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Abstract 

A widely relied upon but a formally untested consideration is the issue of stability 
in actors underlying the term structure of interest rates. In testing for stability, 
practitioners as well as academics have employed ad-hoc techniques such as splitting the 
sample into a few sub-periods and determining whether the factor loadings have appeared 
to be similar over all sub-periods. Various authors have found mixed evidence on 
stability in the actors. In this paper we develop a formal testing procedure to evaluate the 
factor structure stability of the US zero coupon yield term structure. We .find the factor 
structure of level to be unstable over the sample period considered. The slope and 
curvature factor structures are however found to be stable. Common structural changes 
affecting all interest rate maturities have fostered instability in the level factor. We 
corroborate the literature that variances (volatility) explained by the level, slope, and 
curvature factors are unstable over time. We .find that the volatility of slope factor is 
sensitive to shocks affecting the short rates and the volatility of curvature factor is 
sensitive to shocks affecting the medium and long rates. Finally, we .find evidence of the 
presence of common economic shocks affecting the level and slope factors, unlike slope 
and curvature factors that responded differently to economic shocks and were unaffected 
by any common instabilities.  
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1 Introduction

The statistical models using factor decomposition techniques such as principal component analy-

sis (PCA) and factor analysis, where the yield curve dynamics can be summarized by a few

principal factors, have been highly favored in modelling interest rates. The term structure lit-

erature using statistical models have all used graphical methods for analysing the stability of

the factors. The standard procedure implemented in this regard has been to divide the sample

data into sub-periods and to identify the factor loading for the corresponding sub-periods. If

the explanatory power of the factor loadings appeared to be similar over all sub-periods, then

the factors were said to be stable over time. There have been no other formal tests conducted

in this respect except a recent paper by Audrino et al. (2005) that concluded instability in the

�ltered innovations of the principal factors governing the US Discount bond yields. However, the

detected instability could not be directly associated to the level, slope, and curvature factors.

In this paper, we derive the limiting distribution of Wald-type test to formally test for

the null of stability in the underlying level, slope, and curvature factor structure of the US

zero coupon yield term structure. The eigenspace variables (i.e. eigenvalues, eigenvectors, and

factor loadings) underlying the factor structures are estimated via PCA. We formalize a series

of hypotheses to test for instabilities in the eigenspace variables governing the level, slope, and

curvature factors. To anticipate some results, we �nd instability in the factor structure of level

but stability in the factor structures of slope and curvature. We �nd the eigenvalues (volatility)

of the level, slope, and curvature factors are unstable over the sample period considered. The

instability in the volatility of level is due to structural changes common to all interest rate

maturities. We �nd that the volatility of slope factor is sensitive to shocks a¤ecting the short

rates and the volatility of curvature factor is sensitive to shocks a¤ecting the medium and long
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rates. Investigating for common structural changes in factors, we �nd evidence of the presence of

common economic shocks a¤ecting the level and slope factors. The slope and curvature factors

are however una¤ected by any common instabilities.

The remainder of this paper is structured as follows. Section 2 provides an account of the

instability in yield curves documented in literature. In Section 3 we present the factor analysis

framework for the term structure level, slope, and curvature factors, estimated using the PCA.

We provide the asymptotic properties of the estimated eigenspace variables for the three factors,

which is applied into developing the stability testing procedure in the subsequent section. In

Section 4 we formulate six hypotheses for statistically evaluating the stability in the eigenspace

variables governing the level, slope, and curvature factors of the yield curves and device the

test statistics for evaluating each hypothesis. Section 5 describes the dataset used, graphical

analysis of the evolution of eigenspace variables (eigenvalues, eigenvectors, and factor loadings),

and presents the results of the testing procedure developed in Section 4. Section 6 concludes.

2 Yield Curve Dynamics Instability

Modelling the dynamics of interest rates is vital in trading �xed income securities that are

sensitive to movements in interest rates. The main interest for both practitioners and academics

is to �t the interest rates data within a framework that is able to capture the future evolution of

the term structure of interest rates. For instance, this is important for the valuation of securities

such as interest rate derivatives. Also, understanding the process governing the interest rate

movements is crucial to analyse and alter the risk exposures at a given point of time. Bliss and

Smith (1997) argued that model selection and stability of the parameters underlying the process

are closely related. By critically examining the main �ndings in Chan et al. (1992), the paper

showed that the unaccounted structural break, due to the Fed change in the monetary policy,
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biased the main �nsings of the paper.

Structural changes have also been modelled by allowing for regime switches in interest rates.

Following the seminal work of Hamilton (1989) on modelling short rates using a regime switch-

ing process, Lewis (1991), Evans and Lewis (1995), Garcia and Perron (1996), Gray (1996),

and Ang and Bekaert (1998) studied regime switches in interest rate models. Empirical evi-

dence suggest that not only the short rates but also the whole term structure of interest rates

might experience shifts in regimes due to business cycle expansions and contractions, changes in

monetary policies and regime changes in economic variables such as consumption and in�ation.

Bansal and Zhou (2002) showed that term structure models incorporating regime shifts provide

considerable improvements over multifactor models.

The presence of instabilities in the short and long term yields can also seep into the factor

structures governing these yields. One of the earlier works in factor analysis of term structure

of interest rates is the Nelson and Siegel (1987) model. This parsimonious representation is

very popular among practitioners for calibrating the yield curve. Since the model is linear in

coe¢ cients, they are estimated using ordinary least squares. The coe¢ cients of the yield curves

were interpreted to be level, slope, and curvature. Various other authors have found the same

statistical interpretation to the coe¢ cients estimated via statistical techniques such as the PCA

and factor analysis. Litterman and Scheinkman (1991) showed that the three principal factors,

explaining around 99 percent of the changes in treasury bond yields, could be interpreted to

be the level (or parallel movement component), slope (or slope oscillation component), and

curvature component. The level factor or the parallel movement component alone was the most

important factor that accounted for an average of 89 percent of the variations observed in the

yield changes data.

