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Abstract

This paper considers models with latent/discrete endogenous regres-

sors and presents a simulation-based two-step (STS) estimator. The en-

dogeneity is corrected by adopting a simulation-based control function

approach. The first step consists of simulating of the residuals of the

reduced-form equation for endogenous regressors. The second step is a

regression model (linear, latent or discrete) with the simulated residual as

an additional regressor. In this paper we develop the asymptotic theory

for the STS estimator and its rate of convergence.

1 Introduction

The econometrics of endogeneity is unquestionable one of the most significant

contributions in econometrics. The estimation and testing of econometrics mod-

els with limited dependent variable (LDV) outcome and discrete/latent endoge-

nous regressors is especially of considerable practical importance. For example,

if one wants to estimate the effect of a job training program on later employment

by a Probit and include a dummy regressor to denote the treatment status, the

dummy regressor may be correlated with the error term in the outcome equa-

tion and hence endogenous. This paper considers a control function approach

and proposes a simulation-based two-step (STS) estimator for regression mod-

els with endogenous latent/discrete regressors. The control function approach

treats endogeneity as an omitted variable problem in the same way that the

Heckman (1979) two-step estimator corrects for selection bias. It is known that

∗We thank seminar participants at Academia Sinica and Syracuse University for helpful
comments and suggestions.
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the least squares estimator of using the residual from the first stage regression

as additional regressor is the same as the two stage least squares (2SLS) estima-

tor. The control function approach has been discussed by Smith and Blundell

(1986), Quong and Rivers (1988), Blundell and Smith (1989), Das et al. (2003),

Chen and Khan (2003), and Blundell and Powell (2004a, 2004b) to LDV models

with continuous endogenous regressors and by Vella (1993, 1998, 1999a, 1999b),

Li and Wooldridge (2002) and Christofides et al. (2003) with latent/discrete

endogenous regressors.

The first step of our STS estimator consists of the construction of simulation-

based residuals from reduced form equation for the latent/discrete endoge-

nous regressors. The second step is a regression model with generated re-

gressors and the simulated residual as an additional regressor. The proposed

STS estimator requires no choices of kernels or bandwidths as in nonpara-

metric/semiparametric estimators, e.g., Das (2005), Christofides et al. (2002),

Darolles et al. (2003), Blundell and Powell (2004a, 2004b), Yildiz (2004), Vyt-

lacil and Yildiz (2004). It resembles the control function estimators that are

popular in the literature, e.g., Smith and Blundell (1986), Vella (1993, 1998),

Rivers and Vuong (1988), Blundell and Smith (1994), Newey et al. (1999), Li

and Wooldridge (2002), Blundell and Powell (2004a, 2004b), and Lee (2004),

Ma and Koenker (2004).

Regression models with latent/discrete regressors have been studied exten-

sively in the literature, e.g., Amemiya (1978), Heckman (1978), Nelson and

Olson (1978), Hsiao (1983), Maddala (1983), Newey (1985), Hsiao and Moun-

tain (1985), Amemiya (1985, Chapter 10), Terza (1987, 1998), Kao and Wu

(1990), Vella (1993, 1998), Lee (1994), M-J. Lee (1995), Vella and Verbeek

(1999), Angrist (2001), Li and Wooldridge (2002), Wooldridge (2002, 15.7.3),

Lewbel (2004), Vytlacil and Yildiz (2004), Yildiz (2004), and Das (2005), to

mention only a few. For empirical applications with latent/discrete regressors,

see Willis and Rosen (1979), Lee (1978), Evans and Schwab (1995), Evans et

al. (1999), Goldman et al. (2001), and many others. This paper contributes

to the literature by studying the asymptotic theory of the STS estimator with

endogenous latent/discrete regressors. We derive the rate of convergence and

the limiting distribution of the STS estimator.

This paper also builds on a growing literature on simulation-based methods,

e.g., McFadden (1989), Pakes and Pollard (1989), Duffie and Singleton (1993),

Lee (1995, 1997, 1999a, 1999b), Breslaw and McIntosh (1998), Carrasco and

Florens (2002), Zhang and Lee (2004).

The remainder of the paper is organized as follows. Section 2 describes the

linear model with latent endogenous regressors. The asymptotic properties of

the STS estimator are stated in Theorem 1. Section 3 discusses LDV models

with latent endogenous regressors. Section 4 presents LDV models with dummy

endogenous regressors. Concluding remarks are provided in Section 5. All proofs

are given in the Appendix.
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2 Linear Model

To motivate the issue we first consider the following equations:

y1i = x0iβo + αoy
∗
2i + ε1i (1)

y∗2i = z
0
iδo + ε2i (2)

with ∙
ε1i
ε2i

¸
iid∼
µ
0,

∙
σ21 σ12
σ21 σ22

¸¶
(3)

i = 1, ..., n, where xi (k × 1) and zi (p× 1) are exogenous regressors such that
xi is a subset of zi, y

∗
2i is an endogenous latent regressor, βo and δo are k × 1

and p× 1 vectors of parameters respectively. We introduce the subscript “o” to
denote the true values of parameters. Rather than observing y∗2i, we observe

y2i = τ (y∗2i)

where τ (•) is a nonlinear transformation. The setup represents a class of sev-
eral different limited dependent variable models. For example, τ (y∗2i) could be
max(0,y∗2i) or 1 (y

∗
2i > 0) , i.e., censored regression or binary regression models,

where 1 (·) is an indicator function. We assume xi = (xi, zi) is independent of
(ε1i, ε2i) so that

E [ε2i|zi] = 0
and the conditional mean restriction

E [ε1i|ε2i, y2i,xi] = E [ε1i|ε2i, y2i] (4)

are satisfied. We further assume

E [ε1i|ε2i] = ρoε2i (5)

such that

ρo =
E (ε1iε2i)

E (ε21i)E (ε
2
2i)

.

Then we can take expectation of (1) and (2) conditional on y2i

E [y1i|y2i] = x0iβo + αoE [y
∗
2i|y2i] +E [ε1i|y2i] (6)

and

E [y∗2i|y2i] = z
0
iδo +E [ε2i|y2i] . (7)

By the law of iterated expectation we get

E [ε1i|y2i] = E [E [ε1i|ε2i] |y2i] = ρoE [ε2i|y2i] . (8)

Denote

y∗2i = E [y∗2i|y2i]

3



and

ε2i = E [ε2i|y2i] .
Plugging equation (8) into equation (6) gives

E [y1i|y2i] = x0iβo + αoy
∗
2i + ρoε2i

or

y1i = x0iβo + αoy
∗
2i + ρoε2i + [y1i −E [y1i|y2i]]

= w
0
iθo + ui (9)

where ui = [y1i −E [y1i|y2i]] , wi = (xi, y
∗
2i, ε2i)

