This paper develops limiting theory for the OLS estimator for panel models
with common shocks, where contemporaneous correlation is generated by both
the presence of common regressors (e.g. macro shocks, aggregate fiscal and
monetary policies) among units and weak spatial dependence among the error
terms. We derived rates of convergence and limiting distributions under a com-
prehensive set of alternative characteristics of panels: different combinations of
the cross-sectional dimension n and the time series dimension T ; factors being
either observable or unobservable; and the main model representing either a
cointegrating equation or a spurious regression.
When the common factors are observable, the OLS estimator always provides

consistency. This result holds for all possible combinations of the dimensions of
n and T , including the case of n fixed, which so far has not been addressed in
the literature on non stationary panel factor models. The only exception being
the case of spurious regression with fixed n. We extend the study of consistency
of OLS estimators to the case when the factors are unobservable and we prove
that consistency always holds, the only exceptions being the cases of spurious
regression and stationary regression when n is fixed .
A central result is represented by the limiting distributions derived under the

strong cross-sectional dependence induced by the presence of common shocks.
In this case, we obtained mixed normality as consequence of the common shock
being non stationarity, while when shocks are stationary genuinely normal dis-
tributions are obtained.

20



Appendix
Proof of Theorem 1. To prove the theorem, we refer to equation (7)

that contains the estimation error β̂−β = [
P
i

P
tWtW

0
t ]
−1
[
P
i

P
tWtuit]. The

proof be derived splitting this quantity into the denominator
P
i

P
tWtW

0
t and

the numerator
P
i

P
tWtuit, and analyzing the asymptotic behavior of both

quantities separately.
Let us start considering the denominator

P
i

P
tWtW

0
t . When T → ∞

and n is fixed, we have from Assumptions 2 and 3 that under both the cases
that equation (2) is a spurious regression or a cointegrating one it holds thatP

i

P
tWtW

0
t = Op

¡
T 2
¢
and

1

nT 2

nX
i=1

TX
t=1

WtW
0
t ⇒

Z
B̄εB̄

0
ε. (57)

As n→∞, and for fixed T , we have
P
i

P
tWtW

0
t = Op (n)

1

nT 2

nX
i=1

TX
t=1

WtW
0
t =

1

T 2

TX
t=1

WtW
0
t , (58)

whilst as both n and T are large we have
P
i

P
tWtW

0
t = Op

¡
nT 2

¢
1

nT 2

nX
i=1

TX
t=1

WtW
0
t ⇒

Z
B̄εB̄

0
ε. (59)

As far as the numerator is concerned, the proof be derived with respect to
three separate cases, following the same structure as in the theorem. We firstly
derive the rate of convergence and the limiting distribution of

P
i

P
tWtuit for

the case when T is large and n is fixed; we then study the opposite case, when
T is fixed and n is large; last, we analyze the case when both T and n are large.
Case 1: large T and fixed n
We firstly focus our attention to the case where equation (2) is a cointegration

relationship.
Denote

ξnt = T
−1Wt

Ã
nX
i=1

uit

!
and

ξnT =
TX
t=1

ξnt.

Assumption 6 ensures that Ft and the uits are independent. Also, according to
Assumption 1(a), the process

P
i uit has covariance structure given by

E

"Ã
nX
i=1

uit

!Ã
nX
i=1

uis

!#
=

nX
i=1

nX
j=1

τ ij,ts.
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Then the absolutely summability condition on τ ij,ts over time implied in As-
sumption 1(b), and Assumptions 2 and 3 ensure that a FCLT holds such that

ξnT ⇒
Z
B̄εdW,

where W is a Brownian motion with variance

lim
T→∞

1

T

TX
t=1

TX
s=1

nX
i=1

nX
j=1

τ ij,ts =
nX
i=1

nX
j=1

hij .

An alternative way to write the limiting distribution of ξnT is

ξnT ⇒

⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2µZ
B̄εB̄

0
ε

¶1/2
Z,

where Z ∼ N (0, Ik).
Hence we have a twofold result. First, the rate of convergence of the nu-

merator of β̂ − β is Op (T ); therefore, given equation (57) that ensures that
the denominator of β̂ − β is Op

¡
T 2
¢
, we have that β̂ − β = Op

¡
T−1

¢
, proving

equation (9). As far as the distribution limit is concerned, we know, combining
the asymptotic law of ξnT with equation (57), we have that"
1

T 2

nX
i=1

TX
t=1

WtW
0
t

#−1 "
1

T

nX
i=1

TX
t=1

Wtuit

#
⇒ 1

n

µZ
B̄εB̄

0
ε

¶−1/2⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

Z,

which proves equation (10). Note that independence between Z and B̄ε is
ensured by Assumption 6.
We can now consider the case when equation (2) is a spurious regression and

therefore uit ∼ I (1).
Define first ξSnt = T−2Wt (

Pn
i=1 uit) and ξSnT =

PT
t=1 ξ

S
nt. The processPn

i=1 uit is still a unit root process with long run variance given by
Pn
i=1

Pn
j=1 h

∆
ij .

Therefore, a FCLT, which follows from Assumptions 1(a), 2 and 3, ensures that
ξSnT = Op (1). Together with equation (57), this proves that β̂ − β = Op (1), as
reported in equation (11). As far as the limiting distribution is concerned, here
the asymptotic law of the numerator of β̂ − β is given by

ξSnT =
1

T 2

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒
µZ

B̄εBu

¶⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

.

Combining this with the asymptotic law of the denominator given in equation
(57), we get equation (12).
Case 2: large n and fixed T .
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In this case the same approach as in the previous case be followed to prove
the main results in the theorem.
Consider first the cointegration case. Define ξ̃nt =Wt

¡
n−1/2

Pn
i=1 uit

¢
and

ξ̃nT =
TX
t=1

Wt

Ã
n−1/2

nX
i=1

uit

!
.

Assumption 1(a) ensures that a CLT holds for n−1/2
Pn
i=1 uit, so that as n →

∞ we have that, for every t, n−1/2
Pn

i=1 uit ⇒ ūt, where ūt is a normally
distributed, zero mean random variable with, after Assumption 1(b)

E [ūtūs] = τ̄ ts.

Therefore, the quantities Wtūt are mixed normals random variables (due to the
randomness of Wt) and it ultimately holds that

ξ̃nT ∼ N
"
0,

TX
t=1

TX
s=1

WtW
0
sτ̄ ts

#
=

Ã
TX
t=1

TX
s=1

WtW
0
sτ̄ ts

!1/2
Z,

where Z ∼ N (0, Ik); Assumption 6 ensures independence between Z and the
random variable

PT
t=1

PT
s=1WtW

0
sτ̄ ts.

Therefore, in this case the rate of convergence of the numerator of β̂ − β is
Op (
√
n). Combining this with the rate of convergence of the denominator, given

by equation (58), we have that β̂ − β = Op
¡
n−1/2

¢
, thereby proving equation

(13). As far as the distribution limit is concerned, combining the asymptotic
law of ξ̃nT with equation (58), we ultimately obtain (14).

Under the spurious regression case, define ξ̃
S

nt = Wt

¡
n−1/2

Pn
i=1 uit

¢
and

ξ̃
S

nT =
PT
t=1 ξ̃

S

nt. Assumption 1(a) ensures the validity of the CLT for n
−1/2Pn

i=1 uit,
so that uniformly in t we have, as n → ∞, n−1/2

Pn
i=1 uit ⇒ ūt. The process

ūt is an aggregation of unit root processes, and in light of Assumption 1(a) it is
a unit root process with long run variance which by definition is equal to h̄∆.

From this we have that ξ̃
S

nT = Op (1), and combining this with equation (58),
we obtain β̂ − β = Op (1) as reported in equation (15). As far as the limiting

distribution is concerned, since ξ̃
S

nT is a finite sum, we have ξ̃
S

nT ⇒
PT
t=1Wtūt

as n→∞. Combining this with equation (58), we prove the validity of equation
(16).
Case 3: large n and large T .
Let us start with the case where equation (2) is a cointegration relationship.
Define ξ̌nt = T−1Wt

¡
n−1/2

Pn
i=1 uit

¢
, and let ξ̌nT =

PT
t=1 ξ̌nt. After As-

sumption 1(b), we know that the process n−1/2
Pn

i=1 uit has zero mean and
covariance structure given by

E

"Ã
n−1/2

nX
i=1

uit

!Ã
n−1/2

nX
i=1

uis

!#
=
1

n

nX
i=1

nX
j=1

τ ij,ts.
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Moreover, Assumption 6 ensures that n−1/2
Pn
i=1 uit and Wt are independent.

