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Abstract 
 

 This paper establishes that regressors in the models with censored dependent variables need not 

be bounded for the standard asymptotic results to apply. Thus regressors which grow monotonically 

with the obervation index may be acceptable. It also purports to provide an upper bound on the rate at 

which regressors may grow. 

 We show that if tx c≤  for all t, then min
1

T
T

t t
t

x x
=

λ → ∞∑  is a sufficient condition for the 

consistency and asymptotic normality of the MLE in censored regression models, which are different 

from those used by Amemiya (1973).  For the case of growing regressors, we show that the sufficient 

conditions for the consistency and asymptotic normality of the MLE are ( )2
logtx o t=  and 

min
1

,
T

T
t t

t

x x cT α

=

λ ≥∑  for some 0α >  and c > 0, but only for one-half of the parameter space. The 

admissible growth rate given above implies that the Fisher Information matrix diverges, which seems to 

be an indispensable requirement for asymptotic inference for the censored regression models.  More 

importantly, it represents a critical upper bound in the Fisher information matrix if it is exceeded 

monotonically. It also implies that (1, )T
tx t=  in Judge et al. (1985:791) for the Tobit is not admissible. 

 



 

 
1. Introduction 
 

 Consider the linear regression model 

 '
t t ty x= β + ε , (t = 1,... T) (1) 

where the tε  are i.i.d. normal random variables having mean zero and finite variance 2σ , tx  is a k x 1 

vector of regressors and β  is a k x 1 vector of parameter of interest.  However, for each t, instead of 

observing (yt, xt), one observes ( , , ),t t tz xδ  where max{ ,0}t tz y= , and tδ  is an indicator variable 

taking the value 1 if 0ty >  and 0 if 0.ty ≤   

 The consistency and asymptotic normality of the maximum likelihood estimator (MLE) of 

2( , )Tβ σ  have been studied by Amemiya (1973) under assumptions of { }tx , e.g., xt is bounded, i.e., 

tx c≤  for all t, and '

1

1
lim

T

t t
T

t

x x V
T→∞

=

=∑ , a positive definite matrix.  However, the conditions given by 

Amemiya (1973) above may be too strong to study the cases where growing regressors are of interest 

(e.g., time trend model, i.e, (1, ) ,tx t ′=  see Judge et al. 1985:791).   

 The likelihood function of this model is  

 
' 2

2
1

( )
1' 2 2

2
1

1
[1 ( , )] [ ]

2

t t
t t

T y x

t
t

L x e
− − β

−δ δσ

=

= − Φ β σ
πσ

∏  (2) 

with 

 
2'

2
1

( / )
' 2 2

2

1
( , )

2

tx

tx e d
− λ σβ

σ
−∞

Φ β σ = λ
πσ

∫  (3) 

 In section 2, we confirmed Fahrmeir’s (1987:103) result that if tx c≤  for all t, then 

 '
min

1

T

t t
t

x x
=

λ → ∞∑  (4) 



 

 
2 



 

 
3 

is a sufficient condition for the consistency and asymptotic normality of the MLE for the censored model 

but only for one-half of the parameter space, where min Aλ  is the smallest eigenvalues of a symmetric 

matrix A.  In Section 3 the case of growing regressors is discussed. We show that the sufficient 

conditions for the consistency and asymptotic normality of the MLE are 

 
2

(log )tx o t=  (5) 

 '
min

1

,
T

t t
t

x x cT α

=

λ ≥∑  for some 0 and 0,cα > >  (6) 

for one-half of the parameter space. The summary is given in the Section 4. 

Remark 1:    In the classical linear regression model with i.i.d errors and the sequence {xt} of 

regressors, '
min

1

T

t t
t

x x
=

λ → ∞∑  is necessary and sufficient for weak (Drygas 1976) and strong (Lai, 

Robbins, and Wei 1979) consistency (also see Amemiya 1985:95). 

Remark 2:    Note that ' 2( , )txΦ β σ  will tend to one or zero if some regressors are growing 

monotonically to +∞ or -∞.  Thus, for large T nearly all response yt will fall into one category and there 

will be too less information to draw inference about the relevant parameters.  The admissible growth 

rate in (5) and (6) assure that enough information is available and the asymptotic theory works.   