0
and θo =

³
β
0
o, αo, ρo

´0
. In (9)

we use ε2i = E [ε2i|y2i] from the first stage regression to control for endogeneity
of the regressors. This is the control function approach in the literature1. The

control function approach treats endogeneity as an omitted variable problem,

where the inclusion of the first stage error ε2i = E [ε2i|y2i] as a regressor corrects
the inconsistency of the second stage regression. Clearly y∗2i and ε2i in (9)

are not observable. The idea of this paper is to substitute simulated moment

estimates for y∗2i = E [y∗2i|y2i] and ε2i = E [ε2i|y2i] and derive an estimator (e.g.,
a least squares estimator) for βo, αo, and ρo. Let ey∗2i and eε2i be the simulated
moment estimates of y∗2i = E [y∗2i|y2i] and ε2i = E [ε2i|y2i] , e.g., ey∗2i and eε2i can
be estimated by the simulation-based methods, e.g., GHK simulator (Geweke,

1991; Borsch-Supan and Hajivassiliou, 1993; Keane, 1994). The essence of

simulation-based estimation is to replace the population moment by its sample

analogue. We replace the expectation,

ε2i = E [ε2i|y2i]
by its simulated moment estimate2. For the sample observation, zi, a simulated

moment (simulator) for ε2i = E [ε2i|y2i] is

1

R

RX
j=1

ε
j
2i (10)

where

ε
j
2i = h

³
ξ
j
i , zi, δo

´
,

ξ1i , ..., ξ
R
i are R random draws for a random variable ξ and

E
³
h
³
ξ
j
i , zi, δo

´
|x
´
= E [ε2|y2] .

1 Suppose y2i = y∗2i. We compute bε2i = y∗2i − bz0iδo, the residual from the first stage

regression. Now consider including bε2i as an additional regressor in (1) and estimating by
least squares. It is easy to show (e.g., Dhrymes 1970; Wooldridge 2002, p. 107-108) that the

resulting least squares is the same as two stage least squares (2SLS) estimator.
2The simulation-based approach in this paper complements the generalized residual ap-

proach in Vella (1993, 1998). However, our simulation-based approach has the advantage that

it can be used to the models that ε2i = E [ε2i|y2i] may not be easily calculated.
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The superscript j on ξ indicates random draws are independent across differ-

ent sample observations as in Lee (1995, 1999). However, ε
j
2i = h

³
ξ
j
i , zi, δo

´
depends on the unknown parameter θo. We then replace ε

j
2i = h

³
ξ
j
i , zi, δo

´
by

ε
j
2i = h

³
ξ
j
i , zi,

bδ´ so that the simulated moments used in this paper is defined
as

eε2i = 1

R

RX
j=1

ε
j
2i (11)

where bδ is a consistent estimator of δo. We define
ey∗2i = z

0
i
bδ + eε2i (12)

where bδ is a √n consistent estimator. A class of simulators has been introduced
by McFadden (1989), Stern (1992), Borsch-Supan and Hajivassiliou (1993), Ha-

jivassiliou et al. (1996), and many others. When R goes to infinity as n goes

to infinity, eε2i = 1
R

PR
j=1 ε

j
2i will be a consistent estimator of ε2i = E [ε2i|y2i] .

Then we replace y∗2i and ε2i by ey∗2i and eε2i to get
y1i = x0iβo + αoy

∗
2i + ρoε2i + ui

= x0iβo + αoey∗2i + ρoeε2i + αo (y
∗
2i − ey∗2i) + ρo (ε2i −eε2i) + ui

= x0iβo + αoey∗2i + ρoeε2i + αoz
0
i

³bδ − δo

´
+ αo (eε2i − ε2i) + ρo (ε2i − eε2i) + ui

= x0iβo + αoey∗2i + ρoeε2i + αoz
0
i

³bδ − δo

´
+ (αo − ρo) (eε2i − ε2i) + ui

= x0iβo + αoey∗2i + ρoeε2i + µi + ui

= x0iβo + αoey∗2i + ρoeε2i + vi

= bw0
iθo + vi

where

µi = αoz
0
i

³bδ − δo

´
+ (αo − ρo) (eε2i − ε2i)

and

vi = µi + ui.

Thus we estimate

y1i = x0iβo + αoey∗2i + ρoeε2i + vi

= bw0
iθo + vi (13)

by least squares, for example, where bwi = (xi, ey∗2i,eε2i)0 and θo =
³
β
0
o, αo, ρo

´0
,

where vi is the error term. Note (13) is a regression model with generated

regressors, ey∗2i and eε2i. See Pagan (1984, 1986) for a survey on the issues of
generated regressors in econometrics.
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2.1 Asymptotic Properties

We now impose a set of regularity conditions:

Assumption 1:

1. The sample observations xi = (xi, zi), i = 1, ..., n are i.i.d. with a compact
support X.

2. The parameter space Θ is a compact convex subset of a k+p dimensional

Euclidean space and the true parameter vector θo is in the interior of Θ.

3. The function ε2i = E [ε2i|y2i] is continuous on Θ × X.
4. The function ε2i = E [ε2i|y2i] is differentiable in θ up to the second order.
Those derivatives are continuous on Θ×X.

Assumption 2:

1. The random draws of ξ are from a common distribution and are indepen-

dent of xi = (xi, zi) and θ.

2. The function h (ξ,x, θ) is a continuous unbiased estimator of ε2i = E [ε2i|y2i]
conditional on xi.

3. h (ξ, z, δ) is twice differentiable in θ. Those derivatives are continuous on

Θ×X.

4. The absolute values of h (ξ, z, δ) and its first and second derivatives with
respect to θ are dominated by square integrable function of ξ uniformly

in x and θ.

5. The first six order moments of h (ξ, z, δ) and the first four order moments

of
∂h(ξ,z,δ)

∂θ exist and are bounded functions on Θ.

Assumption 3: The number of random draws R for each individual i goes to

infinity as n goes to infinity.

Assumption 4: xi = (xi, zi) is independent of (ε1i, ε2i)
Assumption 5: Ew

0
iwi <∞, Ewiw

0
i = Q > 0, Ewiw

0
iu
2
i = Ω, Ewiz

0
i = Q1.

Assumption 6:
√
n
³bδ − δo

´
d−→ N (0, V1) .

Remarks:

1. Assumptions 1-3 are similar the ones in Lee (1995).

2. Assumption 4 is a critical independence condition commonly assumed in

the literature, e.g., Yildiz (2004), Vytlacil and Yildiz (2004).

3. In Assumption 6, δo, in fact, represents all the parameters in the first stage

regression, for example, δo may include variance or threshold parameters

for limited dependent variable models. bδ could be MLE, GMM or any
√
n

consistent semi-parametric estimator (e.g., Powell, 1984, 1986).
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Let CnR = min
n√

n,
√
R
o
. The following lemma describes the asymptotic

properties of the simulated residual, eε2i.
Lemma 1 Under Assumptions 1-6,

(a)

1

n

nX
i=1

(eε2i − ε2i)
2 = Op

µ
1

C2nR

¶
,

(b)

1

n

nX
i=1

xi (eε2i − ε2i) = Op

µ
1

CnR

¶
,

(c)

1

n

nX
i=1

y∗2i (eε2i − ε2i) = Op

µ
1

CnR

¶
,

(d)

1

n

nX
i=1

ε2i (eε2i − ε2i) = Op

µ
1

CnR

¶
.

