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ABSTRACT 

In survival analysis, Cox’s name is associated with the partial likelihood 
technique that allows consistent estimation of proportional hazard scale parameters 
without specifying a duration dependence baseline. In discrete choice analysis, 
McFadden’s name is associated with the generalized extreme-value (GEV) class of 
logistic choice models that relax the independence of irrelevant alternatives assumption. 
This paper shows that the mixed class of proportional hazard specifications allowing 
consistent estimation of scale and mixing parameters using partial likelihood is 
isomorphic to the GEV class. Independent censoring is allowed and I discuss 
approximations to the partial likelihood in the presence of ties. Finally, the partial 
likelihood score vector can be used to construct log-rank tests that do not require the 
independence of observations involved. 
(JEL C14, C41) 
 
Keywords: proportional hazard, random effects, partial likelihood, GEV class 
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COX-McFADDEN PARTIAL AND MARGINAL LIKELIHOODS  

FOR THE PROPORTIONAL HAZARD MODEL WITH RANDOM EFFECTS 

 

 

1. INTRODUCTION 

This paper examines the problem of incorporating random effects in a proportional 

hazard model, leaving the baseline hazard unspecified. It shows that the set of models 

that support partial likelihood estimation of the hazard scale coefficients can be made 

isomorphic to the set of generalized extreme-value models developed by McFadden 

(1978). An interesting aspect of the proof is the application of a multivariate extension of 

a theorem proved by Sergei Bernstein in 1928 for the univariate case. This extension 

provides a means to check whether a given multivariate function can be the likelihood 

function for a sample of durations, marginal on group-specific random effects.  

Cox (1972, 1975) develops the proportional hazard model of durations and suggests 

estimation using a partial likelihood approach. Contributions to the partial likelihood are 

provided at each failure time by the subset of the sample at risk immediately before the 

failure time. The partial likelihood approach has the advantage of being baseline-free: 

duration-dependence parameters, frequently viewed as nuisance parameters, do not have 

to be estimated. For researchers interested in duration dependence, the duration baseline 

can be recovered in a second step. The case for partial likelihood was strengthened with 

the later finding that partial likelihood estimation is equivalent to rank-information 

marginal likelihood estimation. 

The introduction of stratified partial likelihood estimation (see Chamberlain 1985, 

Gross and Huber 1987, Andersen, Borgan, Gill, and Keiding 1993, and Ridder and Tunali 

1999) allows for models with group-specific fixed effects and group-specific duration 
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baselines. Group-specific duration baselines can be recovered in a second stage, but 

group-specific fixed effects and the coefficients of covariates invariant within groups 

cannot be recovered. Stratified partial likelihood estimation, therefore, does not allow 

hazard prediction. 

This paper investigates a class of models for baseline-free partial likelihood or rank-

information marginal likelihood with random effects that allows hazard prediction and 

the estimation of coefficients of covariates invariant within groups. The model draws 

heavily on the previous work of Hougaard (1986a, 1986b) and the analysis of McFadden 

(1978) generalizing the multinomial logit model. 

In the absence of group-specific fixed or random effects the mathematical form of the 

partial likelihood or rank-information marginal likelihood contributions is identical to 

that of the individual log-likelihood contributions for the multinomial logit model, 

proposed by Luce (1959) to estimate the probability that an item is selected from a choice 

set of alternatives. McFadden (1974) presents a formal econometric analysis of the 

multinomial logit model. The model assumes that the stochastic utility of each choice is 

the sum of a deterministic component and an extreme-value error term. The model has 

the property that the log-odds of any two choices are independent of the availability or 

attributes of other alternatives. While the independence of irrelevant alternatives (IIA) 

property simplifies the econometric estimation, it is an undesirable feature in choice 

settings in which alternatives have close substitutes. McFadden (1978) outlines a 

generalization of the multinomial logit model that allows the IIA property to be relaxed. 

McFadden’s generalization of the multinomial logit model introduces a class of 

multivariate extreme-value distributions (called generalized extreme-value or simply 
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GEV) defined by imposing restrictions on the negative of the log of the copula of the 

distribution. (Copulas and negative log copulas are defined in section 2 of this paper.) 

Four restrictions are imposed on the negative log copula: sign alternation of partial 

derivatives, non-negativity, an infinite limit as any argument limits to infinity, and 

homogeneity of degree one. As will be demonstrated, the key step for incorporating 

random effects in a baseline-free partial likelihood or rank-information marginal 

likelihood framework is the use of McFadden’s negative log copula to model the joint 

hazard function of the durations in the sample. 

Section 2 describes the multinomial logit model, the IIA property, and the GEV class 

of models developed by McFadden. Section 3 presents Cox’s proportional hazard model 

and the two main propositions of this study. Proposition 1 states that any non-negative 

multivariate function with appropriately alternating partial derivatives is a joint survivor 

function marginal on group-specific random effects. Proposition 2 states that the 

additional properties regarding infinite limits and homogeneity of degree one make the 

partial likelihood and rank-information marginal likelihood baseline-free. Proposition 1 is 

proved in section 4. Proposition 2 is proved for the partial likelihood case in section 5 and 

for the rank-information marginal likelihood case in section 6. In section 7 the case of 

tied data is discussed. The recovery of the baseline hazard is described in section 8.  

Section 9 discusses the construction of log-rank tests with dependent observations. 

Section 10 presents examples of Cox-McFadden random-effects models with unspecified 

baselines. Section 11 summarizes the paper. An appendix discusses asymptotic inference. 
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2. THE MULTINOMIAL LOGIT, IIA, AND THE GEV MODEL 

The discrete choice model specification that is used most often in applied 

econometric applications is the multinomial logit model.  The multinomial logit model 

provides a simple closed form for the choice probabilities; in contrast, the calculation of 

the choice probabilities in the multinomial probit model requires multivariate integration 

that can only be accomplished through numerical approximation.  The likelihood function 

for the multinomial logit specification is globally concave, which eases the computational 

burden of obtaining maximum likelihood estimates. 

In the multinomial logit model, the probability that an individual chooses choice i 

from a choice set C consisting of J choices is given by 

(2.1) ( | , , ) / ,ji

j C

P i C e e
∈

= ∑ Z βZ βZ β  

where jZ is a K-vector of explanatory variables describing the attributes of alternative j 

(perhaps interacted or moderated by the characteristics of the decision-maker), 

1( ,. . . , )J=Z Z Z gives the attributes of C, and β  is a K-vector of taste parameters. 

The multinomial logit model is characterized by the independence of irrelevant 

alternatives (IIA) property, namely, the ratio of probabilities (relative odds) of choosing 

any two alternatives is independent of the availability of a third alternative: 

(2.2) 0 0( | , , ) ( | , , ) ( | , , ) ,P i C P i C P C C=Z β Z β Z β  

where 0i C C∈ ⊆ and  

(2.3) 
0

0( | , , ) ( | , , ) .
j C

P C C P j C
∈

= ∑Z β Z β  

A famous example has a commuter choosing between a car and a bus for a commute. 

When he is late for work, which happens randomly one-third of the time, he drives 



 7

(choice A); otherwise he chooses a bus. There are two bus companies, a red bus company 

and a blue bus company, indistinguishable but for color. When he is not late and is 

waiting for a bus, the first bus to arrive is equally likely to be blue (choice BB) or red 

(choice RB). From this information it is clear that with choice set { }, ,C A RB BB=  

(2.4) 1( ) ( ) ( ) .3P A P RB P BB= = =  

Now suppose that the blue bus company suspends operations. The choice set becomes 

{ }0 ,C A RB= , which has probability 2/3 by equations (2.3) and (2.4). With choice set 

{ }0 ,C A RB= , the multinomial logit model predicts that 

(2.5) 1( ) ( ) ,2P A P RB= =  

 using equations (2.2) and (2.4). But this prediction is not likely to be validated. The 

commuter will continue to choose the car whenever he is late, 1/3 of the time, and the red 

bus, 2/3 of the time, whenever he is not. 

It is clear from this example that models that have the IIA property are inadequate in 

describing choice from a set of alternatives that have different degrees of substitutability 

or complementarity. The red bus and blue bus are perfect substitutes, whereas the car and 

the red bus (or the car and the blue bus) are not. Several studies (McFadden, Train, and 

Tye 1977, Hausman and McFadden 1984, Small and Hsiao 1985, and McFadden 1987) 

discuss methods of testing whether IIA is violated in a given econometric application. 

The next step is choosing an alternative model, preferably one with closed forms for the 

choice probabilities. 

This problem was resolved by McFadden (1978) making using of results derived by 

Williams (1977) and Daly and Zachary (1978) on the compatibility of a given 
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probabilistic choice model with utility maximization.1 McFadden’s solution is given in 

the following theorem. 

 

Theorem 1 (McFadden): 

Suppose 1( , . . . , )JM θ θ  is a function defined on the non-negative real numbers with the 

following four properties: 

1) alternating distinct partials, i.e., for any distinct 1{ , . . . , }Qj j from the choice set 

{1, . . . , }J , the Qth partial 
1

/ . . .
Q

Q
j jM θ θ∂ ∂ ∂ is non-negative if Q is odd and non-

positive if Q is even. 

2) non-negativity; 

3) infinite limits, i.e., 1lim ( , . . . , ) , 1, . . . , ;
i

JM i J
θ

θ θ
→∞

= ∞ =  and 

4) homogeneity of degree one. 

Then, the probabilities 

(2.6) 
1

1
( , . . . , )( | , , ) ( , . . . , ) , 1,. . . ,/

J
i J

i

M e eP i C e M e e i J
e

∂
= =

∂

Z βZ β
Z β Z βZ β

Z βZ β  

                                                 
1. A probabilistic choice model is compatible with utility maximization if and only 

if the choice probabilities sum to unity, are non-negative, translation invariant, integrable, 

i.e., ( | , , ) / ( | , , ) / for all , ,j iP i C P j C i j C∂ ∂ = ∂ ∂ ∈Z β Z β Z β Z β  and their implied 

distribution function is well-defined, i.e., 1 1
1( 1) ( | , , ) / . . . [ ] . . .J J

i JP i C− −− ∂ ∂ ∂ ∂Z β Z β Z β Z β   

exists and is nonnegative and continuous for all i C∈  (see Daly and Zachary 1979, or 

Börsch-Supan 1987). 
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define a probabilistic choice model on the choice set {1, . . . , }J that is consistent with 

utility maximization. 

