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Abstract

This paper studies estimation of panel cointegration models with cross-sectional
dependence generated by unobserved global stochastic trends. The standard least squares
estimator is, in general, inconsistent owing to the spuriousness induced by the unobservable 1(1)
trends. We propose two iterative procedures that jointly estimate the slope parameters and the
stochastic trends. The resulting estimators are referred to respectively as CupBC (continuously
updated and bias-corrected) and the CupFM (continuously updated and fully modified)
estimators. We establish their consistency and derive their limiting distributions. Both are
asymptotically unbiased and asymptotically normal and permit inference to be conducted using
standard test statistics. The estimators are also valid when there are mixed stationary and non-

stationary factors, as well as when the factors are all stationary.
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1 Introduction

This paper is concerned with estimating panel cointegration models using a large panel of data. Our
focus is on estimating the slope parameters of the non-stationary regressors when the cross sections
share common sources of non-stationary variation in the form of global stochastic trends. The
standard least squares estimator is either inconsistent or has slower convergence rate. We provide
a framework for estimation and inference. We propose two iterative procedures that estimate the
latent common trends (hereafter factors) and the slope parameters jointly. The estimators are /nT
consistent and asymptotically normal. As such, inference can be made using standard ¢t and Wald
tests. The estimators are also valid when some or all of the common factors are stationary, and
when some of the regressors are stationary.

Panel data have long been used to study and test economic hypotheses. Two dimensional
variations of panel data bring in additional information to permit analysis that would otherwise be
inefficient, if not impossible, with time series or cross-sectional data alone. A new development in
recent years is the use of ‘large dimensional panels’, meaning that the sample size in the time series
(T') and the cross-section (n) dimensions are both large. This is in contrast to traditional panels in
which we have data of many units over a short time span, or of a few variables over a long horizon.
Many researchers have come up with new ideas to exploit the rich information in large panels.!
However, large panels also raise econometric issues of their own. In this analysis, we tackle two
of these issues: the data (y;,x;t) are non stationary, and the structural errors e;; = y; — x;tﬂ are
neither iid across i nor over t. Instead, they are cross-sectionally dependent and strongly persistent
and possibly non-stationary. In addition, e;; are also correlated with the explanatory variables ;.
These problems are dealt with by putting a factor structure on e;; and modelling the factor process
explicitly.

The presence of common sources of non-stationarity leads naturally to the concept of cointe-
gration. In a small panel made up of individually I(1) (or unit root) processes y; and x;, where
small means that the dimension of y; plus the dimension of x; is treated as fixed in asymptotic
analysis, cointegration as defined in Engle and Granger (1986) means that there exists a cointe-
grating vector, (1 — 3'), such that the linear combinations y; — x}/3 are stationary, or are an 1(0)
processes. In a panel data model specified by y;; = 2/,8 + e;x where y;; and x;; are I(1) processes,
and that e;; are iid across i, cointegration is said to hold if e;; are ‘jointly’ 1(0), or in other words,

(1, =) is the common cointegrating vector between y;; and xz;; for all n units. A large literature

!See, for example, Baltagi (2005), Hsiao (2003), Pesaran and Smith (1995), Kao (1999), and Moon and Phillips
(2000, 2004) in the context of testing the unit root hypothesis using panel data. Stock and Watson (2002) suggest
diffusion-index forecasting, while Bernanke and Boivin (2003) suggest new formulations of vector autoregressions to
exploit the information in large panels.



on panel cointegration already exists? for modelling panel cointegration when e;; is cross-sectionally
independent.

In practice, we have large panels of data of which y;; are variables like output of firms, or
consumption of households, or the national product of countries, or the value-added of industries,
while the corresponding z;; are factor inputs, household earnings, national employment, and sectoral
factor prices. While macroeconomic theory often starts with the premise that firms, households,
and industries are affected by common shocks such as arising aggregate productivity, from monetary
and fiscal policies, the panel cointegration model under cross-section independence has no role for
such common sources of variation. Failure to account for common shocks can potentially invalidate
estimation and inference of 3.3 In view of this, more recent work has allowed for cross-sectional

4 There is also a

dependence of e;; when testing for the null hypothesis of panel cointegration.
growing literature on panel unit root tests with cross-sectional dependence.’ In this paper, we
consider estimation and inference of parameters in a panel model with cross-sectional dependence
in the form of common stochastic trends.

The framework we adopt is that e;; has a common component and a stationary idiosyncratic
component. That is, e;; = )\gFt + u;¢, so that panel cointegration holds when w;; = ;s — Bxi — )\;Ft
is jointly stationary. We focus on estimation and inference about § when F} is non-stationary. A
regression of y;; on x;; will give a consistent estimator for § when F; is I(0). However, if F} is
I(1), a regression of y;; on x; is spurious since e;; is not only cross-sectionally correlated, but also
non-stationary. We deal with the problem by treating the common I(1) variables as parameters.
These are estimated jointly with 8 using an iterated procedure. The procedure is shown to yield
a consistent estimator of 3, but the estimator is asymptotically biased. We then construct two
estimators to account for the bias arising from endogeneity and serial correlation so as to re-center
the limiting distribution around zero. The first, denoted CupBC, estimates the asymptotic bias
directly. The second, denoted CupFM, modifies the data so that the limiting distribution does not
depend on nuisance parameters. Both are ‘continuously updated’ (Cup) procedures and require

iteration till convergence. The estimators are \/nT consistent for the common slope coefficient

2See, for example, Phillips and Moon (1999) and Kao (1999). Recent surveys can be found in Baltagi and Kao
(2000) and Breitung and Pesaran (2005).

3 Andrews (2005) showed that cross-section dependence induced by common shocks can yield inconsistent estimates.
Andrews’ argument is made in the context of a single cross section and for stationary regressors and errors. For a
single cross section, not much can be done about common shocks. But for panel data, we can explore the common
shocks to yield consistent procedures.

“See, for example, Phillips and Sul (2003), Gengenbach et al. (2005b), and Westerlund (2006).

®For example, Chang (2002,2004), Choi (2006), Moon and Perron (2004), Breitung and Das (2005), Gengenbach
et al. (2005a), and Westerlund and Edgerton (2006). Breitung and Pesaran (2005) provide additional references in
their survey.



vector, 3. The estimators enable use of standard test statistics such as ¢, I/, and x? for inference.
The estimators are robust to mixed I(1)/I(0) factors, as well as mixed I(1)/I(0) regressors. Thus,
our approach is an alternative to the solution proposed in Bai and Kao (2006) for stationary
factors. As we argue below, the Cup estimators have some advantages that make an analysis of
their properties interesting in its own right.

The rest of the paper is organized as follows. Section 2 describes the basic model of panel coin-
tegration with unobservable common stochastic trends. Section 3 develops the asymptotic theory
for the continuously-updated and fully-modified estimators. Section 4 examines issues related to
incidental trends, mixed I(0)/I(1) regressors and mixed I(0)/I(1) common shocks, and issues of
testing cross-sectional independence. Section 5 presents Monte Carlo results to illustrate the finite
sample properties of the proposed estimators. Section 6 provides a brief conclusion. The appendix

contains the technical materials.
2 The Model

Consider the model
Yir = Ty + eir

where for i = 1,....n,t =1,....T, y; is a scalar,
Tip = Tit—1 + it (1)

is a set of k non-stationary regressors, (3 is a k x 1 vector of the common slope parameters, and e;;
is the regression error. Suppose e;; is stationary and iid across ¢. Then it is easy to show that the

pooled least squares estimator of 3 defined by

n T -1, o7
BLs = <Z > mitm;t) SO wiayu (2)
i=1 t=1 i=1 t=1
is, in general, T consistent.® Similar to the case of time series regression considered by Phillips and
Hansen (1990), the limiting distribution is shifted away from zero due to an asymptotic bias induced
by the long run correlation between e;; and €;;. The exception is when x;; is strictly exogenous, in
which case the estimator is /nT consistent. The asymptotic bias can be estimated, and a panel
fully-modified estimator can be developed along the lines of Phillips and Hansen (1990) to achieve

v/nT consistency and asymptotic normality.

5The estimator can be regarded as \/nT consistent but with a bias of order O(y/n). Up to the bias, the estimator
is also asymptotically normal.



