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Abstract

A widely relied upon but a formally untested consideration is the issue of stability
in actors underlying the term structure of interest rates. In testing for stability,
practitioners as well as academics have employed ad-hoc techniques such as splitting the
sample into a few sub-periods and determining whether the factor loadings have appeared
to be similar over all sub-periods. Various authors have found mixed evidence on
stability in the actors. In this paper we develop a formal testing procedure to evaluate the
factor structure stability of the US zero coupon yield term structure. We .find the factor
structure of level to be unstable over the sample period considered. The slope and
curvature factor structures are however found to be stable. Common structural changes
affecting all interest rate maturities have fostered instability in the level factor. We
corroborate the literature that variances (volatility) explained by the level, slope, and
curvature factors are unstable over time. We .find that the volatility of slope factor is
sensitive to shocks affecting the short rates and the volatility of curvature factor is
sensitive to shocks affecting the medium and long rates. Finally, we .find evidence of the
presence of common economic shocks affecting the level and slope factors, unlike slope
and curvature factors that responded differently to economic shocks and were unaffected
by any common instabilities.

JEL Classification: C12; C13; C14; C51

Keywords: Stability, Factor Structure, Principal Component Analysis, Term Structure of
Interest Rates
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1 Introduction

The statistical models using factor decomposition techniques such as principal component analy-
sis (PCA) and factor analysis, where the yield curve dynamics can be summarized by a few
principal factors, have been highly favored in modelling interest rates. The term structure lit-
erature using statistical models have all used graphical methods for analysing the stability of
the factors. The standard procedure implemented in this regard has been to divide the sample
data into sub-periods and to identify the factor loading for the corresponding sub-periods. If
the explanatory power of the factor loadings appeared to be similar over all sub-periods, then
the factors were said to be stable over time. There have been no other formal tests conducted
in this respect except a recent paper by Audrino et al. (2005) that concluded instability in the
filtered innovations of the principal factors governing the US Discount bond yields. However, the
detected instability could not be directly associated to the level, slope, and curvature factors.
In this paper, we derive the limiting distribution of Wald-type test to formally test for
the null of stability in the underlying level, slope, and curvature factor structure of the US
zero coupon yield term structure. The eigenspace variables (i.e. eigenvalues, eigenvectors, and
factor loadings) underlying the factor structures are estimated via PCA. We formalize a series
of hypotheses to test for instabilities in the eigenspace variables governing the level, slope, and
curvature factors. To anticipate some results, we find instability in the factor structure of level
but stability in the factor structures of slope and curvature. We find the eigenvalues (volatility)
of the level, slope, and curvature factors are unstable over the sample period considered. The
instability in the volatility of level is due to structural changes common to all interest rate
maturities. We find that the volatility of slope factor is sensitive to shocks affecting the short

rates and the volatility of curvature factor is sensitive to shocks affecting the medium and long



rates. Investigating for common structural changes in factors, we find evidence of the presence of
common economic shocks affecting the level and slope factors. The slope and curvature factors
are however unaffected by any common instabilities.

The remainder of this paper is structured as follows. Section 2 provides an account of the
instability in yield curves documented in literature. In Section 3 we present the factor analysis
framework for the term structure level, slope, and curvature factors, estimated using the PCA.
We provide the asymptotic properties of the estimated eigenspace variables for the three factors,
which is applied into developing the stability testing procedure in the subsequent section. In
Section 4 we formulate six hypotheses for statistically evaluating the stability in the eigenspace
variables governing the level, slope, and curvature factors of the yield curves and device the
test statistics for evaluating each hypothesis. Section 5 describes the dataset used, graphical
analysis of the evolution of eigenspace variables (eigenvalues, eigenvectors, and factor loadings),

and presents the results of the testing procedure developed in Section 4. Section 6 concludes.

2 Yield Curve Dynamics Instability

Modelling the dynamics of interest rates is vital in trading fixed income securities that are
sensitive to movements in interest rates. The main interest for both practitioners and academics
is to fit the interest rates data within a framework that is able to capture the future evolution of
the term structure of interest rates. For instance, this is important for the valuation of securities
such as interest rate derivatives. Also, understanding the process governing the interest rate
movements is crucial to analyse and alter the risk exposures at a given point of time. Bliss and
Smith (1997) argued that model selection and stability of the parameters underlying the process
are closely related. By critically examining the main findings in Chan et al. (1992), the paper

showed that the unaccounted structural break, due to the Fed change in the monetary policy,



biased the main finsings of the paper.

Structural changes have also been modelled by allowing for regime switches in interest rates.
Following the seminal work of Hamilton (1989) on modelling short rates using a regime switch-
ing process, Lewis (1991), Evans and Lewis (1995), Garcia and Perron (1996), Gray (1996),
and Ang and Bekaert (1998) studied regime switches in interest rate models. Empirical evi-
dence suggest that not only the short rates but also the whole term structure of interest rates
might experience shifts in regimes due to business cycle expansions and contractions, changes in
monetary policies and regime changes in economic variables such as consumption and inflation.
Bansal and Zhou (2002) showed that term structure models incorporating regime shifts provide
considerable improvements over multifactor models.

The presence of instabilities in the short and long term yields can also seep into the factor
structures governing these yields. One of the earlier works in factor analysis of term structure
of interest rates is the Nelson and Siegel (1987) model. This parsimonious representation is
very popular among practitioners for calibrating the yield curve. Since the model is linear in
coefficients, they are estimated using ordinary least squares. The coefficients of the yield curves
were interpreted to be level, slope, and curvature. Various other authors have found the same
statistical interpretation to the coeflicients estimated via statistical techniques such as the PCA
and factor analysis. Litterman and Scheinkman (1991) showed that the three principal factors,
explaining around 99 percent of the changes in treasury bond yields, could be interpreted to
be the level (or parallel movement component), slope (or slope oscillation component), and
curvature component. The level factor or the parallel movement component alone was the most
important factor that accounted for an average of 89 percent of the variations observed in the
yield changes data.

