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Abstract

This paper establishes that regressors in the models with censored dependent variables need not
be bounded for the standard asymptotic results to apply. Thus regressors which grow monotonicaly
with the obervation index may be acceptable. It dso purports to provide an upper bound on the rate at

which regressors may grow.

.
Weshow that if |x||£c fordlt then | .8 xx ® ¥ isasufficient condition for the

t=1
consstency and asymptatic normality of the MLE in censored regresson modes, which are different

from those used by Amemiya (1973). For the case of growing regressors, we show that the sufficient

conditions for the consistency and asymptotic normality of the MLE are |x|” =o (logt ) and

.
| & %X 3 cT?, for some a >0 and ¢> 0, but only for one-half of the parameter space. The

t=1
admissible growth rate given above implies that the Fisher Information mairix diverges, which seemsto
be an indispensable requirement for asymptotic inference for the censored regresson models. More
importantly, it represents a critical upper bound in the Fisher information matrix if it is exceeded

monotonicaly. It dsoimpliesthat x. = (L,t)" in Judge et d. (1985:791) for the Tobit is not admissible.



1.

Introduction

Congder the linear regresson model

y, =xb+e, (t=1,..T) (1)

wherethe e, arei.i.d. norma random variables having mean zero and finite variance s?, x, isak x 1

vector of regressorsand b isak x 1 vector of parameter of interest. However, for each t, instead of

obsarving (Vt, Xt), one observes (z, d,, %), where z =max{y,,0} , and d, isanindicator varigble

teking thevaue 1if y, >0 and Oif y, £0.

The conggtency and asymptotic normdlity of the maximum likelihood estimator (MLE) of

(b",s?) have been studied by Amemiya (1973) under assumptionsof {x} , eg., X; isbounded, i.e.,

.
||| £ c fordl t, and Iimlé xX% =V , apostive definite matrix. However, the conditions given by

TeY T t=1

Amemiya (1973) above may be too strong to study the cases where growing regressors are of interest

(eg., timetrend modd, i.e, x, = (1, t)¢ see Judge et al. 1985:791).

with

Thelikdihood function of thismodd is

=Bl F b, sy e = @
t=1 ’ v 2ps?
1 5

L o2y ©)

. b

In section 2, we confirmed Fahrmeir's (1987:103) result that if % || £ ¢ for al t, then

T
l miné tht® ¥ (4)

t=1






isaaufficient condition for the consstency and asymptotic normdity of the MLE for the censored mode
but only for one-half of the parameter space, wherel ;. A isthe smalest égenvaues of a symmetric
matrix A. In Section 3 the case of growing regressors is discussed. We show that the sufficient

conditions for the consstency and asymptotic normdity of the MLE are

Ix[ =0 (ogt) ©)
3 .

| min@ %X 2 cT?, forsomea >0and c>0, 6)
t=1

for one-haf of the parameter space. The summary isgiven in the Section 4.

Remark 1. Intheclasscd linear regresson mode withi.i.d errors and the sequence {x} of

;
regressors, | mmé xx ® ¥ isnecessary and sufficient for weak (Drygas 1976) and strong (Lai,

t=1
Robbins, and Wel 1979) consstency (also see Amemiya 1985:95).

Remark 2:  Notethat F (xb,s?) will tend to one or zero if some regressors are growing
monotonically to +¥ or -¥. Thus, for large T nearly dl response y; will fal into one category and there
will betoo lessinformation to draw inference about the rdlevant parameters. The admissble growth
raein (5) and (6) assure that enough information is available and the asymptotic theory works.
Remark 3: Theadmissible growthrate, |x|° =o (logt ), given in (5) impliesthat the Fisher
Information matrix diverges, which seemsto be an indispensable requirement for asymptotic inference

for the censored regresson models. More importantly, it represents a critical upper bound in the Fisher

information matrix if it is exceeded monotonicaly



Remark 4: Fahrmer and Kaufmann (1986) and Gourieroux and Monfort (1981) have discussed the
sharp upper bounds on the admissible growth of regressors for logit, probit, cumuletive logit, and

loglinear, and linear Poisson modd.
2. Statistical Inference

Olsen (1978) proved the globa concavity of logL in the Tobit modd in terms of the transformed

parameter a =b/s and h=1/s . Without loss of generdity (see Remark 7), weassumes = 1. The

logL in terms of the new parameters can written as (see Olsen 1978)
_9° 1 [¢} ' 2
logl = log[1- F (xb)]- 2 (¥~ xb) @)
0 1

where §  isthe summation over dl obsarvationswherey; =0, §  isthe summation over dll
1

0

observationswherey; >0, and T, isthe number of observationswherey; > 0. The score function

S (b) and theinformetion metrix F, (b) are

_ (x;) 0 o
s(b)= X1 F (xb) alxt(yt xb)

_a & - 2 f(xb) OU

= - xDb)- (- d, 8
a}ngq(y Kb) - (- 8) g ®)
:° le 1-d f(xtb) w bH
atxt,:ﬁgdtyt-'-( ) 1 F( b)m Xt%