 

The function M is McFadden’s negative log copula. A copula is a function that 

assigns the value of the joint distribution function to each n-tuple of values of the 

marginal distributions. (Andersen 2004 uses copulas to construct a two-stage semi-

parametric estimator for multivariate failure-time data.) I define a negative log copula to 

be a function that assigns the value of the negative log of the joint distribution function to 

each n-tuple of values of the negative log of the marginal distributions. McFadden’s 

negative log copula will be shown to play a crucial role in specifying the baseline-free 

partial likelihood and rank-information marginal likelihood that is consistent with group-

specific random effects.  

 

 3. THE PROPORTIONAL HAZARD MODEL AND TWO PROPOSITIONS 

 The duration or failure time T of a stochastic process is its random age at termination 

or failure. The assumption in this study is that durations are continuous random variables: 

they possess an absolutely continuous distribution function ( )F t . The distribution 

function is non-defective, i.e., ( ) 1 ,F ∞ = and has density ( )f t . The unitary complement 

of the distribution function of a continuous duration 

(3.1) 
( ) ( )

1 ( ) .
S t P T t

F t
≡ ≥
= −

 

 is its survivor function. The survivor function represents the probability that the process 

survives up to age t, and only fails at time t or later.  
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 One of the fundamental concepts in the analysis of continuous durations is the hazard 

rate, denoted by h and defined by: 

(3.2) ( ) ( ) /(1 ( )) .h t f t F t≡ −  

The quantity ( )h t dt represents the probability that the process fails in the interval 

[ , )t t dt+  conditional on survival to age t. It is well known that for a specific ( )h t , the 

survivor function and density are given by: 

(3.3) 0
( ) exp( ( ) )

exp( ( ))

t
S t h u du

H t

= −

≡ −

∫  

and 

(3.4) 
0

( ) ( ) exp( ( ) ) .
t

f t h t h u du= −∫  

For a sample of N spells, Cox’s proportional hazard specification assigns to spell i a 

hazard rate of the form: 

(3.5) 0

0

( | , ) exp( ) ( )
( ) ,

i i

i

h t h t
h tθ

=
≡

Z β Z β
 

where iZ  is the covariate vector for spell i, 1( ,. . . , )N=Z Z Z , β is the  coefficient vector, 

and 0h is the (unspecified) baseline hazard rate. (I will assume that the covariate vector is 

time-invariant, i.e., it does not change with process age. The principal results of this study 

allow time-varying covariates, as discussed in the appendix, Ondrich 2005.) The 

integrated baseline hazard rate is defined by 

(3.6) 0 00
( ) ( ) ,

t
H t h u du≡ ∫  

so that the survivor function for spell i can be written simply as 0( ) exp( ( ))i iS t H tθ= − . In 

a proportional hazard model the hazard elasticity with respect to any continuous positive 
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covariate depends only on the value of the covariate and its coefficient, and does not 

require additional knowledge of the process age t.  

The sample survivor function for the sample of N spells is defined as: 

(3.7) 1 1 1( , . . . , | , ) ( , . . . , ) .N N NS u u P T u T u≡ ≥ ≥Z β  

It will also be necessary to define marginal survivor functions. The marginal survivor 

function of a subset of the N sample spells is derived from the sample survivor function 

by setting 0iu =  for all i  not in the subset. Alternatively, denote the subset by A and for 

each i define A
iY  if i  is an element of A. Then, letting u  be the vector 1( , . . . , )Nu u , the 

marginal survivor function is given by: 

(3.8) 1 1( | , ) ( , . . . , | , ) .A A
A N NS S Y u Y u=u Z β Z β  

Of particular interest will be the marginal survivor function ( ) ( | , )R tS t ι Z β , for which u  

is the constant vector t ι , where ι  is the N-dimensional unitary vector, and the subset of 

interest is the risk set at time t, denoted ( )R t , the subset of sample spells that empirically 

survive to age t. Note that (0)R is the complete sample of durations. 

If the N sample spells are statistically independent, the sample survivor function is: 

(3.9) 0
1

( | , ) exp( ( )) ,
N

i i
i

S H uθ
=

= −∑u Z β  

defined on non-negative real N-tuples u . The main proposition in this study involves 

samples of statistically dependent (mixed) spells for which the survivor function takes the 

form: 

(3.10) 1 0 1 0( | , ) exp( ( ( ), . . . , ( )) ),N NS M H u H uθ θ= −u Z β  
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again defined on the non-negative real N-tuples u . The function M stands for 

McFadden’s negative log copula. 

In equation (3.10), 0( ) ( )i i i iu H uθ θ≡ has two possible interpretations, one of which 

must be chosen. The first is the unmixed individual integrated hazard. This equals the 

negative log of the unmixed individual survivor function, that is, the negative log of the 

individual survivor function when the value of its multiplicative random effect equals 

unity. The second interpretation is the mixed individual integrated hazard. This is the 

negative log of the mixed individual survivor function. The mixed individual survivor 

function is the individual survivor function with the multiplicative random effect 

integrated out. The mixed individual survivor function has also been called the marginal 

individual survivor function, because it is the survivor function marginal on the random 

effects, but I will reserve the term marginal individual survivor function for the functions 

in equation (3.8). 

The function ( )i iuθ  is given the second interpretation. The unmixed individual 

integrated hazard is denoted by ( )i iuλ . It is clear that for each M in equation (3.10) there 

exists *M  such that  

(3.11) *
1 1 1 1( ( ), . . . , ( )) ( ( ), . . . , ( )) .N N N NM u u M u uλ λ θ θ=  

The functions M and *M  satisfying equation (3.11) are said to be associated. 

 To simplify the notation further, let 1( , . . . , )Nθ θ≡θ , 0 0 1 0( ) ( ( ), . . . , ( ))NH u H u≡H u , 

and the indicators A
iY  be defined as before. Now define 

(3.12) 0 1 1 0 1 0( , ( ), ) ( ( ), . . . , ( )) .A A
N N NM A M Y H u Y H uθ θ=θ H u  

Then, for all u and A, 
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(3.13) 0( | , ) exp( ( , ( ), ))) .AS M A= −u Z β θ H u  

If u  is a constant vector and 1 1( ( ), . . . , ( ))N NM u uθ θ  is homogeneous of degree one, then: 

(3.14) 0 0( , ( ), ) ( ) ( , , ) ,M t A H t M A=θ H ι θ ι  

so that for all constant vectors u  and sets A, 

(3.15) 0( | , ) exp( ( ) ( , , ))) .AS t H t M A= −ι Z β θ ι  

The preceding results on sample survivor functions and marginal survivor functions 

will be useful in proving the main propositions of this study, which I now present. 

Proposition 1: 

Suppose *
1( , . . . , )NM λ λ is a non-negative function defined on the non-negative real 

numbers possessing alternating partials, i.e., 

1) for any non-negative vector of integers 1( , . . . , )Nq q , the Qth partial, where 

1

N

i
i

Q q
=

=∑ , of *
1( , . . . , )NM λ λ , 1*

1 1( , . . . , ) / . . . NqqQ
N NM λ λ λ λ∂ ∂ ∂ , is non-negative if 

Q is odd and non-positive if Q is even. 

Then the sample survivor function *exp( )M− is consistent with a random-effects 

specification. 

 

Proposition 2: 

Suppose that the non-negative function 1( , . . . , )NM θ θ  associated with 

*
1( , . . . , )NM λ λ from Proposition 1 has the following properties: 

2) infinite limits, i.e., 1lim ( , . . . , ) , 1, . . . , ;
i

NM i N
θ

θ θ
→∞

= ∞ =  

and 
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3) homogeneity of degree one. 

Suppose again that the sample survivor function is given by equation (3.10), and ties in 

the data, i.e., two durations with the same age, occur with probability zero. Then the 

partial likelihood and rank-information marginal likelihood are baseline-free and the 

probability that spell i in risk set ( )R t fails at time t is given by 

(3.16) ( , , ( ))( | ( ), , ) ( , , ( )) ./i
i

M R tP i R t M R tθ
θ

∂
=

∂
θ ιZ β θ ι  

 

Proposition 1 will be proved in the next section. The condition on alternating partials 

for *M in Proposition 1 is for any partial derivative and not just for distinct partials. In 

fact, the condition on alternating partials for *M  implies that M has alternating distinct 

partials. To see this, write iλ  as a function of iθ and note that 

(3.17) 
*(0, . . . ,0, ( ),0, . . . ,0)
( ( ))

i i i

i i i

Mθ λ θ

ϑ λ θ

=

=
 

for 1, . . . ,i N= . Therefore, iϑ  and iλ  are inverse functions, and by the chain rule: 

(3.18) ( ( )) ( ) 1i i i i iϑ λ θ λ θ′ ′ =  

for each i. By Proposition 1, 0iϑ ′ >  and therefore 0iλ ′ >  for each i. It follows that for 

any distinct 1{ , . . . , }Qj j : 

(3.19) 
1 1

1 1

*

1

( , . . . , ) / . . .

( , . . . , ) / . . . .