Though there is a widespread use of factor analysis for term structure of interest rates, very



little attention has been given to evaluate the factor structure stability of interest rates. Rather,
most authors have assumed that the principal factors driving the evolution of interest rates
are stable through time. A few instead use ad-hoc methods to investigate factor stability. For
instance, Bliss (1997) divided the sample period January 1970 — December 1995 into three sub-
periods of arbitrary lengths and investigated the change in the factor loadings. Since the factor
loadings patterns in the different sub-periods seemed similar in the case of all three factors, the
factors were concluded to be stable. However, the factor volatilities were found to fluctuate over
the sub-periods considered. In the forecasting setting using the Nelson-Siegel model, Diebold
and Li (2006) found similar results with stable factors and time-varying factor volatilities. Since
the parameters were stable over time, the proposed model produced much accurate forecasts at
both the short and long horizons than other standard forecasting benchmarks. On the other
hand, on the basis on the clear evidence of the time-varying nature of volatility associated with
the factors, Perignon and Villa (2006) accounted for a time-varying covariance matrix when
estimating the factor structure of interest rates. Using the U.S. term structure data between
January 1960 and December 1999, Perignon and Villa observed that the factor structure (factor
loadings) remained constant across sub-periods considered but the volatility (eigenvalues) of the
factors varied through time. Reisman and Zohar (2004) used the yield to maturity data of US
discount bonds from 1982. They found that the first two principal components were quite stable;
the third component was marginally stable; and the fourth component was unstable. Fabozzi
et al. (2005) used the Nelson and Siegel (1987) model to parameterize twelve monthly yields
term structure data from June 7, 1994 to September 5, 2003. They plot the factor loadings
from the model, and observed that the level and slope coefficients of the model seemed stable,
while the curvature coefficient showed instability. Chantziara and Skiadopoulos (2005) evaluated

stability in the principal factors of the term structure of petroleum futures by performing the



PCA individually on two sub-periods before and after May 1997, the cut-off date being identified
as the beginning of the Asian crisis. Since the PCA results for the two sub-periods were not
different from the results obtained for the whole sample, the paper concluded stability in the
factor structure over the whole sample period.

To summarize, the stability analyses on factors were carried out by graphically plotting the
factor loadings and by weighing the similarity in results over time. The standard procedure
implemented in this regard was to divide the data into sub-periods and to identify the factor
loading for the corresponding periods. If the explanatory power of the factor loadings appeared
to be similar over all periods, then the factors were concluded to be stable over time. The first
and the only formal test (to the best of our knowledge) in evaluating stability of factors governing
interest rates was introduced in Audrino et al. (2005) who considered a three-factor model with
conditional hetroskedastic factors. The paper found contradicting conclusions in that the factor
loadings of the US discount bond yields were in fact unstable over the period January 1986
to May 1995. The paper used independent filtered innovations in order to find the principal
factors for the different sub-periods considered and then using a regression framework on the
filtered innovations, tested the hypothesis that the regression coefficients (factor loadings) in
the different sub-periods are indeed equal. Since the authors constructed factors on the filtered
innovations, the instability detected could not be interpreted as instability of the level, slope, or
curvature factors.

The main contribution of this paper is to introduce a testing procedure that would enable us
to formally investigate the instability present in the factor structure of level, slope, and curvature

of the yield curves.



3 Framework and Estimation of the Eigenspace

In this section, we present the estimation framework and the inferential theory developed for
the eigenspace variables (eigenvalues, eigenvectors, and factor loadings) estimated via PCA. The
limiting distributions of the eigenspace variables developed in this section allows to construct
the asymptotic test statistics for evaluating the presence of instability in the eigensystem.

Estimation of panel factor models have been originally developed in order to capture the
main sources of variations and covariations among the N independent random variables in
a panel framework. These methods were extended by Geweke (1977) and Sargent and Sims
(1977) into dynamic factor models, and by Brillinger (1964) into dynamic PCA, that were able
to predict the covariation in economic variables by few underlying latent factors. Although the
two methods differ for panels with small cross-sectional dimensions, as IV increases they provide
similar inferences. Chamberlain and Rothschild (1983) then distinguished the dynamic models
into exact and approximate dynamic factor models. In the case of exact dynamic factor models,
the idiosyncratic terms are assumed to be mutually uncorrelated whereas the approximate factor
models relaxes this restriction and allows for limited correlation among the idiosyncratic terms.
Applications in finance particularly favor the approximate factor models where the idiosyncratic
terms are weakly correlated and where large number of cross-sectional units can be competently
summarized by a few common statistical factors.

In this paper, we use the classical PCA framework, which incorporates the approximate
structure in the cross-sectional correlation among units. We use a static factor structure.

Consider the stationary representation for term structure of interest rates with cross-sectional

(N) and time-series (T") dimension and with (r) factors:



Yt:’}’,Ft—f—Et t:1,2,...,T (1)

Let Y; = (Yi4,..., Yar)' be the term structure panel with Y; being an N x 1 vector of cross-
sectional observations from the panel data structure at time period ¢, « is an r X N matrix
of the factor loadings, F; is the r x 1 vector of common factors for all cross-sectional units at
time period ¢, and g, = (e1y, ...,ENt)/ is the N x 1 vector of idiosyncratic .i.d. disturbances.
Based on that the term structure literature considers the number of common factors sufficient
to explain the dynamics of interest rates equal to three, we consider the case of » = 3, though
our framework is valid for any value of r. The factor loadings matrix loads the factors on to the
variables, explaining the correlation between the factors and the variables. The factor loadings
() can be computed as the unit length eigenvectors matrix multiplied by its singular value,
which is the square-root of eigenvalues. Thus = characterizes the unit length eigenvectors in its
true size and encompasses in them the information of direction as well as magnitude.

The loadings underlying the factor structure of Y by definition is a function of eigenvalues
and eigenvectors. In order to estimate the loadings, we use PCA that undertakes the eigen
decomposition of the covariance matrix ¥ of Y. When ¥ is unknown, we estimate the sample

variance covariance matrix whose elements at position ¢, j is given as

T
[ELJ = % ; (yit — “yi) (yjt — ,uy]) i,7=1,...,.N (2)
where (y,,,...,y,;,) for i = 1,..., N are each independent and identically distributed. The PCA
framework is summarized in the Appendix A. In Appendix B, we report the limiting distribu-
tion of the eigenvalues and eigenvectors estimated from a covariance matrix, which is Wishart

distributed.