The cross-section independence assumption is restrictive and difficult to justify when the data
under investigation are economic time series. In view of comovements of economic variables and
common shocks, we model the cross-section dependence by imposing a factor structure on e;;. That
is,

eit = NiFy + uig
where F; is a r X 1 vector of latent common factors, A; is a r x 1 vector of factor loadings and wu;; is
the idiosyncratic error. If both F; and u; are stationary, then e;; is also stationary. In this case, a
consistent estimator of the regression coefficients can still be obtained even when the cross-section
dependence is ignored, just like the fact that simultaneity bias is of second order in the fixed n
cointegration framework. Using this property, Bai and Kao (2006) considered a two-step fully
modified estimator (2sFM). In the first step, pooled OLS is used to obtain a consistent estimate
of 3. The residuals are then used to construct a fully-modified (FM) estimator along the line of
Phillips and Hansen (1990). Essentially, nuisance parameters induced by cross-section correlation
are dealt with just like serial correlation by suitable estimation of the long-run covariance matrices.
The 2sFM treats the I(0) common shocks as part of the error processes. However, an alternative

estimator can be developed by rewriting the regression model as
Yit = T8+ N Fy + uar. (3)

Moving F; from the error term to the regression function (treated as parameters) is desirable for
the following reason. If some components of x;; are actually 1(0), treating F; as part of error process
will yield an inconsistent estimate for 8 when F; and x; are correlated. The simultaneity bias is
now of the same order as the convergence rate of the coefficient estimates on the I(0) regressors.
Estimating § from (3) with F' being I(0) was suggested in Bai and Kao (2006), but its theory was
not explored.

When F; is I(1), which is the primary focus of this paper, there is an important difference
between estimating [ from (3) versus pooled OLS in (2) because the latter is no longer valid .
More precisely, if

Fr=F_1+mn

then e;; is I(1) and pooled OLS in (2) is, in general, not consistent. To see this, consider the

following data generating process for x;
Ty = TiF + &y (4)

with &; being I(1) such that &; = &;,_; + (;;. For simplicity, assume there is a single factor. It
follows that x;; is I(1) and can be written as (1) with ez = 7/n, + ;. The pooled OLS can be

4



written as . ) - )
n

(ﬁ Zi:l Ti)\i)(ﬁ Zt:l Fy)
1 T

If 7; and \; are correlated, or when they have non-zero means, the first term on the right hand side

Brs—B= +0p(n~12) + 0,(T7)

is Op(1), implying inconsistency of the pooled OLS. The best convergence rate is \/n when z;; and
F; are independent random walks. The problem arises because as seen from (3), we now have a
panel model with non-stationary regressors x;;+ and F;, and in which w;; is stationary by assumption.
This means that y;; conintegrates with x;; and F} with cointegrating vector (1, —3’, \;). Omitting
F; creates a spurious regression problem. It is worth noting that the cointegrating vector varies
with ¢ because the factor loading is unit specific. Estimation of the parameter of interest 3 involves
a new methodology because F' is unobservable.

In the rest of the paper, we will show how to obtain y/nT consistent and asymptotically normal
estimates of § when the data generating process is characterized by (3) assuming that z;; and
F; are both I(1), and that z;;, F} and u; are potentially correlated. We will refer to F} as the
global stochastic trends since they are shared by each cross-sectional unit. Hereafter, we write
the integral fol W(s)ds as [W when there is no ambiguity. We define 02 to be any matrix
such that Q = (Ql/ 2) (Ql/ 2)/, and BM (£2) to denote Brownian motion with the covariance matrix
Q. We use ||A] to denote (tr(A’A))Y/2, %, to denote convergence in distribution, -~ to denote
convergence in probability, [x] to denote the largest integer less than or equal to x. We let M < oo
be a generic positive number, not depending on 7" or n. Unless indicated explicitly, all limits are
taken as (n,T) — oco. We also define the matrix that projects onto the orthogonal space of z as
M, =Ip —z(2'z) "' 2. We will use 8°, F?, and \? to denote the true common slope parameters,
true common trends, and the true factor loading coefficients.

Our analysis is based on the following assumptions.
Assumption 1 Factor and Loading:
(a) E H)\?H4 <M. Asn— oo, 231, AN 252y a v x r positive definite matriz.

(b) E|n,|*™ < M for some & > 0 and for all t; As T — o, D FORY <, anB;, arxr
random matriz, where B, is a vector of Brownian motions with covariance matriz €, which

s a positive definite matriz.

Assumption 2 Let wy; = <u,~t, sgt,n;) . For each i, wy = I;(L)vy = Z;'io IL;jvi—; where vy
is i.d.d. over t, 322, j¢ ||| < M, for some a > 1, and [II;(1)| > ¢ > 0 for all i. In addition,
Evip =0, E(viv},) = X, >0, and Eljvit|® < M < oo.



Assumption 3 Weak cross-sectional correlation and heterokedasticity

(a) E (uiujs) = Oijis, |Oijes| < 0i5 for all (t,s) and |oijs| < Tes for all (i,7) such that (i)

LS i S M, (i1) 33 oy Tes < M, and (iii) 2230 oy |oijas < M.
4
(b) For every (t,s), E ’ﬁ Yoy (uisuie — E (uisuir)]| < M.
(C) % Zt S,U,V Zz j ‘COU (uitui57 ujuuj?)” S M and % Zt S Zz ikl ‘COU (uituj57 ukuu18)| S M.
n 195Uy 5J n ) J kR
Assumption 4 {z;, F?} are not cointegrated.
t

Assumption 1 is standard in the panel factor literature. Assumption 3 allows for limited time
series and cross-sectional dependence in the error term, u;,. Heteroskedasticity in both time series
and cross-sectional dimensions for u;; is allowed as well. The assumption that €2, is positive definite
rules out cointegration among the components of F'. Assumption 4 also rules out the cointegration
between x;; and Fto.

Assumption 2 implies that a multivariate invariance principle for w;; holds, i.e., the partial sum

process % Zg% w;; satisfies:

(7]
1 d .
— g wit — B; (-) = B(;) as T — oo for all i,
VT po

where

B;=[B. B, B,].

The long-run covariance matrix of {w;} is given by

o Quz’ Quez‘ Qumﬁ
Q= Z FE (’wiowij) = | Qewi Qe Qe (5)
j=—00 Qnui Qnei QW

are partitioned conformably with w;;. Define the one-sided long-run covariance

o Auz Auai Auni
Ai = Z E (wi(]wij) = Asui Aei Asni . (6)
J=0 Anui Anei An

For future reference, it will be convenient to group elements corresponding to ¢ and 7, taken
together. Let

Bbi _ [ B;Z B;7 ]l Qbi _ I: Qei ani :l )

Qnei Qn



Then B; can be rewritten as

_ | Bui | _
Bi=| g | =

0 Qi

i
0 Qil./z W

where [ V; W, ]/ = BM (I) is a standardized Brownian motion and

Qu.bi = Quz - Qubin_iIQbm’

is the long-run conditional variance of u; given (A:r;t, A F:')'. Note that €;; > 0 since we assume
that there is no cointegration relationship in (z;,, F{') in Assumption 4.
Finally, we state an additional assumption, which is needed when deriving the limiting distri-

bution of various estimators.
Assumption 5 The idiosyncratic errors u; are cross-sectionally independent.

It is noted that this assumption is not needed for consistency of the proposed estimators.
3 Estimation

In this section, we first consider the problem of estimating 3 when F' is observed. We then consider
two iterative procedures that jointly estimate 8 and F'. The procedures yield two estimators that
are \/nT consistent and asymptotically normal. These estimators, denoted CupBC and CupFM,

are presented in subsections 3.2 and 3.3.

3.1 Estimation when F' is observed
The true model (3) in vector form, is

yi = ;3% + FOX) 4+ u;

where , )
Vil T Fi Uit
! /
Yi2 Lo F, Ui2
Yi = . , Ty = . = ) Ui =
, ,
YyiT Tp Fr Ui

Define A = (\q, .., )\n), to be an an n x r matrix. In matrix notation
y=XB"+ FOAY 4 u.

Given data y, x, and F°, the least squares objective function is

Spr (B,A) = Z (y —xi3 — FO)\i), (y—zi8— FON;) .

=1



After concentrating out A, the least squares estimator for 3 is then

n -1 5
Brg = <Z xiMFo:ci> leMFoyl
i=1 i=1

The least squares estimator has the following properties.”

Proposition 1 Under Assumptions 1-5, as (n,T) — o0

VnT @LS - 50) — /ey N (0,x°)

where
1 < ny
0o _ 2:’ . ,E 0
¢nT - nT2 Z':1‘II’.ZJM'F’O;U”L] |:TL g 01:| (7)
1 & ,
0o _ N T , O —1
2 = D [nlggon;:lﬂu.mE ( / QzQz>]D : (8)
with

D = nl;rx;QiéE(/QiQ;)

Q = Bu- ( / Ba-B;) ( / BnB;>_1Bn,

1 !
9? = faci]wpoAbin_ilgbuz' + (A:—uz - 5? A%) ’
0 = (FUFO)7'FVz;, Ab=( Azx; AF)

+
Af = Aeui =( Apui Ay ) I — A — AQTLQ,
bui A;{]—u bui bi _ng’lgbui but bisép; Sabui

The estimator is y/nT consistent if ¢2T = 0, which occurs when z; is strictly exogenous.
Otherwise, the estimator is T' consistent as there is an asymptotic bias given by the term /n¢%;.
This is an average of individual biases that are data specific as seen from the definition of 0?.
The individual biases arise from the contemporaneous and low frequency correlations between the

regression error and the innovations of the I(1) regressors as given by terms such as Qp,; and Apy;.