The following lemma summarizes the asymptotic properties of the simulated

latent variable, ey∗2i.
Lemma 2 Under Assumptions 1-6,

(a)

1

n

nX
i=1

(ey∗2i − y∗2i)
2 = Op

µ
1

C2nR

¶
,

(b)

1

n

nX
i=1

xi (ey∗2i − y∗i ) = Op

µ
1

CnR

¶
,

(c)

1

n

nX
i=1

y∗2i (ey∗2i − y∗2i) = Op

µ
1

CnR

¶
,

(d)

1

n

nX
i=1

(ey∗2i − y∗2i) ε2i = Op

µ
1

CnR

¶
,

(e)

1

n

nX
i=1

(ey∗2i − y∗2i) (eε2i − ε2i) = Op

µ
1

C2nR

¶
.
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Remarks:

1. The simulation error, 1n
Pn

i=1 (eε2i − ε2i)
2
will generally be Op

¡
1
R

¢
if eε2i

does not depend on the first stage estimator, bδ, as we have shown in
equation (30). However, for most cases, the simulation error actually is

1

n

nX
i=1

(eε2i − ε2i)
2

= Op

µ
1

R

¶
+Op

µ
1

n

¶
= Op

µ
1

C2nR

¶
since eε2i does depend on ³bδ − δo

´
. In a broad sense, Lemma 1(a) is similar

to Theorem 1 of Bai and Ng (2002).

2. The Lemma 2(a) establishes that the sample average of the squared devi-

ation between the simulated latent variable, ey∗2i, and true latent variable,
y∗2i, and vanishes as (n,R) → ∞. The rate of convergence is determined

by C2nR. Of course, Lemma 1(a) has a similar interpretation.

Our STS estimator can be written as

bθ =
⎛⎝ bβbαbρ

⎞⎠ =

Ã
nX
i=1

bwi bw0
i

!−1 nX
i=1

bwiyi.

Hence it follows that³bθ − θo

´
=

Ã
nX
i=1

bwi bw0
i

!−1 nX
i=1

wi

n
ui + αoz

0
i

³bδ − δo

´
+ (αo − ρo) (eε2i − ε2i)

o

=

Ã
nX
i=1

bwi bw0
i

!−1 nX
i=1

bwiui

+

Ã
nX
i=1

bwi bw0
i

!−1 nX
i=1

bwiαz
0
i

³bδ − δo

´

+

Ã
nX
i=1

bwi bw0
i

!−1 nX
i=1

bwi (αo − ρo) (eε2i − ε2i) .

Lemma 3 Under Assumptions 1-6, we have

(a)

1

n

nX
i=1

bwi bw0
i =

1

n

nX
i=1

ww
0
i +Op

µ
1

CnR

¶
,

8



(b)

1

n

nX
i=1

kbwi −wik2 = Op

µ
1

C2nR

¶
(c)

1√
n

nX
i=1

bwiui =
1√
n

nX
i=1

wiui +Op

µ √
n

CnR

¶
= Op (1) +Op

µ √
n

CnR

¶
,

(d)

1√
n

nX
i=1

bwiαoz
0
i

³bδ − δo

´
=

1√
n

nX
i=1

wiαoz
0
i

³bδ − δo

´
+Op

µ
1

CnR

¶
= Op (1) +Op

µ
1

CnR

¶
,

(e)

1√
n

nX
i=1

bwi (αo − ρo) (eε2i − ε2i) =
1√
n

nX
i=1

wi (αo − ρo) (eε2i − ε2i) +Op

µ √
n

C2nR

¶
= Op

µ √
n

CnR

¶
+Op

µ √
n

C2nR

¶
.

Theorem 1: Under Assumptions 1-6 and n
R → 0 as (n,R)→∞, we have:

√
n
³bθ − θo

´
= Q−1 {Sn + Ln +Qn}

where

Sn =
1√
n

nX
i=1

wiui,

Ln =
1√
n

nX
i=1

wiαoz
0
i

³bδ − δo

´
,

and

Qn =
1√
n

nX
i=1

wi (αo − ρo) (eε2i − ε2i) .

Furthermore, Sn = Op (1) , Ln = Op (1) , and Qn = Op

³ √
n

CnR

´
= Op (1) since

R > n.

Remarks:

9



1. The term Ln involves the estimation error,
³bδ − δo

´
, from the first stage

regression. The term Qn involves the errors of the simulated moment,eε2i−ε2i.We see from Theorem 1 that the bias due to the simulation error
may dominate the rest of terms unless R increases faster than the sample

size n. This is also observed by Lee (1995) though in a different context.

2. Note that from Theorem 1 that asymptotic normality may not hold. How-

ever, asymptotic normality may hold if δo is known before we simulate the

simulated moment. Let’s explain this point in details. Suppose that the

simulated moment eε2i does not depend on bδ. Qn is Op

³√
n√
R

´
as shown in

(30). It implies that Qn = Op

³√
n√
R

´
= op (1) as

n
R → 0 if eε2i does not

depend on bδ. Therefore the limiting distribution of √n³bθ − θo

´
is deter-

mined by 1√
n

Pn
i=1wiui and

1√
n

Pn
i=1wiαoz

0
i

³bδ − δo

´
. Hence it follows

that

√
n
³bθ − θo

´
= Q−1

"
1√
n

nX
i=1

wiui +
1

n

nX
i=1

wiαoz
0
i

√
n
³bδ − δo

´#
+ op(1)

Also " 1√
n

Pn
i=1wiui√

n
³bδ − δo

´ #
d−→ N

µ
0,

µ
Ω Q2
Q

0
2 V1

¶¶
by a central limit theorem and Assumption 5 where

Cov

"
√
n
³bδ − δo

´
,
1√
n

nX
i=1

wiui

#
= Q2.

Hence, √
n
³bθ − θo

´
d−→ N (0, V2)

where

V2 = Q−1
h
Ω+ α2oQ1V1Q

0
1 +Q1V1Q

0
2 +Q2V1Q

0
1

i
Q−1

= Q−1ΣQ−1

and

Σ =
h
Ω+ α2oQ1V1Q

0
1 +Q1V1Q

0
2 +Q2V1Q

0
1

i
.

3. Now R increases at a rate slower than n, i.e.,

lim
n

R
=∞.

10



It follows that

√
R
³bθ − θo

´
= Q−1

⎡⎣O³√R´
⎧⎨⎩ Op

³
1

CnR

´
+Op

³
1√
n

´
+Op

³
1

CnR

´ ⎫⎬⎭
⎤⎦+ op (1)

= Q−1
"
Op

Ã√
R

CnR

!
+Op

Ã√
R√
n

!
+Op

Ã√
R

CnR

!#
+ op (1)

= Q−1
"
Op (1) +Op

Ã√
R√
n

!
+Op (1)

#
+ op (1)

= Q−1
"
Op (1) +Op

Ã√
R√
n

!
+Op (1)

#
+ op (1)

= Op (1)

since

lim
R

n
→ 0.