The following theorem provides the rate of convergence and the limiting distribution of the



factor loadings for the case of interest rate panels with large T

Theorem. (Limiting distribution of factor loadings) Consider \y = A2 > ... 2 Ay and B4, B, ..., By
as the first N ordered eigenvalues and their corresponding eigenvectors of 3 respectively. Define

Bi);ﬂ = ~, as the i factor loading vector where v; = (i1, Yios - Vin)' and ¥ = (Y1, oy V) -

Since A\j — N is independent of Bz — B, it holds that
(3 =) = Op(T~/?) 3)

VT (5 —~) -5 N(0,9) (4)

wnere = . . i 7)) wnere Ujz; 1S an X mairix a as m € 177" position
here W=""" %" (Ui; ® W) where U, N x N matriz that has 1 in th t
1= Jj=

and 0’s elsewhere. The asymptotic covariance matric

/\16” + %)\Zﬁjﬁ; fori=3j
\I/z‘j =
()\i)\j)l/Q @ij fO?" ) 75 ]

Proof: see Appendiz C

Let ¥ be the estimated covariance matrix of the factor loadings. According to the continuous
mapping theorem, as T — o0, U -5 0. ¥ is consistent since it is a continuous function of the
estimated eigenvalues and eigenvectors that are consistent. Since the factor loadings matrix, 4
is estimated in the classical PCA framework, we find consistent estimates for the factor loadings.
This is because the factors loadings, defined in terms of the eigenvalues and eigenvectors obtained

via eigen decomposition, are consistent for panels with large T'.

4 Testing for Instability in the Eigensystem

In this section, we formulate a series of hypotheses that will enable us to evaluate stability among

the eigenspace variables of the yield curves. Since we are primarily concerned with the level,



slope, and curvature factors governing the yield curves, we investigate stability in the eigenspace
variables of the first three principle factors.

We examine instability by testing the null hypothesis of no change point against the alter-
native of at least one change point happening at the unknown time, 7. We define 7 as a fraction
of the sample space T' such that 7 = [T¢] where ¢ = (0,1). We define the eigenvalues (A),
eigenvectors (f3;), and the factor loadings (y;) for the sample split around the unknown time

point 7 as

A? fort=1,..,71
A = for some T

Ab fort=7+1,...,T

By fort=1,..,1
Bi = for some T

B fort=7+1,..,T

ve fort=1,...,71
v, = for some T

'yf fort=7+1,....T
\

We test the following hypotheses in order to gather inference on the instability in the under-

lying eigensystem of the yield curves:

I Hp:A*=A
Hy: A* # AP
IL. Hy: X =\

Hy X #£X fori=1,2,3

1. Hy:p%=p°

Hy:B¢# B0 fori=1,2,3

IV. Hy: B2 =3



Hy - ?p;ﬁﬁ?p fort=1,2,3,and p=1,2,...,. N

V. Ho:~¢ =1t

Hy:v¢#~% fori=1,2,3

)

VL. Hy:v¢ =17 and 7§ =~5 fori,j=1,2,3and i#j

7

Hy: v #9% or v #94

The main aim of testing the series of hypotheses formulated above is to study the economic
shocks causing structural changes and their impact on the eigensystem of the yield curves. Since
the risks associated with the yield curves can be sufficiently summarized in the first three factors,
we investigate the impact of these economic shocks to structural changes in level risks, slope
risks, and curvature risks.

Hypothesis I tests for stability in the overall eigensystem of the yield curves. The results from
this test would indicate whether there is a persistent statistically significant structural changes
in the volatility governing the factor structure of the yield curves. Further, we investigate
which factors (if any) might have caused the instability and which eigenspace variables might
have incurred significant changes. Hypotheses II, III, and V test for instabilities present in
the magnitude, direction, and loading respectively of the three factors. The results from these
tests would indicate whether the instabilities have been induced by level breaks, slope breaks,
or rather curvature breaks. Hypothesis IV relates to testing for instability in each factor, and
understanding which interest rates maturities have experienced structural changes, causing the
instability in the factor. Hypothesis VI tests for common structural changes in factors. Since the
level, slope, and curvature factors are correlated, the test captures change points in one factor

that might ripple into the other factors causing common change points in all factors.
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In what follows, we develop the stability test statistics for evaluating the six hypothees
formulated above. Define IT = (A, 3, ) as the parameter space. Let I1% and II° be the consistent
estimators of II® and II°. The limiting distribution of II for the restricted sample space before

the break and after the break, given the change point 7, is
ﬁ(ﬁtn) =VT| 3"_3 4, N (0,0%) |-

and

Ab—A N (0,7
ﬁ(ﬂb—ﬂ>:\/f 3 s 4, N (0,0")
4 — N (0, %)
where the superscript ¢ and b denote estimation from restricted sample before and after the

break respectively; T¢ = %, T = X 9o = & ot = 16—:)6, v = % and Ut = % are
the associated covariance weighting structure; and the covariance matrices T, ©, and ¥ are as
defined in Appendix B.

In testing the Hypothesis I, when 7 is fixed, the Wald test statistic under the null hypothesis

of no structural change in A against the alternative of at least one structural change in A can

be constructed as below:

where Z ~ N (0, T + Tb) .
Define ¥ = T 4+ T where Y is positive definite. Using Cholesky decomposition, we have

Y = LI and Y~! = L 'L~V where L is a lower triangular matrix with strictly positive diagonal

11



entries. Premultiplying Z by the inverse of L,

L7 ~ N(O,L*%L*l')
= N(0,L7'LL'L™")

= N(0,1,).
Using this result, we can show that asymptotically
Wir) -5 Z Y 'z=2L"YL'Z = Q(r) (5)

where for a given 7 = [T'¢],Q (7) ~ x2 (¢) with the degrees of freedom ¢ corresponding to the
number of restrictions being tested. Thus the test statistic W;(7) under the null is asymptotically
pivotal for 7 fixed.

Since the eigenvectors and the factor loadings are also asymptotically normal (see Appendix
B), we may test all the other five hypotheses using Wald statistics, which when normalized with
their respective asymptotic variances, converges to a chi-squared as above. The form of the

Wald statistics corresponding to the five hypotheses are given below:
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ca  +b\2
Wi, 7) = (V- %) (6)

Wintir) = (3 - 5) [eg+ek] (55 - 4) (7)

~a Ab \ 2
. (IBW B sz) QS . th iy to QS
Wiy (i,p,7) = for ©F;  is pp'" position of matrix O3, s = a,b (8)

[(é?@pp) + (é?i,ppﬂ e i

- . W\ [ca , ab] 7' (2 b
Wy (i,7) = (%‘ —%> [\I]u +‘I’iz} (’Yz' _%‘> 9)
/ -1
< ~b T,a T, Tra 7,0 20 ~b
N A4 — Ak (W + W) (‘P+‘P) A4 — Ak
Wyi(i,j,7) = T v (10)
-5 ) () (we) |-

When the date of the structural change is unknown but known to fall within a finite range,
to test for a break occurring at time 7 we use the Sup, Exp, and Avg Wald-type (W) defined

as:

SupW = tlrilTaé(tQW (11)
1 2
AvgW = ——m— w 12
v ty—t1 +1 7;1 (12)
1 2 1
xpW n[t2_t1+1§tlexp <2W>] (13)

where W corresponds to one of the equations (6)-(10). The breakpoint 7 lies between t; and to
such that t; = [Te1], to = [Tea], t1 # t2,e2 = 1 — €1, and t; is bounded away from zero and to is
bounded away from T'; this condition is required since the proposed test statistic is unbounded

in limit at the boundaries. Following Andrews (1993) and Andrews and Ploberger (1994), we

13



use the restricted interval t; = 0.157 and t; = 0.857 such that €; and €5 lies in the interval
[0.15,0.85].
Under the null of no structural change, from the continuous mapping theorem, the asymptotic

distributions of the test statistics converge to:

d
SupW — max Q(e) (14)
€2
AvgW -4 / Q(e)de (15)
€1

EzpW % In UQ exp <;Q(e)) de] (16)

1
where if we know the break point fraction €, Q(€) will be x? (¢) with the degrees of freedom ¢
corresponding to the number of restrictions being tested.