=& x(9 - xb), =,



éof‘baef'b L0 . o .U
D) KO xbSxx +8 XX

R » s (0) =E,H (b) =E,éa
(b) =cov, s (b) = E;Hi(b) = eol F(Xb)&1- F(xb) 4 L0

:Ebééf:\i(l d);f;)igb)aelfl(:x(;tzb) xtb%+dtgx[xtg

&g b4 F (400 ©
where H, (b) = - % and % xb>0. Therefore H, (b) and F,(b) are positive
definite.
Remark 5. Ey, = Eedtyt +(1- d)Qx[b- %Z@: xb and

Var (§)=s{=s”- Var(y,|y, <- xb). Inparticular, sups? £5? <¥ (see Jamesand Smith 1984).

t31

Let A”? beaunique symmetric positive definite matrix associated with a symmetric positive

definite matrix A such that (Al’ 2)2 = A. We gpproach the problem of the distribution of F*'*s, fir,

and move to the large sample ditribution of b, MLEof b.

Assumption 1: |x| £ c fordl t,

;
Assumption 2: |, § XX ® ¥.

t=1
Although Fahrmeir (1987:103) did not fully present a separate and detailed proof regarding the

sufficient condition for the Tobit mode with bounded regressors, he indicated that the stated sufficient

conditions in Assumption 1 and Assumption 2 can be directly proved by his genera results presented in

his paper. Here, we merely confirm his conjecture.



Lemmal: Under Assumption 1 and Assumption 2, the normed score function is asymptoticaly
norma: F s %9® N(O, I).
Proof: We use the Lindeberg-Feller Theorem for triangular arrays. Fix | with | I =1.

z; =1 'Fthl/zxi (9| - )ﬂb)

t t
wehave Ez; =0,varg z, =varl R’ =1,i.e, 7, aeindependent and § z, has mean 0 and

i=1 i=1

variance 1. In order that z ; obey the centra limit theorem, it is sufficient that the Lindeberg condiition

(seeBillingdey 1986:369) is satidfied, i.e, forany >0,

t
Itimé‘ ), , Z.dP=0. (12)

®F | 2>}

I
LY

where P isthe disribution of z,. Let a,; =1 F,"*x . By the Cauchy-Schwarz inequdlity, we have

z2 £a;,a, (% - xb) =a,a, €, where g =y, - Xb. Thisgives

;‘;tl @ 4 z,dP Eét agay, Q& dG (12)
G i<
where Gy isthe digtribution of e for agiven x, and B(t,i) isthe set 1.{ e > a'e; g From Assumption
1i &
land 2, wehavel ., F ® ¥. Deine
h.(X) =sup Qeeg} e’dG, (13)

t t
Under Assumption 1, § a;.a,; £ K <¥ withacondant K. Notethat § a,a,, Qu, €9G: is

i=1 i=1

bounded above by Kh,(x) .

a

o]
i=1

@2 . Z,dPEK h(X)® 0



because h, (x) ® Oasc® ¥ .

Theorem 1: Under Assumption 1 and Assumption 2
(i) b%%® b
(i) EY2(b- b) %%® N(O,1)
Proof: The proof is smilar to the Theorem 4 in Fahrmer and Kaufmann (1985:364).

Remark 6: A man gepisthe verification of

F 2 (0)H, (DR () %@ 1. (14)

Thisassertion is equivaent to %@ 1,uniformly dl | * 0, i.e,, Condition (13) isacontinuity
t

conditionon H, (b) aswell as aconvergence condition on the asymptotic relation between F, (b) and

H, (b) , requiring that the ratio between observed information H, (b) and expected information F, (b)

converges to one.
Remark 7: The aboveresults hold evenif s?isunknown. Notethat
é, & f(xa
B gl P (X‘ ) xtagf (xta)+F(xta)»axt 04
| R ot u
min min ? T u
0 _+
8 i

;
Therefore | , F, ® ¥ ifandonlyif | ;& xx ® ¥ because

t=1

mma tht ® ¥ iff | m|na tht ® ¥.

t=1



3. Growing Regressors

However, there are situations where growing regressors are of interest, e.g., time trend models
(e.g., Judge et d. 1985:791) . Fahrmeir and Kaufmann (1986:187) have given gives a sharp upper
bound for admissible growth of regressors for the Probit. Note that Tobit like-likdihood in (2) is

expressible as the sum of the probit log-likelihood and the truncated likelihood and the Probit MLE is

asymptoticaly norma and T —consigent for the origina Tobit parameter vector divided by the
sandard deviation of the Tohbit error term, one may think that the sufficient conditions on the growing
regressors in the Tobit model and in the Probit modd coincide.

Itistruethat F (xb,s?) in(2) will tend to one or zero if some regressors are growing

monotonicaly to +¥ or -¥. However, the statement by Fahrmeir and Kaufmann (1986:189) about the
Probit: “Thusfor large T nearly dl response y; will fdll into one category and there will be too less
information to draw inference about the rlevant parameters’ is only one-hdf right for the Tobit.
Specificaly, if the variable X is growing monotonically with t, and if its associated coefficient b, is
negative, then for large T nearly al responses y; will be zero, so that additional observations will be
indeed add too little information for asymptotic theory to work. That is the case that |ooks like Probit.
But if the coefficient b, ispogtive, then nearly dl y; > O for large T, meaning new observations will add
as much information as they would in the dassicd linear modd. Thus, the upper bound on the growth
rates for regressors in the censored normal modd, istrue as stated in (5) and (6), but only for hdf of the
parameter space to assure that enough information is available and the asymptotic theory works.