Hence, in light of Assumptions 1(a), 2 and 3, the FCLT ensures that

ξ̌nT ⇒
Z
B̄εdW,

where the Brownian motionW has variance equal to n−1
Pn
i=1

Pn
j=1 hij . An al-

ternative formulation for the asymptotic distribution of ξ̌nT , as it is well known,

ξ̌nT ⇒

⎛⎝ 1
n

nX
i=1

nX
j=1

hij

⎞⎠1/2µZ
B̄εB̄

0
ε

¶1/2
Z,

where Z ∼ N (0, Ik) and B̄ε and Z are independent. As n→∞ we have

lim
n→∞

1

n

nX
i=1

nX
j=1

hij = h̄,

and therefore, as n→∞

ξ̌nT ⇒
p
h̄

µZ
B̄εB̄

0
ε

¶1/2
Z.

Hence, as far as the rate of convergence of ξ̌nT is concerned, we have ξ̌nT =
Op (1). Combining this with equation (59), we get that β̂−β = Op

¡
n−1/2T−1

¢
,

proving equation.(17). As far as the distribution limit is concerned, combining
the asymptotic law of ξ̌nT with equation (59), we have:"

1

nT 2

nX
i=1

TX
t=1

WtW
0
t

#"
1√
nT

nX
i=1

TX
t=1

Wtuit

#
⇒
p
h̄

µZ
B̄εB̄

0
ε

¶−1/2
Z,

which corresponds to equation (18).
We now turn to the case when equation (2) is a spurious regression. Let

ξ̌
S

nt = T−2Wt

¡
n−1/2

Pn
i=1 uit

¢
and ξ̌

S

nT =
PT

t=1 ξ̌
S

nt. For fixed n the process
n−1/2

Pn
i=1 uit is still a unit root process with long run variance given by

n−1
Pn
i=1

Pn
j=1 h

∆
ij . Therefore, for fixed n and as T → ∞, a FCLT, which

follows from Assumptions 1(a), 2 and 3, ensures that ξSnT = Op (1). This result,
together with equation (59), proves that β̂ − β = Op

¡
n−1/2

¢
, as reported in

equation (19). As far as the limiting distribution is concerned as T → ∞ we
have

ξ̌
S

nT =
1

T 2

TX
t=1

Wt

Ã
1√
n

nX
i=1

uit

!
⇒
µZ

B̄εBu

¶⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

;
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taking the limit for n→∞ leads to

µZ
B̄εBu

¶⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

→
p
h̄∆
µZ

B̄εBu

¶
. (60)

Combining this result with the one reported in equation (59), we ultimately get
equation (20).
Proof of Theorem 2. To prove the theorem, we refer to equation (8) that

contains the estimation error β̂
FD − β = [

P
i

P
t∆Ft∆F

0
t ]
−1
[
P
i

P
t∆Ft∆uit].

The proof be derived splitting this quantity into the denominator
P

i

P
t∆Ft∆F

0
t

and the numerator
P
i

P
t∆Ft∆uit, and analyzing the asymptotic behavior of

both quantities separately.
Let us start considering the denominator

P
i

P
t∆Ft∆F

0
t . When T → ∞

and n is fixed, we have from Assumption 2 and the Law of Large Numbers that
under both the cases that equation (2) is a spurious regression or a cointegrating
one it holds that

P
i

P
t∆Ft∆F

0
t = Op (T ) and

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t
p→ Σ∆F . (61)

As n→∞, and for fixed T , we have

1

n

nX
i=1

TX
t=1

∆Ft∆F
0
t =

TX
t=1

∆Ft∆F
0
t , (62)

whilst as both n and T are large we have

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t
p→ Σ∆F , (63)

with
Pn
i=1

PT
t=1∆Ft∆F

0
t = Op (nT ).

As far as the numerator is concerned, as in the case of Theorem 1 the proof
be derived with respect to three separate cases, following the same structure
as in the theorem. We firstly derive the rate of convergence and the limiting
distribution of

P
i

P
t∆Ft∆uit for the case when T is large and n is fixed; we

then study the opposite case, when T is fixed and n is large; last, we analyze
the case when both T and n are large. The proofs for each of the three cases
are along the same lines as in Theorem 1. It is worth noticing though that both
under the case when equation (2) is a cointegration relationship and when it is
a spurious regression, ∆uit is a stationary process. Therefore, there is no need
to distinguish between the two cases unlike in Theorem 1.
Case 1: large T and fixed n
Denote

ξ∆nt = T
−1/2∆Ft

Ã
nX
i=1

∆uit

!
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and

ξ∆nT =
TX
t=1

ξ∆nt.

Assumption 6 ensures that ∆Ft and the ∆uits are independent. Also, according
to Assumption 1(b), the process

P
i∆uit has zero mean and covariance structure

E

"Ã
nX
i=1

∆uit

!Ã
nX
i=1

∆uis

!#
=

nX
i=1

nX
j=1

γij,ts.

Therefore the process ξ∆nt has zero mean and covariance structure given by

E
h
ξ∆ntξ

∆0
nt

i
=
1

T

⎛⎝ nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F 0s) .
After Assumption 1(b) and 2, that ensure weak dependence over time a CLT
holds. Therefore, as T →∞, we have

ξ∆nT ⇒

⎡⎣ lim
T→∞

1

T

⎛⎝ nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F 0s)
⎤⎦1/2 Z (64)

=

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
1/2
∆FZ,

where Z ∼ N (0, Ik). Hence we have a twofold result. First, the rate of con-
vergence of the numerator of β̂

FD − β is Op
³√
T
´
; therefore, given equation

(61) that ensures that the denominator of β̂
FD − β is Op (T ), we have that

β̂
FD − β = Op

¡
T−1/2

¢
, proving equation (21). As far as the distribution limit

is concerned, combining the asymptotic law of ξ∆nT with equation (61), we have
that"
1

T

nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 "
1√
T

nX
i=1

TX
t=1

∆Ft∆uit

#
⇒ 1

n

⎛⎝ nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
−1/2
∆F Z,

which proves equation (22).
Case 2: large n and fixed T .
In this case the same approach as in the previous case be followed to prove

the main results in the theorem.
Define ξ̃

∆

nt = ∆Ft
¡
n−1/2

Pn
i=1∆uit

¢
and

ξ̃
∆

nT =
TX
t=1

ξ̃nt.
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Assumption 1(a) ensures that a CLT holds for n−1/2
Pn
i=1∆uit, so that as

n → ∞ we have that, for every t, n−1/2
Pn
i=1∆uit ⇒ ūt, where ∆ūt is a

normally distributed, zero mean random variable with covariance structure

E [∆ūt∆ūs] =
TX
t=1

TX
s=1

γ̄ts.

Hence, in light of Assumption 6, ξ̃
∆

nt is a zero mean random variable whose
covariance structure is given by (after Assumption 1(a))

E
h
ξ̃
∆

ntξ̃
∆0
ns

i
=

TX
t=1

TX
s=1

γ̄tsE (∆Ft∆F
0
s) .

Since ξ̃
∆

nT is a finite sum of normally distributed random variables, we have that

ξ̃
∆

nT ∼
Ã

TX
t=1

TX
s=1

∆Ft∆F
0
sγ̄ts

!1/2
Z,

where Z ∼ N (0, Ik); Assumption 6 ensures independence between Z and the
random variable

P
t

P
s∆Ft∆F

0
sγ̄ts. Therefore, in this case the rate of con-

vergence of the numerator of β̂
FD − β is Op (

√
n). Combining this with the

rate of convergence of the denominator, given by equation (62), we have that

β̂
FD − β = Op

¡
n−1/2

¢
, thereby proving equation (23). Also, combining this

with equation (62), we ultimately obtain (24).
Case 3: large n and large T .
Define ξ̌

∆

nt = T
−1/2∆Ft

¡
n−1/2

Pn
i=1∆uit

¢
, and let ξ̌

∆

nT =
PT

t=1 ξ̌
∆

nt. In light

of the passages derived above, the ξ̌
∆

nts are random variables with zero mean and
covariance structure given by

E
h
ξ̌
∆

ntξ̌
∆0
ns

i
=
1

T

⎛⎝ 1
n

nX
i=1

nX
j=1

γij,ts

⎞⎠E (∆Ft∆F 0s) .
From equation (64) we know that, for fixed n and as T →∞

ξ̌
∆

nT ⇒

⎛⎝ 1
n

nX
i=1

nX
j=1

h∆ij

⎞⎠1/2

Σ
1/2
∆FZ,

with Z ∼ N (0, Ik). As n→∞ we have

lim
n→∞

⎛⎝ 1
n

nX
i=1

nX
j=1

hij

⎞⎠1/2

Σ
1/2
∆F →

p
h̄∆Σ

1/2
∆F .
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Hence, as far as the rate of convergence of ξ̌
∆

nT is concerned, we have ξ̌
∆

nT =

Op (1). Combining this with equation (63), we get that β̂
FD−β = Op

¡
n−1/2T−1/2

¢
,

proving equation.(23). As far as the distribution limit is concerned, we know that

ξ̌
∆

nT ⇒
p
h̄∆Σ

1/2
∆FZ,

as (n, T ) → ∞ with Z ∼ N (0, Ik). Combining this result with equation (63),
we have:"

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t

#−1 "
1√
nT

nX
i=1

TX
t=1

∆Ft∆uit

#
⇒
p
h̄∆Σ

−1/2
∆F Z,

which corresponds to equation (24).