"The limiting distribution for F being I(0) can also be obtained. Park and Phillips (1988) provide the limiting
theory with mixed I(1) and I(0) regressors in a single equation framework.



To estimate the bias, we need to consistently estimate the nuisance parameters. We use a kernel

estimator. Let

7=T+1
R T—1 N
A, = Z w <I](> T ()
§j=0
- 12 ,
I (j ) = T Aztﬂ &]\zt
t=1

where W = (t, Azl AFYY. To state the asymptotic theory for the bias-corrected estimator, we
need the following assumption, as used in Moon and Perron (2004):

Assumption 6 (a) liminf (log7/logn) > 1.

T—

(b) the kernel functionw (+) : R — [—1,1] satisfies (i) w (0) = 1, w (z) = w (—x), (i1) f_llw (z)* dz <

oo and with Parzen’s exponent q € (0,00) such that lim 17;15"”) < 00.

(¢c) The bandwidth parameter K satisfies K «~ n® and 2%1 < b < liminf 112217; —1.

Let

~0
nT —

1 O -
’ AN
—5 Z ;M po xZ] 0
nT P
where 6" = % Sy 0;, 0; is a consistent estimate of 69. The resulting bias-corrected estimator is

1-0

Brspe = Brs — TgbnT' 9)

This estimator can alternatively be written as
Busess = S sittpos) 3= (satpnt -7 (38, - 254) 10)
i=1 i=1

where §+ and AT are consistent estimates of y™ and A' ete, with

Az, Az,
-1 t -1 t
y:t_ = Yit — Qubini < AFZtO > U; = Ut — Qubini ( A}io )

Viewed in this light, the bias-corrected estimator is also a panel fully-modified estimator in the spirit
of Phillips and Hansen (1990), and is the reason why the estimator is also labeled 3 sFM- 1t is not

difficult to verify that 3;¢pc and 875y are identical. Panel fully modified estimators were also



considered by Phillips and Moon (1999) and Bai and Kao (2006). Here, we extend those analysis
to allow for common stochastic trends. By construction u:; has a zero long-run covariance with

( Azl, AFY )/ and hence the endogeneity can be removed. Furthermore, nuisance parameters

+

arising from the low frequency correlation of the errors are summarized in A, ..

Proposition 2 Let 3;gp; be defined by (10). Under Assumptions 1-6, as (n,T) — oo

VT (Brsea — 6°) LN 0,%).

In small scale cointegrated systems, cointegrated vectors are T' consistent, and this fast rate of
convergence is already accelerated relative to the case of stationary regressions, which is v/T'. Here
in a panel data context with observed global stochastic trends, the estimates converge to the true
values at an even faster rate of \/nT and the limiting distributions are normal. To take advantage
of this fast convergence rate made possible by large panels, we need to deal with the fact that F' is

not observed. This problem is considered in the next two subsections.

3.2 Unobserved F and the Cup Estimator

The LSFM considered above is a linear estimator and can be obtained if F' is observed. When F' is
not observed, the previous estimator is infeasible. Recall that least squares estimator that ignores
I is, in general, inconsistent. In this section, we consider estimating F' along with 5 and A by

minimizing the objective function

n

Snr (53F7A):Z(y_$iﬁ_F)\i)/ (y — i — F\) (11)

i=1
subject to the constraint T-2F F = I, and A'A being diagonal. The least squares estimator for /3

for a given F' is
. n -1 n
B = (Z xz’Msz) Z z; Mpy;.
i=1 i=1
Define

wi = Y — i

= F)\ +u;.

Notice that given (3, w; has a pure factor structure. Let W = (wj,...,w,) be a T x n matrix.

We can rewrite the objective function (11) as tr[(W — FA')(W — FA’)]. If we concentrate out
’ ’ -1 ’

A=WF (F F) = T~2W F, we have the concentrated objective function:

tr (W/MFW> = tr (W’W) —tr (F'WW/F/T2> . (12)

10



Since the first term does not depend on F', minimizing (12) with respect to F' is equivalent to
maximizing tr (T “2FWW'F ) subject to the constraint T—2F'F = I,.. The solution, denoted ﬁ, is
a matrix of the first r eigenvectors (multiplied by T') of the matrix ﬁ Yoy (yi — i) (yi — xiﬁ)/.

Although F' is not observed when estimating (3, and similarly, § is not observed when estimating
F, we can replace the unobserved quantities by initial estimates and iterate until convergence. Such
a solution is more easily seen if we rewrite the left hand side of (12) with y — 2 substituting in for
W. Define

Snr (B, F T2 Z — 2;3) M (y; — x:3)
The continuous updated estimator (Cup) for (ﬁ, F) is defined as
(BCup? F\C'u,p) = al"ﬁgmin Sar (ﬁa F) :
F
More precisely, (Bcup, ﬁCup) is the solution to the following two nonlinear equations

n -1 n
i=1 i=1
1 <« ~ -~/
T2 Z (yz' - xiﬁ) (yz' - wiﬁ)
i=1

where Mg = It — T-2FF' since ﬁ’ﬁ/TQ = I, and V7 is a diagonal matrix consisting of the r

FVyp = (14)

largest eigenvalues of the matrix inside the brackets, arranged in decreasing order. Note that the
estimator is obtained by iteratively solving for 3 and F using (13) and (14). It is a non-linear
estimator even though linear least squares estimation is involved at each iteration. An estimate of
A can be obtained as:

K:T”ﬁ(Y—X@.

The triplet (E, ﬁ, 7\) jointly minimizes the objective function (11).

The estimator BCup is consistent for 3. We state this result in the following proposition.
Proposition 3 Under Assumptions 1-4, as (n,T) — oo,
Boup — B°.
We now turn to the asymptotic representation of BCUP.

Proposition 4 Suppose Assumptions 1-4 hold and (n,T) — oo, then

Vit (Beu, = 0°) =D (%) +op(1),




’ —1
where a;; = A, (ATA> e, D (FO) = # SorZlZ; and Zi = Mpox; — %22:1 Mrpozya;.

In comparison with the pooled least squares estimator for the case of known FO, estimation of
the stochastic trends clearly affects the limiting behavior of the estimator. The term involving a;g
is due to the estimation of F'. This effect is carried over to the limiting distribution and to the
asymptotic bias, as we now proceed to show. Let w;; = (u;, AZ},n,) where Z; = x,;—% Y e ThGik-
For the rest of the paper, we use bar to denote those long run covariance matrices (including one
sided and conditional covariances and so on) generated from w; instead of w;. Thus, Q; is the
long run covariance matrix of w;; as in (5), and define A; is the one-sided covariance matrix of w;.
These quantities depend on n, but this dependence is suppressed for notional simplicity.

Because the right hand side of the representation does not depend on estimated quantities, it is
not difficult to derive the limiting distribution of ﬁcup, even allowing for cross-sectional correlation
in u;. However, estimating the resulting nuisance parameters would be more difficult. Thus,
although consistency of the Cup estimator does not require the cross-section independence of u,

our asymptotic distribution for ﬁCup is derived with Assumption 5 imposed.

Theorem 1 Suppose that Assumptions 1-5 hold. Let BCW be obtained by iteratively updating (13)
and (14). As (n,T) — oo with n/T — 0, we have

VAT (Beuy = B) = vy =5 N (0,3)

where .

(i 20)

i=1

¢nT =

1 n
w7 2%
=1

1, - B _ _ _
bi = Zi by Qi + (Aim- - 5#%) )
1 no , 1 n ’
— =1

1 n
Ry = Qi — > Quair,

k=1

Ab; = ( Az AFY),

1 n
T; = ﬂfi**Z!Ekaik,
n
k=1
1 n
(51' = (Si—*Z(gkaik.
n
k=1

12



Theorem 1 establishes the large sample properties of the Cup estimator. As mentioned earlier,
the a;; term arises from having to estimate F;. In consequence, the bias is now a function of
terms not present in Proposition 1, which is valid when F; is observed. Since ¢, = Op(1), the
Cup estimator is also T consistent. This is in contrast with pooled OLS in Section 2, where it
was shown to be inconsistent in general. Nevertheless, as in the case when F' is observed, the
Cup estimator has an asymptotic bias and thus the limiting distribution is not centered around
zero. This motivates removing the bias by constructing a consistent estimate of ¢,,,. This can be

obtained upon replacing FO, Ab;, Qpi, Qpui, AT

ouis Af{ by their consistent estimates.

u
We consider two fully-modified estimators. The first one directly corrects the bias of Bcup, and
is denoted by BCup sc- The second one will be considered in the next subsection, where correction

is made during each iteration, and will be denoted by Bcupp M-

Consider
N T—1 j
QZ = ‘ w (K> FZ (]) 5
j=T+1
N T—1 j
A= Yo(f)R)
7=0
~ 1 = ’
Li(j) = T Z Wit+j Wy
t=1
where

o~ ~ ~ 7~ . 2 1 = ~
Wit = (i, AT, AFY)  with Az = Awyy — - Z A
k=1

The bias-corrected Cup estimator is defined as
N ~ 1~
ﬂCupBC = 6C’up - T¢nT

where

13



Theorem 2 Assume Assumptions 1-6 hold. Then as (n,T) — oo with n/T — 0,
> d
\/HT (ﬂCupBC - ﬁo> — N (07 E) :

The CupBC is \/nT consistent with a limiting distribution that is centered at zero as long as
(n,T) — oo and 7+ — 0. This type of bias correction approach is also used in Hahn and Kuersteiner
(2002), for example, and is not uncommon in panel data analysis. Because the bias-corrected
estimator is \/nT and has a normal limit distribution, the usual ¢ and Wald tests can be used
for inference. Note that the limiting distribution is different from that of the infeasible LSBC
estimator, which coincides with LSFM and whose asymptotic variance is X9 instead of ¥. Thus,
the estimation of F' affects the asymptotic distribution of the estimator. As in the case when F
is observed, the bias corrected estimator can be rewritten as a fully modified estimator. Such a

fully-modified estimator is now discussed.