4. When R increases slower than n, the limiting distribution of

√
n
³bθ − θo

´
=

r
n

R

√
R
³bθ − θo

´
=

r
n

R
Op (1)

diverges. Only when R increases faster than n is the limiting distribution

of
√
n
³bθ − θo

´
properly behaved.

5. The iid assumption for (ε1i, ε2i) seems to be restrictive. In fact, the results
of Lemmas 1-3 and Theorem 1 still hold for the heterokedastic error terms.

If the homoskedastic error terms hold, then

Ω = Ewiw
0
iu
2
i = σ2uQ.

6. Note y∗2i is endogenous in (1) if and only if E (ε1iε2i) 6= 0. We could use
the results of Theorem 1 to test

H0 : E (ε1iε2i) = 0.

Therefore testing H0 : E (ε1iε2i) = 0 is equivalent to testing

H0 : ρo = 0

in (9) by a t-statistic if R increases faster than n.

11



3 Limited Dependent Variable Models

In this section we extend our results to the situation in which the second stage

regression is a LDV model. The LDV model with latent endogenous regressor

has been discussed extensively in the literature, e.g., Heckman (1978), Amemiya

(1978, 1979), Lee (1978, 1979), Nelson and Olson (1978), Newey (1987), and

Vella (1993, 1998). In this section, we develop a STS estimator for the LDV

model where there is a latent endogenous regressor. The proposed STS estimator

is easily implemented and provides a test of exogeneity. We consider

y∗1i = x0iβo + αoy
∗
2i + ε1i (14)

y∗2i = z
0
iδo + ε2i (15)

where y∗1i and y∗2i are both latent variables with∙
ε1i
ε2i

¸
iid∼
µ
0,

∙
σ21 σ12
σ21 σ22

¸¶
. (16)

Rather than observing y∗1i and y∗2i, we observe

y1i = τ1 (y
∗
1i)

and

y2i = τ2 (y
∗
2i)

respectively. The setup includes several different limited dependent variable

models. For example, τ1 (y
∗
1i) could be max(0, y

∗
1i) and τ2 (y

∗
2i) could be 1 (y

∗
2i > 0) ,

then the model is a system of censored regression and binary regression models.

Note 1 (·) is an indicator function.
Note that under the assumption that

E [ε1i|ε2i] = ρoε2i (17)

as in (5) we get

E [ε1i|y2i] = ρoE [ε2i|y2i] (18)

by the law of iterated expectation. Again we take the expectation of (14) and

(15) conditional on y2i to get

E [y∗1i|y2i] = x0iβo + αoE [y
∗
2i|y2i] +E [ε1i|y2i] (19)

Plugging equation (18) into equation (19) gives

E [y∗1i|y2i] = x0iβo + αoE [y
∗
2i|y2i] + ρoE [ε2i|y2i]

or

y∗1i = x0iβo + αoE [y
∗
2i|y2i] + ρoE [ε2i|y2i] + ui

= x0iβo + αoy
∗
2i + ρoε2i + ui

= w
0
iθo + ui (20)

12



where y∗2i = E [y∗2i|y2i] , ε2i = E [ε2i|y2i] , and ui = y∗1i − E [y∗1i|y2i] which has
mean zero and variance σ2u < ∞. Note in (20) it does require to assume the
joint distribution of (ε1i, ε2i) . If we knew y∗2i = [y

∗
2i|y2i] and ε2i = E [ε2i|y2i] we

could estimate βo, αo, and ρo by a MLE if we knew the distribution of ui or a

GMM. With y∗2i and ε2i unobservable, we can use ey∗2i and eε2i to approximate
y∗2i and ε2i where ey∗2i and eε2i are given in (10) and (12). Thus, we have

y∗1i = bw0
iθo + vi

as in (13). Note that the distribution of vi may be difficult to obtain
3.(hence

the MLE may not be easily obtained computationally) since vi is the sum of ui
and

µi = αoz
0
i

³bδ − δo

´
+ (αo − ρo) (eε2i − ε2i) .

Suppose that the STS estimator, bθ, solves the following equation (e.g., by a
GMM)

1

n

nX
i=1

g ( bwi, θ) = 0 (21)

where g is a vector of functions with the same dimension as θo.We also assume

that the first stage estimator bδ is √n consistent. Expanding the left-hand side
of (21) around θo and solving gives

√
n
³bθ − θo

´
= −

"
1

n

nX
i=1

∇θg
¡ bwi, θ

¢#−1 1√
n

nX
i=1

g ( bwi, θo)

= −
"
1

n

nX
i=1

∇θg
¡ bwi, θ

¢#−1
(
1√
n

nX
i=1

g (wi, θo) +
1√
n

nX
i=1

∇wg (wi, θo) ( bwi −wi)

)
(22)

where θ and wi are mean values. The second equality follows by expanding

g ( bwi, θo) around wi. We need the following assumptions.

Assumption 7:

(1) 1
n

Pn
i=1∇wg (wi, θo)∇wg (wi, θo)

0 p−→ Gw,

(2) 1
n

Pn
i=1∇θg (wi, θo)

p−→ Q,

(3) 1
n

Pn
i=1∇θwg (wi, θo)

p−→ Gθw,

(4) 1
n

Pn
i=1∇y2g (wi, θo) z

0
i

p−→ Q1,

3The generalized residual approach of Vella (1993, 1998) also has this difficulty of comput-

ing MLE.
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(5) 1√
n

Pn
i=1 g (wi, θo)

p−→ N (0,Ω) , where

Ω = E
h
g (wi, θo) g (wi, θo)

0i
,

Theorem 2: Under Assumptions 1-7, and n
R → 0 as (n,R)→∞, we have:

√
n
³bθ − θo

´
= Q−1 {Sn + Ln +Q1n +Q2n}

where

Sn =
1√
n

nX
i=1

g (wi, θo) ,

Ln =
1√
n

nX
i=1

∇y2g (wi, θo) z
0
i

³bδ − δ
´
,

Q1n =
1√
n

nX
i=1

∇y2g (wi, θo) (eε2i − ε2i) ,

and

Q2n =
1√
n

nX
i=1

∇ε2g (wi, θo) (eε2i − ε2i) .

Furthermore, Sn = Op (1) , Ln = Op (1) , Q1n = Op

³ √
n

CnR

´
= Op

³√
n√
n

´
=

Op (1) , and Q2n = Op

³ √
n

CnR

´
= Op

³√
n√
n

´
= Op (1) since R > n.