Lemma 1 Let Assumptions 1-6 hold. Then the following results hold for the
estimated factors F̂t when (n, T )→∞:

1.

VnT

³
F̂t − Ft

´
= T−1

TX
s=1

F̂sγs−t + T
−1

TX
s=1

F̂sζst + T
−1

TX
s=1

F̂sηst + T
−1

TX
s=1

F̂sξst,

where γs−t = E
£
n−1e0tes

¤
,

ζst =
e0tes
n
− γs−t,

ηst =
1

n
∆F 0sΛ

0et,

ξst =
1

n
∆F 0tΛ

0es,

and VnT is a diagonal matrix containing the largest k eigenvalues of
(nT )

−1
ZZ0 in decreasing order;

2. Denote CnT = min {
√
n, T}. Consistency of F̂t is expressed as

(a) max
1≤t≤T

°°°F̂t − Ft°°° = Op ¡T−1¢+Op ¡n−1/2T 1/2¢ and
(b)

PT
t=1

°°°F̂t − Ft°°°2 = Op ¡TC−2nT ¢ ;
3. It holds that:

(a)
PT
t=1

³
F̂t − Ft

´0
et = Op

¡
TC−2nT

¢
;
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(b)
PT
t=1

³
F̂t − Ft

´0
Ft = Op (1) +Op

¡
n−1/2T

¢
= Op

¡
TC−2nT

¢
;

(c)
PT
t=1

³
F̂t − Ft

´0
F̂t = Op

¡
TC−2nT

¢
.

4. When
√
n
T → 0 as (n, T )→∞, we have

√
n
³
Wt − Ŵt

´
=

1

T 2

TX
s=1

ŴsW
0
s

1√
n

nX
i=1

λieit,

with

n−1/2
nX
i=1

λieit ⇒ Zt,

where Zt v N (0,Γ) and T−2
PT
s=1 ŴsWs ⇒ Q̃B; Q̃B and Z are inde-

pendent - see Bai (2004).

Proof. See Bai (2004).

Lemma 2 Lemma 1 ensures that

1. T−2
PT
t=1 ŴtŴ

0
t = T

−2PT
t=1WtW

0
t + op

¡
T−1/2C−1nT

¢
;

2. n−1/2T−1
Pn
i=1

PT
t=1 Ŵtuit = n

−1/2T−1
Pn
i=1

PT
t=1Wtuit +Op

¡
C−1nT

¢
;

3. T−1
PT
t=1 Ŵt

³
Ft − F̂t

´
= T−1

PT
t=1W

0
t

³
Ft − F̂t

´
+Op

¡
C−2nT

¢
;

Proof. Proof is as follows:

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2

TX
t=1

³
Wt + Ŵt −Wt

´³
Wt + Ŵt −Wt

´0
=

1

T 2

TX
t=1

WtW
0
t +

1

T 2

TX
t=1

Wt

³
Ŵt −Wt

´0
+
1

T 2

TX
t=1

³
Ŵt −Wt

´
W 0
t +

1

T 2

TX
t=1

³
Ŵt −Wt

´³
Ŵt −Wt

´0
= I + II + III + IV.

Consider II and III. Using the Cauchy-Schwartz inequality we get straightfor-
wardly

1

T 2

TX
t=1

Wt

³
Ŵt −Wt

´0
= Op

µ
1√
T

¶
Op

µ
1

CnT

¶
op (1) = op

µ
1√
TCnT

¶
.

Consider now IV. In this case, Lemma 1.2.(b) states that

T−2
TX
t=1

³
Ŵt −Wt

´³
Ŵt −Wt

´0
= Op

¡
T−1C−2nT

¢
.
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Then

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2

TX
t=1

WtW
0
t + op

µ
1√
TCnT

¶
+Op

µ
1

TC2nT

¶
,

which proves part 1 of the Lemma. Consider now part 2:

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit+
1√
nT

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit = I+II.

For term I, Theorem 1 ensures that n−1/2T−1
Pn
i=1

PT
t=1Wtuit = Op (1). As

far as II is concerned, using the Cauchy-Schwartz inequality we get°°°°° 1√
nT

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit

°°°°°
=

°°°°° 1T
TX
t=1

³
Ŵt −Wt

´ 1√
n

nX
i=1

uit

°°°°°
≤

Ã
1

T

TX
t=1

°°°Ŵt −Wt

°°°2!1/2
⎛⎝ 1
T

nX
i=1

°°°°° 1√
n

nX
i=1

uit

°°°°°
2
⎞⎠1/2

= Op

µ
1

CnT

¶

given that T−1
PT
t=1

°°°Ŵt −Wt

°°°2 = Op
¡
C−2nT

¢
and n−1/2

Pn
i=1 uit = Op (1).

Hence,

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit +Op

µ
1

CnT

¶
,

proving part 2 of the Lemma. To prove part 3, we note that

1

T

TX
t=1

Ŵ 0
t

³
Ft − F̂t

´
=
1

T

TX
t=1

W 0
t

³
Ft − F̂t

´
+
1

T

TX
t=1

³
Ŵt −Wt

´0 ³
Ft − F̂t

´
= I+II.

Term I is bounded by Op
¡
C−1nT

¢
- see Lemma 1.3.(c) - whilst II is bounded byÃ

1

T

TX
t=1

°°°Ŵt −Wt

°°°2!1/2Ã 1
T

TX
t=1

°°°Ft − F̂t°°°2!1/2

= Op

µ
1

CnT

¶
Op

µ
1

CnT

¶
= Op

µ
1

C2nT

¶
.

Hence,

1

T

TX
t=1

Ŵt

³
Ft − F̂t

´
= Op

µ
1

CnT

¶
+Op

µ
1

C2nT

¶
.
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Proof of Theorem 3. According to equation (29)

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
.

Let us first consider the denominator of this expression. Assumption 3 and
Lemma 2.1 imply that

nX
i=1

TX
t=1

ŴtŴ
0
t = Op

¡
nT 2

¢
, (65)

and ¡
nT 2

¢−1 nX
i=1

TX
t=1

ŴtŴ
0
t ⇒

Z
B̄εB̄

0
ε; (66)

this holds under both the cases of cointegration and spurious regression.
We now prove Theorem 3 for the case when equation (2) is a cointegration

relationship. The numerator of β̂ − β is given by

n
TX
t=1

Ŵt

³
Wt − Ŵt

´0
β +

nX
i=1

TX
t=1

Ŵtuit = I + II.

Let us consider II. We know from Theorem 1 and Lemma 2.2 that, as far as
II is concerned

1√
nT

nX
i=1

TX
t=1

Ŵtuit =
1√
nT

nX
i=1

TX
t=1

Wtuit + op (1) = Op (1) ,

and therefore
1√
nT

nX
i=1

TX
t=1

Ŵtuit ⇒
µZ

B̄εB̄
0
ε

¶1/2p
h̄Z, (67)

where Z ∼ N (0, Ik).As far as term I is concerned, two cases are possible:

1. if
√
n/T → 0, we know from Lemma 1.4 that

√
n
³
Wt − Ŵt

´
=

1

T 2

TX
s=1

ŴsW
0
s

1√
n

nX
i=1

λieit,

and
1√
n

nX
i=1

λieit ⇒ Zt,

with Zt v N (0,Γ) for every t. Therefore the asymptotic magnitude of
term I is the same as that of term II and equal to Op (

√
nT ). This proves
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equation (31). As far as the distribution limit is concerned, we can write

1

T

TX
t=1

Wt

√
n
³
Wt − Ŵt

´0
β

=
1

T

TX
t=1

Wt

"
1

T 2

TX
s=1

ŴsW
0
s

Ã
1√
n

nX
i=1

λieit

!#0
β + op (1) ,

and since by definition T−2
PT

s=1 ŴsW
0
s ⇒ Q̃B, we have

1

T

TX
t=1

Wt

"
1

T 2

TX
s=1

ŴsW
0
s

Ã
1√
n

nX
i=1

λieit

!#0
β ⇒

µZ
B̄εB̄

0
ε

¶1/2 ³
β0Q̃BΓQ̃

0
Bβ
´1/2

Z.,

with Z ∼ N (0, Ik). Combining this with the asymptotic law of II and
with equation (66), we obtain equation (32);

2. if T/
√
n→ 0, after Lemma 1.3.(c), we have

TX
t=1

Ŵt

³
Wt − Ŵt

´0
= Op

³
n−1/2T

´
+Op (1) ,

and the term that dominates is the one with asymptotic magnitude Op (1).