3.3 Fully Modified Cup Estimator

The CupBC just considered is constructed by estimating the asymptotic bias of BCUP, and then
subtracting it from Bcup. In this subsection, we consider a different fully-modified estimator,
denoted by BCup e Let
~ =~-1 AT

+ it

Yir = Yit — Qupilly ( Aﬁt >

A =1

5 = (F’F) 3.

where 5ubi, ﬁbi, and Ebm- are estimates of Qupi, Qp; and Ay, respectively. Recall that BCup is
obtained by jointly solving (13) and (14). Consider replacing these equations by the following:

n

n -1 /
~ , , =+ o+
=1

=1

FVyr F (17)

1 <« ~ N ;
nT? Z (yl - xiﬁCupFM) (yz - $iﬁcupFM)
=1

Like the FM estimator of Phillips and Hansen (1990), the corrections are made to the data to remove
serial correlation and endogeneity. The CupFM estimator for (5, F') is obtained by iteratively
solving (16) and (17). Thus correction to endogeneity and serial correlation is made during each

iteration.
Theorem 3 Assume Assumptions 1-6 hold. Then as (n,T) — oo with n/T — 0,
> d
VnT (ﬁcupFM - 50) — N (0,%),

14



where X is given in (15)

The CupFM and CupBC have the same asymptotic distribution, but they are constructed
differently. The estimator BCupBC does the bias correction only once, i.e., at the final stage of
the iteration, and EcupF ar does the correction at every iteration. The situation is different from
the case of known F, in which the bias-corrected estimator and the fully-modified estimator are
identical due to the absence of iteration.

The preceding results assume that the number of stochastic trends, r, is known. If this is not
the case, r can be consistently estimated using the information criterion function developed in Bai
and Ng (2002). In particular, let

r=arg min IC(r)
1<r<rmax

where r < Tmax, Tmax 18 @ bounded integer and
ICy (T) = 82 (T) + TEZ (Tmax) gnT

where g,7 — 0 as n,T — oo and min|[n, T|g,7 — oco. For example, g, can be log(a,r)/anr, with

nT
anT = 3T +T

3.4 Estimated Global stochastic trends

While the focus is on estimating the slope parameters G, the global stochastic trends F' are also of

interest. Our procedure produces consistent estimates of F'. We state this result as a proposition.

Proposition 5 Let F be the solution of (17). Under assumptions of 1-4, we have

1< 1 1
£ 0n2 _

7 2 Vi = HEYIP = 0,() + Opli).

where H 1s an r X r invertible matriz.

Thus, we can estimate the true global stochastic trends up to a rotation. This is the same rate as
in Bai (2004, Lemma B.1), where the regressor x;; is absent. Similarly, the factor loadings \; are

estimated with the same rate of convergence as in Bai (2004).

4 Further issues

The preceding analysis assumes that there are no deterministic components and that the regres-
sors and the common factors are all I(1) without drifts. This section considers construction of the

estimator when these restrictions are relaxed. It will be shown that when there are deterministic
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components, we can apply the same estimation procedure to the demeaned or detrended series, and
the Brownian motion processes in the limiting distribution are replaced by the demeaned and/or
detrended versions. Furthermore, the procedure is robust to the presence of mixed I(1)/I(0) regres-
sors and/or factors. Of course, the convergence rates for I(0) and I(1) regressors will be different,
but asymptotic normality and the construction of test statistics (and their limiting distribution)
do not depend on the convergence rate. Finally, we also discuss the issue of testing cross-sectional

independence.

4.1 Incidental trends

The Cup estimator can be easily extended to models with incidental trends,
yit = o + pit + 28 + N Fy + wir. (18)
In the intercept only case (p; = 0, for all i), we define the projection matrix
My = It — vty T

where 7 is a vector of 1’s. When a linear trend is also included in the estimation, we define Mp

to be the projection matrix orthogonal to ¢ and to the linear trend. Then
Mry; = Mpz;p + MpE N + Mru;,

or
i = &8 + FyNi + 1

where the dotted variables are demeaned and/or detrended versions. The estimation procedure for

the cup estimator is identical to that of Section 3, except that we use dotted variables.

With the intercept only case, the construction of FM estimator is also the same as before.
Theorems 1-3 hold with the following modification for the limiting distribution. The random
processes B ; and B, in (); are replaced by the demeaned Brownian motions.

When linear trends are allowed, Ax;; is now replaced by demeaned version of Ax;, i.e., &3 =
Az — Ax;, which is detrended residual of ;. We then use &;; — % Zzzl rtGir in place of Az in
Section 3. Similarly, F should also be detrended. More specifically, we use ), = AF, —AFin place
of AF,. Alternatively, since #; is already a detrended series, and F is also asymptotically detrended
(since it is estimating F ), Az and Aﬁ’t are also estimating the detrended residuals. Thus we can
simply apply the same procedure prescribed in Section 3 with the dotted variables. The limiting
distribution in Theorems 2 and consequently in Theorem 3 is modified as follows. The random

processes Bg; and B, are replaced by the demeaned and detrended Brownian motions.
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In either case, the test statistics (¢ and x?) have standard asymptotic distribution, not depending
on whether the underlying Brownian motion is demeaned or detrended.

When linear trends are included in the estimation, the limiting distribution is invariant to
whether or not y;;, x;; and F; contain a linear trend. Now suppose that these variables do contain
a linear trend (drifted random walks). With deterministic cointegration holding (i.e., cointegrating
vector eliminates the trends), the estimated § will have a faster convergence rate when a separate
linear trend is not included in the estimation. But we do not consider this case. Interested readers

are referred to Hansen (1992).

4.2 Mixed I(0)/I(1) Regressors and Common Shocks

So far, we have considered estimation of panel cointegration models when all the regressors and
common shocks are I(1). There are no stationary regressors or stationary common shocks. In this
section we suggest that the results are robust to mixed I(1)/I(0) regressors and mixed I(1)/I(0)
common shocks. Below, we sketch the arguments for the LS estimator assuming the factors are
observed. If they are not observed, the limiting distribution is different, but the idea of argument
is the same.

Recall that the LS estimator is 3yg = (320, @, Mpox;) ™t 52", & Mpoy;. The term
Mpoz; = (Ip — FO(FYFO) ™ FOY gy = 2, — FO6;

with §; = (FOIFO)*lFO/x,- plays an important role in the properties of the LS. When z;; and F; are
I(1), 6; = Op(1) and thus

(MFO(L'Z‘)t . Tt (5;Ft0 .
ST S %L o,
VT VT VT

We now consider this term under mixed I(1) and I(0) assumptions.

I(1) Regressors, I(0) Factors. Suppose all regressors are I(1) and all common shocks are I(0).
With 1(0) factors, we have T-'FOF0 2. ¥, = 0, (1). Thus

11T

5 = (T—1F0'F0>7 TZFt z, —% Epl/dBnB;i =0, (1).
t=1

It follows that
(MFoxi)t - Tit — (%Fto - & +o (1)
v T VT 7

and % 4. B.jas T — co. The limiting distribution of the LS when the factors are I(0) is the

same as when all factors are I(1), except that @; is now asymptotically the same as B;. For the
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FM, observe that the submatrix €, in

Qei Qepi
i = [ Qe QZ ]
is a zero matrix since n = AF? is an I(—1) process and has zero long-run variance. Similarly,
Yy is also zero. The submatrix €y in Qyp = Dy — Qubin_ilﬂbm as well as the submatrices
( Apui Api ) in ( Apyi  Api ) are also degenerate because the factors are 1(0). Note that
is not invertible. Under appropriate choice of bandwidth, see Phillips (1995), Q;QIM can be
consistently estimated, so that FM estimators can be constructed. This argument treats F; as if it

were I(1). If it is known that F} is I(0), we will simply use F} instead of AF; in the FM construction.