Remarks:

1. Suppose that the simulated moment does not depend on the first stage

estimation. It follows that

√
n
³bθ − θo

´
= −Q−1

(
1√
n

nX
i=1

g (wi, θo) +
1

n

nX
i=1

∇y2g (wi, θo) z
0
i

√
n
³bδ − δo

´)
+ op (1)

d−→ N (0,V2)

since " 1√
n

Pn
i=1 g (wi, θo)√
n
³bδ − δo

´ #
d−→ N

µ
0,

µ
Ω Q2

Q
0
2 V1

¶¶
where

Cov

"
√
n
³bδ − δo

´
,
1√
n

nX
i=1

g (wi, θo)

#
=Q2,

V2 = Q−1
h
Ω+Q1V1Q

0
1 +Q1V1Q

0
2 +Q2V1Q

0
1

i
Q−1,

= Q−1ΣQ−1

and

Σ = Ω+Q1V1Q
0
1 +Q1V1Q

0
2 +Q2V1Q

0
1.
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4 Dummy Endogenous Regressor

The econometrics models with dummy endogenous regressor commonly arise in,

e.g., in the program evaluation literature, dummy endogenous regressor captures

the causal relationship between a binary regressor (say treatment status) and

an outcome variable. The dummy endogenous regressor in essence is to allow

for the possibility of joint determination of outcomes and treatment status or

omitted variables related to both treatment status and outcomes. For example,

Heckman (1978) imposes the joint normality assumption and develops the MLE

for the model. Because the computation of the MLE could be nontrivial, one

may want to use two step approach similar in Section 3. This procedure does

not produce consistent estimator as Wooldridge (2002, p. 478) points it out,

however. Blundell and Powell (2004a) considers a semiparametric estimation in

a single index binary response model with continuous regressor. Note that their

control function approach can not be used in, for example, a binary model with

a dummy endogenous regressor. In this section, we propose a STS estimator to

control for possible endogeneity bias as in Sections 3-4.

Let y1i be the outcome variable of interest and y2i be the dummy endogenous
regressor. We consider

y∗1i = x0iβo + αoy2i + ε1i (23)

y∗2i = z
0
iδo + ε2i (24)

where

y1i = τ1 (y
∗
1i)

and

y2i = 1 if y
∗
2i > 0; y2i = 1 otherwise.

Again we assume

E [ε1i|ε2i] = ρoε2i

and

E [ε1i|y2i] = ρoE [ε2i|y2i]
such that

ρo =
E (ε1iε2i)

E (ε21i)E (ε
2
2i)

.

We take expectation of (23) and (24) conditional on y2i to get

E [y∗1i|y2i] = x0iβo + αoE [y2i|y2i] + E [ε1i|y2i] (25)

and

E [y∗2i|y2i] = z
0
iδo +E [ε2i|y2i] . (26)

Then rewrite (25) as

y∗1i = x0iβo + αoy2i + ρoE [ε2i|y2i] + ui

= x0iβo + αoy2i + ρoε2i + ui

= w
0
iθo + ui (27)
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where ε2i = E [ε2i|y2i] , ui = y∗1i − E [y∗1i|y2i] , wi =
³
x
0
i, y2i, ε2i

´0
and θo =

(βo, αo, ρo) . Note here we abuse notation to use wi here since wi in this section

is defined differently from the previous sections. While ε2i = E [ε2i|y2i] can not
be observed, we can estimate ε2i = E [ε2i|y2i] by eε2i as in (10). Thus

y∗1i = x0iβo + αoy2i + ρoeε2i + ρo (ε2i −eε2i) + ui

= bw0
iθo + νi (28)

where bwi =
³
x
0
i, y2i,eε2i´ and νi = ρ (ε2i −eε2i) + ui. Again assume (28) can be

estimated, say, by a GMM. Then the STS estimator, bθ, satisfies the following
equation

1

n

nX
i=1

g ( bwi, θ) = 0 (29)

as in (21). We expand (29) as in (22) to get

√
n
³bθ − θo

´
= −

"
1

n

nX
i=1

∇θg
¡ bwi, θ

¢#−1
(
1√
n

nX
i=1

g (wi, θo) +
1√
n

nX
i=1

∇wg (wi, θo) ( bwi −wi)

)
.

Theorem 3: Under Assumptions 1-7 and n
R → 0 as (n, R)→∞, we have:

√
n
³bθ − θo

´
= −Q−1 [Sn +Q2n] + op (1)

where Sn and Q2n are defined in Theorem 2.

5 Conclusions

This paper introduces a STS estimation procedure for regression models with

endogenous latent/discrete regressors. The procedure simulated residuals from

the reduced form as an additional regressor in the outcome model to control the

endogeneity. The paper makes two contributions. First, we develop the asymp-

totic theory and rate of convergence for the STS estimator. The STS estimator

behaves badly, i.e.,
√
n
³bθ − θo

´
diverges, unless the number of simulated ran-

dom variables, R, goes to infinity with a rate faster than the sample size, n, i.e.,
n
R → 0 as (n,R)→∞. Second, the proposed STS estimator allows endogenous

regressors to be latent or discrete.

Appendix
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A Proof of Lemma 1

Proof. The proof of part (a) is similar to the Proposition A.3 in Lee (1995).

Recall eε2i = 1
R

PR
j=1 ε

j
2i. Let

ε
j
2i =

1

R

RX
j=1

ε
j
2i (δo)

and

qi =
³
ε
j
2i − ε2i

´2
=

⎛⎝ 1
R

RX
j=1

³
ε
j
2i (δo)− ε2i

´⎞⎠2

.

Lemma A in Serfling (1980, p. 304) implies that

E (qi)
2 = E

⎛⎝ 1
R

RX
j=1

³
ε
j
2i (δo)− ε2i

´⎞⎠4

≤ c

R4
R2

RX
j=1

E
³
ε
j
2 (δo)− ε2

´4
=

c

R2

RX
j=1

E
³
ε
j
2 (δo)− ε2

´4
=

c

R
E
³
ε
j
2 (δo)− ε2

´4
where c is a constant. By the Markov inequality and the inequality of absolute

moments,

P

Ã
R

n

nX
i=1

|qi| ≥ �

!
≤ R

�
E [|qi|]

≤ R

�
E1/2

h
|qi|2

i
≤ 1

�
c1/2

∙
E
³
ε
j
2 (δo)− ε2

´4¸1/2
=

1

�
Op (1) .

since

E
³
ε
j
2 (δo)− ε2

´4
= O (1)
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from Assumption 2. Because � is arbitrary,

R

n

nX
i=1

|qi| = Op (1) .

It follows that

1

n

nX
i=1

⎛⎝ 1
R

RX
j=1

³
ε
j
2i (δo)− ε2i

´⎞⎠2

=
1

n

nX
i=1

(ε2i − ε2i)
2

= Op

µ
1

R

¶
. (30)

Now use Cr inequality to get

1

n

nX
i=1

(eε2i − ε2i)
2

=
1

n

nX
i=1

(ε2i − ε2i +eε2i − ε2i)
2

≤ 2

"
1

n

nX
i=1

(ε2i − ε2i)
2 +

1

n

nX
i=1

(eε2i − ε2i)
2

#
.

By a mean value theorem

eε2i − ε2i = ∇eε2i ¡δ¢ ³bδ − δo

´
with ∇ being the gradient operator and δ lies between bδ and δo. Then°°°°° 1n

nX
i=1

(eε2i − ε2i)
2

°°°°° =

°°°°° 1n
nX
i=1

h
∇eε2i ¡δ¢ ³bδ − δo

´i2°°°°°
≤

°°°bδ − δo

°°°2Ã 1
n

nX
i=1

°°∇eε2i ¡δ¢°°4!1/2
= Op

µ
1

n

¶
Op (1)

= Op

µ
1

n

¶
.