Therefore, I =
Pn

i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
= Op (n), and term II =Pn

i=1

PT
t=1 Ŵtuit = Op (

√
nT ) is dominated. The order of magnitude

of the numerator is now Op (n), and combining this with equation (65) we
have

β̂ − β = Op
¡
T−2

¢
,

which proves equation (33). As far as the limiting distribution is con-
cerned, following Bai (2004), we can write

TX
t=1

Ŵt

³
Wt − Ŵt

´0
=

1

T 2

TX
s=1

TX
t=1

WtW
0
s

Ã
1

n

nX
i=1

eiteis

!
+ op (1) ,

and asymptotically we have:

1

T 2

TX
s=1

TX
t=1

WtW
0
s

Ã
1

n

nX
i=1

eiteis

!
=
1

n

nX
i=1

Ã
1

T

TX
t=1

Wteit

!Ã
1

T

TX
s=1

W 0
seis

!
.

We know that T−1
PT
t=1Wteit ⇒

R
B̄εdBei, where Bei (r) is the Brownian

motion associated to the partial sums of eit with long run variance σ2ei;
therefore, applying a LLN, the limit for n→∞ is given by

lim
n→∞

1

n

nX
i=1

E

∙µZ
B̄εdBei

¶µZ
B̄0εdBei

¶¸
= lim
n→∞

1

n

nX
i=1

V ar

µZ
B̄εdBei

¶
.
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Since we have that V ar
¡R
B̄εdBei

¢
= σ2eiE

¡R
B̄εB̄

0
ε

¢
, it holds that

lim
n→∞

1

n

nX
i=1

V ar

µZ
B̄εdBei

¶

=

Ã
lim
n→∞

1

n

nX
i=1

σ2ei

!
E

µZ
B̄εB̄

0
ε

¶
=
1

2
σ2eΩεε,

given the definition of σ2e and that E
¡R
B̄εB̄

0
ε

¢
= 1/2Ωεε. Combining this

equation (66), equation (34) is proved.

We now prove results when we equation (2) is a spurious regression. Here,
as far as term

Pn
i=1

PT
t=1 Ŵtuit in equation (29) is concerned, we have

nX
i=1

TX
t=1

Ŵtuit =
nX
i=1

TX
t=1

Wtuit +
nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit.

After equation (19) we know

nX
i=1

TX
t=1

Wtuit = Op
¡√
nT 2

¢
.

As per
Pn

i=1

PT
t=1

³
Ŵt −Wt

´
uit, application of the Cauchy-Schwartz inequal-

ity leads to

nX
i=1

TX
t=1

³
Ŵt −Wt

´
uit

=
TX
t=1

³
Ŵt −Wt

´Ã nX
i=1

uit

!

≤
"
TX
t=1

°°°Ŵt −Wt

°°°2#1/2
⎡⎣ TX
t=1

°°°°°
nX
i=1

uit

°°°°°
2
⎤⎦1/2

= Op

³√
TC−1nT

´
Op
¡√
nT
¢
,

and therefore
Pn
i=1

PT
t=1

³
Ŵt −Wt

´
uit is always dominated by

Pn
i=1

PT
t=1 Ŵtuit.

Hence, we have

1√
nT 2

nX
i=1

TX
t=1

Ŵtuit =
1√
nT 2

nX
i=1

TX
t=1

Wtuit + op (1) ,

and, after equation (60), we have

1√
nT 2

nX
i=1

TX
t=1

Ŵtuit ⇒
µZ

B̄εBu

¶p
h̄∆.
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Consequently, there are two possibilities for the rate of convergence and the
limiting distribution of the numerator:

• when √n/T 2 → 0, two subcases are possible:

—
√
n/T → 0, and in such case we have

Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β =

Op (
√
nT ); therefore the term that dominates is

Pn
i=1

PT
t=1 Ŵtuit;

combining this with equations (65) and (66), equations (35) and (36)
can be obtained;

— T/
√
n→ 0 and

√
n/T 2 → 0, and here

Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β =

Op (n); in this case, again the term that dominates is
Pn
i=1

PT
t=1 Ŵtuit

combining this with equations (65) and (66), equations (35) and (36)
hold;

• when T 2/√n → 0, we have that
Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β = Op (n),

and this is the dominating term. This leads to the same results as in
equations (33) and (34).

Lemma 3 Let Assumptions 1-2 and 4-6 hold. Then, for the estimated factors
∆F̂t, it holds that

1.

VnT

³
∆F̂t −∆Ft

´
= T−1

TX
s=1

∆F̂sγs−t + T
−1

TX
s=1

∆F̂sζst + T
−1

TX
s=1

∆F̂sηst + T
−1

TX
s=1

∆F̂sξst,

where γs−t = E
£
n−1

Pn
i=1 eiteis

¤
,

ζst = n
−1

nX
i=1

eiteis − γs−t,

ηst = n
−1∆F 0sΛ

0et,

ξst = n
−1∆F 0tΛ

0es,

and VnT is a diagonal matrix containing the largest k eigenvalues of (nT )
−1
∆Z∆Z0

in decreasing order;

2. Denote δnT = min
n√
n,
√
T
o
. Consistency of ∆F̂t is ensured by

(a) max
1≤t≤T

°°°∆F̂t −∆Ft°°° = Op ¡T−1/2¢+Op ¡n−1/2T 1/2¢;
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(b)
PT
t=1

°°°∆F̂t −∆Ft°°°2 = Op ¡T δ−2nT ¢;
3. It holds that:

(a)
PT
t=1

³
∆F̂t −∆Ft

´0
et = Op

¡
T δ−2nT

¢
;

(b)
PT
t=1

³
∆F̂t −∆Ft

´0
∆Ft = Op

¡
T δ−2nT

¢
;

(c)
PT
t=1

³
∆F̂t −∆Ft

´0
∆F̂t = Op

¡
T δ−2nT

¢
;

4. The relationship between factors and ζst is given by
PT
t=1

PT
s=1∆Ft∆F

0
sζst =

Op
¡
n−1/2T 3/2

¢
.

Proof. See Bai and Ng (2002) and Bai (2003).
Proof of Theorem 4. Recall equation (30):

β̂
FD − βFD =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

We firstly study the rate of convergence and the distribution limit of the de-
nominator. The following decomposition holds:

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t = n

TX
t=1

∆Ft∆F
0
t + n

TX
t=1

∆Ft

³
∆F̂t −∆Ft

´0
+n

TX
t=1

³
∆F̂t −∆Ft

´
∆F 0t + n

TX
t=1

³
∆F̂t −∆Ft

´³
∆F̂t −∆Ft

´0
= I + II + III + IV.

After Assumption 2 we have

I = n
TX
t=1

∆Ft∆F
0
t = Op (nT ) .

Also

II = n
TX
t=1

³
∆F̂t −∆Ft

´
∆F 0t = Op

¡
nT δ−2nT

¢
,

and

IV = n
TX
t=1

³
∆F̂t −∆Ft

´³
∆F̂t −∆Ft

´0
= Op

¡
nT δ−2nT

¢
,

using Lemma 2.3.(b) and 2.2.(b) respectively. Therefore

1

nT

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t =

1

nT

nX
i=1

TX
t=1

∆Ft∆F
0
t +Op

¡
δ−2nT

¢
(68)
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and, for (n, T )→∞
1

nT

nX
i=1

TX
t=1

∆F̂t∆F̂
0
t
p→ Σ∆F . (69)

Let us now turn to the numerator of β̂
FD − βFD. We have

nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸

=
nX
i=1

TX
t=1

∆Ft∆uit +
nX
i=1

TX
t=1

³
∆F̂t −∆Ft

´
∆uit

+n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = I + II + III.