In providing inference on the eigensystem stability, we rely upon the bootstrapped critical
values of the test statistics. We bootrap the space vector of N maturities by resampling across
time. Andrews (1993) and Andrews and Ploberger (1994) provide the asymptotic critical values
for Sup, Avg,and Exp of optimal tests based on a regression type framework. Where the least
squares problem minimizes the vertical distances between the datapoints, the PCA minimizes

the orthogonal distances between the datapoints.

In order to construct the bootstrap distribution of the test statistics, we undertake the
following steps:

1. For a given value of the break fraction €, we randomly draw the vector of maturities from
the T' x N term structure data in order to construct the 7" x N bootstrapped data.

2. We construct the covariance matrix for the bootstrapped data and conduct the PCA in
order to estimate the eigenspace variables A, B, ~.

3. We compute the Wald statistics Wy(.,7) for k = I,I1,...,VI and calculate the weighted

measures Sup, Avg,and FExp of the Wald statistics.
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4. We repeat steps 1 through 3 for BR number of bootstrap replications.

The procedure generates BR number of bootstrap statistics of Sup, Avg,and Exp of Wi(., 7).
For € = 0.15 and for significance level o = 0.05 we conduct 1000 iterations (BR = 1000) and in
each iteration we resample the term structure panel, which is of 1923 by 21 dimension. Table 1
provide the bootstrap critical values for Sup, Avg,and Fxp of the Wald statistics in equations 5

- 10.

[Insert Table 1]

Note that since the Wald test statistic is asymptotically pivotal, the asymptotic distribution
of the test statistics does not depend on a particular data generating process under the null.
Therefore bootstrap distribution can consistently estimate the asymptotic distribution of the test
statistics and provide more reliable inference than asymptotically based inferences by removing
the finite sample biases. Davidson and MacKinnon (1999) find that for asymptotically pivotal
test statistics, using critical values from the bootstrap will produce smaller size distortions
(reduced by an order of T~1/2) than when using the critical values obtained from the first order
asymptotics. Using the bootstrapped critical values, one may be able to mimic the skewness and

kurtosis of the empirical distribution that is not captured by the first order limiting distribution.

5 Empirical Results

5.1 Data

We use the term structure of US zero coupon bond yields obtained from Datastream. The term

structure of zeros are extremely useful in fixed income applications such as pricing bonds, swaps,
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and other fixed income derivatives; financial engineering the interest rates exposures; obtaining
the forward rate curves, par yield curves; and so on. Table 2, summarizes the datasets used in
the previous studies that have evaluated the term structure stability.

Our dataset consist of yields of the following maturities: 3 to 12 months and 2 to 12 years.
The matrix plot in Figure 1 depicts the relationship among the yields of various interest rate
maturities considered. The sample period extends from 11 Jan 1999 to 31 May 2006, with daily
frequency (1927 observations). The data period covers both the period of downturn (during the
technology stock boom in 2001) and upswings where the risk aversion of the investors are high
causing gains in the bond markets. The bond yields data for maturities less than 3 months were
filtered out in order to reduce the market microstrucuture effects and avoid liquidity issues. On
the same note, we use the 5 day change in yields (the 5 day holding period returns) in order to
perform the eigen decomposition on its covariance structure as recommended by Lardic et al.

(2003) and as commonly used in factor analysis literature of term structure of interest rates.

[Insert Table 2 here]

[Insert Figure 1 here/

5.2 A First Examination of Factor Structure Instability

In this section, we undertake some graphical analyses for the term structure of US zero coupon
bond yields in order to identify the instability risk present in the factor structure of the yield
curve.

First, we arbitrarily split the seven and half year’s bond yield data into three approximately
equal, two and half year subsample periods; January ’99 - June 01, July ’01 - Dec ’03, and Jan
‘04 - May ’06 and graphically investigate whether the eigensystem has remained stable over the

three subperiods. We perform the PCA on the 5 year holding period returns data for the three
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subsamples, in order to extract the level, slope, and curvature factors that drive the evolution
of change in interest rates data. Following Litterman and Scheinkman (1991), we consider the
first three principal factors in explaining the evolution of term structure of interest rates. In
order to extract the three principal factors using PCA, we perform the following steps:

1. We form the covariance matrix from the change in panel of yields panel for the three
subperiods considered.

2. We compute the eigenvalues and the corresponding eigenvectors from the covariance
matrix for each period using the eigen decomposition. The eigenvectors are the principal com-
ponents and the eigenvalues present the explanatory power of the corresponding eigenvectors.

Second, we graphically investigate instability along the short end, medium term, and long
end of the yield curve separately over the three subsample periods considered. For this, we draw
the direction of the principal axes (the eigenvectors), along with the scatter plot of the original
yield changes data for the three subsample periods. In order to visualize the direction of the
eigenvectors, we have to limit our analysis to the two dimensional plots. We use the three month
and six month rate as a proxy for the short end of the curve; the five year and seven year rate
as a proxy for the middle (medium term) of the curve; and the ten and twelve year rate as a
proxy for the long end of the curve.

Third, in order to examine the evolution of the entire eigenspace, we conduct recursive PCA
by expanding the estimation window at every run by including one new observation and then
record the evolution of the eigevalues, eigenvectors, and factor loadings. We undertake two
recursive schemes, namely Forward Recursive Scheme (FRS) and Backward Recursive Scheme
(BRS). The two schemes allow us to evaluate stability in an informal way. The FRS allows us to
visually gauge the impact of adding one extra observation at each resursion and the BRS allows

us to visually gauge the impact of removing one observation at each recursion. The instability
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can be seen as the abrupt increase in variability at a point in time in the case of the FRS and a
reduction in variability at a point in time in the case of the BRS. This FRS and BRS patterns
can also be used to check if there there are more than one changes affecting the variability in
the recursion.