Here we use the results that

bθ − θo = Op

µ
1√
n

¶
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the consistency δ and

1

n

nX
i=1

°°∇eε2i ¡δ¢°°4 = Op (1) .

It follows that

1

n

nX
i=1

(eε2i − ε2i)
2

= Op

µ
1

R

¶
+Op

µ
1

n

¶
= Op

µ
1

C2nR

¶
This proves part (a). Consider (b). By the Cauchy-Schwarz inequality°°°°° 1n

nX
i=1

xi (eε2i − ε2i)

°°°°° ≤
Ã
1

n

nX
i=1

kxik2
!1/2Ã

1

n

nX
i=1

(eε2i − ε2i)
2

!1/2
= Op (1)Op

µ
1

CnR

¶
= Op

µ
1

CnR

¶
since

1

n

nX
i=1

kxik2 = Op (1) .

Consider (c).°°°°° 1n
nX
i=1

y∗2i (eε2i − ε2i)

°°°°° ≤
Ã
1

n

nX
i=1

ky∗2ik2
!1/2Ã

1

n

nX
i=1

(eε2i − ε2i)
2

!1/2
= Op (1)Op

µ
1

CnR

¶
= Op

µ
1

CnR

¶
since

1

n

nX
i=1

ky∗2ik2 = Op (1) .
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Consider (d).°°°°° 1n
nX
i=1

ε2i (eε2i − ε2i)

°°°°° ≤
Ã
1

n

nX
i=1

kε2ik2
!1/2Ã

1

n

nX
i=1

(eε2i − ε2i)
2

!1/2
= Op (1)Op

µ
1

CnR

¶
= Op

µ
1

CnR

¶
since

1

n

nX
i=1

kε2ik2 = Op (1) .

B Proof of Lemma 2

Proof. Note ey∗2i − y∗2i = z
0
i

³bδ − δo

´
+ (eε2i − ε2i) .

By the Cr inequality

key∗2i − y∗2ik2 =
°°°z0i ³bδ − δo

´
+ (eε2i − ε2i)

°°°2
≤ 2

µ°°°z0i ³bδ − δo

´°°°2 + keε2i − ε2ik2
¶

= 2 (ai + bi)

where

ai =
°°°z0i ³bδ − δo

´°°°2
and

bi = keε2i − ε2ik2 .
It follows that

1

n

nX
i=1

k(ey∗2i − y∗2i)k2 ≤ 2
"
1

n

nX
i=1

(ai + bi)

#
.

Now °°°z0i ³bδ − δo

´°°°2 ≤ kzik2 °°°³bδ − δo

´°°°2 .
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Thus

1

n

nX
i=1

°°°z0i ³bδ − δo

´°°°2 ≤
°°°³bδ − δo

´°°°2 1
n

nX
i=1

kzik2

=

∙
Op

µ
1√
n

¶¸2
Op (1)

= Op

µ
1

n

¶
because ³bδ − δo

´
= Op

µ
1√
n

¶
and

1

n

nX
i=1

kzik2 = Op (1)

by Assumptions 4 and 5. For (b), we have that

1

n

nX
i=1

bi =
1

n

nX
i=1

(eε2i − ε2i)
2

= Op

µ
1

C2nR

¶
from Lemma 1. Combining these results, we have

1

n

nX
i=1

(ai + bi) = Op

µ
1

n

¶
+Op

µ
1

C2nR

¶
= Op

µ
1

C2nR

¶
.

This proves part (a). By the Cauchy-Schwarz inequality:°°°°° 1n
nX
i=1

xi (ey∗2i − y∗2i)

°°°°° ≤
Ã
1

n

nX
i=1

kxik2
!1/2Ã

1

n

nX
i=1

(ey∗2i − y∗2i)
2

!1/2
which is

Op(1)Op

µ
1

CnR

¶
= Op

µ
1

CnR

¶
by part (a) and Assumption 4. This proves part (b). Consider part (c). By the

Cauchy-Schwarz inequality°°°°° 1n
nX
i=1

y∗2i (ey∗2i − y∗2i)

°°°°° ≤
Ã
1

n

nX
i=1

ky∗2ik2
!1/2Ã

1

n

nX
i=1

(ey∗2i − y∗2i)
2

!1/2
= Op (1)Op

µ
1

CnR

¶
= Op

µ
1

CnR

¶
.

21



Consider (d).°°°°° 1n
nX
i=1

(ey∗2i − y∗2i) ε2i

°°°°° ≤
Ã
1

n

nX
i=1

k(ey∗2i − y∗2i)k2
!1/2Ã

1

n

nX
i=1

ε22i

!1/2
= Op

µ
1

CnR

¶
Op (1) = Op

µ
1

CnR

¶
.

Consider (e).°°°°° 1n
nX
i=1

(ey∗2i − y∗2i) (eε2i − ε2i)

°°°°° ≤
Ã
1

n

nX
i=1

k(ey∗2i − y∗2i)k2
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C Proof of Lemma 3

Proof. Note
nX
i=1

bwi bw0
i =

nX
i=1

⎡⎣ xix
0
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Hence using the results of Lemmas 1 and 2 we have
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Thus
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This proves (a). Consider (b). It is easy to see that

bwi −wi =
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⎞⎠
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Consider (c). Note
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For the second term, given that the two variables bwi−wi and ui are uncorrelated,

one can use the Cauchy-Schwarz inequality to get a sharper bound by applying

the correction factor Op
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¢
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Hence,
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We consider each term in turn.
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and
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by Assumptions 4 and 5. Hence
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D Proof of Theorem 1

Proof. Lemma 4 implies that
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E Proof of Theorem 2

Proof. Note by a Taylor expansion
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since
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i=1
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by Assumption 6 and the consistency of wi. Because θ is a consistent estimator

of θo, it follows that

1

n

nX
i=1

∇θg
¡ bwi, θ

¢
=

1

n

nX
i=1

∇θg (wi, θo) + op (1)

= Q+op (1) .

It follows that

√
n
³bθ − θo

´
= −Q−1

(
1√
n

nX
i=1

g (wi, θo) +
1√
n

nX
i=1

∇wg (wi, θo) ( bwi −wi)

)

= −Q−1
½
Op (1) +

√
nOp

µ
1

CnR

¶¾
+ op (1) .

This is because 1√
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which is bounded by Op (1)Op
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R → 0 as (n,R)→∞. Furthermore,
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This proves Theorem 2.
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F Proof of Theorem 3

Proof.