Q Q

i

Q Q

i

Q
j j j j

Q
jQ

j j j j
i j

M

d
M

d

θ θ θ θ

λ
λ λ λ λ

θ=

∂ ∂ ∂

⎛ ⎞
= ∂ ∂ ∂ ⎜ ⎟⎜ ⎟

⎝ ⎠
∏
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In equation (3.19), the sign of the left-hand side is the same as the sign of 

1 1

*( , . . . , ) / . . .
Q Q

Q
j j j jM λ λ λ λ∂ ∂ ∂ . Thus, Proposition 1 implies that M has alternating 

distinct partials. But because Proposition 1 requires more than this, the class of models 

generated by Propositions 1 and 2 is, strictly speaking, a subclass of McFadden’s original 

GEV class. However, all examples presented in McFadden (1978) also belong to the 

subclass, and to simplify the discussion, I will equate the subclass class and the GEV 

class. 

The proof of Proposition 2 will be completed in sections 5 and 6. Note first that I deal 

only with non-negative functions M because a negative value for M implies that the 

survivor function, which is a probability, can exceed unity.  Furthermore, properties 2)-3) 

in Proposition 2 are, in fact, necessary and sufficient for the partial likelihood and rank-

information marginal likelihood to be baseline-free. The necessity of property 2) follows 

from the requirement that the sample survivor function be non-defective to ensure that 

the integral of the rank-information marginal likelihood is unity. 

A non-defective sample survivor function is one that assigns a zero probability to all 

events in which any spell survives to infinity. In other words, zero is the limiting 

probability for any limiting sequence of events for which the age of a given spell limits to 

infinity. The maintained assumption is that each mixed individual survivor function is 

non-defective: it limits to zero as age limits to infinity. Equivalently, the mixed individual 

integrated hazard limits to infinity with age. Thus, zero is the limiting probability for any 

limiting sequence of events for which the mixed individual integrated hazard of a given 

spell limits to infinity. It follows that M limits to infinity with the mixed individual 

integrated hazard of any spell. 
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The necessity and sufficiency of property 3) will be demonstrated for the partial 

likelihood estimator in section 5 and for the rank-information marginal likelihood in 

section 6. 

      

4.  THE LAPLACE TRANSFORM, COMPLETE MONOTONICITY, AND 

RANDOM EFFECTS 

 
In this section I prove Proposition 1, which states that alternating partials of the 

negative log of the sample survivor function are sufficient for the sample survivor 

function to be consistent with a random-effects specification. 

The starting point is to specify a vector of non-negative spell-specific random effects, 

1( , . . . , )Nν ν=ν , that is orthogonal to the covariate matrix Z . Denote the joint 

distribution function of ν  by 1( , . . . , | , ).Nν νΩ Z β  The vector ν  captures the effect of 

unobserved variables that determine the sample survivor function. Conditional on ν , Z , 

and β , the sample survivor function is the product of N independent spell survivor 

functions and is written as: 

(4.1) 
1

( | , , ) exp( ( )) .
N

i i i
i

S uν λ
=

= −∑u ν Z β  

Unfortunately, the survivor function in equation (4.1) cannot be the basis for a partial 

likelihood or rank-information marginal likelihood since the iν ’s are unobserved. The 

unobserved effects must be integrated out of the sample survivor function over their joint 

distribution: 

(4.2) 1{ }
1

( | , ) exp( ( )) ( , . . . , | , ) .
N

N

i i i NR
i

S u dν λ ν ν
+

=

= − Ω∑∫ 0
u Z β Z β

∪
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The sample survivor function ( | , )S u Z β  is an example of a multivariate Laplace 

transform. Relevant results on univariate Laplace transforms that are straightforward to 

extend to the multivariate case are found in Feller (1971). In the univariate case, if 1G  is a 

univariate distribution function concentrated on {0}R+ ∪ , the Laplace transform 1ω  of 1G  

is defined as: 

(4.3) 1 1{0}
( ) exp( ) ( ) , 0.

R
s dG sω λ λ λ

+
= − ≥∫ ∪

 

Analogously, in the multivariate case, if JG is a J-variate distribution function 

concentrated on { }JR + 0∪ and 1( , . . . , )Jλ λ=λ , then the Laplace transform Jω  of JG  is 

defined as: 

(4.4) 1{ }
1

( ) exp( ) ( ,. . . , ) , 0, 1, . . . , .
J

J

J i i J J iR
i

s dG s s i Jω λ λ
+

=

= − ≥ =∑∫ 0
λ

∪
 

Feller (1971) shows that distinct distribution functions have distinct Laplace 

transforms, and he discusses the convergence of the integral in equation (4.3). If the 

integral converges for aλ > , then the function 1ω defined for aλ > is called the Laplace 

transform of 1G . In the present context, I deal only with Laplace transforms that are 

defined for all 0λ ≥ (actually, since my chief concern is with the multivariate case, I deal 

only with J-variate Laplace transforms that are defined for the region { }≥λ 0 .) The 

reason for dealing only with these is that iλ  corresponds to the unmixed individual 

integrated hazard, which is non-negative, but should not otherwise be bounded from 

below a priori. 

Feller (1971) also proves a theorem on the convergence of sequences of univariate 

Laplace transforms. I will need a multivariate version of this theorem, which I state 
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without proof. The proof of the theorem is a straightforward extension of the proof in 

Feller (1971) for the univariate case. 

 

Theorem 2 (Continuity Theorem):  

For 1, 2, . . .n =  let n
JG  be a  J-variate distribution function with Laplace transform n

Jϕ .  

If n
J JG G→  where JG  is a possibly defective distribution with transform Jϕ , then 

( ) ( )n
J Jϕ ϕ→λ λ  for non-zero and non-negative λ . 

Conversely, if the sequence { ( )}n
Jϕ λ  converges for each non-zero and non-negative λ  to 

a limit ( )Jϕ λ , then Jϕ  is the transform of a possibly defective distribution function JG , 

and n
J JG G→ . 

The limit JG  is not defective if and only if ( ) 1Jϕ →λ  as →λ 0 . 

 

The next step is to define the property of complete monotonicity. Feller (1971) 

defines a (non-negative) univariate function 1ϕ  to be completely monotone if it possesses 

derivatives 1
n

n

d
d
ϕ
λ

 of all orders and 1( )( 1) 0
n

n
n

d
d
ϕ λ
λ

− ≥ . Bernstein (1928) proves that a 

univariate function 1ϕ  on [0, )∞  is the Laplace transform of a probability distribution 1G  

if and only if it is completely monotone and 1(0) 1.ϕ =  Feller (1971) calls Bernstein’s 

theorem a beautiful theorem. While it may be difficult to justify such an attribution 

objectively, the multivariate version of Bernstein’s beautiful theorem that I present below 

is the critical step in demonstrating that McFadden’s class of GEV models for discrete 
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choice can be made isomorphic to the set of models that incorporate random effects in the 

Cox proportional hazard model with an unspecified baseline. 

I define the (non-negative) J-variate function 1( ,. . . , )J Jϕ λ λ to be completely 

monotone if for any non-negative vector of integers 1( , . . . , )Jq q , the Qth partial, where 

1

J

i
i

Q q
=

=∑ , of 1( ,. . . , )J Jϕ λ λ , 1
1 1( ,. . . , ) / . . . JqqQ

J J Jϕ λ λ λ λ∂ ∂ ∂ , is non-negative if Q is even 

and non-positive if Q is odd. It is important to note that this definition of multivariate 

complete monotonicity is not the same as the alternating partials property in Proposition 

1. In Proposition 1, the function *M has first partials which are positive, while for the 

completely monotone function, first partials are negative. However, *M does have 

completely monotone first partials. 

 

Theorem 3: 

A function Jϕ  on { }JR + 0∪  is the Laplace transform of a J-variate distribution JG  if and 

only if it is completely monotone and ( ) 1.Jϕ =0  

Proof: 

Note first that if JG  is a J-variate probability distribution and Jϕ  is its Laplace transform, 

then ( ) 1Jϕ =0  and Jϕ  possesses partial derivatives of all orders. Furthermore, if 

1

J

i
i

Q q
=

=∑ ,  

(4.5) 

1
1 1

1{ }
1 1

( 1) ( ,. . . , ) / . . .

exp( ) ( ,. . . , ) 0 .

J

i
J

qqQ Q
J J J

JJ
q

i i i J JR
i i

s s dG s s

ϕ λ λ λ λ

λ
+

= =

− ∂ ∂ ∂

⎛ ⎞
= − ≥⎜ ⎟

⎝ ⎠
∑ ∏∫ 0∪
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I have therefore proved the “only if” part. 

To prove the “if” part, assume 1( , . . . , )J Js sϕ  (with ( ) 1Jϕ =0 ) to be completely 

monotone and consider the substitution / , 1, . . . , ,i n
is n ne i Jλ−= − =  for fixed 0n > and 

positive iλ . Define  

(4.6) 1 //
1( , . . . , ) ( , . . . , ).J nnn

J J J n ne n ne λλϕ λ λ ϕ −−= − −  

Taylor-expanding the right-hand side of (4.6) around the J-vector equal to n for each 

component yields 

(4.7) 

1
1

/
1

0 1

/

0 0 11

( , . . . , ) ( , . . . , )

( ,. . . , )( ) ,
! . . .

i

i i

J
J

QJ
nn

J J J
Q i i

QQ J
q nJ

qq
q q iJ

ne n n
s

n nn e
Q s s

λ

λ

ϕ λ λ ϕ

ϕ

∞
−

= =

∞ ∞
−

= = =

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

∂−
= ⋅ ⋅⋅

∂ ∂

∑ ∑

∑ ∑ ∏
 

where /

1

i

QJ
n

i i

ne
s

λ−

=

⎛ ⎞∂
−⎜ ⎟∂⎝ ⎠

∑  in the first line is the identity operator when 0Q = , and in the 

second line, 
1

J

i
i

Q q
=

=∑ . From the second line, 1( , . . . , )n
J Jϕ λ λ  is the Laplace transform of a 

distribution attributing probability mass 
1

1

( ,. . . , )( )
! . . . J

QQ
J

qq
J

n nn
Q s s

ϕ∂−
∂ ∂

 to the point 1( ,. . . , )Jqq
n n

 

(where for each 1, . . . , ,i J=  0,1, 2, . . .iq = ). Now ( ) ( )n
J Jϕ ϕ→λ λ  as n →∞ . Therefore, 

by the Continuity Theorem and the fact that ( ) 1Jϕ =0 , ( )Jϕ λ  is the Laplace transform of 

a non-defective distribution JG . 