Remark 3:    The admissible growth rate, ( )2
logtx o t= , given in (5) implies that the Fisher 

Information matrix diverges, which seems to be an indispensable requirement for asymptotic inference 

for the censored regression models.  More importantly, it represents a critical upper bound in the Fisher 

information matrix if it is exceeded monotonically  
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Remark 4:    Fahrmeir and Kaufmann (1986) and Gourieroux and Monfort (1981) have discussed the 

sharp upper bounds on the admissible growth of regressors for logit, probit, cumulative logit, and 

loglinear, and linear Poisson model. 

 
2. Statistical Inference 
 

 Olsen (1978) proved the global concavity of logL in the Tobit model in terms of the transformed 

parameter /α = β σ  and 1/h = σ . Without loss of generality (see Remark 7), we assume σ = 1. The 

logL in terms of the new parameters can written as (see Olsen 1978) 

 ' ' 2

0 1

1
log log[1 ( )] ( )

2t t tL x y x= − Φ β − − β∑ ∑  (7) 

where 
0

∑ is the summation over all observations where yt = 0, 
1
∑ is the summation over all 

observations where yt  > 0, and 1T  is the number of observations where yt  > 0.  The score function 

( )ts β  and the information matrix ( )tF β  are 

 
'

'
'

0 1

( )
( ) ( )

1 ( )
t

t t t t t
t

x
s x x y x

x
φ β

β = − + − β
− Φ β∑ ∑  

          = ( )
'

'
'

( )
(1 )

1 ( )
t

t t t t t
t t

x
x y x

x

  φ β
δ − β − − δ  − Φ β  

∑  (8) 

          = 
'

' '
'

( )
(1 )

1 ( )
t

t t t t t t
t t

x
x y x x

x

   φ β δ + − δ β − − β   − Φ β    
∑  

          = ( )'ˆt t t
t

x y x− β∑ , say, 
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' '

' ' '
' '

0 1

( ) ( )
( ) cov ( ) ( )

1 ( ) 1 ( )
t t

t t t t t t t t
t t

x x
F s E H E x x x x x

x xβ β β

  φ β φ β
β = β = β = − β +  − Φ β − Φ β  

∑ ∑  

          
' '

' '
' '

( ) ( )
(1 )

1 ( ) 1 ( )
t t

t t t t t
t t t

x x
E x x x

x xβ

    φ β φ β 
= − δ − β + δ    − Φ β − Φ β      

∑  

          
'

' ' ' '
'

( )
( ) ( )

1 ( )
t

t t t t t
t t

x
x x x x x

x

  φ β
= − β φ β + Φ β   − Φ β  

∑  (9) 

where 
2

'

log
( )t

L
H

∂
β = −

∂β∂β
 and 

'
'

'

( )
0

1 ( )
t

t
t

x
x

x
φ β

− β >
− Φ β

.  Therefore ( )tH β  and ( )tF β  are positive 

definite.   

Remark 5:    
'

' '
'

( )
ˆ (1 )

1 ( )
t

t t t t t t
t

x
Ey E y x x

x

  φ β
= δ + − δ β − = β  − Φ β  

 and 

( ) 2 2 'ˆ ( | )t t t t tVar y Var y y x= σ = σ − < − β .  In particular, 2 2

1
sup t

t ≥
σ ≤ σ < ∞  (see James and Smith 1984). 

 Let 1/2A  be a unique symmetric positive definite matrix associated with a symmetric positive 

definite matrix A such that ( )21/2A A= . We approach the problem of the distribution of 1 /2
t tF s−  first, 

and move to the large sample distribution of β̂ , MLE of β . 

Assumption 1: tx c≤  for all t, 

Assumption 2: '
min

1

T

t t
t

x x
=

λ → ∞∑ . 