Note °°°°° 1n
nX
i=1

∇wg (wi, θo) ( bwi −wi)

°°°°°
≤

Ã
1

n

nX
i=1

k∇wg (wi, θo)k2
!1/2Ã

1

n

nX
i=1

kbwi −wik2
!1/2

and

1

n

nX
i=1

kbwi −wik2

=
1

n

nX
i=1

(eε2i − ε2i)
2

= Op

µ
1

C2nR

¶
.

Hence
1√
n

nX
i=1

∇wg (wi, θo) ( bwi −wi) = Op

µ √
n

CnR

¶
.

It is easy to see that

√
n
³bθ − θo

´
= −Q−1

½
Op (1) +Op

µ √
n

CnR

¶¾
+ op (1) .

Suppose if n
R → 0 as (n,R)→∞ then we get

√
n
³bθ − θo

´
= −Q−1

"
1√
n

nX
i=1

g (wi, θo) +
1√
n

nX
i=1

∇wg (wi, θo) ( bwi −wi)

#
+ op (1)

= −Q−1
"
1√
n

nX
i=1

g (wi, θo) +
1√
n

nX
i=1

∇ε2g (wi, θo) (eε2i − ε2i)

#
+ op (1)

This proves Theorem 3.

References

[1] Ahn, H., and Powell, J. L. (1993), “Semiparametric Estimation of Censored

Selection Models with a Nonparametric Selection Mechanism,” Journal of

Econometrics, 58, 3-29.

32



[2] Amemiya, T., (1978), “The Estimation of a Simultaneous Equation Gen-

eralized Probit Models,” Econometrica, 46, 1193-1205.

[3] Amemiya, T. (1979), “The Estimation of a Simultaneous Tobit Model,”

International Economic Review, 20, 169-181.

[4] Amemiya, T. (1985), Advanced Econometrics, Cambridge, Harvard Univer-

sity Press.

[5] Angrist, J. (2001), “Estimation of Limited-Dependent Variable Models with

Binary Endogenous Regressors: Simple Strategies for Empirical Practice,”

Journal of Business and Economic Statistics, 19, 2-16.

[6] Bai, J., and Ng, S. (2002), “Determining the Number of Factors in Approx-

imate Factor Models,” Econometrica, 70, 191-221.

[7] Blundell, R. W., and Smith, R. (1994), “Coherency and Estimation in

Simultaneous Models with Censored or Qualitative Dependent Variables,”

Journal of Econometrics, 64, 355-373.

[8] Blundell, R. W., and Powell, J. L. (2004a), “Endogeneity in Semiparametric

Binary Response Models,” Review of Economic Studies, 71, 655-679.

[9] Blundell, R. W., and Powell, J. L. (2004b), “Censored Regression Quantiles

with Endogenous Regressors,” Working paper, University College, London.

[10] Blundell, R. W., and Smith, R. J. (1989), “Estimation in a Class of Simulta-

neous Equation Limited Dependent Variable Models,” Review of Economic

Studies, 56, 37-58.

[11] Borsch-Supan, A., and Hajivassiliou, V. A. (1993), “Smooth Unbiased Mul-

tivariate Probability Simulators for Maximum Likelihood Estimation of

Limited Dependent Variable Models,” Journal of Econometrics, 58, 347-

368.

[12] Breslaw, J. A., and McIntosh, J. (1998), “Simulated Latent Variable Esti-

mation of Models with Ordered Categorical Data,” Journal of Economet-

rics, 25-47.

[13] Carrasco, M., and Florens, J. P. (2002), “Simulation-Based Method of Mo-

ments and Efficiency,” Journal of Business & Economic Statistics, 20, 482-

492.

[14] Chen, S., and Khan, S. (2003), “Semiparametric Estimation of Het-

eroskedastic Sample Selection Models,” Econometric Theory, 19, 1040-

1064.

[15] Christofides, L. N., Li, Q., Liu, Z., and Min, I. (2003), “Recent Two-

Stage Sample Selection Procedures with an Application to the GenderWage

Gap,” Journal of Business & Economic Statistics, 21, 396-405.

33



[16] Darolles, S., Florens, S., and Renault, E. (2002), “Nonparametric Instru-

mental Regression,” GREMAQ, University of Toulouse.

[17] Das, M. (2005), “Instrumental Variables Estimators of Nonparametric

Models with Discrete Endogenous Regressors,” Journal of Econometrics,

124, 335-361.

[18] Das, M., Newey, W. K., and Vella, F. (2003), “Nonparametric Estimation

of Sample Selection Models,” Review of Economic Studies, 70, 33-58.

[19] Dhrymes, P. J. (1970), Econometrics: Statistical Foundations and Applica-

tions, New York: Springer-Verlag.

[20] Duffie, D., and Singleton, K. L. (1993), “Simulated Moments Estimation

of Markov Models of Asset Prices,” Econometrica, 61, 929-952.

[21] Evans, W. N., and Schwab, R. M. (1995), “Finishing High School and Start-

ing College: Do Catholic Schools make a Difference,” Quarterly Journal of

Economics, 110, 941-974.

[22] Evans, W., Farelly, M. C., and Montgomery, E. (1999), “Do Workplace

Smoking Bans Reduce Smoking,” American Economic Review, 89, 728-747.

[23] Geweke, J. (1991), “Efficient Simulation from the Multivariate Normal and

Student-t Distributions Subject to Linear Constraints,” In Computer Sci-

ence and Statistics: Proceedings of the Twenty-Third Symposium on the

Interface, pp. 571-578, Alexandria, Virginia: American Statistical Associa-

tion.

[24] Goldman, D., Bhattacharya, J., McCaffrey, D., Duan, N., Leibowitz,

A., and Morton, S. (2001), “The Effect of Insurance on Mortality in an

HIV+Population in Care,” Journal of the American Statistical Associa-

tion, 96, 883-894.

[25] Hajivassiliou, V., McFadden, D., and Ruud, P. (1996), “Simulation of Mul-

tivariate Normal Rectangle Probabilities and Their Derivatives,” Journal

of Econometrics, 72, 85-134.

[26] Heckman, J. (1978), “Dummy Endogenous Variables in a Simultaneous

Equation System,” Econometrica, 46, 931-959.

[27] Heckman, J. (1979), “Sample Selection Bias as a Specification Error,”

Econometrica, 47, 153-162.

[28] Hsiao, C. (1983), “Regression Analysis with a Categorized Explanatory

Variable,” in Studies in Econometrics, Time Series, and Multivariate

Statistics, eds. S. Karlin, T. Amemiya, and L. Goodman, New York, Aca-

demic Press, pp. 934-129.

34



[29] Hsiao, C., and Mountain, D. (1985), “Estimating the Short-Run Income

Elasticity of Demand for Electricity by Using Cross-Sectional Categorized

Data,” Journal of the American Statistical Association, 80, 259-265.