 

I have now shown that 
*Me−  is a sample survivor function consistent with a random-

effects specification if and only if it is completely monotone. If, in addition, *( ) 0M →0 , 
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the joint distribution of random effects 1( , . . . , | , )Nν νΩ Z β is non-defective. To prove 

Proposition 1, I now need to show that 
*Me− is completely monotone if *M has 

completely monotone first partials. This again is the multivariate version of a theorem in 

Feller (1971). 

The proof is by induction on Q. It is obviously true for 1.Q =  Any Qth partial 

derivative is the sum of i terms of the form
*M

ieχ − , where iχ  is the product of integral 

positive powers of partials of *M . Thus, any (Q + 1)th partial derivative is the sum of  i 

terms of the form
* *M M

i j j iD e e Dχ χ− −+ , where jD  is the operator for the partial derivative 

with respect to the jth argument. Clearly, 
*M

i jD eχ −  is of opposite sign to
*M

ieχ −  because 

*M  has completely monotone first partials. On the other hand, j iD χ  is evaluated by the 

chain rule, and is of opposite sign to iχ , because taking a partial derivative of any integral 

positive power of a partial of *M  involves a sign change if *M has completely monotone 

first partials. Proposition 1 is now proved. 

 

5.  PARTIAL LIKELIHOOD 

Cox (1975) develops the partial likelihood method for inference in models containing 

a large, possibly infinite, number of the nuisance parameters. In the context of the 

proportional hazard model, the coefficient vector β  represents the parameter of interest 

and the baseline hazard 0 ( )h t is characterized by a (possibly infinite-dimensional) set of 

nuisance parameters labeled ψ .  When ψ is finite-dimensional and the form of the 

baseline hazard is known, it may be possible to construct the likelihood function and 
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jointly maximize β and ψ .  In other situations it may be possible to condition on a 

sufficient statistic for ψ and use the resulting conditional distribution for inference about 

β . 

Unfortunately, when ψ is infinite-dimensional or when the likelihood function for β  

and ψ is complex, neither approach, joint maximization of the likelihood function with 

respect to β and ψ or the computation of conditional distributions given a sufficient 

statistic, may be feasible. The method of partial likelihood attempts to overcome this 

obstacle by constructing the likelihood function and decomposing it into two parts. 

Let X  be a random vector with density ( | , , )gX x Z β ψ . In the case of an analysis of 

spells, X might be the vector 1( , . . . , )NX X , where min( , )i i iX T U= , iT  is the failure time, 

iU  is an uninformative censoring time, and iT  and iU  are independent. Spell data for 

observation  i are censored at age t if it is not known that iT t= and t is the greatest age 

for which it is known that .iT t≥  In this case .iU t=  Censoring is uninformative if, at 

each age t, the probability that a spell is censored in [ , )t t dt+ , given ( )R t and 

0

( ) ( )
h

R t R t h
>

+ = +∪ , does not depend on β (see Kalbfleisch and Prentice, 1980; Arjas and 

Haara, 1984; and Fleming and Harrington, 1991). Thus, censoring is informative 

whenever the distribution of iU  depends on ,β  even if iU  and iT  are independent 

(Fleming and Harrington, 1991). 

Fleming and Harrington (1991) motivate the idea underlying Cox’s partial likelihood 

by pointing out that in some applications, the likelihood can be written as the product of 

conditional likelihood and marginal likelihood: 
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(5.1)      |( | , , ) ( | , , , ) ( | , , ),g g g=X W V Vx Z β ψ w v Z β ψ v Z β ψ  

where ( , ).′ ′ ′=x w v  If one of the factors on the right-hand side of equation (5.1) does not 

depend on ψ , then it can be used for inference about ,β  with the simplification 

compensating for the loss of efficiency. Cox assumes that there exists a one-to-one 

transformation from X  into ( ) ( ), ,N NW V where ( )
1( , . . . , )i

i=W W W and 

( )
1( , . . . , ).i

i=V V V  Then: 

 

 

(5.2) ( 1) ( )
( 1) ( )

| ,
1

( | , , ) ( | , , , , )i i
i

N
i i

i
i

g g −
−

=

=∏X W W V
x Z β ψ w w v Z β ψ  

( 1) ( 1)
( 1) ( 1)

| ,
1

( | , , , , ) ,i i
i

N
i i

i
i

g − −
− −

=

• ∏ V W V
v w v Z β ψ  

where (0) (0) { }.= = ∅W V When the first product on the right-hand side of equation (5.2) 

does not depend on ψ , Cox calls it the partial likelihood for β and suggests inference 

based on its maximization. Wong (1986) derives regularity conditions for the consistency 

and asymptotic normality of the partial likelihood estimator. In the context of duration 

analysis, ( )iW  contains the sample information on failure times and ( )iV contains the 

sample censoring information. Note that when censoring is uninformative, the second 

product in equation (5.2) is unlikely to contain substantial information about .β  Fleming 

and Harrington (1991) provide the following construction of the partial likelihood for 

duration analysis. 

Suppose there are L observed failure times: 

(5.3) 0 1 10 . . . ,o o o o
L LT T T T += < < < < = ∞  
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and let ( )i be the anti-rank, the label for the spell failing at o
iT , i.e., ( ) .o

i iT T=  Note that 

the covariate vectors for the L spells that fail are (1) ( ),. . . , LZ Z . Then: 

(5.4) {( )}.i i=W  

Suppose further that there are in spells censored at or after o
iT but before 1

o
iT + , at the 

ordered times 1 , . . . , .
i

o o
i inT T  Let ( , )i j  be the label for the spell censored at o

ijT , so that the 

covariate vectors associated with these in  spells are ( ,1) ( , ),. . . ,
ii i nZ Z . Then: 

(5.5) 1{ ,{ , ( , ) | 1, . . . , }}.o o
i i ij iT T i j j n+= =V  

The partial likelihood is: 

(5.6) ( 1) ( )

1

( {( )} | , , , ) .
L

i i
i

i

P i −

=

=∏ W W V Z β  

This is the probability that spell ( )i fails at o
i iT t= , given that there is exactly one failure at 

it and the risk set ( )iR t  survives to it : 

(5.7)

( )
( ) {( )}

( )
( ) { }

( [ , ) |{ | ( )}, , ) ( [ , ) |{ | ( )}, , )
.

( [ , ) |{ | ( )}, , ) ( [ , ) |{ | ( )}, , )
i

i
i

i i i l i i k i i l i i
k R t i

j i i l i i k i i l i ij R t
k R t j

P T t t dt T t l R t P T t t dt T t l R t

P T t t dt T t l R t P T t t dt T t l R t
∈ −

∈
∈ −

∈ + ≥ ∈ ∉ + ≥ ∈

∈ + ≥ ∈ ∉ + ≥ ∈

∏
∑ ∏

Z β Z β

Z β Z β

 

When the N sample spells are independent, 

(5.8) ( )( 1) ( )

( )

( {( )} | , , , ) / .i j

i

i i
i

j R t

P i e e−

∈

= = ∑Z β Z βW W V Z β  

To prove that the partial likelihood estimator is baseline-free when the N sample 

spells are not statistically independent and the sample survivor function is given by 
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equation (3.10), two lemmas are required. The first lemma describes the first partials of 

homogeneous functions. 

 

Lemma 1: 

If 1( , . . . , )NM θ θ is homogeneous of degree k, then [ ]
1 1( , . . . , ) ( , . . . , )i

N N
i

MM θ θ θ θ
θ

∂
=
∂

 is 

homogeneous of degree k-1 for 1, . . . , .i N=  

 

Proof: 

[ ]
1 1

1

1

[ ]
1

( , . . . , ) ( , . . . , )

( , . . . , )

( )( , . . . , )
( )

( , . . . , ) .

k i k
N N

i

N
i

i
N

i i
i

N

Mt M t

M t t

d tM t t
t d

tM t t

θ θ θ θ
θ

θ θ
θ

θθ θ
θ θ

θ θ

∂
=

∂
∂

=
∂

∂
= ⋅
∂

=

 

Hence, 1 [ ] [ ]
1 1( , . . . , ) ( , . . . , ) .k i i

N Nt M M t tθ θ θ θ− = Q.E.D. 

 

The second lemma is frequently known as Euler’s Theorem (see Friedman 1971). 

 

Lemma 2 (Euler’s Theorem): 

If 1( , . . . , )NM θ θ is homogeneous of degree k, then 

(5.9) 1 1
1

( , . . . , ) ( , . . . , ) .
N

N i N
i i

MkM θ θ θ θ θ
θ=

∂
=

∂∑  

 
Proof: 
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Define the function M as follows:  

(5.10) 1 1 2( , . . . , , ) ( , , . . . , ) .k
N NM t t M t t tθ θ θ θ θ−=  

Since M is homogeneous of degree k, M does not depend on t and 0M
t

∂
=

∂
 for 

all 1( , . . . , )Nθ θ and all 0 .t >  Hence, we are done if we show that, when 1,t =  

(5.11) 1 1
1

( , . . . , ) ( , . . . , ) .
N

N i N
i i

M MkM
t

θ θ θ θ θ
θ=

∂ ∂
= −

∂ ∂∑  

Applying the product rule of differentiation to the right-hand side of (5.10) yields: 

(5.12) 1
1 1

1

( , . . . , ) ( , . . . , ) .
N

k i
N N

i i

dtM Mkt M t t t t
t t dt

θθ θ θ θ
θ

− −

=

∂ ∂
= − ⋅

∂ ∂∑  

 Setting 1t =  gives the desired result. Q.E.D. 