Though there is a widespread use of factor analysis for term structure of interest rates, very

3



little attention has been given to evaluate the factor structure stability of interest rates. Rather,

most authors have assumed that the principal factors driving the evolution of interest rates

are stable through time. A few instead use ad-hoc methods to investigate factor stability. For

instance, Bliss (1997) divided the sample period January 1970 �December 1995 into three sub-

periods of arbitrary lengths and investigated the change in the factor loadings. Since the factor

loadings patterns in the di¤erent sub-periods seemed similar in the case of all three factors, the

factors were concluded to be stable. However, the factor volatilities were found to �uctuate over

the sub-periods considered. In the forecasting setting using the Nelson-Siegel model, Diebold

and Li (2006) found similar results with stable factors and time-varying factor volatilities. Since

the parameters were stable over time, the proposed model produced much accurate forecasts at

both the short and long horizons than other standard forecasting benchmarks. On the other

hand, on the basis on the clear evidence of the time-varying nature of volatility associated with

the factors, Perignon and Villa (2006) accounted for a time-varying covariance matrix when

estimating the factor structure of interest rates. Using the U.S. term structure data between

January 1960 and December 1999, Perignon and Villa observed that the factor structure (factor

loadings) remained constant across sub-periods considered but the volatility (eigenvalues) of the

factors varied through time. Reisman and Zohar (2004) used the yield to maturity data of US

discount bonds from 1982. They found that the �rst two principal components were quite stable;

the third component was marginally stable; and the fourth component was unstable. Fabozzi

et al. (2005) used the Nelson and Siegel (1987) model to parameterize twelve monthly yields

term structure data from June 7, 1994 to September 5, 2003. They plot the factor loadings

from the model, and observed that the level and slope coe¢ cients of the model seemed stable,

while the curvature coe¢ cient showed instability. Chantziara and Skiadopoulos (2005) evaluated

stability in the principal factors of the term structure of petroleum futures by performing the
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PCA individually on two sub-periods before and after May 1997, the cut-o¤ date being identi�ed

as the beginning of the Asian crisis. Since the PCA results for the two sub-periods were not

di¤erent from the results obtained for the whole sample, the paper concluded stability in the

factor structure over the whole sample period.

To summarize, the stability analyses on factors were carried out by graphically plotting the

factor loadings and by weighing the similarity in results over time. The standard procedure

implemented in this regard was to divide the data into sub-periods and to identify the factor

loading for the corresponding periods. If the explanatory power of the factor loadings appeared

to be similar over all periods, then the factors were concluded to be stable over time. The �rst

and the only formal test (to the best of our knowledge) in evaluating stability of factors governing

interest rates was introduced in Audrino et al. (2005) who considered a three-factor model with

conditional hetroskedastic factors. The paper found contradicting conclusions in that the factor

loadings of the US discount bond yields were in fact unstable over the period January 1986

to May 1995. The paper used independent �ltered innovations in order to �nd the principal

factors for the di¤erent sub-periods considered and then using a regression framework on the

�ltered innovations, tested the hypothesis that the regression coe¢ cients (factor loadings) in

the di¤erent sub-periods are indeed equal. Since the authors constructed factors on the �ltered

innovations, the instability detected could not be interpreted as instability of the level, slope, or

curvature factors.

The main contribution of this paper is to introduce a testing procedure that would enable us

to formally investigate the instability present in the factor structure of level, slope, and curvature

of the yield curves.
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3 Framework and Estimation of the Eigenspace

In this section, we present the estimation framework and the inferential theory developed for

the eigenspace variables (eigenvalues, eigenvectors, and factor loadings) estimated via PCA. The

limiting distributions of the eigenspace variables developed in this section allows to construct

the asymptotic test statistics for evaluating the presence of instability in the eigensystem.

Estimation of panel factor models have been originally developed in order to capture the

main sources of variations and covariations among the N independent random variables in

a panel framework. These methods were extended by Geweke (1977) and Sargent and Sims

(1977) into dynamic factor models, and by Brillinger (1964) into dynamic PCA, that were able

to predict the covariation in economic variables by few underlying latent factors. Although the

two methods di¤er for panels with small cross-sectional dimensions, as N increases they provide

similar inferences. Chamberlain and Rothschild (1983) then distinguished the dynamic models

into exact and approximate dynamic factor models. In the case of exact dynamic factor models,

the idiosyncratic terms are assumed to be mutually uncorrelated whereas the approximate factor

models relaxes this restriction and allows for limited correlation among the idiosyncratic terms.

Applications in �nance particularly favor the approximate factor models where the idiosyncratic

terms are weakly correlated and where large number of cross-sectional units can be competently

summarized by a few common statistical factors.

In this paper, we use the classical PCA framework, which incorporates the approximate

structure in the cross-sectional correlation among units. We use a static factor structure.

Consider the stationary representation for term structure of interest rates with cross-sectional

(N) and time-series (T ) dimension and with (r) factors:
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Yt = 

0Ft + "t t = 1; 2; :::; T (1)

Let Yt = (Y1t; :::; YNt)
0 be the term structure panel with Yt being an N � 1 vector of cross-

sectional observations from the panel data structure at time period t, 
 is an r � N matrix

of the factor loadings, Ft is the r � 1 vector of common factors for all cross-sectional units at

time period t; and "t = ("1t; :::; "Nt)
0 is the N � 1 vector of idiosyncratic i:i:d: disturbances.

Based on that the term structure literature considers the number of common factors su¢ cient

to explain the dynamics of interest rates equal to three, we consider the case of r = 3, though

our framework is valid for any value of r. The factor loadings matrix loads the factors on to the

variables, explaining the correlation between the factors and the variables. The factor loadings

(
) can be computed as the unit length eigenvectors matrix multiplied by its singular value,

which is the square-root of eigenvalues. Thus 
 characterizes the unit length eigenvectors in its

true size and encompasses in them the information of direction as well as magnitude.

The loadings underlying the factor structure of Y by de�nition is a function of eigenvalues

and eigenvectors. In order to estimate the loadings, we use PCA that undertakes the eigen

decomposition of the covariance matrix � of Y: When � is unknown, we estimate the sample

variance covariance matrix whose elements at position i; j is given as

h
�̂
i
i;j
=

1

T � 1

TX
t=1

�
yit � �yi

� �
yjt � �yj

�
i; j = 1; :::; N (2)

where (yi1 ; :::; yiT ) for i = 1; :::; N are each independent and identically distributed. The PCA

framework is summarized in the Appendix A. In Appendix B, we report the limiting distribu-

tion of the eigenvalues and eigenvectors estimated from a covariance matrix, which is Wishart

distributed.

The following theorem provides the rate of convergence and the limiting distribution of the
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factor loadings for the case of interest rate panels with large T .

Theorem. (Limiting distribution of factor loadings) Consider �1 > �2 > ::: > �N and �1; �2; :::; �N

as the �rst N ordered eigenvalues and their corresponding eigenvectors of � respectively. De�ne

�i�
1=2
i = 
i as the i

th factor loading vector where 
i = (
i1; 
i2; ::; 
iN )
0 and 
 =(
1; :::; 
N ) :

Since �̂i � �i is independent of �̂i � �i it holds that

(
̂ � 
) = Op(T�1=2) (3)

p
T (
̂ � 
) d�! N(0;	) (4)

where 	 =
XN

i=1

XN

j=1
(Uij 
	ij) where Uij is an N �N matrix that has 1 in the ijth position

and 0�s elsewhere. The asymptotic covariance matrix

	ij =

8>><>>:
�i�ij +

1
2�i�j�

0
i for i = j

(�i�j)
1=2�ij for i 6= j

Proof: see Appendix C

Let 	̂ be the estimated covariance matrix of the factor loadings. According to the continuous

mapping theorem, as T �!1; 	̂ p�! 	: 	̂ is consistent since it is a continuous function of the

estimated eigenvalues and eigenvectors that are consistent. Since the factor loadings matrix, 
̂

is estimated in the classical PCA framework, we �nd consistent estimates for the factor loadings.