We know, from equation (25) in Theorem 2 that:

I =
nX
i=1

TX
t=1

∆Ft∆uit = Op

³√
nT
´
.

Also, following Bai (2003, pp. 163-164), we could prove

II =
nX
i=1

TX
t=1

³
∆F̂t −∆Ft

´
∆uit = Op

¡√
nT δ−2nT

¢
.

Lemma 2.3.(c) ensures that

III = n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
= nOp

¡
T δ−2nT

¢
= Op

¡
nT δ−2nT

¢
.

Note that term III dominates term II by a factor
√
n. Also, III always dom-

inates I since it always holds that nT δ−2nT >
√
nT ; in fact, this is the same as

writing

√
n
√
T = min

³√
n,
√
T
´
max

³√
n,
√
T
´
> δ2nT =

h
min

³√
n,
√
T
´i2

.

Therefore, term III in the numerator always dominates. According to Lemma
3.1, III can be decomposed into four terms of magnitude

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = Op

³√
T δ−1nT

´
+Op

³
Tn−1/2δ−1nT

´
+Op

Ãr
T

n

!
+Op

Ãr
T

n

!
= a+ b+ c+ d.

Two cases may occur:
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1. n
T → 0; in this case, δnT =

√
n. The dominating term is b and

b = n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

n

T

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sζstV

−1β + op (1) ,

where

ζst =
1

n

nX
i=1

¡
eiteis − γs−t

¢
= Op

³
n−1/2

´
.

After similar passages as above, we have

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sζstV

−1β =
TX
t=1

TX
s=1

∆Ft∆F
0
sζstV

−1β + op (1) .

After Lemma 2.4, we know that T−1
PT
t=1

PT
s=1∆Ft∆F

0
sζst = Op

¡
n−1/2T 1/2

¢
.

Therefore the order of magnitude of the numerator is Op
¡
n1/2T 1/2

¢
, and

combining this with equation (68) we obtain equation (37). As per the
limiting distribution, since by definition

Q = p lim
1

nT 3/2

TX
s=1

TX
t=1

∆F̂t∆F̃
0
sζst,

combining this with equation (69), one can derive equation (38);

2. T
n → 0, and in such case, given that δnT =

√
T , the dominating term is a.

Given its definition, after Lemma 2.2.(a), we have

a =
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sγs−tV

−1β + op (1) ,

and

TX
t=1

TX
s=1

∆F̂t∆F̃
0
sγs−t

=
TX
t=1

TX
s=1

∆Ft∆F
0
sγs−t +

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´
∆F 0sγs−t

+
TX
t=1

TX
s=1

∆Ft

³
∆F̃s −∆Fs

´0
γs−t +

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´³
∆F̃s −∆Fs

´0
γs−t.

Then we can show that:
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(a)
TX
t=1

TX
s=1

∆Ft∆F
0
sγs−t = Op (T ) ;

(b)

TX
t=1

TX
s=1

∆Ft

³
∆F̃s −∆Fs

´0
γs−t ≤ max

t
k∆Ftkmax

s

°°°∆F̃s −∆Fs°°° TX
t=1

TX
s=1

¯̄
γs−t

¯̄
= Op (1)Op

³
T−1/2

´
Op (T ) = Op

³
T 1/2

´
;

(c)

TX
t=1

TX
s=1

³
∆F̂t −∆Ft

´³
∆F̃s −∆Fs

´0
γs−t

≤
³
max
s

°°°∆F̃s −∆Fs°°°´ TX
t=1

TX
s=1

¯̄
γs−t

¯̄
= Op

¡
T−1

¢
Op (T ) = Op (1) .

Therefore, the dominating term is the first one with

n
TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = Op (nT ) .

Combining this with the rate of convergence of the denominator as
given in equation (68), we obtain equation (39). As far as the distri-
bution limit is concerned, we have

1

nT

TX
t=1

TX
s=1

∆F̂t∆F̂
0
sγt−sV

−1β
p→ h̄eΣ∆FV

−1β.

Combining this with equation (69), and recalling the definition of
Σ∆F , we can derive equation (40).

Proof of Theorem 5. The results stated in the theorem hold for any
consistent estimator of Ft; we therefore consider an estimator, F̆t, such that for
all t

F̆t − Ft = Op
¡
n−δ

¢
,

for some δ > 0. In this case we have

TX
t=1

nX
i=1

F̆tuit =
TX
t=1

nX
i=1

Ftuit +
TX
t=1

nX
i=1

³
F̆t − Ft

´
uit

= Op

³
n1/2

´
+Op

¡
n−δ

¢
Op

³
n1/2

´
= Op

³
n1/2

´
,
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where the first term is Op
¡
n1/2

¢
as proved in Theorem 1 and the second one is

always dominated. Note that the summation over t does not play any role since
T is fixed. Moreover, in light of the consistency of F̆t we have

TX
t=1

nX
i=1

F̆tF̆
0
t =

TX
t=1

nX
i=1

FtF
0
t + op (1) = Op (n) .

Proof of Theorem 6. This theorem can be proved following the same
lines as for Theorem 5 and therefore is omitted.
Proof of Proposition 1. Equation (42) follows from Lemma 3 in Bai

(2004).
As far as equation (43) is concerned, let F̄t be the principal component

estimator for Ft as defined in Bai (2004). Then we know (see e.g. the proof of

Lemma 3 in Bai, 2004) that T
³
Λ̂− Λ

´
can be decomposed as

T
³
Λ̂− Λ

´
=
1

T

"
TX
t=1

etF
0
t +

TX
t=1

et
¡
F̄t − Ft

¢0
+ Λ

TX
t=1

¡
Ft − F̄t

¢
F̄ 0t

#"
1

T 2

TX
t=1

F̄tF̄
0
t

#−1
.

(70)
As far as the denominator of this expression is concerned, let Ξ =

R
BεB

0
ε. We

have

TX
t=1

F̄tF̄
0
t =

TX
t=1

FtF
0
t+

TX
t=1

¡
F̄t − Ft

¢
F̄ 0t+

TX
t=1

F̄t
¡
F̄t − Ft

¢0
+

TX
t=1

¡
F̄t − Ft

¢ ¡
F̄t − Ft

¢0
,

where
TX
t=1

FtF
0
t = Op

¡
T 2
¢
,

TX
t=1

¡
F̄t − Ft

¢
F̄ 0t = Op (T ) ,

TX
t=1

¡
F̄t − Ft

¢ ¡
F̄t − Ft

¢0
= Op (T ) ;

the last two equalities come directly from Lemma B.4(ii) and Lemma B.1 in Bai
(2004). Therefore

T−2
TX
t=1

F̄tF̄
0
t = T

−2
TX
t=1

FtF
0
t +Op

¡
T−1

¢
and

T−2
TX
t=1

F̄tF̄
0
t ⇒ Ξ.
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As far as the numerator of equation (70) is concerned, we study each term. First
of all we know that T−1

PT
t=1 etF

0
t ⇒

R
dWeBε. The limiting distribution ofPT

t=1 et
¡
F̄t − Ft

¢0
can be obtained from the following decomposition - see Bai

(2004, p. 164) for details:

F̄t − Ft = T−2
TX
s=1

F̃sγn (s, t) + T
−2

TX
s=1

F̃sζst + T
−2

TX
s=1

F̃sηst + T
−2

TX
s=1

F̃sξst,

where (as in Lemma 1) we let γn (s, t) = E (e0tes/n), ζst = e0tes/n − γn (s, t),
ηst = F

0
sΛ

0et/n, ξst = F
0
tΛ

0es/n. Hence

1

T

TX
t=1

et
¡
F̄t − Ft

¢0
= T−3

TX
s=1

TX
t=1

etF̃
0
sγn (s, t) + T

−3
TX
s=1

TX
t=1

etF̃
0
sζst

+T−3
TX
s=1

TX
t=1

etF̃
0
sηst + T

−3
TX
s=1

TX
t=1

etF̃
0
sξst

= I + II + III + IV,

and

I = Op
¡
T−1

¢
sinceE

°°°etF̃ 0sγn (s, t)°°° ≤ |γn (s, t)|µmaxs,t
E
°°°etF̃ 0s°°°¶ andmaxs,t

E
°°°etF̃ 0s°°° =

Op (T );
II = n−1T−3

PT
s=1

PT
t=1 etF̃

0
se
0
tes − T−3

PT
s=1

PT
t=1 etF̃

0
sγn (s, t) and we

have

n−1T−3
TX
s=1

TX
t=1

etF̃
0
se
0
tes = n−1T−3

TX
s=1

TX
t=1

ete
0
tesF̃

0
s

= n−1T−1

Ã
T−1

TX
t=1

ete
0
t

!Ã
T−1

TX
s=1

esF̃
0
s

!
= Op

¡
T−1

¢
;