 

Now note that in the statistically dependent case, the jth term in the denominator of 

equation (5.7) can be written as the difference of two conditional survivor functions: 

(5.13)

( ) ( )(( ) ( ) { | ( )}, , ) (( ) { | ( )}, , ),
i iR t i j l i i R t i l i iS t dt dt T t l R t S t dt T t l R t+ − ≥ ∈ − + ≥ ∈ι ι | Z β ι | Z β  

where jι  is the jth row of the xN N  identity matrix. The first conditional survivor 

function in (5.13) is equal to 

(5.14) ( ) ( )(( ) ( ) | , ) / ( | , ) ,
i iR t i j R t iS t dt dt S t+ −ι ι Z β ι Z β   

while the second equals 

(5.15) ( ) ( )(( ) | , ) / ( | , ) .
i iR t i R t iS t dt S t+ ι Z β ι Z β  

The difference therefore equals  

(5.16) [ ]
( ) ( )( | , ) / ( | , ) ,

i i

j
R t i R t iS t dt S t− ι Z β ι Z β  
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where [ ]
( )i

j
R tS  represents the partial derivative of the survivor function with respect to its jth 

argument. Since 

(5.17) ( ) ( )
( ) 1 1 0 1 0( | , ) exp( ( ( ), . . . , ( ))) ,i i

i

R t R t
R t N N NS M Y H u Y H uθ θ= −u Z β  

the derivative equals 

(5.18)

 ( ) ( ) ( )[ ] [ ]
( ) 0 1 1 0 1 0 ( )( | , ) ( ) ( ( ), . . . , ( )) ( | , ) .i i i

i i

R t R t R tj j
R t j j j N N N R tS Y h u M Y H u Y H u Sθ θ θ= −u Z β u Z β  

Because [ ]jM  is homogeneous of degree zero: 

(5.19) ( ) ( ) ( )[ ] [ ]
( ) 0 1 1 ( )( | , ) ( ) ( , . . . , ) ( | , )i i i

i i

R t R t R tj j
R t i j j i N N R t iS t Y h t M Y Y S tθ θ θ= −ι Z β ι Z β  

by Lemma 1, and (5.13) becomes 

(5.20) 

( ) ( ) ( )[ ] [ ]
( ) ( ) 0 1 1( | ( ), , ) / ( | , ) ( ) ( , . . . , ) ,i i i

i i

R t R t R tj j
R t i i R t i j j i N NS t R t dt S t Y h t M Y Y dtθ θ θ− =ι Z β ι Z β  

which represents the jth term in the denominator of (5.7). Expression (5.7) becomes 

(5.21) 

( )
( ) ( )

( )( 1) ( )

( ) [ ]

1

( , , ( ))
( {( )} | , , , ) ,

( , , ( ))

i

i

R t
i i i

ii i
i N

R t j
j j i

j

MY R t
P i

Y M R t

θ
θ

θ

−

=

∂
∂

= =

∑

θ ι
W W V Z β

θ ι
 

since the presence of the set-inclusion indicators Y permits the summation from 1 to N in 

the denominator. Now, Euler’s Theorem, the fact that M is homogeneous of degree one, 

and the fact that spell ( )i is in ( )iR t allow the simplification:  

(5.22) 
( )

( )( 1) ( )

( , , ( ))
( {( )} | , , , ) ,

( , , ( ))

i i
ii i

i
i

M R t
P i

M R t

θ
θ−

∂
∂

= =
θ ι

W W V Z β
θ ι

 

giving the same form as the probability in (3.15).  The proof of Proposition 2 for the 

partial likelihood is complete. 
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6. RANK-INFORMATION MARGINAL LIKELIHOOD 

 When censoring is uninformative and failure times and censoring times are 

statistically independent, it seems reasonable to conclude that the second product in 

equation (5.2) provides little information about ,β and maximizing the first product with 

respect to βwill yield an estimator close to the maximum likelihood estimator. 

Unfortunately, no formal proof of this has ever been provided. The discovery that 

maximization of the rank-information marginal likelihood yields the partial likelihood 

estimator when spells are independent was important, because the marginal likelihood 

function is a proper likelihood function to which the usual asymptotic theory of 

maximum likelihood directly applies. In this section it will be shown that whenever the 

joint survivor function has the form specified in Proposition 2, the partial likelihood and 

rank-information marginal likelihood estimators are identical.  

 Initially, it is assumed that the sample spells are uncensored. Let , 1, . . . , ,iT i N=  

represent the failure times of the N sample spells. Further, let 0 1 . . .o o o
NT T T< < <  be the 

ordered failure times and let ( )i denote the anti-rank, the label of the spell failing at o
iT .  

Construct two vectors, 1( , . . . , ) ,o o
NT T=O  the vector of order statistics, and 

((1), . . . , ( )),N=r  the vector of rank statistics. Note that the vector of sample failure 

times, 1( , . . . , )NT T=T can be reconstructed from knowledge of O and r . 

 Kalbfleisch and Prentice (1980) present an example in which 4N = and 

(5,17,12,15)=T . The vector of order statistics for this data is (5,12,15,17)=O and the 

vector of rank statistics is (1,3, 4,2)=r . If the value of the thj component of r equals i , 
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then iT  is the thj smallest sample failure time, with value given by the thj component of 

O . 

 The fact that the vector of rank statistics carries the sample information about βwhen 

the baseline hazard rate 0h is completely unspecified can be demonstrated by a simple 

argument. The hazard rate for duration i , iT , in the proportional hazard model was 

specified in equation (3.5) by 0( | , ) exp( ) ( ) .i ih t h t=Z β Z β  For all i , define 1( )i iV g T−= , 

where g is an arbitrary element of G, the group of differentiable and strictly increasing 

transformations of (0, )∞ into (0, )∞ . Then, given Z and ,β the hazard rate for iV  is given 

by *
0exp( ) ( ),i h vZ β where *

0 0( ) ( ( )) ( ).h v h g v g v′=  This shows that when the baseline hazard 

is unspecified, the vector of order statistics can be modified arbitrarily as long as the 

vector of rank statistics is unchanged, and the problem of inference about β has not 

changed. The estimation problem for ,β given an unspecified baseline, is invariant to 

(continuous) monotonic transformations of duration.  

The estimation of  β  can therefore be based on the rank-information marginal 

likelihood, i.e., the marginal likelihood of r . As in the discussion of the partial 

likelihood, sample values of the random ordered failure times are 1( , . . . , )o o
NT T =  

1( , . . . , )Nt t . When sample spells are independent and, the marginal likelihood of r is 

given by 

(6.1) (1) ( )( ((1), . . . , ( )) | , ) ( . . . | , )NP N P T T= = < <r Z β Z β  

 
1 1

( ) 10
1

( | , ) .
N

N

i i Nt t
i

f t dt dt
−

∞ ∞ ∞

=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∏∫ ∫ ∫ Z β  
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When sample spells are dependent, the density for iT  must also be conditioned on iA , the 

event ( ){ | 1, . . . , },j iT t j i N> = + where NA  is the null event.  Therefore, in the case of 

dependent spells, 

(6.2) (1) ( )( ((1), . . . , ( )) | , ) ( . . . | , )NP N P T T= = < <r Z β Z β  

1 1
( ) 10

1

( | , , ) .
N

N

i i i Nt t
i

f t A dt dt
−

∞ ∞ ∞

=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∏∫ ∫ ∫ Z β  

The multiple integral in equation (6.2) is evaluated recursively, as given by: 

(6.3)

2 1
1 1 (1) 1 1 ( 1) ( ) 1 10

( | , , ) ( | , , ) ( | , , ) .
N N

N N N N N N N Nt t
f t A f t A f t A dt dt dt

− −

∞ ∞ ∞

− − − −
⎡ ⎤⎡ ⎤⎡ ⎤⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦∫ ∫ ∫Z β Z β Z β

 

It is required to prove that (6.3) equals 

(6.4) 
[( )]

( )

1

( , , ( ))
,

( , , ( ))

iN
i i

i i

M R t
M R t

θ

=
∏

θ ι
θ ι

 

 
where the superscript [( )]i  denotes the partial derivative with respect to the argument  

given by the anti-rank ( )i . I will prove that the rank-information marginal likelihood 

equals 

(6.5) ( )
[( )]

( , , (0))( )
0

1

( , , ( ))
(0) ,

( , , ( ))

iN
M Ri i

i i

M R t
S

M R t
θ

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∏ θ ιθ ι

θ ι
 

where 0 ( )S t  is the baseline survivor function 0exp( ( )) .H t−  The result follows from the 

fact that 0 (0) 1.S =   
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The proof is by induction on the number of integrations performed. Because NA  is the 

null event, the first integration is simply the probability that the ( )thN spell survives to 

1Nt − :  

(6.6) ( )
[( )]

( , , ( ))( )
0 1

( , , ( ))
( ) .

( , , ( ))
N

N
M R tN N

N
N

M R t
S t

M R t
θ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

θ ιθ ι
θ ι

 

Note that the expression in brackets equals one by virtue of Euler’s theorem and the fact 

that only the final one of the N arguments of 1( , . . . , )NM θ θ  is nonzero when the risk set 

is ( )NR t . 

The induction hypothesis is that the result for the first j integrations is: 

(6.7) ( ) 1
[( )]

( , , ( ))( )
0

1

( , , ( ))
( ) .

( , , ( ))
N j

iN M R ti i
N j

i N j i

M R t
S t

M R t
θ − +

−
= − +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∏

θ ιθ ι
θ ι

 

The proof is complete if I show that the result after 1j +  integrations is: 

(6.8) ( )
[( )]

( , , ( ))( )
0 1

( , , ( ))
( ) .

( , , ( ))
N j

iN M R ti i
N j

i N j i

M R t
S t

M R t
θ −

− −
= −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∏

θ ιθ ι
θ ι

 

Therefore, it must be shown that: 

(6.9) 
( )

( )

1

1

( , , ( ))

( ) 0

[( )]
( , , ( ))( )

0 1

( | , , ) ( )

( , , ( ))
( ) .