The following theorem gives a sharp upper bound for admissible growth of regressors for haf of

the parameter space.



.
Theorem 2:If |x|* =o(logt) and | ,,,& %X ® cT*, forsome a >0and ¢>0. Then

t=1

| . F® ¥

min

;
Proof: Theinformation matrix F, (b) can aso bewrittenas F,(b) = § xxa?, with

t=1
& f(xb) LU .0
&’ =gl - Xbyf (xb)+ F (xb)=z (15)
G a-Fom) b :
From Magnus and Neudecker (1988:204), we have
J ) 3 . N
| inFi(0) =1 o xxB72 | o §F (xB)Uxx® (16)
t=1 t=1 @ g
We dso note that
. ' 2
F (xb) 2 cexp(- {xb} ) (17

for somec > 0. The admissible growth rate of x¢, |x]” =0 (logt ), in Theorem 2 is equivaent to
exp(- Ix]° ||b||2)3 t “forallb,d >0,t3 t,(b,d). (18)
In combination with (16) and (17),

]
| inR (0) 3 1 il XXt %

t=1

:
Sncet ?3 T ¢ for tET,d>0. Under | ., %X ® cT?, therefore, we have

t=1
l minFt(b) 3 CTa-d1 T3 Tl
With d=a /2, thisimpliesthat | , .F, ® ¥.
Remark 8: If |><[Tb|2 3 clogt,c>1,then | . F converges



Example: Let x, = (L w)¢with w? = (logt)” for the Tobit Model in (1). |x|* =o (logt) holdsif

O<a<l Ifas31] thenl . F convergesfor someb.

Remark 9: It impliesthat x, = (1, t)¢in Judge et . (1985:791) for the Tobit is not admissible.

Remark 10: It dso impliesthat when x, = (1, w;) hasaunit root with the drift, i.e., w =m+w_; +w,

t
for the Tobit isnot admissible. Sincew; can bewrittenas w =w, + ut +g Wi .
i=1

4. Summary

Regresson modd s for censored data have found numerous applications. Statistical andysis of
these models relies heavily on large sample theory, i.e., asymptotic properties of the MLE. However,
previoudy published conditions assuring these properties may be too strong. Consistency and
Asymptotic normdlity of the MLE are shown under week and eadly verifiable requirements. This paper

gives asharp upper bound on the admissible growth of regressors.

10



References

Amemiya, T. 1973. “Regresson Anayss when the Dependent Variable is Truncated Normal,”
Econometrica, 41: 997-1016.

Amemiya, T. 1985. Advanced Econometrics. Cambridge, MA: Harvard University Press,

Billingdey, P. 1986. Probability and Measure. New York: John Wiley.

Drygas, RA. 1976. “Wesk and Strong Consistency of the Least Squares Estimatorsin Regression
Modds,” Zeitschrift Fur Washrscheinlichkeitstheorie und Verwandte Gebiete, 34: 119-
127.

Fahrmeir, L. and H. Kaufmann. 1985. “Congstency and Asymptatic Normdity of the Maximum
Likelihood Estimator in Generdized Linear Modd,” Annals of Statistics, 13: 342-368;
Correctionin Annals of Statistics, 14: 1643.

Fahrmeir, L. and H. Kaufmann. 1986. “Asymptotic Inferencein Discrete Response Models”
Satistische Hefte, 27: 179-205.

Fahrmeir, L. 1987. “Asymptotic Likdihood Inference for Nonhomogeneous Observations,”
Statistische Hefte, 28: 81-116.

Gourieroux, C. and A. Monfort. 1981. “Asymptotic Properties of the Maximum Likelihood Estimator
in Dichotomous Logit Modds” Journal of Econometrics, 17: 83-97.

James, |.R. and P.J. Smith. 1984. “Consistency Resultsfor Linear Regresson with Censored Data,”
Annals of Statistics, 12: 590-600.

Judge, G., W.E. Griffiths, R.C. Hill, H. Lutkepohl, and T.-C. Lee. 1985. The Theory and Practice
and Econometrics. New York: John Wiley.

La, T.L., H. Robbins, and C.Z. Wel. 1979. “Strong Consistency of Least Squares Estimatesin
Multiple Regression [1,” Journal of Multivariate Analysis, 9: 343-361.

Magnus, JR. and H. Neudecker. 1988. Matrix Differential Calculuswith Applicationsin
Satistics and Econometrics. New York: John Wiley.

Olsen, R.J. 1978. “Note on the Uniqueness of the Maximum Likeihood Estimator for the Tobit
Modd,” Econometrica, 46: 1211-1215.

11



	Asymptotic Inference in Censored Regression Models Revisited
	Recommended Citation

	/var/tmp/StampPDF/EP6BtYYSVN/tmp.1284480005.pdf.oEoNT