Figures 2 to 8 present the results towards the preliminary study of the issue of instability.
Figure 2 plots the three principal components determined over the three subsamples. We observe
that, in all the three subsample periods, considering the first three principal components would
be sufficient in explaining the dynamics of the term structure. Though the three factors vary in
detail, the term structure responsiveness to these factors has remained stable over time. This
stability result concurs with that recorded by Bliss (1997), Perignon and Villa (2006), and others.
However, the column charts of Figure 2 show that the shocks to the term structure varied during
the subperiods considered. The level risks, captured by the first principal component, was the
highest in the third subsample period, corresponding to upward shifts in the yield curve. The
slope risks, explained by the second principal component and the curvature risks, explained by
the third principal component, were the highest in the second subsample, corresponding to the
flattening of the yield curve observed during the bear market (2000-03).

Figures 3, 4, and 5 plot the short run, medium term, and long run principal axes (directional
vectors) for the three subsample period considered. The two directional vectors are orthogonal
to each other by construction. The plot shows how well the principal axes explains the vari-
abilility in yields. Table 3 records the eigenvalues (volatility), eigenvectors, and the percentage
of variances explained by the two principal components. For the case of short rates, if we com-
pare the direction of the principal axes across the three subsample period, we find that the first
principal axis differ across the three subsamples and by the orthogonality condition, so does the

second principal axis. Further, we observe that the sample data for the short rates are dispersed
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distinctly across the three subsample periods. This means there exist different volatility patterns
in the three subperiods and supports the argument allowing for distinct time-varying covariance
matrices. Therefore considering a constant covariance matrix decomposition of principal com-
ponents may induce instability in the components. For the case of medium term and long term
rates governing the yield curves (Figures 4, and 5 respectively), we find that the two eigenvalues
have similar directional vectors for the three subsample periods, with around 99% explanatory

power of the variances.

[Insert Figures 2 - 5 here]

[Insert Table 3]

Further consider the recursive plots of the eigenvalues, eigenvectors, and factor loadings
reported in Figures 6, 7, and 8. The plots obtained from the recursion clearly show endurance
of instability in the eigensystem. In the case of eigenvalues governing the factors (Figure 6),
we can clearly see that the dynamics have not remained the same over time even though the
percentage variation explained by the eigenvalues has remained the same. The eigenvalues for
the level and curvature factors seems to have one prominent change but the eigenvalues governing
the slope seems to have more than one abrupt change. Looking at the recursion patterns for
eigenvectors (Figure 7), the level and curvature eigenvectors show two prominent patterns and
the slope eigenvector shows three prominent patterns suggesting possible structural changes in
the eigenvectors. In the case of factor loadings (Figure 8), the FRS suggest one possible pattern
change in the case of level, and two pattern changes in the case of slope and curvature. However,
if we also consider the BRS, we can see there exist one possible intermittent blip in the level,
slope, and curvature factor loadings. The observations of pattern changes surely corroborate

the time-varying nature of the eigensystem, which may have caused possible structural breaks
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in the series.

[Insert Figures 6 - 8 here/

To summarise, we find that the shocks contributing to the level, slope, and curvature in-
stability risks have varied during the three arbitrary identified subsamples. We find that the
directional axes of the short end interest rates have also varied over time. The forward and
backward recursive plots of the eigenspace variables indicate the possible presence of instabili-
ties.

In the following section, we formally test for the instability present in the eigenvalues, eigen-

vectors and factor loadings, using the testing framework we developed in the paper.

5.3 Stability Testing Results

Table 4 records the results from implementing the Sup, Avg, and Exp test statistics for the six
hypotheses formulated above. We test the linear restrictions of equality in eigenspace variables
for a given change point occurring at time 7, using the Wald test. In practice since we do not
know this change point 7, we calculate the weighted statistics Sup, Avg, and Exp for all possible
change points within the restricted sample period. The tests are evaluated for significant struc-
tural changes within the restricted sample period [0.157,0.857].! The conclusions are drawn

based on results from all the three weighted measures Sup, Avg, and Fxp that concur.

[Insert Table 4 here]

!'We avoid the boundaries since the test statistics produce unstable results at the boundaries as documented

by Andrews (1993).
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5.3.1 Investigating stability in the overall eigensystem

Consider Panel A in Table 4. Evaluating the weighted test statistics for Wy (1), we reject the
null in favor of the alternative that A% # A®. Thus, Sup, Avg, and Ezp test statistics of Wy (1)
infer that significant changes persist in the eigensystem of the yield curves. Instability in the
vector of eigenvalues would mean structural instability in the variance process governing the
factors. Bliss (1997), Audrino et al. (2005), among others, detected the same instability.

It is worth mentioning that the conclusions on instability of the factors governing the volatil-
ity is indeed different to the conclusions drawn in this paper where we evaluated the volatility
governing the factors. The distinction lies within the fact that the information extracted (using
eigen decomposition) from the covariance matrix of the yields are different than the information
summarized in the covariance matrix of unobserved volatility. In regard to the latter, Perignon
and Villa (2006) document the time-varying nature of the volatility governing the factors and
Bliss (1997) reported instability present in the factor volatility structures using graphical meth-

ods.

5.3.2 Inwvestigating stability in eigensystem of the level factor

Consider Panels B and F in Table 4. Evaluating the weighted test statistics for Wy (1,7), Wi (1,7),
and Wy (1,7) we reject the null in favor of the alternative that S # A5, 89 # 8%, and 7§ # %
respectively. Thus according to all the three weighted measures (Sup, Avg, and Exp) for the
various hypotheses, we can conclude that all the three eigenspace variables (eigenvalue, eigenvec-
tor, and factor loading) governing the level factor has statistically significant structural changes
inducing instability. The result differs to the graphical inferences gathered by several authors
such as Reisman and Zohar (2004) who has drawn stability conclusions for the level factor of

discount bond yields.
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In order to gauge which interest rate maturities have contributed to structural instability in
the level factor, we evaluated the weighted test statistics for Wy (1, 7). According to all the
three weighted measures Sup, Avg, and Fxp we conclude that the structural instability was
common and evident in all the 21 interest rate maturities governing the level factor. This means
that the structural change in the level factor has been caused by economic shocks that eminently

influenced the whole yield curve (short end as well as the long end maturities).