This is because the factors loadings, de�ned in terms of the eigenvalues and eigenvectors obtained

via eigen decomposition, are consistent for panels with large T .

4 Testing for Instability in the Eigensystem

In this section, we formulate a series of hypotheses that will enable us to evaluate stability among

the eigenspace variables of the yield curves. Since we are primarily concerned with the level,
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slope, and curvature factors governing the yield curves, we investigate stability in the eigenspace

variables of the �rst three principle factors.

We examine instability by testing the null hypothesis of no change point against the alter-

native of at least one change point happening at the unknown time, � :We de�ne � as a fraction

of the sample space T such that � = [T�] where � = (0; 1) : We de�ne the eigenvalues (�),

eigenvectors (�i), and the factor loadings (
i) for the sample split around the unknown time

point � as

� =

8>><>>:
�a for t = 1; :::; �

�b for t = � + 1; :::; T

for some �

�i =

8>><>>:
�ai for t = 1; :::; �

�bi for t = � + 1; :::; T

for some �


i =

8>><>>:

ai for t = 1; :::; �


bi for t = � + 1; :::; T

for some �

We test the following hypotheses in order to gather inference on the instability in the under-

lying eigensystem of the yield curves:

I. H0 : �a = �b

H1 : �
a 6= �b

II. H0 : �ai = �
b
i

H1 : �
a
i 6= �bi for i = 1; 2; 3

III. H0 : �ai = �
b
i

H1 : �
a
i 6= �bi for i = 1; 2; 3

IV. H0 : �aip = �
b
ip
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H1 : �
a
ip 6= �bip for i = 1; 2; 3; and p = 1; 2; :::; N

V. H0 : 
ai = 

b
i

H1 : 

a
i 6= 
bi for i = 1; 2; 3

VI. H0 : 
ai = 

b
i and 


a
j = 


b
j for i; j = 1; 2; 3 and i 6= j

H1 : 

a
i 6= 
bi or 
aj 6= 
bj

The main aim of testing the series of hypotheses formulated above is to study the economic

shocks causing structural changes and their impact on the eigensystem of the yield curves. Since

the risks associated with the yield curves can be su¢ ciently summarized in the �rst three factors,

we investigate the impact of these economic shocks to structural changes in level risks, slope

risks, and curvature risks.

Hypothesis I tests for stability in the overall eigensystem of the yield curves: The results from

this test would indicate whether there is a persistent statistically signi�cant structural changes

in the volatility governing the factor structure of the yield curves. Further, we investigate

which factors (if any) might have caused the instability and which eigenspace variables might

have incurred signi�cant changes. Hypotheses II, III, and V test for instabilities present in

the magnitude, direction, and loading respectively of the three factors. The results from these

tests would indicate whether the instabilities have been induced by level breaks, slope breaks,

or rather curvature breaks. Hypothesis IV relates to testing for instability in each factor, and

understanding which interest rates maturities have experienced structural changes, causing the

instability in the factor. Hypothesis VI tests for common structural changes in factors. Since the

level, slope, and curvature factors are correlated, the test captures change points in one factor

that might ripple into the other factors causing common change points in all factors.
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In what follows, we develop the stability test statistics for evaluating the six hypothees

formulated above. De�ne � = (�; �;
) as the parameter space. Let �̂a and �̂b be the consistent

estimators of �a and �b: The limiting distribution of � for the restricted sample space before

the break and after the break, given the change point � ; is

p
T
�
�̂a ��

�
=
p
T

0BBBBBB@
�̂a � �

�̂
a � �


̂a � 


1CCCCCCA
d�!

0BBBBBB@
N
�
0; ��a

�
N
�
0; ��a

�
N
�
0; �	a

�

1CCCCCCA ;

and

p
T
�
�̂b ��

�
=
p
T

0BBBBBB@
�̂b � �

�̂
b � �


̂b � 


1CCCCCCA
d�!

0BBBBBB@
N
�
0; ��b

�
N
�
0; ��b

�
N
�
0; �	b

�

1CCCCCCA
where the superscript a and b denote estimation from restricted sample before and after the

break respectively; ��a = �a

� ;
��b = �b

1�� ;
��a = �a

� ;
��b = �b

1�� ;
�	a = 	a

� and �	b = 	b

(1��) are

the associated covariance weighting structure; and the covariance matrices �; �; and 	 are as

de�ned in Appendix B.

In testing the Hypothesis I, when � is �xed, the Wald test statistic under the null hypothesis

of no structural change in � against the alternative of at least one structural change in � can

be constructed as below:

WI(�) =
��
�̂a � �

�
�
�
�̂b � �

��0 h�
��a
�
+
�
��b
�i�1 ��

�̂a � �
�
�
�
�̂b � �

��
d�! Z 0

h�
��a
�
+
�
��b
�i�1

Z

where Z � N
�
0; ��a + ��b

�
:

De�ne �̂ = ��a + ��b where �̂ is positive de�nite: Using Cholesky decomposition, we have

�̂ = LL0 and �̂�1 = L�1L�10 where L is a lower triangular matrix with strictly positive diagonal
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entries. Premultiplying Z by the inverse of L;

L�1Z � N
�
0; L�1�̂L�10

�
= N

�
0; L�1LL0L�10

�
= N (0; Ir) :

Using this result, we can show that asymptotically

WI(�)
d�! Z

0
�̂�1Z = Z 0L�1

0
L�1Z = Q(�) (5)

where for a given � = [T�]; Q (�) � �2 (q) with the degrees of freedom q corresponding to the

number of restrictions being tested. Thus the test statisticWI(�) under the null is asymptotically

pivotal for � �xed.

Since the eigenvectors and the factor loadings are also asymptotically normal (see Appendix

B), we may test all the other �ve hypotheses using Wald statistics, which when normalized with

their respective asymptotic variances, converges to a chi-squared as above. The form of the

Wald statistics corresponding to the �ve hypotheses are given below:
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WII(i; �) =

�
�̂
a

i � �̂
b

i

�2��
2
�
�̂
a

i

�2
=�

�
+

�
2
�
�̂
b

i

�2
=(1� �)

�� (6)

WIII(i; �) =
�
�̂
a

i � �̂
b

i

�0 h
��aii +

��bii

i�1 �
�̂
a

i � �̂
b

i

�
(7)

WIV (i; p; �) =

�
�̂
a

ip � �̂
b

ip

�2h�
��aii;pp

�
+
�
��bii;pp

�i for ��sii;pp is ppth position of matrix ��sii; s = a; b (8)

WV (i; �) =
�

̂ai � 
̂bi

�0 h
�	aii +

�	bii

i�1 �

̂ai � 
̂bi

�
(9)

WV I(i; j; �) =

0BB@ 
̂ai � 
̂bi


̂aj � 
̂bj

1CCA
0 2664

�
�	aii +

�	bii
� �

�	aij +
�	bij

�
�
�	aij +

�	bij

� �
�	ajj +

�	bjj

�
3775
�10BB@ 
̂ai � 
̂bi


̂aj � 
̂bj

1CCA (10)