 Although Fahrmeir (1987:103) did not fully present a separate and detailed proof regarding the 

sufficient condition for the Tobit model with bounded regressors, he indicated that the stated sufficient 

conditions in Assumption 1 and Assumption 2 can be directly proved by his general results presented in 

his paper.  Here, we merely confirm his conjecture. 
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Lemma 1:   Under Assumption 1 and Assumption 2, the normed score function is asymptotically 

normal: 1 /2 (0, ).d
t tF s N I− →  

Proof:  We use the Lindeberg-Feller Theorem for triangular arrays. Fix λ  with 1.Tλ λ =   

 ( )' 1 /2 '
, ˆt i t i i iz F x y x−= λ − β   

we have ' 1 /2
, .

1

0,var var 1
t

t i t i t t
i

Ez z F s−

=

= = λ =∑ , i.e., ,t iz  are independent and ,
1

t

t i
i

z
=

∑ has mean 0 and 

variance 1. In order that ,t iz obey the central limit theorem, it is sufficient that the Lindeberg condition 

(see Billingsley 1986:369) is satisfied, i.e., for any 0ε > ,  

 
{ }2 2

,

2
,

1

lim 0
t i

t

t izt
i

z dP
>ε→∞

=

=∑∫ . (11)  

where P is the distribution of ,t iz .  Let ' ' 1 /2
,t i t iF x−α = λ .  By the Cauchy-Schwarz inequality, we have 

( )22 ' ' ' 2
, , , , ,ˆt i t i t i i i t i t i iz y x e≤ α α − β = α α , where 'ˆi i ie y x= − β .  This gives 

 
{ }2 2

,

2 2
, , , ( , )

1 1t i

t t
T

t i t i t i xz B t i
i i

z dP e dG
>ε

= =

≤ α α∑ ∑∫ ∫  (12) 

where Gx is the distribution of e  for a given x, and B(t,i) is the set 
2

2
'
, ,t i t i

e
 ε 

> 
α α  

.  From Assumption 

1 and 2, we have min .tFλ → ∞  Define 

 { }2 2

2( ) sup
c

c xe
h x e dG

>
= ∫ ε

 (13) 

Under Assumption 1, '
, ,

1

t

t i t i
i

K
=

α α ≤ < ∞∑  with a constant K.  Note that ' 2
, , ( , )

1

t

t i t i xB t i
i

e dG
=

α α∑ ∫  is 

bounded above by ( )cKh x .  

 
{ }2 2

,

2
,

1

( ) 0
t i

t

t i cz
i

z dP K h x
>

=

≤ →∑ ∫ ε
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because ( ) 0asch x c→ → ∞ .  

Theorem 1: Under Assumption 1 and Assumption 2  

 (i) ˆ pβ→β  

 (ii) 1/2 ˆ( ) (0, )d
tF N Iβ − β →  

Proof:  The proof is similar to the Theorem 4 in Fahrmeir and Kaufmann (1985:364).   

Remark 6:    A main step is the verification of  

 1/2 1 /2( ) ( ) ( ) .p
t t tF H F I− −β β β →  (14) 

This assertion is equivalent to 
'

'

( )
1

( )
t

t

H
F

λ β λ
→

λ β λ
, uniformly all 0,λ ≠  i.e., Condition (13) is a continuity 

condition on ( )tH β  as well as a convergence condition on the asymptotic relation between ( )tF β  and 

( )tH β , requiring that the ratio between observed information ( )tH β  and expected information ( )tF β  

converges to one. 

Remark 7:    The above results hold even if 2σ is unknown.  Note that 

min tFλ ≥ 

'
' ' ' '

'
0

min

1
2

( )
( ) ( ) 0

1 ( )

0

t
t t t t t

t

x
x x x x x

x

T
h

   φ α
− α φ α + Φ α    − Φ α   λ

 
 
  

∑
. 

Therefore min tFλ → ∞  if and only if '
min

1

T

t t
t

x x
=

λ → ∞∑  because 

' '
min min

1 0

T

t t t t
t

x x iff x x
=

λ → ∞ λ → ∞∑ ∑ . 

. 



 

 
8 

3. Growing Regressors 
 

 However, there are situations where growing regressors are of interest, e.g., time trend models 

(e.g., Judge et al. 1985:791) . Fahrmeir and Kaufmann (1986:187) have given gives a sharp upper 

bound for admissible growth of regressors for the Probit.  Note that Tobit like-likelihood in (2) is 

expressible as the sum of the probit log-likelihood and the truncated likelihood and the Probit MLE is 

asymptotically normal and T —consistent for the original Tobit parameter vector divided by the 

standard deviation of the Tobit error term, one may think that the sufficient conditions on the growing 

regressors in the Tobit model and in the Probit model coincide.  