I(1) Regressors, Mixed I(0)/I(1) Factors Consider the model
Yit = @3+ MiFie + Ao For + it (19)

where Fi; = 1y, is r1 X 1 and AFy = 1y is ro X 1. We again have Mpox; = x; — FY6; but
§;=1[ 61 02 |'. Then

(Mpoxi)t Tit 1 [ / ’ |:F10 :| Tit 1 ’ 0 / 0
hSuitnt P L S —— 5.5.} tl = ——(6-F+5-F>
/*T /‘T ﬁT 17 2i F20t \/T \/T 14 1t 2i+ 2t
Lit (5,2iF20t
= - + o0, (1
VT vT p( )
o _

since d1; = Op (1), d2; = Op (1) but NG
the FM correction, the long run variance (u;, Az}, AF{,, AFy,) is degenerate. With an appropriate

choice of bandwidth as in Phillips (1995), the limiting normality still holds.

op(1). The random matrix Q; involves B.; and Ba,. In

Mixed I(1)/I(0) Regressors and I(1) Factors Suppose kg regressors denoted by xa;; are I(1),

and kp regressors denoted by z1;4 are I(0). Assume Fy is I(1) and u; is I(0) as in (3 ). Consider

Yie = Qi+ 95/1it51 + 95/2#52 + Ny + ugy

Axgy = €9

With the inclusion of an intercept, there is no loss of generality to assume x1;; having a zero mean.

For this model, we add the assumption that
E(a:h-tuit) =0 (20)

to rule out simultaneity bias with I(0) regressors. Otherwise 3; cannot be consistently estimated.

Alternatively, if u; is correlated with x1;;, we can project u; onto x1; to obtain the projection
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residual and still denote it by w;; (with abuse of notation), and by definition, w;; is uncorrelated
with z1;. But then 3, is no longer the structural parameter. The dynamic least squares approach
by adding Ax; is exactly based on this argument, with the purpose of more efficient estimation
of B,.

If one knows which variable is I(0) and which is I(1), the situation is very simple. The I(1)
and I(0) variables are asymptotically orthogonal, we can separately analyze the distribution of
estimated ; and (5. The estimated 3; needs no correction and is asymptotically normal, and the
estimated (3, has a distribution as if there is no I(0) regressors except the intercept. Note that FM
construction for 32 is based on the residuals with all regressors included. The rest of analysis is
identical to the situation of all I(1) regressors with an intercept.

In practice, the separation of I(0) or I(1) regressors may not be known in advance. One can
proceed by pretesting to identify the integration order for each variable, and then apply the above
argument. One major purpose of separating I(0) and I(1) variables is to derive relevant rate of
convergence for the estimated parameters. But if the ultimate purpose is to do hypothesis testing,
there is no need to know the rate of convergence for the estimator since the scaling factor n or T" are
cancelled out in the end. One can proceed as if all regressors are I(1). Then care should be taken
since the long-run covariance matrix is of deficient rank. Phillips (1995) shows that FM estimators
can be constructed with appropriate choice of bandwidth. Interested readers are referred to Phillips
(1995) for details.

Finally, there is the case of mixed I(1)/I(0) regressors and mixed I(1)/I(0) factors. As explained
earlier, I(0) factors do not change the result. Also, in actual computation, there is no need to know

whether FO is I(1) and 1(0), since the Cup estimator only depends on Mz; scaling in F' does not

F
alter the numerical value of BCW.

4.3 Test of Cross-Sectional Dependence
The results in this paper can be used to test the null hypothesis of no cross-sectional dependence
Hy:X\i=0 foralli (21)
for all i in (3) against the alternative that
Hy: M\ #0 for some i.
For each i, let RSS1; = Zthl @ft be the sum of squared residuals from the restricted model:

~ D ~
Yit = Ty Bpar + Wit

8We thank Joon Park for this suggestion.
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where BFM is the FM estimator of Phillips and Moon (1999). Also let RSSs; = Zthl u% be the
sum of squared residuals from the unrestricted model:
Jit = TBoupras + NFe+ it

Let @ua be a consistent estimate of the long run variance, €2, ;.. Define

_ RSSy — RSy
ﬁu.ei '

Ji (22)

The J; is similar to the variable addition test for cointegration in Park (1990). By Theorem 4.1 in
Park (1990), the J; statistic has a limiting x? distribution as T — oo with degree of freedom equal
to 7, under the null hypothesis of r common factors. The proposed test is based on averaging the

individual J; as follows:
J,

i — T
Var

1 n
J=—"
i
It can be shown® that as (n,T) — oo
J -4 N(0,1)

The result follows because E (J;) =7 + O (3) and Var (J;) = 2r + O (%) for each i.
5 Monte Carlo Simulations

In this section, we conduct Monte Carlo experiments to assess the finite sample properties of
the proposed CupBC and CupFM estimators. We also compare the performance of the proposed
estimators with that of LSDV (least squares dummy variables, i.e., the within group estimator)
and 2sFM (2-stage fully modified which is the CupFM estimator with only one iteration).

Data are generated based on the following design. For i =1,...,n,t=1,...,T,

Vit = 2xi +c (A;Ft) + i
F, = F1+mn

Tig = Tjp—1tEi
where!?
wir \ 0 1 o012 o013
k42
Eit NN 0 s J921 1 0923 . (23)
un 0 031 032 1

9See e.g., similar to Theorem 3 in Pesaran and Yamagata (2006)

'Random numbers for error terms, (u:t, €:t, 7n,) are generated by the GAUSS procedure RNDNS. At each replica-
tion, we generate an nT length of random numbers and then split it into n series so that each series has the same
mean and variance.
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We assume a single factor, i.e., r = 1, A\; and 7, are generated from i.i.d. N(uy,1) and N(p,,1)
respectively. We set py = 2 and p, = 0. Endogeneity in the system is controlled by only two
parameters, 091 and o3;. The parameter ¢ controls the importance of the global stochastic trends.
We consider ¢ = (5,10), 032 = 0.4, 091 = (0,0.2,—0.2) and o031 = (0,0.8,—0.8).

The long-run covariance matrix is estimated using the KERNEL procedure in COINT 2.0. We
use the Bartlett window with the truncation set at five. Results for other kernels, such as Parzen
and quadratic spectral kernels, are similar and hence not reported. The maximum number of the
iteration for CupBC and CupFM estimators is set to 20.

Table 1 reports the means and standard deviations (in parentheses) of the estimators for sample
sizes T' = n = (20,40, 60, 120) . The results are based on 10,000 replications. The bias of the LSDV
estimator does not decrease as (n,T’) increases in general. In terms of mean bias, the CupBC and
CupFM are distinctly superior to the LSDV and 2sFM estimators for all cases considered. The
2sFM estimator is less efficient than the CupBC and CupFM estimators, as seen by the larger
standard deviations.

To see how the properties of the estimator vary with n and T, Table 2 considers 16 different
combinations for n and 7', each ranging from 20 to 120. From Table 2, we see that the LSDV and
2sFM estimators become heavily biased when the importance of the common shock is magnified as
we increase ¢ from 5 to 10. On the other hand, the CupBC and CupFM estimators are unaffected
by the values of ¢. The results in Table 2 again indicate that the CupBC and CupFM perform well.

The properties of the t-statistic for testing 3 = 3,, are given in Table 3. Here, the LSDV
t-statistic is the conventional t-statistic as reported by standard statistical packages. It is clear
that LSDV t-statistics and 2sFM t-statistics diverge as (n,T') increases and they are not well
approximated by a standard N(0,1) distribution. The CupBC and CupFM t-statistics are much
better approximated by a standard N(0,1). Interesting, the performance of CupBC is no worse
than that of CupFM, even though CupBC does the full modification in the final stage of iteration.

Table 4 shows that, as n and T increases, the biases for the t-statistics associated with LSDV
and 2sFM do not decrease. For CupBC and CupFM, the biases for the t-statistics becomes smaller
(except for a small number of cases) as T increases for each fixed n. As n increases, no improvement
in biases is found. The large standard deviations in the t-statistics associated with LSDV and
2sFM indicate their poor performance, especially as T increases. For the CupBC and CupFM, the

standard errors converge to 1.0 as n and T' (especially as T")increase.
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6 Conclusion

This paper develops an asymptotic theory for a panel cointegration model with unobservable global
stochastic trends. Standard least squares estimator is, in general, inconsistent. We propose two
consistent estimators, CupBC and CupFM, and derive the rate of convergence and the limiting
distributions. We show that these estimators are \/nT consistent and this holds in spite of spuri-
ousness induced by unobservable I(1) common shocks. A simulation study shows that the proposed

CupBC and CupFM estimators have good finite sample properties.
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Appendix

The proofs for Propositions 1 and 2 (with observable F') use standard arguments and are hence
omitted. Propositions 3 and 4 are proved in the supplementary appendix of Bai et al. (2006).
Note that no restriction is placed between n and T here. In contrast, Bai (2005) considered
stationary regressions with factor errors and required n/T to converge to zero in the presence of
serial correlation in e;;.