When the date of the structural change is unknown but known to fall within a �nite range,

to test for a break occurring at time � we use the Sup, Exp; and Avg Wald-type (W ) de�ned

as:

SupW = max
t1<�<t2

W (11)

AvgW =
1

t2 � t1 + 1

t2X
�=t1

W (12)

ExpW = ln

"
1

t2 � t1 + 1

t2X
�=t1

exp

�
1

2
W

�#
(13)

where W corresponds to one of the equations (6)-(10). The breakpoint � lies between t1 and t2

such that t1 = [T�1]; t2 = [T�2]; t1 6= t2; �2 = 1� �1; and t1 is bounded away from zero and t2 is

bounded away from T ; this condition is required since the proposed test statistic is unbounded

in limit at the boundaries. Following Andrews (1993) and Andrews and Ploberger (1994), we

13



use the restricted interval t1 = 0:15T and t2 = 0:85T such that �1 and �2 lies in the interval

[0:15; 0:85]:

Under the null of no structural change, from the continuous mapping theorem, the asymptotic

distributions of the test statistics converge to:

SupW
d�! max

�1<�<�2
Q(�) (14)

AvgW
d�!
Z �2

�1

Q(�)d� (15)

ExpW
d�! ln

�Z �2

�1

exp

�
1

2
Q(�)

�
d�

�
(16)

where if we know the break point fraction �;Q(�) will be �2 (q) with the degrees of freedom q

corresponding to the number of restrictions being tested.

In providing inference on the eigensystem stability, we rely upon the bootstrapped critical

values of the test statistics. We bootrap the space vector of N maturities by resampling across

time. Andrews (1993) and Andrews and Ploberger (1994) provide the asymptotic critical values

for Sup;Avg;and Exp of optimal tests based on a regression type framework. Where the least

squares problem minimizes the vertical distances between the datapoints, the PCA minimizes

the orthogonal distances between the datapoints.

In order to construct the bootstrap distribution of the test statistics, we undertake the

following steps:

1. For a given value of the break fraction �, we randomly draw the vector of maturities from

the T �N term structure data in order to construct the T �N bootstrapped data.

2. We construct the covariance matrix for the bootstrapped data and conduct the PCA in

order to estimate the eigenspace variables �̂; �̂; 
̂:

3. We compute the Wald statistics Wk(:; �) for k = I; II; :::; V I and calculate the weighted

measures Sup;Avg;and Exp of the Wald statistics.
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4. We repeat steps 1 through 3 for BR number of bootstrap replications.

The procedure generates BR number of bootstrap statistics of Sup;Avg;and Exp ofWk(:; �).

For � = 0:15 and for signi�cance level � = 0:05 we conduct 1000 iterations (BR = 1000) and in

each iteration we resample the term structure panel, which is of 1923 by 21 dimension. Table 1

provide the bootstrap critical values for Sup;Avg;and Exp of the Wald statistics in equations 5

- 10.

[Insert Table 1]

Note that since the Wald test statistic is asymptotically pivotal, the asymptotic distribution

of the test statistics does not depend on a particular data generating process under the null.

Therefore bootstrap distribution can consistently estimate the asymptotic distribution of the test

statistics and provide more reliable inference than asymptotically based inferences by removing

the �nite sample biases. Davidson and MacKinnon (1999) �nd that for asymptotically pivotal

test statistics, using critical values from the bootstrap will produce smaller size distortions

(reduced by an order of T�1=2) than when using the critical values obtained from the �rst order

asymptotics. Using the bootstrapped critical values, one may be able to mimic the skewness and

kurtosis of the empirical distribution that is not captured by the �rst order limiting distribution.

5 Empirical Results

5.1 Data

We use the term structure of US zero coupon bond yields obtained from Datastream. The term

structure of zeros are extremely useful in �xed income applications such as pricing bonds, swaps,
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and other �xed income derivatives; �nancial engineering the interest rates exposures; obtaining

the forward rate curves, par yield curves; and so on. Table 2, summarizes the datasets used in

the previous studies that have evaluated the term structure stability.

Our dataset consist of yields of the following maturities: 3 to 12 months and 2 to 12 years.

The matrix plot in Figure 1 depicts the relationship among the yields of various interest rate

maturities considered. The sample period extends from 11 Jan 1999 to 31 May 2006, with daily

frequency (1927 observations). The data period covers both the period of downturn (during the

technology stock boom in 2001) and upswings where the risk aversion of the investors are high

causing gains in the bond markets. The bond yields data for maturities less than 3 months were

�ltered out in order to reduce the market microstrucuture e¤ects and avoid liquidity issues. On

the same note, we use the 5 day change in yields (the 5 day holding period returns) in order to

perform the eigen decomposition on its covariance structure as recommended by Lardic et al.

(2003) and as commonly used in factor analysis literature of term structure of interest rates.

[Insert Table 2 here]

[Insert Figure 1 here]

5.2 A First Examination of Factor Structure Instability

In this section, we undertake some graphical analyses for the term structure of US zero coupon

bond yields in order to identify the instability risk present in the factor structure of the yield

curve.

First, we arbitrarily split the seven and half year�s bond yield data into three approximately

equal, two and half year subsample periods; January �99 - June �01, July �01 - Dec �03, and Jan

�04 - May �06 and graphically investigate whether the eigensystem has remained stable over the

three subperiods. We perform the PCA on the 5 year holding period returns data for the three
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subsamples, in order to extract the level, slope, and curvature factors that drive the evolution

of change in interest rates data. Following Litterman and Scheinkman (1991), we consider the

�rst three principal factors in explaining the evolution of term structure of interest rates. In

order to extract the three principal factors using PCA, we perform the following steps:

1. We form the covariance matrix from the change in panel of yields panel for the three

subperiods considered.

2. We compute the eigenvalues and the corresponding eigenvectors from the covariance

matrix for each period using the eigen decomposition. The eigenvectors are the principal com-

ponents and the eigenvalues present the explanatory power of the corresponding eigenvectors.

Second, we graphically investigate instability along the short end, medium term, and long

end of the yield curve separately over the three subsample periods considered. For this, we draw

the direction of the principal axes (the eigenvectors), along with the scatter plot of the original

yield changes data for the three subsample periods. In order to visualize the direction of the

eigenvectors, we have to limit our analysis to the two dimensional plots. We use the three month

and six month rate as a proxy for the short end of the curve; the �ve year and seven year rate

as a proxy for the middle (medium term) of the curve; and the ten and twelve year rate as a

proxy for the long end of the curve.