 It is true that ' 2( , )txΦ β σ  in (2) will tend to one or zero if some regressors are growing 

monotonically to +∞ or -∞.  However, the statement by Fahrmeir and Kaufmann (1986:189) about the 

Probit:  “Thus for large T nearly all response yt will fall into one category and there will be too less 

information to draw inference about the relevant parameters” is only one-half right for the Tobit. 

Specifically, if the variable xit is growing monotonically with t, and if its associated coefficient 1β  is 

negative, then for large T nearly all responses yt will be zero, so that additional observations will be 

indeed add too little information for asymptotic theory to work. That is the case that looks like Probit. 

But if the coefficient 1β  is positive, then nearly all yt > 0 for large T, meaning new observations will add 

as much information as they would in the classical linear model.  Thus, the upper bound on the growth 

rates for regressors in the censored normal model, is true as stated in (5) and (6), but only for half of the 

parameter space to assure that enough information is available and the asymptotic theory works.   

 The following theorem gives a sharp upper bound for admissible growth of regressors for half of 

the parameter space. 
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Theorem 2: If ( )2
logtx o t=  and '

min
1

,
T

t t
t

x x cT α

=

λ ≥∑  for some 0 and 0.cα > >   Then 

min .tFλ → ∞  

Proof: The information matrix ( )tF β  can also be written as ( )tF β  = ' 2

1

,
T

t t t
t

x x a
=

∑  with 

 
'

2 ' ' '
'

( )
( ) ( )

(1 ( ))
t

t t t t
t

x
a x x x

x

  φ β
= − β φ β + Φ β   − Φ β  

 (15) 

From Magnus and Neudecker (1988:204), we have  

 2
min min min

1 1

( ) ( ) .
T T

t t t t t t t
t t

F x x a x x x
= =

 ′ ′ ′λ β = λ ≥ λ Φ β  ∑ ∑  (16) 

We also note that  

 { }2' '( ) exp( )t tx c xΦ β ≥ − β  (17) 

for some c > 0.  The admissible growth rate of xt, ( )2
logtx o t= , in Theorem 2 is equivalent to  

 ( )2 2
1exp forall , 0, ( , )tx t t t−δ− β ≥ β δ > ≥ β δ . (18) 

In combination with (16) and (17),  

 '
min min

1

( )
T

t t t
t

F x x t −δ

=

λ β ≥ λ ∑ .   

Since t T−δ −δ≥  for , 0.t T≤ δ >   Under '
min

1

,
T

t t
t

x x cT α

=

λ ≥∑  therefore, we have 

 min ( )tF cT α−δλ β ≥ , 1T T≥  

With / 2δ = α , this implies that min .tFλ → ∞  

Remark 8: If 
2

logT
tx c tβ ≥ , c > 1, then min tFλ  converges. 
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Example: Let (1, )t tx w ′=  with ( )2 logtw t=
α

 for the Tobit Model in (1).  ( )2
logtx o t=  holds if 

0 1.< α <   If 1,α ≥  then min tFλ converges for some β .   

Remark 9: It implies that (1, )tx t ′=  in Judge et al. (1985:791) for the Tobit is not admissible. 

Remark 10: It also implies that when (1, )t tx w=  has a unit root with the drift, i.e., 1t t tw w −= µ + + ω  

for the Tobit is not admissible.  Since wt can be written as 0
1

t

t i
i

w w ut
=

= + + ω∑ . 

 
4. Summary 
 

 Regression models for censored data have found numerous applications.  Statistical analysis of 

these models relies heavily on large sample theory, i.e., asymptotic properties of the MLE.  However, 

previously published conditions assuring these properties may be too strong.  Consistency and 

Asymptotic normality of the MLE are shown under weak and easily verifiable requirements.  This paper 

gives a sharp upper bound on the admissible growth of regressors. 
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