To derive the limiting distribution for Bcup, we need the following lemma. Hereafter, we define

dpr = min{/n,T}.
Lemma A.1 Assume Assumptions 1-4 hold. Let Z; = Mpox; — % ZZZI Mrpoxgas;,. Then we have:

(a) As (n,T) — oo
l ~_ . p .. 1 ,
e i Y ([ ).
(b) If & — 0, and if u; is uncorrelated with (x;, F°) for all i, then
#izfu- .~ {o nmlia E /R R,
\/ﬁT — ; Ug ' msoon - ui nidln;
(c) If & — 0, and if u; is possibly correlated with (x;, F°), then
Lizfu-—en 4, N (0, lim lzn:(z E /R Ry
\/ﬁT — 7 9 n—oo7, — u.bz n N

where
1 n
Ry = Qi — - ; Qrai,

ar = A <A'A/n>71 Ae,

Qi = Be-— (/ BeiB%) </ BnB;>_an

" Ly~ (1, 7 010 5 Al

= ’ -1 ’
with 6; = (FO FO> FY T;, and T; = x; — %Ezzl TEQik -

23



Proof of (a). Recall

/ -1 /
Mpoz; = (IT .y (FO FO> FO > ;

where

/ -1 T 1
/ -1 / FOFO 1 / / /
6 = (FOFO) FOJ%:(:,@) TQE:thz‘ti’</Ban> /BnBei:
t=

is a r X k matrix as T' — oo. First we note that
Mpox; = x; — FO6;
can be seen as the residual from a spurious regression of x; on F. Let
T = x; — F;
be a T x k matrix. Hence

1 n
Zz' = MFO.I‘Z'—*E MFoxkaik
n
k=1

1 n
k:il k‘ 1

’ / -1
where a;;, = A, (A A/ n) A, a scalar and

!/
~ 0
Tit Tt  FYoog

-1
kLA By Yk BNy - W B, B, B,B.,
VT VT 'VT (/ "") /"

a k x 1 vector, e.g., Phillips and Ouliaris (1990), p. 169 as T — oo. It follows that

Bn:Qi

Z, d 1 "
it z:
_)()_f ()a. _—R
\/T (2 nkl kWik ne

and as n — 00,
1< 1<
/ p . ’
o 2o [ At 2 3 (f ).
i=1 i=1
Let

1 T
Sir = T2 Z ZinZy
t=1
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Then as T' — o0,
d /
§ir — & = /RniRni‘
It can be shown that ||€;7|| is uniformly integrable in T for all .!' Apply Theorem 1 in Phillips
and Moon (1999) we have

nT2ZZZ 2, T}LHQIQﬂZE(/anRnl)

as (n,T) — oo showing (a).

Proof of part (b). Notice that

1 & 1 & 1<
W Zl Ziui = \/ﬁT Z (MFOin — E ZMF0$]§(Z¢]€> Uj
1= =

Consider 1.

Note
1 T ; 11/2
fzfituit — /QidBui ~ [Quz/QzQz] x N (0, 1)
t=1
as T — oo. Let
1 T
CiT = T tzl TitWit.

It is clear that E[(;7] = 0 and

ElCalir] = E -<sznun> ( anun>

t=1

- s|(foun) (foun)
- 2 [ Q0

HIf ¢ <, &, as T — oo, the uniformly integrability of ||, || is equivalent to E ||&,r|| — E||&;]| as T — oo.

!
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. . o . . /
as T — o0o. The (;p is an i.i.d. sequence with mean zero and covariance €2,; f Q;Q;. It can be shown

that ||¢;||* is uniformly integrable. Using Theorems 3 and 8 in Phillips and Moon (1999),
n

1 ;o R :

as (n,T) — oo when 7 — 0 if ;; and u;; are uncorrelated.

Similarly, for 11, we have

1 n 1 n , p ‘ 1 n

=1

where Cp; = 2370 ai, [ QrQ), we have used the fact that # D ko1 Doy GikGij = LS ik
Thus both I, and 11, have a proper limiting distribution. These distributions are dependent since
they depend on the same u;. We can also derive their joint limiting distribution. Given the form
of Z;, it is easy to show that the above convergences imply part (b).

Proof of part (c). Now suppose Z;; and u;; are correlated. It is known that

1 o e 1 o i
=) Tt = (I‘z‘t - 5’Ft0> Uit = ( Iy —9; ) < 5 > Wit
N P PR PSR

as T'— oo (e.g., Phillips and Durlauf, 1986). First we note
[ = [ Qa (Ui +0umog )
= /QidBu.bi+/QidBl/;in_ilﬂbui

c[fas] - sfe[fan]
- E [E [/ (Ba- - 6;-Bn> dmmH —0.

such that
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Note
2;Mpo ( Az; AF ) Q51 ,
7 ( Az AF ) Q5 O,
T
/ l Tit 1 ' Axyy
o) 73 () ot (53

/ Bsi " — —
L5 -m) [ / ( B )dez’QbiIQbUi+AbiniIQbUi:| :
n

1
7"
1.
T

Therefore
1 N 1 _ ’ _
— i - [TxiMFo( Az AF ) Q5 Qs + ( I, -6, ) [Apui — Abinbem]]
1. 1 )
= g%t — [TxiMFo ( Axz; AF )QbilQbui + ( I, —5 )A;Z“] (25)

1/2
iﬁ/@wx{jﬁ/@@} x N (0, I)
where

A+

bui

= Npui — Doi; Qi
Let

n

1 B ,
07 = — Z; |:T szo ( Azx; AF )QbilQbm‘ + ( I —5i ) AZ;“:| .
Then we apply Theorem 3 in Phillips and Moon (1999) to get

n
\/;L’T Z :f;uz -7 = Z Z Tipuy — 07
i=1

i=1 t=1
d Ll /
BN (0,711330”; b (/QQ))
as (n,T) — oo

Note Z; = x; — %2221 Tra;r is a demeaned z; where %2221 Trasy is the weighted average of

Z; with the weight a;i. It follows that

~ 1 -
Zi = Ti—— ) Tpai
n
k=1
1 n
= (331 — FO5Z) - (a:k — Fodk) o
k=1

1 n n !

= (wz — =) mpag | — F° <5z‘ - = Z5kazk>
k=1 k=1

= 7 FOS;
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where Z; = x; — %Ezzl zpair and 6; = §; — % Y req OkGik.
We then can modify (24) as

T

1 1 —

T Z Zigwit = Z Tip — 0,F)
t=1

= /RmdBm + ( I —7_1'; ) < i&ui > (26)
nu

where B.; = B.; — % Zzzl Be;a;, and

The R,; terms appears in the last line in (26) this is because

_ / 1 & AN 1 & ,
B.; — ﬁiBn = (Bm - E § Bskaik> - </ Ban> /Bn (Baz - E § Bekaik> Bn
k=1 k=1

-1 n -1
! / 1 ’ /
([55)" [ 55, Bn_nz{Bek_ ([55)" [ 55,
k=1

1 n
= Q;— - ;Qkaik = Ry;.

= Bei_

Bﬂ} (0795

Let
=Ly [12; (Az AF )O3 Qi+ (1 -5 )AELZ} :
Clearly

1 & 1 1 ,
Y Zui— 0" = > (% - Zﬁ%k) u;
V/nT pat vnT n

=1
d . 1 -~ = ’
N (0, lim =S QuuE ( [ RuR,,

as (n,T — o00) with R,; = Q; — % Y p—1 Qrair. This proves (c). H
Proof of Theorem 1.
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This follows directly from Lemma A.1 as (n,T") — oo when 7 — 0

-~ d _ . 1 "~ = ’
\/HT (IBCup - ﬁ) - \/ﬁ(bnT — N (0,1)21 [nh_{{.lon Z;QUI)ZE </ anRnl>

D;)
’ ’ -1
where Dz = Tim 1570 B ([ Ry, ) and 6, = [ S0, 2,21 0", W
Proof of Theorem 2. The proof is similar to that of Theorem 3 below, thus omitted. B
To prove Theorem 3, we need some preliminary results. First we examine the limiting distribu-
tion of the infeasible FM estimator, Bcup - The endogeneity correction is achieved by modifying

the variable y;:in (3) with the transformation

o AT;
y:t_ = Yit — Qubinz‘l < AFZS )
and
_ _ AT
u; = U;t — Qubinil < AF% ) .
t

!

By construction u; has zero long-run covariance with ( Ai;t AFtOI ) and hence the endo-

geneity can be removed. The serial correlation correction term has the form

§ AT . Iy

_ < A_1A
= Abui - Abiﬂbi Qbui7

where Ay,; denotes the one-sided long-run covariance between wu;; and (g4,7;). Therefore, the

infeasible FM estimator is
~ n _1 n —/
Beuprm = (Z xiMFoxi) Z (xiMFoy;' -T (A;‘m — (5Z-A;7Lu)>
i=1 i=1
- / -1 /
with 8; = (FO FO) FOz,.