III = n−1T−3
PT
s=1

PT
t=1 etF̃

0
sF

0
sΛ

0et with

n−1T−3
TX
s=1

TX
t=1

etF̃
0
sF

0
sΛ

0et = n−1T−3
TX
s=1

TX
t=1

ete
0
tΛFsF̃

0
s

= n−1

Ã
T−1

TX
t=1

ete
0
t

!
Λ

Ã
T−2

TX
s=1

FsF̃
0
s

!
= Op (1) ;

IV = n−1T−3
PT
s=1

PT
t=1 etF̃

0
sF

0
tΛ

0es and

n−1T−3
TX
s=1

TX
t=1

etF̃
0
sF

0
tΛ

0es = n−1T−3
TX
s=1

TX
t=1

etF
0
tΛ

0esF̃
0
s

= n−1T−1

Ã
T−1

TX
t=1

etF
0
t

!
Λ0

Ã
T−1

TX
s=1

esF̃
0
s

!
= Op

¡
T−1

¢
.
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Therefore the term that dominates is III and

n−1

Ã
T−1

TX
t=1

ete
0
t

!
Λ

Ã
T−2

TX
s=1

FsF̃
0
s

!
⇒ n−1ΩeΛQ.

Finally, as far as the term Λ
PT
t=1

¡
Ft − F̄t

¢
F̄ 0t in equation (70) is concerned,

we have

T−1Λ
TX
t=1

¡
Ft − F̄t

¢
F̄ 0t = −T−3

TX
s=1

TX
t=1

F̃sF̄
0
tγn (s, t)− T−3

TX
s=1

TX
t=1

F̃sF̄
0
tζst

−T−3
TX
s=1

TX
t=1

F̃sF̄
0
tηst − T−3

TX
s=1

TX
t=1

F̃sF̄
0
tξst

= a+ b+ c+ d.

We have that the terms a and b follow from the proof of Lemma B.4 in Bai,
2004):

a = Op
¡
T−1

¢
;

b = Op
¡
T−1

¢
,

the term

c = n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tFsΛ

0et,

with

n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tFsΛ

0et = n−1T−3
TX
s=1

TX
t=1

F̃sF
0
sΛ

0etF̄
0
t

= n−1

Ã
T−2

TX
s=1

F̃sF
0
s

!
Λ0

Ã
T−1

TX
t=1

etF̄
0
t

!
= Op (1) ;

and

d = n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tF

0
tΛ

0es,

with

n−1T−3
TX
s=1

TX
t=1

F̃sF̄
0
tF

0
tΛ

0es = n−1T−3
TX
s=1

TX
t=1

F̃se
0
sΛF

0
t F̄

0
t

= n−1

Ã
T−1

TX
s=1

F̃se
0
s

!
Λ0

Ã
T−1

TX
t=1

FtF̄
0
t

!
= Op (1) .
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Thus the limiting distribution of Λ
PT
t=1

¡
Ft − F̄t

¢
F̄ 0t is determined by c and d,

and we have

c = n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

Ã
T−1

TX
t=1

etF̄
0
t

!
=

n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

Ã
T−1

TX
t=1

etFt

!

+n−1

Ã
T−2

TX
s=1

FsF̃
0
s

!
Λ0

"
T−1

TX
t=1

et
¡
F̄t − Ft

¢0#

⇒ n−1QΛ0
∙Z

dWeB
0
ε + n

−1ΩeΛQ

¸
,

and

d = n−1

Ã
T−1

TX
s=1

F̃se
0
s

!
Λ0

Ã
T−1

TX
t=1

FtF̄
0
t

!
⇒ n−1

∙Z
BεdW

0
e + n

−1QΛ0Ωe

¸
ΛQ.

Combining the limiting distributions of all terms
PT
t=1 F̄tF̄

0
t ,
PT
t=1 etF

0
t ,
PT
t=1 et

¡
F̄t − Ft

¢0
and Λ

PT
t=1

¡
Ft − F̄t

¢
F̄ 0t in equation (70), we obtain equation (43).

Proof of Proposition 2. Consider the estimation error

F̂t − Ft = n−1Λ̂0zt − Ft
= n−1Λ̂0ΛFt + n

−1Λ̂0et − Ft
= n−1Λ̂0Λ̂Ft + n

−1Λ̂0
³
Λ− Λ̂

´
Ft + n

−1Λ̂0et − Ft.

Since we know that, by construction, Λ̂0Λ̂ = nIk, we have

n−1Λ̂0zt − Ft = n−1Λ̂0
³
Λ− Λ̂

´
Ft + n

−1Λ̂0et = I + II.

As far as I is concerned, it holds that, omitting n−1 for the sake of brevity

max
1≤t≤T

°°°Λ̂0 ³Λ− Λ̂´Ft°°° ≤ °°°Λ̂0 ³Λ− Λ̂´°°° max
1≤t≤T

kFtk ;

since °°°Λ̂0 ³Λ− Λ̂´°°° = Op ¡T−1¢
and

max
1≤t≤T

kFtk = Op
³
T 1/2

´
,

we get

max
1≤t≤T

°°°Λ̂0 ³Λ− Λ̂´Ft°°° = Op ³T−1/2´ .
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Therefore I = Op
¡
T−1/2

¢
uniformly in t. As per II, we have

Λ̂0et = Λ0et +
³
Λ̂− Λ

´0
et ≤ max

1≤t≤T
kΛ0etk+ max

1≤t≤T

°°°°³Λ̂− Λ´0 et°°°°
≤ kΛk max

1≤t≤T
ketk+

°°°³Λ̂− Λ´°°° max
1≤t≤T

ketk = Op (1) +Op
¡
T−1

¢
Op (1) .

Hence, II = Op (1). Thus we have

max
1≤t≤T

°°°F̂t − Ft°°° = Op (1) ,
which proves equation (44).
Equation (45) can be derived following a similar argument.
Proof of Theorem 7. Recall equation (29)

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
.

As far as the denominator of β̂ − β is concerned, we have

TX
t=1

ŴtŴ
0
t =

TX
t=1

WtW
0
t + op (1) .

We prove this with respect to
PT

t=1 F̂tF̂
0
t ; extension to

PT
t=1 ŴtŴ

0
t is straight-

forward though notationally more involved. First, consider the following de-
composition:

TX
t=1

F̂tF̂
0
t =

TX
t=1

FtF
0
t +

TX
t=1

F̂t

³
Ft − F̂t

´0
+

TX
t=1

³
Ft − F̂t

´
F̂ 0t +

TX
t=1

³
Ft − F̂t

´³
Ft − F̂t

´0
+I + II + III + IV.

We have

I =
TX
t=1

FtF
0
t = Op

¡
T 2
¢
.

As far as II and III are concerned, it holds that

III =
TX
t=1

h
n−1Λ̂0ΛFt + n

−1Λ̂0et − Ft
i
z0tΛ̂n

−1

=
TX
t=1

h
n−1Λ̂0Λ̂Ft − n−1Λ̂0

³
Λ̂− Λ

´
Ft + n

−1Λ̂0et − Ft
i
z0tΛ̂n

−1

= −n−2Λ̂0
³
Λ̂− Λ

´" TX
t=1

Ftz
0
t

#
Λ̂+ n−2Λ̂0

"
TX
t=1

etz
0
t

#
Λ̂,
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with

n−2Λ̂0
³
Λ̂− Λ

´" TX
t=1

Ftz
0
t

#
Λ̂ = Op

¡
T−1

¢
Op
¡
T 2
¢
= Op (T ) ,

and

n−2Λ̂0

"
TX
t=1

etz
0
t

#
Λ̂ = Op (T ) ;

therefore II = Op (T ). As far as IV is concerned

IV = n−2Λ̂0
TX
t=1

h³
Λ− Λ̂

´
Ft + et

i h³
Λ− Λ̂

´
Ft + et

i0
Λ̂

= n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

FtF
0
t

³
Λ− Λ̂

´0
Λ̂

+n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

Fte
0
tΛ̂+ n

−2Λ̂0
TX
t=1

etF
0
t

³
Λ− Λ̂

´0
Λ̂

+n−2Λ̂0

Ã
TX
t=1

ete
0
t

!
Λ̂,

with

n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

FtF
0
t

³
Λ− Λ̂

´0
Λ̂ = Op (1) ,

n−2Λ̂0
³
Λ− Λ̂

´ TX
t=1

Fte
0
tΛ̂ = Op (1) ,

and

n−2Λ̂0

Ã
TX
t=1

ete
0
t

!
Λ̂ = Op (T ) ;

therefore, IV = Op (T ). Thus we get

T−2
TX
t=1

F̂tF̂
0
t = T

−2
TX
t=1

FtF
0
t +Op

¡
T−1

¢
.