( , , ( ))

N j

N j

N j

M R t

N j N j N j N j N jt

N j
M R tN j N j

N j
N j

f t A S t dt

M R t
S t

M R t
θ

− +

− −

−

∞

− − − − −

−
− −

− −
−

=

∫
θ ι

θ ι

Z β

θ ι
θ ι

 

 
The first task is to evaluate ( )( | , , ) .N j N j N jf t A− − −Z β  Note that the probability that spell 

i survives to iu  given that spell  j survives to ju  for j i≠  is given by: 

(6.10) 1 1 1

1 1 1

( , . . . , , , , . . . , | , ) .
( , . . . , ,0, , . . . , | , )

i i i N

i i N

S u u u u u
S u u u u

− +

− +

Z β
Z β
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Hence, the probability that spell ( )N j−  survives to N jt −  given that the remaining spells 

in risk set ( )N jR t −  exceed N jt −  is given by: 

(6.11) 
1( ) ( )( | , ) / ( | , ) .

N j N jR t N j R t N jS t S t
− − +− −ι Z β ι Z β  

The density ( )( | , , )N j N j N jf t A− − −Z β  is obtained by deriving the numerator in (6.10) with 

respect to argument ( )N j−  and changing the sign: 

(6.12) 
1

[( )]
( )

( )
( )

( | , )
( | , , ) .

( | , )
N j

N j

N j
R t N j

N j N j N j
R t N j

S t
f t A

S t
−

− +

−
−

− − −
−

= −
ι Z β

Z β
ι Z β

 

Since the denominator on the right-hand side of (6.12) equals ( ) 1( , , ( ))

0 ( ) N jM R t

N jS t − +

−

θ ι
, the 

integral in (6.9) equals 

(6.13) 
1

[( )]
( ) ( | , ) .

N j
N j

N j
R t N j N jt

S t dt
−

− −

∞ −
− −−∫ ι Z β  

The partial derivative inside the integral of (6.13) equals 

(6.14) [( )]
( ) 0 0( , , ( )) ( ) exp( ( ) ( , , ( ))) .N j
N j N j N j N j N jM R t h t H t M R tθ −
− − − − −−θ ι θ ι  

Substituting (6.14) into (6.13), multiplying inside the integral by ( , , ( ))N jM R t −θ ι  and 

outside the integral by its reciprocal yields 

(6.15)

1

[( )]
( )

0 0

( , , ( ))
( ) ( , , ( )) exp( ( ) ( , , ( ))) .

( , , ( )) N j

N j
N j N j

N j N j N j N j N jt
N j

M R t
h t M R t H t M R t dt

M R t
θ

− −

−
∞− −

− − − − −
−

− −∫
θ ι

θ ι θ ι
θ ι

 

The integrand in (6.15) equals 

(6.16) 
( ) ( , , ( ))

0 ( )
,

N jM R t

N j

N j

d S t
dt

−

−

−

θ ι
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and therefore the integral in (6.15) equals ( ) ( , , ( ))

0 1( ) N jM R t

N jS t −

− −−
θ ι

 . Substituting this 

expression into (6.15) yields the right-hand side of equation (6.9). The proof is complete 

for the case of no censoring. 

When sample spells can be censored, the data vector for the ith spell is ( , , )i i iX δ Z , 

where again min( , )i i iX T U=  for uninformative censoring time iU  independent of iT ,  

and iδ  is the censoring indicator equal to one when i i iX U T= <  and zero otherwise. Let 

1 . . .o o
NX X< <  represent the ordered observation times, and define 1* ( , . . . , ) .o o

NX X=O  

Let * ((1)*, . . . , ( )*)N=r denote the vector of corresponding anti-ranks, and let 

(1)* ( )** ( , . . . , )Nδ δ=δ denote the vector of ordered censoring indicators. Just as in the 

uncensored case where 1( , . . . , )NT T=T  can be reconstructed from knowledge of ( , )O r , 

here in the case where spells may be censored ( , )X δ , where 1( , . . . , )NX X=X and 

1( , . . . , ),Nδ δ=δ  can be reconstructed from knowledge of ( *, *, *)O r δ . As an example, 

suppose (5,17,12,15)=X  and (0,1,1,0).=δ  Then,  * (5,12,15,17) ,=O  * (1,3,4,2) ,=r  

and * (0,1,0,1) .=δ  If the value of the thj component of *r  equals i , then iX  is 

the thj smallest sample failure time, with value given by the thj component of *O . 

Similarly, the thi component of δ  equals one if and only if the value of 

the thj component of *r  equals i and the value of the thj component of *δ  equals one. 

The value of the thi component of δ  equals zero otherwise. 

Kalbfleisch and Prentice (1980) explain that some modification to the rank-

information marginal likelihood is necessary in the presence of general uninformative 

independent censoring. The censored model will not in general possess the group 
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invariance properties. When censoring occurs in the sample, the rank information is 

incomplete. In the example above, the vector of rank statistics, r , is known to be either 

(1,3,4,2) , (1, 4,3, 2) , or (1,4,2,3) ; more generally, it seems reasonable to estimate β  

using the marginal likelihood that the vector of rank statistics is one of those 

observationally possible. Doing so ignores the exact time of censoring, but the invariance 

property of the uncensored model demonstrates that the time between failures is 

irrelevant. Therefore, in a model with L failures, the marginal likelihood in (6.2) is 

adjusted as follows: 

(6.17) (1) ( )( ((1), . . . , ( )) | , ) ( . . . | , )LP L P T T= = < <r Z β Z β  

1 1
( ) 10

1

( | , , ) .
L

L

i i i Lt t
i

f t A dt dt
−

∞ ∞ ∞

=

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∏∫ ∫ ∫ Z β  

It is clear from the demonstration in the uncensored case that the marginal likelihood 

equals: 

(6.18) 
[( )]

( )

1

( , , ( ))
.

( , , ( ))

iL
i i

i i

M R t
M R t

θ

=
∏

θ ι
θ ι

 

The proof of Proposition 2 for the rank-information marginal likelihood in the presence 

of censoring is complete.  

 

7.  TIES IN THE DATA 

Although durations are continuous, the recording of durations will always involve 

some measurement error, and ties may result.  This is problematic because both the 

partial likelihood and rank-information marginal likelihood require the data to be 

completely rank-ordered. To incorporate tied data into the analysis, the same approach 

can be used as in the case of censoring. 
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Suppose that there are im  spells ( 1im ≥ ) at each of the L ordered observed failure 

times, it , where 
1

L

i
i

m N
=

=∑ . Assuming the ties to result from the grouping of durations in 

the continuous model, the information available on the rank vector is incomplete. While 

it is known that the ranks of spells failing at it  are less than failing at jt  whenever i j< , 

the ranks of the im  spells failing at it   cannot be known. The rank-information marginal 

likelihood in this case should specify the likelihood that the rank vector is one of those 

possible.  

In their discussion of the case of independent spells, for which 1
1

( , . . . , )
N

N i
i

M θ θ θ
=

=∑ , 

Kalbfleisch and Prentice (1980) point out that the calculation can be simplified somewhat 

by recognizing that the ranks assigned to the im  spells failing at it  do not depend on the 

ranks assigned to the jm  spells failing at jt . The sum then becomes the product of L 

weighted sums. Let iΞ  be the set of permutations of the labels of the im  spells failing at 

it  and let 1( , . . . , )
imξ ξ=ξ be an element of iΞ . As before, ( )iR t  is the risk set at time it . 

Define ( , )r
iR t ξ  to be the set difference 1 1( ) { , . . . , }i rR t ξ ξ −− and ( ) ( ) ( )i i iD t R t R t= − + to 

be the set of spells failing at it . 

Then, the marginal likelihood forβ can be expressed as 

(7.1) 
1

1 ( ) 1 ( , )

.
i

r
ii i

mL

j l
i j D t r l R t ξ

θ θ
−

∈Ξ= ∈ = ∈

⎛ ⎞⎛ ⎞⎡ ⎤⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎝ ⎠
∑ ∑∏ ∏ ∏
ξ

 

Because the summation in (7.1) is over all permutations of labels of the tied spells, 

the computation of (7.1) may be burdensome if there are a large number of ties at any 



 36

failure time. When the number of spells failing at each it  is small relative to the number 

of spells in the corresponding risk set ( )iR t , Peto (1972) and Breslow (1974) claim that 

(7.1) can be approximated using 

(7.2) ( )

1

( )

.i

i

i

jL
j D t

m
i

l
l R t

θ

θ

∈

=

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∏
∏

∑
 

Efron (1977) suggests an alternative approximation to (7.1) that takes into account that 

distinct summations 
( , )r

i

l
l R t ξ

θ
∈
∑   in (7.1) will have greater multiplicity the lower is the 

value of r : 

(7.3) ( )

1

( ) ( )1

.
( 1)
i

i

i i

jL
j D t

m
i

l l
l R t l D tr i

r
m

θ

θ θ

∈

=

∈ ∈=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎛ ⎞ ⎛ ⎞−⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∏
∏

∑ ∑∏
 

Kalbfleisch and Prentice (1980) suggest using a semi-parametric model formed by 

grouping failure times whenever the ratio of im  to the size of the risk set ( )iR t  is high for 

any failure time (see Prentice and Gloeckler 1978, and Meyer 1990). 

In the more general case in which sample spells are dependent, the marginal 

likelihood forβ becomes 

(7.4) 
1[ ]

1 ( ) 1

( , , ( )) ( , , ( , )) .
i

ii

mL
j r

j i i
i j D t r

M R t M R tθ ξ
−

∈Ξ= ∈ =

⎛ ⎞⎛ ⎞
⎡ ⎤⎜ ⎟⎜ ⎟⎣ ⎦⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ ∏ ∏
ξ

θ ι θ ι   

When the number of spells failing at each it  is small relative to the number of spells 

in the corresponding risk set ( )iR t , (7.4) can be approximated using 
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(7.5) 
( )

[ ]
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1

( , , ( ))
.