5.3.3 Inwvestigating stability in eigensystem of the slope factor

Consider Panels C and G in Table 4. In the case of the slope factor, we find that the eigenvalue
or volatility governing the factor has incurred structural changes. Using all the three weighted
statistics for Wy; (2,7), we reject the null in favor of the alternative of A3 # A}. However,
by evaluating Wiy (2,7) and Wy (2,7) we find that the eigenvectors and the factor loadings
governing the slope factor have remained stable over time. By evaluating the weighted test
statistic of Wry (2,7) for the slope factor, we can find that the short term interest rates (3
months - 1 year) governing the factor were unstable whereas the medium and long term interest
rates (2 years - 12 years) governing the factor were tested to be stable over time. Thus the
volatility of the slope factor is sensitive to shocks affecting the short rates, but the slope factor
structure has remained stable over time. The test results for the slope factor concur with

Reisman and Zohar (2004) who conclude stability of the slope factor.

5.3.4 Investigating stability in eigensystem of the curvature factor

Consider Panels D and H in Table 4. In the case of testing for instability in the eigenspace
variables of the curvature factor, we find similar results to that of the slope factor. Using

the Sup, Avg, and Exp for Wi (3,7), Wi (3,7), and Wy (3,7) we find that the curvature

22



eigenvalue (volatility) has been subject to statistically significant structural changes but the
corresonding eigenvector and factor loading have remained stable through time. By evaluating
stability in the interest rates governing the curvature factor (using Wy (3,7)), we find that the
medium and long term rates (2 years - 12 years) have contributed to the structural change in the
volatility of the curvature factor. Unlike the slope factor, we find that the short term interest
rates (3 months - 1 year) were stable through time.

Thus we can conclude that, as in the case of the slope factor structure, the volatility gov-
erning the curvature factor has incurred statistically significant structural changes. However,
the variance explained by the curvature factor is sensitive to movements and shocks affecting
only the long rates. We find that the factor structure of curvature has remained stable over
the sample period considered. Reisman and Zohar (2004) documented marginal stability of the

curvature factor structure using graphical analysis.

5.3.5 Inwestigating common instability in factor loadings

Consider Panel E in Table 4. Since we have found that the eigenspace variables for the level,
slope, and curvature factors have incurred instability and since the three factors are correlated
with each other, the economic shocks affecting one factor could also have affected the other.
Therefore we investigate the presence of common structural changes due to common shocks in
factors. By evaluating the weighted test statistics of Wy (1,2,7) we do not reject the null
of presence of common structural changes in level and slope factor loadings. Thus we can
conclude that there exist statistically significant change points common to the level and slope
factors. Combining this result with the instability conclusions found for the level and slope
eigenvectors, we can identify the common sources of instability within the level and slope factors

as the economic shocks that have caused structural changes in the short term interest rates (3
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months - 10 months). Since the Sup, Avg, and Exp for Wy (1,3, 7) provide variant conclusions
from testing common instabilities in level and curvature factor loadings, we cannot infer any
presence of common structural changes. In the case of evaluating common instabilities present
in the slope and curvature factor loadings, we reject the weighted test statistics of Wy (2,3, 7)
in favor of the alternative that no common structural changes exist between the slope and
curvature factor loadings. Thus we can conclude that the slope and curvature factors behave
dissimilarly to economic shocks that may have caused structural instabilities in them seperately.
This result corroborates with the above findings that the slope and curvature factors are sensitive

to economic shocks influencing different ends of the yield curve.

6 Conclusion

This paper explores the important question of whether the yield curve factor structure is stable
through time. Several authors have either assumed stability or relied upon graphical analysis to
make inferences. We propose a formal testing procedure and evaluate its asymptotic properties.
We formulate six hypotheses for statistically evaluating the stability in the eigenspace variables
(eigenvalues, eigenvectors, and factor loadings) governing the level, slope, and curvature factors
of the yield curves. We then formally test for stability of the US zero coupon bond yield factor
structures between January 1999 and May 2006.

We find that the overall variance process governing the first three factors of the yield curves
were unstable over time. For the level factor, we find structural instability in all the eigenspace
variables. Structural changes affecting all the interest rate maturities in the term structure panel
fostered instability in the factor structure as well as the volatility explained by the factor. In

the case of the slope and curvature factors, we find that the variances accounted by the factors
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incur structural instabilities. However, we find the eigenvectors and loadings have remained
stable through time. Therefore we conclude that the slope and curvature factor structures has
remained stable; though the volatility associated with the factors are unstable over time. The
instability in the volatility of the slope factor is caused by instability affecting only the short term
term maturities (3 months - 1 year) whereas in the case of the curvature factor, the instability
in the volatility of the factor is caused by instability affecting only the medium and long term
rates (2 years - 12 years). In investigating the presence of common structural changes in factors,
we find statistically significant breaks common to level and slope factors and no statistically

significant common breaks in the slope and curvature factors.
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Appendices

A Principal Component Analysis Framework

In principal component analysis, we estimate the eigenvalues A\ 2 Ay = ... 2 Ay of the matix
> satisfying the equality

X —AIl=0 (17)
where A = (A1, Ao, ...,)\N), and their corresponding vectors B, B, ..., 5 satisfying the two
conditions

S = Mf; (18)

B8 = 1 (19)
The conditions ensure that the characteristic vectors 3, for ¢ = 1,2, ..., N are orthogonal to each
other and are of unit length.

The estimated vectors 81, B9, -, B;, --» 3 are such that the vector 8;Y is the directional vector
that captures the maximum variability in Y. Therefore the estimation of 5, can be seen as
solution to the optimization problem

maz E(BY Y'8,)
= maz 350
subject to the conditions 3}3; = 1 and BiY' L 5jY/ for ¢ < j. The orthogonality condition

between the characteristic vectors means that
0=E [(ﬂ;Y’) (81" } = E(8Y'YB;) = 838
The lagrangian equation to be maximized is therefore

j—1
Lj = 3556, — €(858; = 1) =2 _ 6,8;%6;

=1
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where & and ¢ = (gbl, e ij—l) are the lagrange multipliers and j = 1,2,..., N. The solution to
this optimization problem satisfies the equation (18) and (17) and therefore the eigenvalues \;

summarize the amount of variability captured by the corresponding eigenvector ;.

B Asymptotic Properties of the Eigenspace Variables

We provide the inferential theory for the eigenvalues, and eigenvectors that are estimated using
the classical PCA. Let Z = (z/l, s z/T) be N x T matrix such that ZZ' = (T — 1) % in equation

(2). Therefore

where z; = (y; — §) is the demeaned vector and z; ~ Ny (0, X).