Note that even if the estimated factors are not consistent, T−2
PT
t=1 F̂tF̂

0
t is a

consistent estimator for T−2
PT
t=1 FtF

0
t . This holds for any consistent estimator

Λ̂ such that Λ̂−Λ = Op
¡
T−δ

¢
; in such case, consistency would be ensured at a

rate min {1, δ}.
With respect to the numerator of equation (29), this is equal to

nX
i=1

TX
t=1

Ŵtuit +
nX
i=1

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = I + II.
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We have:

I =
TX
t=1

Wtuit +
TX
t=1

³
Ŵt −Wt

´
uit

=
TX
t=1

Wtuit + n
−1Λ̂0

³
Λ− Λ̂

´ TX
t=1

Wtuit + n
−1Λ̂0

TX
t=1

etuit,

with
TX
t=1

Wtuit = Op (T ) ,

n−1Λ̂0
³
Λ− Λ̂

´ TX
t=1

Wtuit = Op
¡
T−1

¢
Op (T ) = Op (1) ,

and

n−1Λ̂0
TX
t=1

etuit = Op

³
T 1/2

´
,

which follows from Assumption 6. As far as II is concerned, we have

II = n−1Λ̂0
TX
t=1

zt

³
Wt − n−1Λ̂0z̄t

´0
= n−1Λ̂0

TX
t=1

zt

h
Wt − n−1Λ̂0ΛWt − n−1Λ̂0et − n−1

³
Λ̂− Λ

´
zt

i0
= −n−2Λ̂0

TX
t=1

z̄te
0
tΛ− n−2Λ̂0

TX
t=1

z̄tz̄
0
t

³
Λ̂− Λ

´0
= Op (T ) +Op

¡
T−1

¢
Op
¡
T 2
¢
.

Hence, the numerator of equation (29) is Op (T ). Combining this result with
the asymptotic magnitude of the denominator of equation (29), we get"

nX
i=1

TX
t=1

WtW
0
t + op (1)

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
= Op

¡
T−2

¢
Op (T ) = Op

¡
T−1

¢
.

This proves equation (46).
As far as the limiting distribution of the numerator of equation (29) is con-

cerned, we first study the term
Pn
i=1

PT
t=1 Ŵt

³
Wt − Ŵt

´0
β. We have:

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = n−1Λ̂0

TX
t=1

z̄t

³
Wt − n−1Λ̂0z̄t

´0
β

= n−1Λ̂0
TX
t=1

z̄tW
0
tβ − n−2Λ̂0

TX
t=1

z̄tz̄
0
tΛ̂β

= I + II.
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Since it holds that z̄t = ΛWt + ēt, we have

I = n−1Λ̂0
TX
t=1

ΛWtW
0
tβ + n

−1Λ̂0
TX
t=1

ētW
0
tβ,

and

−II = n−2Λ̂0
TX
t=1

ΛWtW
0
tΛ

0Λ̂β + n−2Λ̂0
TX
t=1

ētē
0
tΛ̂β +

+n−2Λ̂0
TX
t=1

ΛWtē
0
tΛ̂β + n

−2Λ̂0
TX
t=1

ētW
0
tΛ

0Λ̂β.

Given that asymptotically Λ̂ = Λ+ T−1D1
Λ, we have, with respect to I:

n−1Λ̂0
TX
t=1

ΛWtW
0
tβ + n

−1Λ̂0
TX
t=1

ētW
0
tβ = n−1

Z
B̄εB̄

0
εβ + n

−1T−1D1
ΛΛ

Z
B̄εB̄

0
εβ

+n−1Λ0
Z
dB̄eB̄

0
εβ, (71)

and, as far as II is concerned

n−2Λ̂0
TX
t=1

ΛWtW
0
tΛ

0Λ̂β + n−2Λ̂0
TX
t=1

ētē
0
tΛ̂β + n

−2Λ̂0
TX
t=1

ΛWtē
0
tΛ̂β + n

−2Λ̂0
TX
t=1

ētW
0
tΛ

0Λ̂β

= n−2T−1D1
ΛΛ

Z
B̄εB̄

0
εβ + n

−2T−1
Z
B̄εB̄

0
εΛ

0D10
Λβ

+n−2
Z
B̄εB̄

0
εβ + n

−2Λ0ΣeΛβ + n
−2
Z
B̄εdB̄

0
eΛβ

+n−2Λ0
Z
dB̄eB̄

0
εβ. (72)

Thus, combining equations (71) and (72) we have

Λ̂0
TX
t=1

z̄tW
0
tβ − Λ̂0

TX
t=1

z̄tz̄
0
tΛ̂β = n−1

¡
1− n−1

¢ ∙Z
B̄εB̄

0
εβ + T

−1D1
ΛΛ

Z
B̄εB̄

0
εβ + Λ

0
Z
dB̄eB̄

0
εβ

¸
−n−2

∙
T−1

Z
B̄εB̄

0
εΛ

0D10
Λβ + Λ

0ΣeΛβ +

Z
B̄εdB̄

0
eΛβ

¸
.

As far as the term
PT
t=1 Ŵt (

Pn
i=1 uit) is concerned, we have

TX
t=1

Ŵt

Ã
nX
i=1

uit

!
= n−1Λ̂0

TX
t=1

z̄t

Ã
nX
i=1

uit

!

= n−1Λ̂0
TX
t=1

ΛWt

Ã
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i=1

uit

!
+ n−1Λ̂0

TX
t=1

ēt

Ã
nX
i=1
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!
,
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which asymptotically leads to

1

T
n−1Λ̂0Λ

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒ n−1

Z
B̄εdBu

⎛⎝ nX
i=1

nX
j=1

hij

⎞⎠1/2

.

This completes the proof of (47).
Finally, we consider the case when equation (2) is a spurious relationship.

Since uit ∼ I (1), we have that
TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = Op (T ) ,

and

TX
t=1

Ŵtuit =
TX
t=1

Wtuit + n
−1Λ̂0

³
Λ− Λ̂

´ TX
t=1

Wtuit + n
−1Λ̂0

TX
t=1

etuit

= Op
¡
T 2
¢
+Op (T ) +Op (T ) ,

so that
PT
t=1 Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸
= Op

¡
T 2
¢
, which proves (48).

In this case the limiting distribution of the numerator is given by the leading
term

PT
t=1Wt (

Pn
i=1 uit), so that the same result as in equation (60) holds,

namely

1

nT 2

TX
t=1

Wt

Ã
nX
i=1

uit

!
⇒
p
h̄∆
µZ

B̄εBu

¶
.

This proves equation (49).
Proof of Theorem 8. Consider equation (30)

β̂
FD − βFD =

"
nX
i=1

TX
t=1

∆F̂t∆F̂
0
t

#−1( nX
i=1

TX
t=1

∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸)
.

As far as the denominator is concerned, we have

TX
t=1

∆F̂t∆F̂
0
t = n

−2Λ̂0
TX
t=1

∆zt∆z
0
tΛ̂ = Op (T ) .

As far as the numerator of β̂
FD − βFD is concerned, we have
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³
∆Ft −∆F̂t
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TX
t=1

∆zt

∙
∆F 0t

³
Λ̂− Λ

´0
−∆e0t

¸
Λ̂

= n−2Λ̂0

"
TX
t=1

∆zt∆F
0
t

#³
Λ̂− Λ

´0
Λ̂− n−2Λ̂0

"
TX
t=1

∆zt∆e
0
t

#
Λ̂

= Op (T )Op
¡
T−1

¢
+Op (T ) = Op (T ) .

47



Also we have
TX
t=1

∆F̂t∆uit =
TX
t=1

∆Ft∆uit +
TX
t=1

³
∆F̂t −∆Ft

´
∆uit

= Op

³√
T
´
+Op

³√
T
´
= Op

³√
T
´
.

This proves (50).