Third, in order to examine the evolution of the entire eigenspace, we conduct recursive PCA

by expanding the estimation window at every run by including one new observation and then

record the evolution of the eigevalues, eigenvectors, and factor loadings. We undertake two

recursive schemes, namely Forward Recursive Scheme (FRS) and Backward Recursive Scheme

(BRS). The two schemes allow us to evaluate stability in an informal way. The FRS allows us to

visually gauge the impact of adding one extra observation at each resursion and the BRS allows

us to visually gauge the impact of removing one observation at each recursion. The instability
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can be seen as the abrupt increase in variability at a point in time in the case of the FRS and a

reduction in variability at a point in time in the case of the BRS. This FRS and BRS patterns

can also be used to check if there there are more than one changes a¤ecting the variability in

the recursion.

Figures 2 to 8 present the results towards the preliminary study of the issue of instability.

Figure 2 plots the three principal components determined over the three subsamples. We observe

that, in all the three subsample periods, considering the �rst three principal components would

be su¢ cient in explaining the dynamics of the term structure. Though the three factors vary in

detail, the term structure responsiveness to these factors has remained stable over time. This

stability result concurs with that recorded by Bliss (1997), Perignon and Villa (2006), and others.

However, the column charts of Figure 2 show that the shocks to the term structure varied during

the subperiods considered. The level risks, captured by the �rst principal component, was the

highest in the third subsample period, corresponding to upward shifts in the yield curve. The

slope risks, explained by the second principal component and the curvature risks, explained by

the third principal component, were the highest in the second subsample, corresponding to the

�attening of the yield curve observed during the bear market (2000-03).

Figures 3, 4, and 5 plot the short run, medium term, and long run principal axes (directional

vectors) for the three subsample period considered. The two directional vectors are orthogonal

to each other by construction. The plot shows how well the principal axes explains the vari-

abilility in yields. Table 3 records the eigenvalues (volatility), eigenvectors, and the percentage

of variances explained by the two principal components. For the case of short rates, if we com-

pare the direction of the principal axes across the three subsample period, we �nd that the �rst

principal axis di¤er across the three subsamples and by the orthogonality condition, so does the

second principal axis. Further, we observe that the sample data for the short rates are dispersed
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distinctly across the three subsample periods. This means there exist di¤erent volatility patterns

in the three subperiods and supports the argument allowing for distinct time-varying covariance

matrices. Therefore considering a constant covariance matrix decomposition of principal com-

ponents may induce instability in the components. For the case of medium term and long term

rates governing the yield curves (Figures 4, and 5 respectively), we �nd that the two eigenvalues

have similar directional vectors for the three subsample periods, with around 99% explanatory

power of the variances.

[Insert Figures 2 - 5 here]

[Insert Table 3]

Further consider the recursive plots of the eigenvalues, eigenvectors, and factor loadings

reported in Figures 6, 7, and 8. The plots obtained from the recursion clearly show endurance

of instability in the eigensystem. In the case of eigenvalues governing the factors (Figure 6),

we can clearly see that the dynamics have not remained the same over time even though the

percentage variation explained by the eigenvalues has remained the same. The eigenvalues for

the level and curvature factors seems to have one prominent change but the eigenvalues governing

the slope seems to have more than one abrupt change. Looking at the recursion patterns for

eigenvectors (Figure 7), the level and curvature eigenvectors show two prominent patterns and

the slope eigenvector shows three prominent patterns suggesting possible structural changes in

the eigenvectors. In the case of factor loadings (Figure 8), the FRS suggest one possible pattern

change in the case of level, and two pattern changes in the case of slope and curvature. However,

if we also consider the BRS, we can see there exist one possible intermittent blip in the level,

slope, and curvature factor loadings. The observations of pattern changes surely corroborate

the time-varying nature of the eigensystem, which may have caused possible structural breaks
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in the series.

[Insert Figures 6 - 8 here]

To summarise, we �nd that the shocks contributing to the level, slope, and curvature in-

stability risks have varied during the three arbitrary identi�ed subsamples. We �nd that the

directional axes of the short end interest rates have also varied over time. The forward and

backward recursive plots of the eigenspace variables indicate the possible presence of instabili-

ties.

In the following section, we formally test for the instability present in the eigenvalues, eigen-

vectors and factor loadings, using the testing framework we developed in the paper.

5.3 Stability Testing Results

Table 4 records the results from implementing the Sup, Avg, and Exp test statistics for the six

hypotheses formulated above. We test the linear restrictions of equality in eigenspace variables

for a given change point occurring at time � ; using the Wald test. In practice since we do not

know this change point � ; we calculate the weighted statistics Sup, Avg, and Exp for all possible

change points within the restricted sample period. The tests are evaluated for signi�cant struc-

tural changes within the restricted sample period [0:15T; 0:85T ] :1 The conclusions are drawn

based on results from all the three weighted measures Sup, Avg, and Exp that concur.

[Insert Table 4 here]

1We avoid the boundaries since the test statistics produce unstable results at the boundaries as documented

by Andrews (1993).
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5.3.1 Investigating stability in the overall eigensystem

Consider Panel A in Table 4. Evaluating the weighted test statistics for WI (�) ; we reject the

null in favor of the alternative that �a 6= �b: Thus, Sup, Avg, and Exp test statistics of WI (�)

infer that signi�cant changes persist in the eigensystem of the yield curves. Instability in the

vector of eigenvalues would mean structural instability in the variance process governing the

factors. Bliss (1997), Audrino et al. (2005), among others, detected the same instability.

It is worth mentioning that the conclusions on instability of the factors governing the volatil-

ity is indeed di¤erent to the conclusions drawn in this paper where we evaluated the volatility

governing the factors. The distinction lies within the fact that the information extracted (using

eigen decomposition) from the covariance matrix of the yields are di¤erent than the information

summarized in the covariance matrix of unobserved volatility. In regard to the latter, Perignon

and Villa (2006) document the time-varying nature of the volatility governing the factors and

Bliss (1997) reported instability present in the factor volatility structures using graphical meth-

ods.

5.3.2 Investigating stability in eigensystem of the level factor

Consider Panels B and F in Table 4. Evaluating the weighted test statistics forWII (1; �) ;WIII (1; �) ;

and WV (1; �) we reject the null in favor of the alternative that �a1 6= �b1; �a1 6= �b1; and 
a1 6= 
b1

respectively. Thus according to all the three weighted measures (Sup, Avg, and Exp) for the

various hypotheses, we can conclude that all the three eigenspace variables (eigenvalue, eigenvec-

tor, and factor loading) governing the level factor has statistically signi�cant structural changes

inducing instability. The result di¤ers to the graphical inferences gathered by several authors

such as Reisman and Zohar (2004) who has drawn stability conclusions for the level factor of

discount bond yields.
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In order to gauge which interest rate maturities have contributed to structural instability in

the level factor, we evaluated the weighted test statistics for WIV (1; �) : According to all the

three weighted measures Sup, Avg, and Exp we conclude that the structural instability was

common and evident in all the 21 interest rate maturities governing the level factor. This means

that the structural change in the level factor has been caused by economic shocks that eminently

in�uenced the whole yield curve (short end as well as the long end maturities).