The following Lemma gives the limiting distribution of ﬁcup A

Lemma A.2 Assume Assumptions in Theorem 1 hold. Then as (n,T) — oo with % — 0

D;) :

n—oo

- d P T '

’ /

Proof. Let w} = (u} ¢ n ) and we have

Tr B+.
LS | | [ @) (27)
— w;; — | B | = [ m} = BM (£}) as T — oo, 27
T =1 Bn BbZ
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where

By = Bei ] ; Qubi = Qi — Qi Wi,
L By
- Quei O 0
Qu a 0 o
Qj_ - 0 ¥ O :| - 0 Qe Qsm'
. bi 0 Qe O
= 2+ rt+ r+’
B;rl _ [ _Qubz bz
By; | Bbz
D + + + 1 Afvzt . . .
efine A" =¥ +1I'". and let uht = wit — Qupi§d N E First we notice from (25) in Lemma
t
A.1 that
1 T 1 T
~ / it
i = g (5 -5 )33 (55 )
t=1 t=1
T T
/ 1 Tit 1 Lit -1 Az
- - = it — Qu ZQ i
(e =) |72 (5 )u- 7o (5 ) oo (73
= }L/;/dev +(ak - mAL) (28)

as T' — oco. Now let
Clar = CuT (A;rm —9; A+ ) :
Clearly,
Clir 4, qu/li/Qld‘/z
Thus,

1 </ , 1 <
ﬁT;(%MW“E (AL - 0AL)) = nT;
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The result in joint limit follows in the same manner as in Theorem 1. Next, we modify (28).
1 o 1 o o

t=1 t=1

T T
1 Ty \ 4+ 1 Tit 1 Ay
T Z < FO > g = Z; FO Qupifly;” | A FO

= /RmdBm —1—( I —7_r; ) ( AAEUZ' > _/ [andB;nlelgbuz —|—( I —7_T; ) ( AAEi
n
= Q2 /Rmdv + (A* —ﬂA*)

ubz

Therefore,

1 &K/ o 4 1 /
iy + + . ‘
/nT Z (Ziui (Asm 6iA77U>) — N <07 nlLflgoE ZQu.biE </ RmRm>>
=1 i=1
as (n,T) — oo. Then
\/ET (gC’upFM - ﬂo)
d -1 7 1 = ’ _1

as (n,T") — oo when 7 — 0. This proves the theorem. B

To show /nT (Bcup M — Bcup o M) = 0p (1), we need the following lemma.
Lemma A.3 Under Assumptions of 1-6, we have
(a) Vi (Bl = Ain) = 0 (1),
(0) &5 (585~ 0ia) = 0 (1),
(¢) 7 Yo (eiMp —2iMpou ) = 0, (1)
Axyy

n R o Sy o lt | _1 + _1
where Uy = Ugt Quszbi < Aﬁt ) aun - Zz 1 sm and Aaun - Zz 1 z—:m

Note that the lemma holds when the long run variances are replaced by the bar versions. Since
the proofs are basically the same (as demonstrated in the proof of Theorem 1), the proof is focused

on the variances without the bar.
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Proof. First, note that
Then
A+

eud

x—1
= Aeui - AeiQm‘ Qaui

where Q7 s the first k x k block of Qb_il. Following the same lines the proofs of Theorems 9 and

10 of Hannan (1970) (also see similar result of Moon and Perron (2004)), we have

B|va (34, - az,)|’

2 ~
+ nsup HEA+ — AT
i

eut eut

- ~ 2
< supFk HA+ — EAT
i

eut eut

= 0 G{) +0(75)-
Vvn (&:un — Ag‘un) =0, (max \/f, \/E) .

From Assumption 6. K « n’. Then

It follows that

no_n _ n(1=2¢0) _
K2q n2qb

if 1 < 2¢b or 2—1(1 < b. Next

K b b log T _logT lim inf &7

log T
logn

if b < liminf

by Assumption 6. Then
-~ K | n
\/ﬁ (A:un - A;run) = Op (max ?7 m)
(

as required. This proves (a).

To establish (b), we note

EX (s -aan) = (230) vi(8h-a)

i=1 i=1



as required for part (b).

Let Uy = uy — ﬁubz’ﬁb_il ( i:;: ) Next,

- \/%TZ(%M?U _mMAU +xMAU —x; Mpu +x;Mp —a:MFouZ)
1 lzl 1 n 1 n
= i 2 (M — bt ) 2 3 (Mgl M) + S 5 (Mg M)
=1 =1 ;
1 B no,, ,
= 7\/HTZ£UZM§ (U;‘—_ ) ITZ(xiMﬁ_xiMF‘))u —1—7233 MA )
1=1 =1
I N
- \/ﬁTleMﬁ(uj— ) fTZ (M MFO Uy +7ZxM )
i=1 =1

= I+II1+11I

From the proof of Proposition 4 in the supplementary appendix,

1
I:m;xi (Mp — Mpo) uf =0, (1)

if we replace u; by u;". Let Ab; = ( Az; AF ) be a T x (k+r) matrix. Consider I.
S @ ) = 3w Ab;,10 Ab;10

_ \/%T Zn: wiMp (80 (' — Q') )

~ o~y

_ fTfo (105 ) (oo (ot - 2.00,))

- W Z z;Ab; (Q“biﬂb_il - ﬁubiﬁb_f)

Yo (o (5~ D))

= IC +1 Ic.
Along the same lines as the proofs of Theorems 9 and 10 of Hannan (1970), we can show that

= o) ro (i),

~ o~ 2
-1 -1
SupE HQubz Qbi - Qubini
i
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Then we have

o [K [1
Qubinil _ Qubinil = Op (Max{ ?, _Z:{QQ}) .

and

i

=1

1A A1 2
Qubini Qubiﬂbi H =

For I., by the Cauchy Schwarz inequality,

el =

1 <& ~ A~
Vi S [0t - Q|
=1

V/nsup ‘
i

Vvn

1 2, -1_a .01
W inAbi (Qubini — Qupiy, )
i=1

15 o1
Qubini _Qubini

2

ooV

/ o\ 1/2 .
1 " :ElAb’L 1 ) 71_’\ "\71
< (ﬁnz; - ) (\/ﬁ;‘@umgbi Qi
1/2 1/2 K 1
< [0, ()" (V)0 (Max{\/T,\/KQQ})
K |1
= Op(\/ﬁ)Op<Ma${\/;a Kgq}>
Similarly,
1 & FF PR
HIICH == T I'ZW (Abl <Qubini1 — Qubinil)) H
i=1
1 Kz FF A PR
= | =23 (Qubmgf—ﬂubmgf)|
i=1
U Y0NS
Ly i B ~ o~
= (ﬁnz W T ) (\/ﬁz‘gubigbil_gubiﬂ
i= i=1

Combining I. and I1., we have

= 0, (vn) O, (Maac {\/? \/ED

- ool )
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Recall K « n® and liminf llgig > 1 from Assumption 6. It follows that, as in Moon and Perron

(2004)
nk nbt+l ! nbtl b logT I
“- =exp | lo = ex ogn
T T At T P logn &

_logT
_ nb+1 Togn < anrl lim inf 2

logn — 0

by Assumption 6 and b < lim inf logT — 1. Also note

no_n n1—=2ab) _,
K2q n2qb

by Assumption 6 and 2%] < b. Therefore

fTZxM uf) = (M“’“{\/m \/K»D

Let

Note that
Ab— b = ( Az AF )~ ( Az AF )=(0 AF-AF ).
Consider III.

\/%T Zn: oMp (@) —u) = \/%T Zzn; ;Mg (u, — AbO s — i + Abiﬁ;ﬁbui)
- \/%T im;Mﬁ (26 — AB:) O Qs
- T2 i <AF AF) O O

We use Lemma 12.3 in Bai (2005) to get

niT gx;Mﬁ (AF—aF) =0, (B-8°) +0, <mm(1nT)> .

It follows that

\/%T zn:x;Mﬁ (aF-aF) = va [op (B ~3)+0,
=1

since 7z — 0 as (n,T’) — oo. Collecting I — III we prove (c). B
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Proposition A.1 Assume Assumptions 1-6 hold. Then

VnT (BCupFM - EC’upFM> =0p(1).