[30] Kao, C., and Wu, C. (1990), “Two-Step Estimation of Linear Models with

Ordinal Unobserved Variables: The Case of Corporate Bonds,” Journal of

Business & Economic Statistics, 8, 317-325.

[31] Keane, M. P. (1993), “A Computationally Practical Simulation Estimator

for Panel Data,” Econometrica, 62, 95-116.

[32] Lee, L-F. (1978), “Unionism and Wage Rates: A Simultaneous Equation

Model with Qualitative and Limited Dependent Variables,“ International

Economic Review, 19, 415-433.

[33] Lee, L-F. (1979), “Identification and Estimation in Binary Choice Models

with Limited (Censored) Dependent Variables,“ Econometrica, 47, 977-996.

[34] Lee, L-F. (1994), “Semiparametric Instrumental Variable Estimation of Si-

multaneous Equation Sample Selection Models,“ Journal of Econometrics,

63, 341-388.

[35] Lee, L-F. (1995), “Asymptotic Bias in Simulated Maximum Likelihood Es-

timation of Discrete Choice Models,” Econometric Theory, 11, 437-483.

[36] Lee, L-F. (1999), “Simulation Estimation of Dynamic Switching Regression

and Dynamic Disequilibrium Models - Some Monte Carlo Results,” Journal

of Econometrics, 78, 179-204.

[37] Lee, L-F. (1999a), “Estimation of Dynamic and ARCH Tobit Models,”

Journal of Econometrics, 92, 335-390.

[38] Lee, L-F. (1999b), “Statistical Inference with Simulated Likelihood Func-

tions,” Econometric Theory, 15, 337-360.

[39] Lee, M-J. (1995), “Semi-Parametric Estimation of Simultaneous Equations

with Limited Dependent Variables: A Case Study of Female Labour Sup-

ply,” Journal of Applied Econometrics, 10, 187-200.

[40] Lee, S. (2004), “Endogeneity in Quantile Regression Models: A Control

Function Approach,” Cemmap working paper CWP08/04.

[41] Lewbel, A. (2004), “Simple Estimators for Hard Problems: Endogeneity in

Discrete Choice Related Models,” Working paper, Boston College.

[42] Li, Q., and Wooldridge, J. M. (2002), “Semiparametric Estimation of

Partially Linear Models for Dependent Data with Generated Regressors,”

Econometric Theory, 18, 625-645.

[43] Ma, L, and Koenker, R. (2004), “Quantile Regression Methods for Recur-

sive Structural Equation Models,” Working paper.

35



[44] Maddala, G. S. (1983), Limited-Dependent and Qualitative Variables in

Econometrics, Cambridge, MIT Press.

[45] McFadden, D. (1989), “A Method of Simulated Moments for Estimation of

Discrete Response Models Without Numerical Integration,” Econometrica,

57, 995-1026.

[46] Nelson, F., and Olson, L. (1978), “Specification and Estimation of a Simul-

taneous Equation Model with Limited Dependent Variables,” International

Economic Review, 19, 695-710.

[47] Newey, W. K. (1985), “Semiparametric Estimation of Limited Depen-

dent Variable Models with Endogenous Explanatory Variables,” Annales

de L’INSEE, 59/60, 219-236.

[48] Newey, W., Powell, J., and Vella, F. (1999), “Nonparametric Estimation of

Triangular Simultaneous Equations Models,” Econometrica, 67, 565-604.

[49] Pagan, A. (1984), “Econometric Issues in the Analysis of Regressions with

Generated Regressors,” International Economic Review, 25, 221-247.

[50] Pagan, A. (1986), “Two Stage and Related Estimators and Their Applica-

tions,” Review of Economic Studies, 53, 517-538.

[51] Powell, J. L. (1984), “Least Absolute Deviations Estimation of the Cen-

sored Regression Model,” Journal of Econometrics, 54, 1435-1460.

[52] Powell, J. L. (1986), “Symmetrically Trimmed Least Squares Estimation

of Tobit Models,” Econometrica, 54, 1435-1460.

[53] Pakes, A. D., and Pollard, D. (1989), “Simulation and the Asymptotics of

Optimization Estimators,” Econometrica, 57, 1027-1057.

[54] Rivers, D., and Vuang, Q. (1988), “Limited Information Estimators and

Exogeneity. Tests for Simultaneous Probit Models,” Journal of Economet-

rics, 39, 347-366.

[55] Robinson, P. M. (1988), “Root-N-Consistent Semiparametric Regression,”

Econometrica, 56, 931-954.

[56] Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics,

New York, Wiley.

[57] Smith, R. J., and Blundell, R. W. (1986), “An Exogeneity. Test for a Si-

multaneous Equation Tobit Model with an Application to Labor Supply,”

Econometrica, 54, 679-685.

[58] Stern, S. (1992), “A Method for Smoothing Simulated Moments of Discrete

Probabilities in Multivariate Probit Models,” Econometrica, 60, 943-952.

36



[59] Terza, J. V. (1987), “Estimating Linear Models with Ordinal Qualitative

Regressors,” Journal of Econometrics, 34, 275-291.

[60] Terza, J. V. (1998), “Estimating Count Data Models with Endogenous

Switching: Sampling Selection and Endogenous Treatment Effects,” Jour-

nal of Econometrics, 84, 129-154.

[61] Trapani, L. (2004), “On the Use of the Cauchy-Schwarz Inequality for

Asymptotic Theory,” Working paper, Cass Business School, London.

[62] Vella, F. (1993), “A Simple Estimator for Simultaneous with Censored

Endogenous Regressors,” International Economic Review, 34, 441-457.

[63] Vella, F. (1998), “Estimating Models with Sample Selection Bias: A Sur-

vey,” Journal of Human Resources, 33, 127-169.

[64] Vella, F., and Verbeek, M. (1999a), “Two-step Estimation of Panel Data

Models with Censored Endogenous Variables and Selection Bias,” Journal

of Econometrics, 90, 239-263.

[65] Vella, F., and Verbeek, M. (1999b), “Estimating and Interpreting Models

with Endogenous Treatment,” Journal of Business & Economic Statistics,

17, 473-478..

[66] Vytlacil, E., and Yildiz, N. (2004), “Dummy Endogenous Variables in

Weakly Separable Models,” Working paper, Department of Economics,

Stanford University.

[67] Willis, R. and Rosen, S. (1979), “Education and Self-Selection,” Journal of

Political Economy, 87, S1-S36.

[68] Wooldridge, J. M. (2002), Econometric Analysis of Cross Section and Panel

Data, Cambridge, MIT Press.

[69] Yildiz, N. (2004), “Estimation of Binary Choice Models with Linear In-

dex and Dummy Endogenous Variables,” Working paper, Department of

Economics, Stanford University.

[70] Zhang, W., and Lee, L. F. (2004) “Simulation Estimation of Dynamic Dis-

crete Choice Panel Models with Accelerated Importance Samplers,” Econo-

metrics Journals, 7, 120-142.

37


	Simulation-Based Two-Step Estimation with Endogenous Regressors
	Recommended Citation

	0524.dvi