5.3.3 Investigating stability in eigensystem of the slope factor

Consider Panels C and G in Table 4. In the case of the slope factor, we �nd that the eigenvalue

or volatility governing the factor has incurred structural changes. Using all the three weighted

statistics for WII (2; �) ; we reject the null in favor of the alternative of �a2 6= �b2: However,

by evaluating WIII (2; �) and WV (2; �) we �nd that the eigenvectors and the factor loadings

governing the slope factor have remained stable over time. By evaluating the weighted test

statistic of WIV (2; �) for the slope factor, we can �nd that the short term interest rates (3

months - 1 year) governing the factor were unstable whereas the medium and long term interest

rates (2 years - 12 years) governing the factor were tested to be stable over time. Thus the

volatility of the slope factor is sensitive to shocks a¤ecting the short rates, but the slope factor

structure has remained stable over time. The test results for the slope factor concur with

Reisman and Zohar (2004) who conclude stability of the slope factor.

5.3.4 Investigating stability in eigensystem of the curvature factor

Consider Panels D and H in Table 4. In the case of testing for instability in the eigenspace

variables of the curvature factor, we �nd similar results to that of the slope factor. Using

the Sup, Avg, and Exp for WII (3; �) ;WIII (3; �) ; and WV (3; �) we �nd that the curvature
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eigenvalue (volatility) has been subject to statistically signi�cant structural changes but the

corresonding eigenvector and factor loading have remained stable through time. By evaluating

stability in the interest rates governing the curvature factor (using WIV (3; �)), we �nd that the

medium and long term rates (2 years - 12 years) have contributed to the structural change in the

volatility of the curvature factor. Unlike the slope factor, we �nd that the short term interest

rates (3 months - 1 year) were stable through time.

Thus we can conclude that, as in the case of the slope factor structure, the volatility gov-

erning the curvature factor has incurred statistically signi�cant structural changes. However,

the variance explained by the curvature factor is sensitive to movements and shocks a¤ecting

only the long rates. We �nd that the factor structure of curvature has remained stable over

the sample period considered. Reisman and Zohar (2004) documented marginal stability of the

curvature factor structure using graphical analysis.

5.3.5 Investigating common instability in factor loadings

Consider Panel E in Table 4. Since we have found that the eigenspace variables for the level,

slope, and curvature factors have incurred instability and since the three factors are correlated

with each other, the economic shocks a¤ecting one factor could also have a¤ected the other.

Therefore we investigate the presence of common structural changes due to common shocks in

factors. By evaluating the weighted test statistics of WV I (1; 2; �) we do not reject the null

of presence of common structural changes in level and slope factor loadings. Thus we can

conclude that there exist statistically signi�cant change points common to the level and slope

factors. Combining this result with the instability conclusions found for the level and slope

eigenvectors, we can identify the common sources of instability within the level and slope factors

as the economic shocks that have caused structural changes in the short term interest rates (3
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months - 10 months). Since the Sup, Avg, and Exp for WV I (1; 3; �) provide variant conclusions

from testing common instabilities in level and curvature factor loadings, we cannot infer any

presence of common structural changes. In the case of evaluating common instabilities present

in the slope and curvature factor loadings, we reject the weighted test statistics of WV I (2; 3; �)

in favor of the alternative that no common structural changes exist between the slope and

curvature factor loadings. Thus we can conclude that the slope and curvature factors behave

dissimilarly to economic shocks that may have caused structural instabilities in them seperately.

This result corroborates with the above �ndings that the slope and curvature factors are sensitive

to economic shocks in�uencing di¤erent ends of the yield curve.

6 Conclusion

This paper explores the important question of whether the yield curve factor structure is stable

through time. Several authors have either assumed stability or relied upon graphical analysis to

make inferences. We propose a formal testing procedure and evaluate its asymptotic properties.

We formulate six hypotheses for statistically evaluating the stability in the eigenspace variables

(eigenvalues, eigenvectors, and factor loadings) governing the level, slope, and curvature factors

of the yield curves. We then formally test for stability of the US zero coupon bond yield factor

structures between January 1999 and May 2006.

We �nd that the overall variance process governing the �rst three factors of the yield curves

were unstable over time. For the level factor, we �nd structural instability in all the eigenspace

variables. Structural changes a¤ecting all the interest rate maturities in the term structure panel

fostered instability in the factor structure as well as the volatility explained by the factor. In

the case of the slope and curvature factors, we �nd that the variances accounted by the factors
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incur structural instabilities. However, we �nd the eigenvectors and loadings have remained

stable through time. Therefore we conclude that the slope and curvature factor structures has

remained stable; though the volatility associated with the factors are unstable over time. The

instability in the volatility of the slope factor is caused by instability a¤ecting only the short term

term maturities (3 months - 1 year) whereas in the case of the curvature factor, the instability

in the volatility of the factor is caused by instability a¤ecting only the medium and long term

rates (2 years - 12 years). In investigating the presence of common structural changes in factors,

we �nd statistically signi�cant breaks common to level and slope factors and no statistically

signi�cant common breaks in the slope and curvature factors.
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Appendices

A Principal Component Analysis Framework

In principal component analysis, we estimate the eigenvalues �1 = �2 = ::: = �N of the matix

� satisfying the equality

j�� �Ij = 0 (17)

where � = (�1; �2; :::; �N )
0
and their corresponding vectors �1; �2; :::; �N satisfying the two

conditions

��i = �i�i (18)

�0i�i = 1 (19)

The conditions ensure that the characteristic vectors �i for i = 1; 2; :::; N are orthogonal to each

other and are of unit length.

The estimated vectors �1; �2; :; �i; ::; �N are such that the vector �
0
iY is the directional vector

that captures the maximum variability in Y . Therefore the estimation of �i can be seen as

solution to the optimization problem

max E(�0iY Y 0�i)

= max �0i��i

subject to the conditions �0i�i = 1 and �iY
0 ? �jY

0
for i < j: The orthogonality condition

between the characteristic vectors means that

0 = E

��
�0jY

0
��
�0iY

0
�0�

= E
�
�0jY

0Y �i
�
= �0j��i:

The lagrangian equation to be maximized is therefore

Lj = �
0
j��j � �(�0j�j � 1)� 2

j�1X
i=1

�i�
0
j��i
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where � and � =
�
�1; :::; �j�1

�
are the lagrange multipliers and j = 1; 2; :::; N . The solution to

this optimization problem satis�es the equation (18) and (17) and therefore the eigenvalues �i

summarize the amount of variability captured by the corresponding eigenvector �i:

B Asymptotic Properties of the Eigenspace Variables

We provide the inferential theory for the eigenvalues, and eigenvectors that are estimated using

the classical PCA. Let Z =
�
z
0
1; :::; z

0
T

�
be N �T matrix such that ZZ 0

= (T � 1) �̂ in equation

(2). Therefore

�̂ =
1

T � 1

TX
t=1

ztz
0
t

where zt = (yt � �y) is the demeaned vector and zt � NN (0;�):

De�nition. (N � variate wishart distribution) Let x1; :::; xk be k-independent N � vectors.