Definition. (N — variate wishart distribution) Let x1, ...,z be k-independent N — vectors.
Suppose each x; ~ Ny(0,%). Let U = 331:1:/1 + 1‘2{[),2 + ...+ azk:r;g Then U is said to have a

N —variate Wishart Distribution with k degrees of freedom and covariance matrix 3. That s,
U~Wyn(E k)

According to the above definition, $(7' — 1) = Zle 212, = Zthl Vit - Yje ~ Wn(E,T —1).

Therefore

Y~ WN(T—-1)7'8,T 1) (20)

The density function of matrix S s
) 3(T-N-2) $3-1)

~ 1
» e“z(:r_n”(

L (@
(8= ¥
22 NI Dt NN=D |2 T-DTT T [5(T - )]

=1

where I'(.) is the gamma function.
The following proposition provides the rate of convergence and the limiting distribution of

the eigenvalues and eigenvectors decomposed from a covariance matrix 3.
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Proposition. (Limiting distribution of eigenvalues and eigenvectors) Let yi, ..., yr be indepen-
dently distributed, each being an N — vector of Ny (0,%). Define A = (A, Mo, ..., An) a N x 1
vector of independent eigenvalues and 8 = (51, By, ..., Bx) a N X N matriz of orthogonal eigen-
vectors. The sample covariance matriz 3 is such that ¥ ~ Wy ((T ) e YA 1) .Then as

T — oo,

>

~A) = 0T (21)

»»

(B-8) = o) (22)
where the sequence (A - A) and (,@ — 5) are independent to each other. The limiting distrib-

ution 1S given by

VT ([\ - A) 4, N(0,7) (23)
where T = diag (2)\%, 22, ..., 2)\?\,) and
VT (,é _ ﬁ) 4. N(0,0) (24)
N N ‘
where © = Zi:l ijl (Uij ® ©45) with
N
)\ikz (/\iiilj\kyﬁkﬁk Jori=j
=1

©ij = ok
A / . .

and Us;; is an N x N matriz that has 1 in the iit" position and 0’s elsewhere.

The results mentioned in this proposition have been proved almost simultaneously by Gir-
shick (1939), Hsu (1939), Fisher (1939), Roy (1939), Mood (1951), Anderson (1963) and widely
known in multivariate statistics literature. For the proof, we refer the reader to any of the above

papers or book by Anderson 2003 pp.546.
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C Proof of the Theorem
We know from the proposition that as T" — oo,
VT (A= A) =5 N(0,22)

and

where
N
A ’ . .
A oAby fori=j
k=1
O = ki
Ai\j ! . .
—Wﬁ iBi for i # j
We define the error in estimation of the eigenvalues (5\Z — )\i) as €y, and the error in esti-

mation of the eigenvectors (fi’z — Bi) as €g,. Note that F (5,\1.551,) =0.

<1/2 \1/2 11/2
)\i/ =\ + 5,\1.)1/2 = A2 (1 + %) . Using taylor expansion up to the first order, )\Z-/ =

7

. c1/2 ,
)\;/2 (1 + %?;) + 0p(1). Therefore we can write )\i/ - )\Z-l/Q = %% Since we know the limiting

distribution of the €),, we have
“ 1
VT ()\3/ 2 2) AN (0, 2)\i> . (25)

We define 5\11 2 )\Z.l/ =z ;- Therefore we can write

“1/2 -
= )\,}/251- + )\;/2651. + ,@ig‘)\i + 5)\1.651.. (26)
Therefore
21/2 4 1

NBi = A28 = A Pep + BiE, + B,
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We know, €5, = O,(T~12),25, = Op(T~/?) and s, = Op(T™1). Therefore 5\3/2@ - )\3/2/6} =
0, (T -l %) . This proves equation (3).
From the above, T (Agﬂ%-) L N(0,004:) and VT (B2y,) —5 N (0, %)\zﬂzﬂ;)

Since €, and €, are independent, it holds that
~1/24 1 /
VT (Ai/ Bi — A;m@') 2N <03 Ai©ii + 2)\15151‘) +Q +op(1)

where ﬁ (5 Mgﬁi) 4, () where (Q is a distribution of the product of two mean zero independent

normal variates. As T — oo, the effect of ﬁ (Exes,) = O,(T~'/?) is negligible and therefore

N N 1 /
VT (N5 - 08) 4 N (0, \iOii + 2&61&»)

This proves equation (4).

The asymptotic covariance matrix for (y; — ;) (’yj — fyj) JUFEG

Cov ((% — %), (%’ - %‘))

A~

= E[% (=) =7 (% —)]
<1/2 - <1/2

= BNB (N8 - X8,)] - B N8 (38, - 1%8,)]

= I-1I

~1/2
Substituting for the estimators of )\l/ B, for I =i, j, we solve the two parts below:

I:

B3, (1%, - 2

= BA28, 4 A5, 4 BiEa + Eres </\j1./2 B;+ M\ %es, + BiEx, +Ex,68, — A Bj)]

= F _)\1/2)\1/2552.55].]

? J
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II:

Therefore

B[\ (48, - 1%,
E [Aimﬁi ()‘;/263‘ + A;/2eﬁj + B8N TExe8, — A;/Qﬁjﬂ

0.

Cov (i =72), (3, =) = B [NN 2525

= A\,

i 7
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Table 1: Bootstrapped Critical values.  The table reports the critical values of the
bootstrapped distributions of Sup, Avg, and FEzp of the test statistics W (r) =
Wi (), Wrr(iy 1), Wrrr (i, 1), Wry (4, 7), Wy (i, 7), Wy (i, 7)) associated with the six hypotheses
formulated in equations 5 - 10. The critical values correspond to testing the null hypotheses of
stability in the eigenspace variables against the alternative of the presence of atleast one point

of instability in the eigenspace variables for parameters € = 0.15 and significance level, a = 0.05.

Sup Avg Exp

Wi(r) 0.10647 0.016155 -0.6376

Wrr(1,7) 0.027513  0.0048876 -0.6485
Wir(2,7) 0.044315 0.0060717 -0.64735

Wrr(3,7) 0.067158 0.0080533 -0.64545

Wirrr(1,7) 0.17855 0.041762 -0.61261
Wrir(2,7) 69573 1494.9 628.23

Wrrr(3,7) 38165 1341.9 660.17

Wy (1,7) 0.16094 0.039824 -0.61471
Wy (2,7) 1.999 0.85389 0.1815

Wy (3,7)  1.9993  0.79494  0.1429

Wyr(1,2,7) 22677 0.92023  0.24683
Wy (1,3,7) 20918 081725  0.16398

Wvi(2,3,7) 5.5412 1.6858 1.2748
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Table 3: Principal Component Estimates of the Subsample Periods Considered. The table
contains the PCA results conducted for the full sample period and the three subsample periods:
Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - May 2006. Panel A, B, and C report the
estimates for eigenvalues, eigenvectors, and percentage of variations explained by corresponding
eigenvalue in the case of short term (proxied by the three month and 6 month rates), medium
term (proxied by the five year and seven year rates), and long term (proxied by the ten year

and 12 year rates) respectively.