( , , ( ))
i

i

j
j iL

j D t
m

i i

M R t

M R t

θ
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=
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⎜ ⎟
⎜ ⎟
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⎝ ⎠

∏
∏

θ ι

θ ι
 

Finally, the following alternative approximation to (7.4) takes into account that distinct 

summations ( , , ( , ))r
iM R t ξθ ι  in (7.4) will have greater multiplicity the lower is the value 

of r : 

(7.6) 

[ ]

( )

1 [ ]

( )1

( , , ( ))
.

( 1)( , , ( )) ( , , ( ))

i

i

i

j
j iL
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l D tr i

M R t

rM R t M R t
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θ

θ

∈

=

∈=
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⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎛ ⎞−⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∏
∏

∑∏

θ ι

θ ι θ ι
 

 

8.  RECOVERING THE BASELINE 

Breslow (1972) develops a methodology for recovering the duration baseline from the 

partial likelihood estimates for a sample of independent spells. Breslow explains that the 

Kaplan-Meier estimate can be derived in a maximum likelihood framework by assuming 

that the hazard is constant between successive observed failure times: 

(8.1) 0 1( ) , , 1, . . . , .i i ih t t t t i Lρ −= < ≤ =  

He notes that this approach is used by Grenander (1956) to derive maximum 

likelihood estimates for the monotone hazard class. Breslow next adopts the convention 

of considering all censored spells as censored at the previous uncensored failure time. 

Breslow’s estimator for iλ  is the maximum likelihood estimator for the resulting 

likelihood (see Kalbfleisch and Prentice 1980): 

(8.2) 0 00
( )1 ( )

( ) exp( ( ) ) ,i
i

ii

L tm
i j j

j ti j D t

h t h u duθ θ
∈Ω= ∈

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
∑∏ ∏ ∫  
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where ( )itΩ  is the set of spells either failing or censored at it . Substituting in from (8.1) 

and rearranging terms gives 

(8.3) 1
( )1 ( )

exp( ( ) ) .i

ii

L
m

i j i i i j
j R ti j D t

t tρ θ ρ θ−
∈= ∈

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∏ ∏  

Since exp( )j jθ = Z β , the maximum likelihood estimator of iρ  for any value of β is 

therefore 

(8.4) 
1

( )

ˆ ,
( ) exp( )

i

i
i

i i j
j R t

m
t t

ρ
−

∈

=
− ∑ Z β

 

and the estimate of the cumulative baseline hazard 0 00
( ) ( )

t
H t h u du= ∫ , evaluated at it , is 

(8.5) 0
1

( )

ˆ ( ) .
exp( )

l

i
l

i
l j

j R t

mH t
=

∈

=∑ ∑ Z β
 

The estimators in (8.4) and (8.5) can both be evaluated at the value of β  that maximizes 

the rank-information marginal likelihood (corrected for ties). 

When spells are dependent, the likelihood becomes 

(8.6) [ ]
1

1 ( )

( , , ( )) exp( ( ) ( , , ( ))) .i

i

L
m j

i j i i i i i
i j D t

M R t t t M R tρ θ ρ −
= ∈

⎛ ⎞
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⎝ ⎠
∏ ∏ θ ι θ ι  

The maximum likelihood estimator of iρ  for any value of β is 

 

(8.7) 
1

ˆ ,
( ) ( , , ( ))

i
i

i i i

m
t t M R t

ρ
−

=
− θ ι

 

and the estimate of the cumulative baseline hazard evaluated at it is 

(8.8) 0
1

ˆ ( ) .
( , , ( ))

i
l

i
l l

mH t
M R t=

= ∑ θ ι
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9. THE CONSTRUCTION OF LOG-RANK STATISTICS WHEN 

OBSERVATIONS ARE DEPENDENT 

It is frequently important to determine whether two or more samples have been 

drawn from populations with identical survivor functions. If the available data are to be 

used efficiently in such a determination, the attempt should be made to construct a 

statistical test that summarizes differences in the survivor functions over the entire 

sample period and not just at a point in time. One of the first tests to do this with 

uncensored data was the log-rank test. The subsequent discovery that the log-rank test 

can be derived from score function tests based on the marginal and partial (log-) 

likelihoods led to more general tests that allowed for censoring. All of this work was in 

the context of independent spells. When spells are dependent, the new marginal and 

partial likelihood estimators described in sections 5 and 6 can be used to develop log-rank 

tests. The development of these log-rank tests is the subject of this section. 

A convenient starting point is a review of the construction of log-rank tests from 

score statistics for the marginal and partial likelihoods when spells are independent. The 

presentation follows closely the analysis by Kalbfleisch and Prentice (1980). 

The first step is the derivation of the score vector for the parameter vector .β  

There are four cases to consider. In the first case, there are no ties and no censoring. In 

this case, for a sample of L  spells, the score vector for β  is given by 
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(9.1) 
( ) ( )

( )
1

( )

( ) .

L

j jL
j i

i Li
j

j i

θ

θ
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=

=
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= ∑ −⎜ ⎟
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⎝ ⎠

β

Z
U β Z  

(In preceding sections, covariate vectors Z  are row vectors to avoid the necessity of 

writing transposes. Starting with this section and continuing through the appendix, 

covariate vectors are columns.) 

The second case continues to assume no ties but allows for independent 

censoring. There are several ways to write the score vector in this case. Perhaps the 

simplest uses the indicators ( )iR t
jY  that state whether spell j  is in the risk set ( ).iR t  In a 

sample of N  spells, N L−  of which are censored, the score vector can be written as 

(9.2) 
( )

1
( )

1 ( )
( ) .

i

i

N
R t
j j jL

j
i Ni R t

j j
j i
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⎝ ⎠

β

Z
U β Z  

Another way to write the score vector for this case uses the labels ( ,1)i  through ( , )ji n  to 

denote the ordered censored spells that are in risk set ( )iR t  but not in 1( ).iR t +  Using these 

labels, the score vector can be written as 

(9.3) 
( ) ( ) ( , ) ( , )

1
( )

1
( ) ( , )

1

(
( ) .

( )

i

i

nL

j j j l j lL
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i nLi
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θ θ

θ θ

= =

=

= =

⎛ ⎞∑ + ∑⎜ ⎟
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⎜ ⎟∑ + ∑⎜ ⎟
⎝ ⎠

β

Z Z
U β Z  

 It might seem that the analysis is problematic when ties occur in the data. 

Computing the partial likelihood estimator requires the evaluation of all permutations of 

possible (strict) orderings of the sample durations given the observed data. Moreover, the 

Breslow and Efron solutions are only approximations to the true partial likelihood that 

may not be appropriate to the calculation of the log-rank statistic. It turns out that the 
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simplified covariate vectors required for the log-rank statistic ensure that the score vector 

for β  from the true partial likelihood can always be calculated. Nonetheless, Kalbfleisch 

and Prentice find it insightful to present the score vector for β  from the Breslow solution 

and I shall do the same. 

 The third case allows ties but not censoring. I assume that there are L  distinct 

failure times 1, . . . , Lt t  and im  failures at time .it  For 1,..., , ij m= define ( )
j
iZ  to be 

covariate vector for the j the failure at it , ( ) ( )
1

im
j

i S i
j=

= ∑Z Z  and ( ) ( )exp{ }j j
i iθ ′= −Z β . Then the 

score vector in the third case can be written as 

(9.4) 
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Z
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The final case allows both ties and censoring. Again I assume L  distinct failure times 

1, . . . , Lt t  and im  failures at time it . There are also in  censoring times 1, . . . ,
ii int t  greater 

than or equal to it  but less than 1it + . There are ijm  spells censored at time ijt . The vectors 

j
iZ  and iSZ , as well as j

iθ , are defined as in the third case. Corresponding definitions are 

required for the censoring times. Define l
ijZ  to be the covariate vector for the l th spell 

censored at time ijt , 
1

ijm
l

ijS ij
l=

= ∑Z Z , and exp{ }l l
ij ijθ ′= −Z β . The score vector in this final case 

can be written as 

(9.5) 
1 1 1

( )
1

1 1 1

( ) .

j j jp

j j jp

m n mL
l l l l
j j jp jpL j i l p l

i S i m n mLi
l l
j jp

j i l p l

m
θ θ

θ θ

= = = =

=

= = = =

⎛ ⎞⎛ ⎞⎛ ⎞
∑ ∑ ∑ ∑⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟⎝ ⎠= ∑ −⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟∑ ∑ + ∑ ∑⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

β

Z + Z
U β Z  
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Testing the hypothesis that β = 0  involves replacingθ ’s by unity in equations (9.1) 

through (9.5). For the case without ties or censoring, the score statistic becomes 

(9.6) 1
( ) ( )

1
( 1) ,

L L

i j
i j i

L i −

= =

⎛ ⎞∑ − − + ∑⎜ ⎟
⎝ ⎠βU (0) = Z Z  

  
which can be re-written in the following elegant form: 

(9.7) 1
( )

1 1
1 ( 1) .

L i

i
i j

L j −

= =

⎛ ⎞∑ − ∑ − +⎜ ⎟
⎝ ⎠βU (0) = Z  

 
The score statistic is linear in the ranked covariate vectors and is therefore a simple 

example of a linear rank statistic. For the case with both ties and censoring, the score 

statistic has the form: 

(9.8) 
1 1

( ) ,
jnL L

iS i jS jpS
i j i p

m
= = =

⎛ ⎞′∑ − ∑ + ∑⎜ ⎟
⎝ ⎠

βU (0) = Z Z Z  

where 
1 1
( ).

jnL

i i j jp
i p

m m m m
= =

′ = ∑ + ∑  

The log-rank test tests whether 1s +  populations labeled 0, 1, 2, . . . , s  have 

identical survivor functions. It arises as a special case of the hypothesis test for β = 0  by 

defining 1( , . . . , ) 'i i siZ Z=Z , where jiZ  equals one or zero according to whether or not 

individual i  is drawn from population .j  For the most general case that allows for both 

ties and censoring, the log-rank statistic can be written 

(9.9) ,−βU (0) = O E  

where 1S LSO = Z + . . . + Z  is a vector giving the observed number of failures, and 

(9.10) 
1 1

jnL L

i jS jpS
i j i p

m
= = =

⎛ ⎞′ ∑ ∑ ∑⎜ ⎟
⎝ ⎠

E = Z + Z  



 43

is a vector representing “expected” failures. 