Suppose each xi � NN (0;�): Let U = x1x
0
1 + x2x

0
2 + ::: + xkx

0
k: Then U is said to have a

N � variate Wishart Distribution with k degrees of freedom and covariance matrix �: That is,

U �WN (�; k)

According to the above de�nition, �̂(T � 1) =
PT
t=1 ztz

0
t =

PT
t=1 yit � yjt � WN (�; T � 1):

Therefore

�̂ �WN ((T � 1)�1�; T � 1) (20)

The density function of matrix �̂ is

f
�
�̂
�
=

�
(T � 1)�N

����̂���� 1
2
(T�N�2)

e
� 1
2(T�1) tr(�̂�

�1)

2
1
2
N(T�1)�

1
4
N(N�1) j�j

1
2
(T�1)

NY
i=1

�
�
1
2 (T � i)

�
where �(:) is the gamma function.

The following proposition provides the rate of convergence and the limiting distribution of

the eigenvalues and eigenvectors decomposed from a covariance matrix �̂:
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Proposition. (Limiting distribution of eigenvalues and eigenvectors) Let y1; :::; yT be indepen-

dently distributed, each being an N � vector of NN (0;�) : De�ne � = (�1; �2; :::; �N )0 a N � 1

vector of independent eigenvalues and � = (�1; �2; :::; �N ) a N �N matrix of orthogonal eigen-

vectors. The sample covariance matrix �̂ is such that �̂ � WN

�
(T � 1)�1�; T � 1

�
:Then as

T !1;

�
�̂� �

�
= Op(T

�1=2) (21)�
�̂ � �

�
= Op(T

�1=2) (22)

where the sequence
�
�̂� �

�
and

�
�̂ � �

�
are independent to each other. The limiting distrib-

ution is given by

p
T
�
�̂� �

�
d�! N(0;�) (23)

where � = diag
�
2�21; 2�

2
2; :::; 2�

2
N

�
and

p
T
�
�̂ � �

�
d�! N(0;�) (24)

where � =
XN

i=1

XN

j=1
(Uij 
�ij) with

�ij =

8>>>><>>>>:
�i

NX
k=1
k 6=i

�k
(�i��k)2

�k�
0
k for i = j

� �i�j
(�i��j)2

�j�
0
i for i 6= j

and Uij is an N �N matrix that has 1 in the ijth position and 0�s elsewhere.

The results mentioned in this proposition have been proved almost simultaneously by Gir-

shick (1939), Hsu (1939), Fisher (1939), Roy (1939), Mood (1951), Anderson (1963) and widely

known in multivariate statistics literature. For the proof, we refer the reader to any of the above

papers or book by Anderson 2003 pp.546.
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C Proof of the Theorem

We know from the proposition that as T !1;

p
T
�
�̂i � �i

�
d�! N(0; 2�2i )

and

p
T
�
�̂i � �i

�
d�! N(0;�ii)

p
T
��
�̂i � �i

��
�̂j � �j

��
d�! N(0;�ij)

where

�ij =

8>>>><>>>>:
�i

NX
k=1
k 6=i

�k
(�i��k)2

�k�
0
k for i = j

� �i�j
(�i��j)2

�j�
0
i for i 6= j

We de�ne the error in estimation of the eigenvalues
�
�̂i � �i

�
as "�i and the error in esti-

mation of the eigenvectors
�
�̂i � �i

�
as "�i : Note that E

�
"�i"�i

�
= 0:

�̂
1=2

i = (�i + "�i)
1=2 = �

1=2
i

�
1 +

"�i
�i

�1=2
: Using taylor expansion up to the �rst order, �̂

1=2

i =

�
1=2
i

�
1 + 1

2

"�i
�i

�
+ op(1): Therefore we can write �̂

1=2

i � �1=2i = 1
2

"�i
�i
: Since we know the limiting

distribution of the "�i ; we have

p
T
�
�̂
1=2

i � �1=2i
�

d�! N

�
0;
1

2
�i

�
: (25)

We de�ne �̂
1=2

i � �1=2i � ~"�i . Therefore we can write

�̂
1=2

i �̂i =
�
�
1=2
i + ~"�i

� �
�i + "�i

�
= �

1=2
i �i + �

1=2
i "�i + �i~"�i + ~"�i"�i : (26)

Therefore

�̂
1=2

i �̂i � �
1=2
i �i = �

1=2
i "�i + �i~"�i + ~"�i"�i
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We know, "�i = Op(T
�1=2);~"�i = Op(T

�1=2) and ~"�i"�i = Op(T
�1): Therefore �̂

1=2

i �̂i��
1=2
i �i =

Op
�
T�1=2

�
: This proves equation (3).

From the above,
p
T
�
�
1=2
i "�i

�
d�! N(0; �i�ii) and

p
T (�i~"�i)

d�! N
�
0; 12�i�i�

0
i

�
Since ~"�i and "�i are independent, it holds that

p
T
�
�̂
1=2

i �̂i � �
1=2
i �i

�
D
= N

�
0; �i�ii +

1

2
�i�i�

0
i

�
+Q+ op(1)

where 1p
T

�
~"�i"�i

� d�! Q where Q is a distribution of the product of two mean zero independent

normal variates. As T !1; the e¤ect of 1p
T

�
~"�i"�i

�
= Op(T

�1=2) is negligible and therefore

p
T
�
�̂
1=2

i �̂i � �
1=2
i �i

�
d�! N

�
0; �i�ii +

1

2
�i�i�

0
i

�

This proves equation (4).

The asymptotic covariance matrix for (
̂i � 
i)
�

̂j � 
j

�
; i 6= j :

Cov
�
(
̂i � 
i) ;

�

̂j � 
j

��
= E

�

̂i
�

̂j � 
j

�
� 
i

�

̂j � 
j

��
= E

h
�̂
1=2

i �̂i

�
�̂
1=2

j �̂j � �
1=2
j �j

�i
� E

h
�
1=2
i �i

�
�̂
1=2

j �̂j � �
1=2
j �j

�i
= I � II

Substituting for the estimators of �̂
1=2

l �̂l for l = i; j; we solve the two parts below:

I :

E
h
�̂
1=2

i �̂i

�
�̂
1=2

j �̂j � �
1=2
j �j

�i
= E

h
�
1=2
i �i + �

1=2
i "�i + �i~"�i + ~"�i"�i

�
�
1=2
j �j + �

1=2
j "�j + �j~"�j + ~"�j"�j � �

1=2
j �j

�i
= E

h
�
1=2
i �

1=2
j "�i"�j

i
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II :

E
h
�
1=2
i �i

�
�̂
1=2

j �̂j � �
1=2
j �j

�i
= E

h
�
1=2
i �i

�
�
1=2
j �j + �

1=2
j "�j + �j~"�j + ~"�j"�j � �

1=2
j �j

�i
= 0:

Therefore

Cov
�
(
̂i � 
i) ;