Panel A: Short Term Rates

Eigenvalues Eigenvectors % Explained

Vector 1 Vector 2

Full Sample Period: 0.0015 -0.5365 -0.8439 88.5676
Jan 99 - May 06 0.0002 -0.8439 0.5365 11.4324
First Subperiod: 0.000723 -0.6509  -0.7592 01.7486
Jan ’99 - Jun 01 0.000065 -0.7592 0.6509 8.2514
Second Subperiod: 0.003 -0.4808 -0.8768 87.3595
Jul ’01 - Dec ’03 0.0004 -0.8768 0.4808 12.6405
Third Subperiod: 0.0005558 -0.546  -0.8378 92.4486
Jan 04 - May 06 0.0000454  -0.8378 0.546 7.5514

Panel B: Medium Term Rates

Eigenvalues Eigenvectors % Explained

Vector 1 Vector 2

Full Sample Period: 0.0018 -0.7523 -0.6589 99.3849
Jan 99 - May 06 0 -0.6589 0.7523 0.6151
First Subperiod: 0.0007643 -0.7193 -0.6947 99.3881
Jan '99 - Jun 01 0.0000047 -0.6947 0.7193 0.6119
Second Subperiod: 0.0031 -0.7609 -0.6489 99.5701
Jul ’01 - Dec '03 0 -0.6489 0.7609 0.4299
39
Third Subperiod: 0.0014 -0.7491 -0.6625 99.1222

Jan ’04 - May ’06 0 -0.6625 0.7491 0.8778




(TABLE 3 CONTINUED)

Panel C: Long Term Rates

Eigenvalues Eigenvectors % Explained
Vector 1 Vector 2

Full Sample Period: 0.0012 -0.7265 -0.6871 99.7203
Jan ’99 - May ’06 0 -0.6871 0.7265 0.2797
First Subperiod: 0.0007137 -0.713 -0.7011 99.2305
Jan ’99 - Jun ’01 0.0000055 -0.7011 0.713 0.7695
Second Subperiod: 0.0019 -0.7315 -0.6818 99.8754
Jul ’01 - Dec ’03 0 -0.6818 0.7315 0.1246
Third Subperiod: 0.0009108 -0.7259 -0.6878 99.8185
Jan ’04 - May ’06 0.0000017 -0.6878 0.7259 0.1815
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Table 4: Testing Reults. The table reports the Sup, Avg, and Ezp values for the test statistics

Wi (r), Wrr(i,7), Wrrr (i, 7), Wry (i, 7), Wy (4, 7), and Wy (3, 7) associated with the six hypothe-

ses formulated in equations 5 - 10.

Panel A: Testing overall system

Sup Avg Exp
Wi (r) 0.96701 0.26218  -0.38973
Panel B: Testing the level factor

Sup Avg Exp

Wirr(1,7) 0.24475 0.062922  -0.59174

Wrrr(1,7) 0.87365 0.22575  -0.43265

Wy (1,7) 0.70327  0.24609  -0.41435

Panel C: Testing the slope factor

Sup Avg Exp

Wir(2,71) 0.34214  0.090797 -0.5643

Wirr(2,7) 249.64 10.664 118.11

Wy (2,71) 1.9815 0.77043 0.11505
Panel D: Testing the curvature factor

Sup Avg Exp

Wi (3,7) 0.38012 0.10846  -0.54758

Wrrr(3,7) 335.49 5.6174 160.9

Wy (3,7) 1.9899 0.44182  -0.20286
Panel E: Testing the common factors

Sup Avg Exp

Wvi(1,2,7) 3.4721 1.2964 0.62638

Wvi(1,3,7) 2.393 0.70712  0.063935

Wvi(2,3,7) 5.4103 1.4711 0.83286
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Figure 1: Matrix Plot of Term Structure of Zero Coupon Bond Yields. The plot depicts the
relationship among the yields of various interest rate maturities: 3 months, 5 months to 12

months, 2 years to 12 years (sample period: Jan 1999 - May 2006).
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The Frst Principal Component

Percentage variation explained by first factor

83.69%

Jan'99-Jun'01  Jul'01-Dec '03 Jan'04 - May '06

0.6

0.4

0.2

The Second Principal Component

Percentage variation explained by second
factor

Jan '99 - Jun '01 Jul'01 - Dec '03  Jan '04 - May '06

The Third Principal Component

—e— subperiod: Jan '99 - Jun '01
—a— subperiod Jul '01 - Dec '03
—a— Subperiod: Jan '04 - May '06

Percentage variation explained by third factor

Jan '99 - Jun '01 Jul'0l1 - Dec '03  Jan '04 - May '06

Figure 2: Three Subsample Periods. The line charts plot the first three principal components

and the column charts show the percentage variations explained by those factors for the three

subsample periods: Jan 1999 - Jun 2001, Jul 2001 - Dec 2003, and Jan 2004 - May 2006.
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Figure 3: Short Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the
first principal axis and the continuous line depicts the second principal axis of the short rates
considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,
Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are fitted onto the
scatter plot of the three month and six month yield changes data that proxies the short end of

the yield curve.
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Figure 4: Medium Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the
first principal axis and the continuous line depicts the second principal axis of the short rates
considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,
Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are fitted onto the
scatter plot of the five year and seven year yield changes data that proxies the medium end of

the yield curve.
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Figure 5: Long Term Rates (Yield Changes) and Principal Axes. The dashed line depicts the
first principal axis and the continuous line depicts the second principal axis of the short rates
considered for the whole sample period and the three subsample periods: Jan 1999 - Jun 2001,
Jul 2001 - Dec 2003, and Jan 2004 - May 2006.. The two orthogonal axes are fitted onto the
scatter plot of the ten year and twelve year yield changes data that proxies the long end of the

yield curve.
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Forward Recursive Scheme (FRS) Plot for the Eigenvalues

Figure 6:
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Figure 7: Forward Recursive Scheme and Backward Recursive Scheme of the Eigenvectors.
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Figure 8: Forward Recursive Scheme and Backward Recursive Scheme of the Factor Loadings.
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