 Kalbfleisch and Prentice (1980) point out that E  is not exactly the number of 

expected failures 

  but is rather the sum over failure times of the conditional expected number of 

failures in each sample, the expectation being under the null hypothesis and, at 

each time, being conditional upon the total number of failures at that time. (p.80) 

Kalbfleisch and Prentice explain that since the elements of E  are themselves random 

variables, it is clear that E  can represent the vector of expected failures only in an 

informal sense. 

Letting βV  represent the asymptotic variance matrix obtained from the true partial 

likelihood incorporating censoring and ties, the log-rank test statistic ' -1
β β βU (0) V U (0)  

is asymptotically 2
sχ  under the null hypothesis. Kalbfleisch and Prentice note that the 

asymptotic variance matrix obtained from Breslow’s approximation to the partial 

likelihood tends to overestimate the score statistic variance. Using the asymptotic 

variance matrix from the Breslow approximation results in a lower value of the test 

statistic and therefore leads to a more conservative test. 

 The log-rank test is a non-parametric test when the observations are independent. 

When observations are dependent, however, it turns out that parameters relating to the 

mixing distribution (the parameters incorporated in M ) have to be estimated. The partial 

likelihood estimates of these parameters can be used for this purpose.  

 In presenting the construction of the log-rank test when observations are 

dependent, I will present only the Breslow approximation to the partial likelihood (see 

section 7 and especially equation (7.5)), which allows for ties and censoring. The case 
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without ties can be recovered by setting 1, 1,...,im i L= =  and recognizing that each set 

( )iD t  will contain the single element i . 

 From equation (7.5), the log of the partial likelihood is given by 

(9.11) [ ] [ ]

1 ( ) ( )

log ( ( , , ( )) log ( , , ( ) .
i i

L
j j

p j i i j i
i j D t j R t

L M R t m M R tθ θ
= ∈ ∈

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑θ ι θ ι  

Defining 

(9.12) [ ] [ ],*

( )

( , , ( )) ( , , ( ))
i

j l j
j j l l i i

l R t

Z M R t M R tθ
∈
∑Z = Z + θ ι θ ι  

and 

(9.13) [ ]( , , ( )) ( , , ( )) ,j
j j i iP M R t M R tθ= θ ι θ ι  

the score vector for β  can be written as 

(9.14) * *

1 ( ) ( )
.

i i

L

j i j j
i j D t j R t

m P
= ∈ ∈

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑βU (β) = Z Z  

The score statistic testing the null hypothesis that β = 0  is then given by 

(9.15) ** * **

1 ( ) ( )
,

i i

L

j i j j
i j D t j R t

m P
= ∈ ∈

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑βU (β) = Z Z  

where 

(9.16) [ ] [ ],**

( )

( , , ( )) ( , , ( ))
i

j l j
j j l i i

l R t

M R t M R t
∈
∑Z = Z + Z ι ι ι ι  

and 

(9.17) [ ]* ( , , ( )) ( , , ( ))j
j i iP M R t M R t= ι ι ι ι  

are, respectively, equations (9.12) and (9.13) with all instances of , 1, . . . ,p p Nθ =  

evaluated at unity. 
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 As in the case of independent observations, the log-rank test arises here as a 

special case of the hypothesis test forβ = 0 . All instances of ( )jZ Z  comprising **
jZ  in 

equation (9.15) are binary vectors with i th element equal to unity, 1, . . . ,i s=  if and only 

if the j th (lth) individual is drawn from population i . Finally, note that the test can only 

be regarded as semi-parametric because the evaluation of M  and its first and second 

partials in (9.16) and (9.17) involve parameters of the mixing distribution. 

 The score statistic when observations are dependent again has a representation of 

the form given in equation (9.9). However, the terms O  and E  no longer correspond to 

observed and “expected” failures, but instead to observed and “expected” failures 

corrected for the dependence of observations (through clustering or grouping of the data). 

 Letting βV  represent the asymptotic variance matrix for β  from the true partial 

likelihood, the log-rank test statistic ' -1
β β βU (0) V U (0)  is asymptotically 2

sχ  under the null. 

(See Ondrich 2005 for a discussion of the asymptotic normality of the score vector.) It 

should be noted that the variance matrix forβ from the true partial likelihood will be 

more complicated than in the case of independent observations, and using the asymptotic 

variance matrix resulting from Breslow’s approximation to the true partial likelihood may 

become expedient. For reasons states previously, it is likely that this substitution will 

result in a more conservative test. An analysis of these conjectures would appear to be a 

fruitful area of research. 

 

 10.  EXAMPLES OF COX-McFADDEN MODELS 

I start this section by presenting several examples of Cox-McFadden models. 

Actually, all examples that I present have already appeared in the epidemiological 



 46

survival analysis or econometric discrete choice literatures, but have not been previously 

applied to partial likelihoods. 

 I assume that the sample of N  individuals can be divided into G  independent 

groups or clusters. Group g is composed of gN  individuals and is associated with its own 

negative log copula gM . Each gM satisfies the conditions of Propositions 1 and 2, and 

therefore 
1

G

g
g

M
=
∑  also satisfies these conditions. 

 The first example comes from Hougaard (1986a, 1986b) and results from positive 

stable mixing. Suppose 1 2, , . . . , , . . .nX X X  are independent and identically distributed. 

Their common distribution is stable if, for each ,n  there exists a constant nc  such that 

1nc X  and 
1

n

i
i

X
=
∑  follow the same distribution. Any stable distribution has constants nc  of 

the form 
1

n α  , where the characteristic exponent (0,2]α ∈ . Normal distributions have 

2α =  and are the only stable distributions with finite variance. The positive stable 

distributions (having support on the positive real numbers) all have (0,1)α ∈  and have 

Laplace transforms (apart from scaling factors) of the form ( ) exp( ),αω λ λ= −  for 0.λ ≥  

If group g  shares a common positive stable random effect with characteristic 

exponent α , then 

(10.1) 
1

( ,..., ) ,
Ng

gg N i
i j

M
α

αθ θ θ
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑  

 
which satisfies the conditions of Propositions 1 and 2. Econometricians will recognize 

this functional form from McFadden (1978). 
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 Feller (1971) shows that if 1X  and 2X  are independent stable distributions with 

characteristic exponents 1α  and 2 2( 1)α α < , then 
1

1 2X X α  is stable with characteristic 

exponent 1 2.α α  Therefore, if 1X  and 2X  are both positive stable, 
1

1 2X X α  is positive 

stable as well. Hougaard (1986b) uses this to construct a nested frailty model in which 

three siblings share a family effect and the twins share a “twin” effect.  

Sastry (1997) analyzes a nested frailty (using gamma distributions) for child survival 

in Brazil , where the data are clustered at both the family and community levels. 

Following Hougaard and using positive stable distributions to construct the nests, the 

negative log copula for community g composed of individuals j, each a member of a 

family i, is given by: 

(10.2) 
1

2
2 1

1
,g ij

i g j i

M
α

α
α αθ

∈ ∈

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑  

where 1 2α α≥ . In a discrete choice context, McFadden (1978) presents a two-tiered 

hierarchy that is identical. Hierarchies with more than two tiers can be easily constructed, 

and other non-nested models are possible. 

 

11.  CONCLUSIONS 

Cox (1972, 1975) develops the proportional hazard model of durations and suggests 

estimation using a partial likelihood approach. Contributions to the partial likelihood are 

provided at each failure time by the subset of the sample at risk immediately before the 

failure time. The partial likelihood approach has the advantage of being baseline-free: 

duration-dependence parameters, frequently viewed as nuisance parameters, do not have 
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to be estimated. For researchers interested in duration dependence, the duration baseline 

can be recovered in a second step. 

This paper examines the problem of incorporating random effects in a proportional 

hazard model, leaving the baseline hazard unspecified. It shows that the set of models 

that support partial likelihood estimation of the hazard scale coefficients can be made 

isomorphic to the set of GEV models developed by McFadden (1978). A multivariate 

extension of a theorem proved by Sergei Bernstein (1928) is used in the proof. This 

extension provides a means to check whether a given multivariate function can be the 

likelihood function for a sample of durations, marginal on group-specific random effects. 

The partial likelihoods allow independent censoring and I discuss approximations to 

the partial likelihoods in the presence of ties. The partial likelihood score vector can be 

used to construct semi-parametric log-rank tests that do not require the independence of 

observations involved. 

An appendix on asymptotic inference (Ondrich 2005) can be found at 

http://faculty.maxwell.syr.edu/jondrich. This appendix makes three contributions. First, 

the theory of multiplicative intensity models supports the incorporation of time-varying 

covariates. Second, G -consistency and asymptotic normality of the scale, mixing and 

baseline parameters follow directly from the previous work of Andersen and Gill (1982) 

for the partial likelihood with independent observations. With independent observations 

the partial likelihood is globally concave, which is not the case here. However, the results 

carry over to the case of dependent observations if one considers a compact set of 

parameter values containing the true values, over which set the partial likelihood is 

strictly concave. Third, because the data are clustered, the inverse of the information 
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matrix is not the appropriate asymptotic variance matrix. The correct asymptotic variance 

matrix for the partial likelihood estimator of scale and mixing parameters γ is 

1 1( ) ( ) ( )− −γ γ γI O I , where ( )γO is G times the limit, across independent groups g, of 

the sample mean of the outer product of scores, and ( )γI  is the information matrix. 
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