�

̂j � 
j

��
= E

h
�
1=2
i �

1=2
j "�i"�j

i
= �

1=2
i �

1=2
j �ij
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Table 1: Bootstrapped Critical values. The table reports the critical values of the

bootstrapped distributions of Sup, Avg, and Exp of the test statistics W (�) =

(WI(�);WII(i; �);WIII(i; �);WIV (i; �);WV (i; �);WV I(i; �)) associated with the six hypotheses

formulated in equations 5 - 10. The critical values correspond to testing the null hypotheses of

stability in the eigenspace variables against the alternative of the presence of atleast one point

of instability in the eigenspace variables for parameters � = 0:15 and signi�cance level, � = 0:05:

Sup Avg Exp

WI(�) 0.10647 0.016155 -0.6376

WII(1; �) 0.027513 0.0048876 -0.6485

WII(2; �) 0.044315 0.0060717 -0.64735

WII(3; �) 0.067158 0.0080533 -0.64545

WIII(1; �) 0.17855 0.041762 -0.61261

WIII(2; �) 69573 1494.9 628.23

WIII(3; �) 38165 1341.9 660.17

WV (1; �) 0.16094 0.039824 -0.61471

WV (2; �) 1.999 0.85389 0.1815

WV (3; �) 1.9993 0.79494 0.1429

WV I(1; 2; �) 2.2677 0.92023 0.24683

WV I(1; 3; �) 2.0918 0.81725 0.16398

WV I(2; 3; �) 5.5412 1.6858 1.2748
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Table 3: Principal Component Estimates of the Subsample Periods Considered. The table

contains the PCA results conducted for the full sample period and the three subsample periods:

Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - May 2006. Panel A, B, and C report the

estimates for eigenvalues, eigenvectors, and percentage of variations explained by corresponding

eigenvalue in the case of short term (proxied by the three month and 6 month rates), medium

term (proxied by the �ve year and seven year rates), and long term (proxied by the ten year

and 12 year rates) respectively.

Panel A: Short Term Rates

Eigenvalues Eigenvectors % Explained

Vector 1 Vector 2

Full Sample Period: 0.0015 -0.5365 -0.8439 88.5676

Jan �99 - May �06 0.0002 -0.8439 0.5365 11.4324

First Subperiod: 0.000723 -0.6509 -0.7592 91.7486

Jan �99 - Jun �01 0.000065 -0.7592 0.6509 8.2514

Second Subperiod: 0.003 -0.4808 -0.8768 87.3595

Jul �01 - Dec �03 0.0004 -0.8768 0.4808 12.6405

Third Subperiod: 0.0005558 -0.546 -0.8378 92.4486

Jan �04 - May �06 0.0000454 -0.8378 0.546 7.5514

Panel B: Medium Term Rates

Eigenvalues Eigenvectors % Explained

Vector 1 Vector 2

Full Sample Period: 0.0018 -0.7523 -0.6589 99.3849

Jan �99 - May �06 0 -0.6589 0.7523 0.6151

First Subperiod: 0.0007643 -0.7193 -0.6947 99.3881

Jan �99 - Jun �01 0.0000047 -0.6947 0.7193 0.6119

Second Subperiod: 0.0031 -0.7609 -0.6489 99.5701

Jul �01 - Dec �03 0 -0.6489 0.7609 0.4299

Third Subperiod: 0.0014 -0.7491 -0.6625 99.1222

Jan �04 - May �06 0 -0.6625 0.7491 0.8778
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(TABLE 3 CONTINUED)

Panel C: Long Term Rates

Eigenvalues Eigenvectors % Explained

Vector 1 Vector 2

Full Sample Period: 0.0012 -0.7265 -0.6871 99.7203

Jan �99 - May �06 0 -0.6871 0.7265 0.2797

First Subperiod: 0.0007137 -0.713 -0.7011 99.2305

Jan �99 - Jun �01 0.0000055 -0.7011 0.713 0.7695

Second Subperiod: 0.0019 -0.7315 -0.6818 99.8754

Jul �01 - Dec �03 0 -0.6818 0.7315 0.1246

Third Subperiod: 0.0009108 -0.7259 -0.6878 99.8185

Jan �04 - May �06 0.0000017 -0.6878 0.7259 0.1815
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Table 4: Testing Reults. The table reports the Sup, Avg, and Exp values for the test statistics

WI(�);WII(i; �);WIII(i; �);WIV (i; �);WV (i; �); and WV I(i; �) associated with the six hypothe-

ses formulated in equations 5 - 10.

Panel A: Testing overall system

Sup Avg Exp

WI(�) 0.96701 0.26218 -0.38973

Panel B: Testing the level factor

Sup Avg Exp

WII(1; �) 0.24475 0.062922 -0.59174

WIII(1; �) 0.87365 0.22575 -0.43265

WV (1; �) 0.70327 0.24609 -0.41435

Panel C: Testing the slope factor

Sup Avg Exp

WII(2; �) 0.34214 0.090797 -0.5643

WIII(2; �) 249.64 10.664 118.11

WV (2; �) 1.9815 0.77043 0.11505

Panel D: Testing the curvature factor

Sup Avg Exp

WII(3; �) 0.38012 0.10846 -0.54758

WIII(3; �) 335.49 5.6174 160.9

WV (3; �) 1.9899 0.44182 -0.20286

Panel E: Testing the common factors

Sup Avg Exp

WV I(1; 2; �) 3.4721 1.2964 0.62638

WV I(1; 3; �) 2.393 0.70712 0.063935

WV I(2; 3; �) 5.4103 1.4711 0.83286 41
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Figure 1: Matrix Plot of Term Structure of Zero Coupon Bond Yields. The plot depicts the

relationship among the yields of various interest rate maturities: 3 months, 5 months to 12

months, 2 years to 12 years (sample period: Jan 1999 - May 2006).
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Figure 2: Three Subsample Periods. The line charts plot the �rst three principal components

and the column charts show the percentage variations explained by those factors for the three

subsample periods: Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - May 2006.
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Figure 3: Short Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the

�rst principal axis and the continuous line depicts the second principal axis of the short rates

considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,

Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are �tted onto the

scatter plot of the three month and six month yield changes data that proxies the short end of

the yield curve.
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Figure 4: Medium Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the

�rst principal axis and the continuous line depicts the second principal axis of the short rates

considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,

Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are �tted onto the

scatter plot of the �ve year and seven year yield changes data that proxies the medium end of

the yield curve.
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Figure 5: Long Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the

�rst principal axis and the continuous line depicts the second principal axis of the short rates

considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,

Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are �tted onto the

scatter plot of the ten year and twelve year yield changes data that proxies the long end of the

yield curve.
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Figure 6: Forward Recursive Scheme and Backward Recursive Scheme of the Eigenvalues.
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Figure 7: Forward Recursive Scheme and Backward Recursive Scheme of the Eigenvectors.
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Figure 8: Forward Recursive Scheme and Backward Recursive Scheme of the Factor Loadings.
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