The limiting distribution of β̂
FD − βFD can be obtained as follows. Con-

sider first the denominator of β̂
FD − βFD. Given that T−1

PT
t=1∆F̂t∆F̂

0
t =

n−2T−1Λ̂
PT
t=1∆zt∆z

0
tΛ̂
0, and recalling that

p lim
1

T

TX
t=1

∆zt∆z
0
t = Σ∆z,

we have

n−2T−1Λ̂0
TX
t=1

∆zt∆z
0
tΛ̂

p→ n−2Λ0Σ∆zΛ.

As far as the numerator of β̂
FD − βFD is concerned, the term that dominates

is
PT

t=1∆F̂t

³
∆Ft −∆F̂t

´0
β and we have:

1

T

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β =

1

T
n−1Λ̂0

TX
t=1

∆zt

³
∆F 0t − n−1∆z0tΛ̂0

´
β

=
1

T
n−1Λ̂0

TX
t=1

∆zt∆F
0
tβ −

1

T
n−2Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β

=
1

T
n−1Λ̂0

TX
t=1

Λ∆Ft∆F
0
tβ +

1

T
n−1Λ̂0

TX
t=1

∆et∆F
0
tβ −

1

T
n−2Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β,

where n−1T−1Λ̂0
PT

t=1∆et∆F
0
tβ is of order Op

¡
T−1/2

¢
. Since

n−1
1

T
Λ̂0

TX
t=1

Λ∆Ft∆F
0
tβ

p→ n−1Σ∆Fβ,

and

n−2
1

T
Λ̂0

TX
t=1

∆zt∆z
0
tΛ̂
0β

p→ n−2Λ0Σ∆zΛβ,

we have

1

T

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β

p→ n−1Σ∆Fβ − n−2Λ0Σ∆zΛβ.

Recalling that the denominator converges to n−2Λ0Σ∆zΛ in probability, we fi-
nally obtain equation (51).
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Lemma 4 Let Λ̂ be the principal component estimator for Λ in

∆zt = Λ∆Ft +∆et,

and let F̂t = n−1Λ̂FD0zt and ∆F̂t = n−1Λ̂FD0∆zt. It holds that

max
1≤t≤T

°°°F̂t − Ft°°° = Op ³T 1/2´ , (73)

uniformly in t and with respect to the first differenced estimates given by ∆F̂t =
Λ̂FD0∆zt

max
1≤t≤T

°°°∆F̂t −∆Ft°°° = Op (1) , (74)

uniformly in t.

Proof. Consider the estimation error

F̂t − Ft = n−1Λ̂FD0zt − Ft
= n−1Λ̂FD0ΛFt + n

−1Λ̂FD0et − Ft
= n−1Λ̂FD0Λ̂FDFt + n

−1Λ̂FD0
³
Λ− Λ̂FD

´
Ft + n

−1Λ̂FD0et − Ft

= n−1Λ̂FD0
³
Λ− Λ̂FD

´
Ft + n

−1Λ̂FD0et = I + II.

As far as I is concerned, we have, omitting the term n−1

max
1≤t≤T

°°°Λ̂FD0 ³Λ− Λ̂FD´Ft°°° ≤ °°°Λ̂FD0 ³Λ− Λ̂FD´°°° max
1≤t≤T

kFtk ;

given that
°°°Λ̂FD0 ³Λ− Λ̂FD´°°° = Op (1) and

max
1≤t≤T

kFtk = Op
³
T 1/2

´
,

we get

max
1≤t≤T

°°°Λ̂FD0 ³Λ− Λ̂FD´Ft°°° = Op ³T 1/2´ .
As far as term I is concerned, it holds that:

Λ̂FD0et = Λ0et +
³
Λ̂FD − Λ

´0
et ≤ max

1≤t≤T
kΛ0etk max

1≤t≤T

°°°°³Λ̂FD − Λ´0 et°°°°
≤ kΛk max

1≤t≤T
ketk+

°°°³Λ̂FD − Λ´°°° max
1≤t≤T

ketk = Op
³
T 1/2

´
+Op (1)Op

³
T 1/2

´
.

Hence, Λ̂FD0et = Op
¡
T 1/2

¢
. This proves equation (73). Equation (74) can be

derived noting that

∆F̂t −∆Ft = Λ̂FD0
³
Λ− Λ̂FD

´
∆Ft + Λ̂

FD0∆et = I + II.
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Here, as far as I is concerned, we have

max
1≤t≤T

°°°Λ̂FD0 ³Λ− Λ̂FD´∆Ft°°° ≤ °°°Λ̂FD0 ³Λ− Λ̂FD´°°° max
1≤t≤T

k∆Ftk ,

where
max
1≤t≤T

k∆Ftk = Op (1) .

As far as I is concerned, we have

Λ̂FD0∆et = Λ0∆et +
³
Λ̂FD − Λ

´0
∆et ≤ max

1≤t≤T
kΛ0∆etk max

1≤t≤T

°°°°³Λ̂FD − Λ´0∆et°°°°
≤ kΛk max

1≤t≤T
k∆etk+

°°°³Λ̂FD − Λ´°°° max
1≤t≤T

k∆etk = Op (1) +Op (1)Op (1) .

Proof of Theorem 9. Equation (29) states that

β̂ − β =

"
nX
i=1

TX
t=1

ŴtŴ
0
t

#−1( nX
i=1

TX
t=1

Ŵt

∙³
Wt − Ŵt

´0
β + uit

¸)
.

With respect to the denominator we have

TX
t=1

ŴtŴ
0
t = Op

¡
T 2
¢
,

which follows from the proof of theorem 7. The limiting distribution is given by

1

T 2

TX
t=1

ŴtŴ
0
t =

1

T 2
n−2Λ̂0

TX
t=1

z̄tz̄
0
tΛ̂⇒ D20

Λ

Z
B̄zB̄

0
zD

2
Λ.

Note that the denominator is not affected by the uits, and therefore the results
derived for its rate of convergence and its limiting distribution hold irrespective
of whether equation (2) is a cointegration or a spurious regression.
As far as the numerator is concerned, this is given by

nX
i=1

TX
t=1

Ŵt

³
Wt − Ŵt

´0
β +

nX
i=1

TX
t=1

Ŵtuit = I + II.

As far as I is concerned we have
TX
t=1

Ŵt

³
Wt − Ŵt

´0
β = Op

¡
T 2
¢
,

and the asymptotic law of I is given by

1

T 2
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T 2
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zD

2
Λβ.
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Since I does not depend on the uits, the results derived above for its rate of
convergence and its limiting distribution hold independently of whether equation
(2) is a cointegration or a spurious regression.
As far as II is concerned, we have that II = Op (T ) - if equation (2) is a

cointegrating regression - or II = Op
¡
T 2
¢
- if it is a spurious regression; in this

case we have

1

T 2

nX
i=1

TX
t=1

Ŵtuit =
1

T 2
n−1Λ̂0

TX
t=1

z̄t

Ã
nX
i=1

uit

!

⇒ n−1D20
Λ

Z
B̄zBu

Ã
nX
i=1

nX
i=1

h∆ij

!1/2
.

Thus, when equation (2) cointegrates, the term that dominates in the numer-

ator is I =
PT
t=1 Ŵt

³
Wt − Ŵt

´0
β. Combining its rate of convergence and its

limiting distribution with the ones of the denominator, we prove equations (52)
and (53). When equation (2) is a spurious regression, term II has the same
order of magnitude as I. This does not affect the rate of convergence of β̂ − β,
but it does affect its limiting distribution. Combining the asymptotic law of
the denominator of β̂ − β with the limiting distribution of terms I and II, we
finally get equation (54).

Consider now β̂
FD − βFD. From equation (30) we know that

β̂
FD − βFD =

"
nX
i=1

TX
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∆F̂t∆F̂
0
t

#−1( nX
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´0
β +∆uit

¸)
.

The denominator of this expression is

TX
t=1

∆F̂t∆F̂
0
t = Op (T ) , (75)

as proved in Theorem 8, and using the definition of D2
Λ it holds that
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As far as the numerator is concerned, we have

TX
t=1

∆F̂t

³
∆Ft −∆F̂t

´0
β = Op (T ) ,

and
TX
t=1

∆F̂t∆uit = Op
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´
,
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so that we have
PT
t=1∆F̂t

∙³
∆Ft −∆F̂t

´0
β +∆uit

¸
= Op (T ). Combining this

with equation (75), we obtain equation (55). As far as the limiting distribution
of the numerator is concerned, this can be derived noting that

TX
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³
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β = n−1
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and
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TX
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Ã
1
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TX
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β
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since Cov (∆et,∆Ft) = 0. Combining this with the asymptotic law of the
denominator, we get equation (56).
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