Proof. To save the notations, we only show that results with z; in place of Z; and J; in place of
of §; since the steps are basically the same. In the supplementary appendix, it is shown that (see

the proof of Proposition 4)

1 1
(nT2 inMﬁxi> = (nT2 inMFoxi) +op(1).
i=1 i=1
Then

VnT (ﬁcupFM - /BCupFM)
—1 / ~ ~> AN
1 & 1 > i (%M pi; —T (Aim' - 51‘A$u>>
= ?ZI'ZMFOQH ﬁ n f + + ’ + +OP (1)
" " —2im <xiMF0ui -7 (AEU" B 6iA’7“>>
—1 ’ ~ '
= —5 T, Mpox; — ~ N /
nT i=1 \/ﬁT —nT (Ag_un - Azjun) -T Z?:l (61A7—;_U - 51A7—7FU)
1 / ~ ’
(1 et i Sl (g — o)
= 72 i FO ) o~ VRN /
nT i=1 _\/ﬁ <A2_un - Ag_un) - ﬁ Z?:l (52A7-;_u - 61A7-;_U)

where Af = LS AL andAl,, = LSt Al Finally using Lemma A.3,

+0p (1)

+0p (1)

\/ET (BCupFM - BCupFM) = Op (1) .
Proof of Theorem 3: This follows directly from Proposition A.1. B

Proof of Proposition 5: In the supplementary appendix, it is shown that

T
1 . . 1 1
T D oIE — HEYP =T Op(18 = 8°1%) + Op(~) + Op(72)-
t=1

n
From /nT(3—(°) = O,(1), the first term on the right hand side is O,(1/(nT)), which is dominated
by O(1/n). W
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Table 2: Mean Bias and Standard Deviation
of Estimators for Different n and T

c=25 c=10

(n,T) LSDV  2sFM  CupBC CupFM | LSDV  2sFM  CupBC CupFM

(20,20) 2258 0.129  -0.158  0.293 | 1.538 0275 -0.158  0.294
(1.594) (0.382) (0.031)  (0.028) | (3.186) (0.771) (0.031)  (0.029)
(20,40)  4.832 -0.426  -0.067  0.107 | 8141 -0.006 -0.067  0.106
(1.692) (0.288) (0.014)  (0.014) | (3.186) (0.566) (0.014) (0.014)
(20,60)  0.460  0.282  -0.019  -0.058 | -0.105 0.0561 -0.186  0.058
(1.560) (0.206)  (0.009)  (0.009) | (3.121) (0.412) (0.009)  (0.009)
(20,120)  3.018  0.040  0.010  0.021 | -6.550  0.067  0.010  0.021
(1.572) (0.123)  (0.005  (0.005) | (3.144) (0.245) (0.005)  (0.004)
(40,20)  4.012  -0.566  -0.225  0.320 | 5.092 -1.087 -0.226  0.320
(1.126) (0.280) (0.0218) (0.019) | (2.252) (0.593) (0.021)  (0.019)
(40,40)  4.051 -0.332  -0.117  0.101 | 6.616 -0.622 -0.117  0.101
(1.153) (0.227)  (0.010)  (0.009) | (2.305) (0.454) (0.010)  (0.009)
(40,60)  1.818  0.114  -0.055  0.051 | 2.628 0248 -0.055  0.051
(1.098) (0.158)  (0.007)  (0.006) | (2.196) (0.317) (0.007)  (0.006)
(40,120)  1.905 -0.090 -0.010  0.015 | 3.303 -0.178 -0.010  0.015
(1.111) (0.087)  (0.003)  (0.003) | (2.243) (0.187) (0.003)  (0.003)
(60,20)  3.934 -0.317 -0.294  0.295 | 4980 -0.544 -0.294  0.295
(0.921) (0.249)  (0.018)  (0.017) | (1.841) (0.497) (0.014)  (0.016)
(60,40)  2.023  0.110  -0.125  0.108 | 2573  0.267 -0.125  0.109
(0.923) (0.187) (0.009)  (0.008) | (1.296) (0.027) (0.009)  (0.008)
(60,60) -0.337  0.082  -0.067  0.049 | -1.666 0.191  -0.067  0.049
(0.925) (0.139) (0.005)  (0.005) | (1.850) (0.279) (0.005)  (0.005)
(60,120) -1.168  0.109  -0.015  0.015 | -2.839 -0.223 -0.014  0.015
(0.923) (0.075) (0.003)  (0.003) | (1.847) (0.151) (0.003) (0.003)
(120,20) 2548  -0.151  -0.304  0.294 | 2.236 -0.203 -0.304  0.294
(0.651) (0.182) (0.014)  (0.011) | (1.303) (0.362) (0.014) (0.011)
(120,40) 1579  -0.026  -0.013  0.001 | 1.678  0.000 -0.133  0.112
(0.661) (0.137) (0.006)  (0.005) | (1.321) (0.279) (0.006)  (0.005)
(120,60)  0.764  0.004  -0.077  0.013 | 0539  0.061 -0.077  0.048
(0.634) (0.100)  (0.004)  (0.004) | (1.267) (0.199) (0.004)  (0.004)
(120,120) 1161  -0.070  -0.017  0.017 | 1.823 -0.134 -0.017  0.018
(0.649) (0.055)  (0.002)  (0.002) | (1.298) (0.111) (0.002)  (0.002)

(a) The Mean biases here have been multiplied by 100.
(b) 0921 = 0.2, g31 = 0.8, and 032 = 0.4.

41



F0="%0"‘¢c=0 Aﬁv 9ION

(tor1)  (ger1) (1690 (611°9) | (g60°T)  (91T1)  (L28%) (ee19) | (901°T)  (901'T) (6297¢) (8609)

FOT'0-  LL00  ¥00°0-  TIT0- | 2110 290'0- 220’0 010°0- | L0070 L0000 1000 9900  0gI=I‘U

(991°1)  (902°1) (e¥92) (R0€w) | (89T'T)  (01e'T) (e€9¢) (ese¥) | (691°1)  (e1eT) (L99%T) (geev)

LFT°0- 1900 8200 FITO- | 9FT0- 2900  G€0'0- €600~ | FCTO- 2900  T00'0  T9T0-  Q9=I‘u

(ceo1)  (goe1) (vLge) (88¢€) | (8ve'1)  (coe1) (819%) (L6¢€) | (ese1)  (e1eT)  (€69G) (985°€)

651°0 860°0 1200~  G€0'0- | T9T0- 1900  TL000- G000~ | €ST0- 2900  890°0-  €£0°0 0p=I'u

(86¥7'1)  (9¢c1) (8sve) (8ege) | (86¥'1)  (9¢s1) (6e%c) (8zse) | (L6v'1)  (69¢1) (9¢¥c) (6150

ZeT'0- 2200 620°0-  TI€0°0- | 9910 GZT0  S000  ¥90°0- | GCT0- 6200 €100~ I€0°0-  03=LT
N.O|HHN.O

(680'T)  (t11°'1)  (98972) (€v0'9) | (g60'T)  (¢1T'1)  (9992) (¥809) | (260°T)  (960'T) (0¥92) (0909)

6010~ 290’0  620°0- TI00 | FITO 650°0-  610°0- L6070 2000 €000 9100- 6V00  QZI=L‘U

(cor1)  (voz'1)  (9¥90) (Ceew) | (bLr1)  (¢1e1)  (L¥9@) (Leevw) | (LoTD)  (605'T) (199@) (L6€%)

L2170 L80°0-  8€0°0  TIT00 | €210 760°0- €100  LZ0°0 ¢IT'0 00T°0-  6€0°0 €00~  09=I‘U

(8ser)  (1e1)  (2192) (8L9¢) | (eseT)  (LoeT)  (6£9¢) (82¢7¢) | (zee1)  (ogT)  (L69T) (£99°€)

erT0 180°0-  €00°0- 6500 | TFT0 G80°0-  ¢Z00-  FET'0 | OFTO 180°0-  €10°0-  6FT0 0F=Iu

(esy'r)  (epe1)  (g9ve) (6gse) | (appr)  (19¢1)  (¢sve) (6asa) | (L6v'1)  (8s¢1)  (¥e¥e) (8052

I8T°0 7000 €600  SOT'0 | S8T0 €10°0- 2800 0L0°0 G810 10000 0F0°0  ¥0T°0 0Z=1u
N.oHﬁmb

(g60'1)  (0gT1)  (%0LT) (260'9) | (¥60°T)  (|1T'T)  (1992) (6809) | (960T)  (10T'T) (969¢) (€609)

110°0- 8900  0F0'0- 880°0- | 2OT0 GL00-  6100- 6600 | €000-  €000- 6100- 9F00  0gI=L'U

(6o1'1)  (e81'1)  (#9972) (c1e¥) | (RL11)  (68T'1)  (0%9¢) (geew) | (691°1)  (e81'1)  (L¥9e) (97€D)

6000- 6000~  SPO'0  090°0- | TT0°0-  TI10°0-  9T00- 9€0°0- | 610°0-  6100- 9100 8600~  09=IL'U

(L121)  (8Le1)  (18¢e) (889¢) | (vse1)  (eLe1)  (8192) (z6se) | (9g21)  (9281) (689°2) (9.5°€)

G00°0-  900°0- 8000 6100 | IT00-  gI00-  2S0°0-  FL00 | 9000  L00°0-  9£0°0-  T60°0 0p=I'u

(t6v'1)  (¢1e1)  (¢s¥e) (vec) | (eos1)  (62¢1)  (6%Fc) (Loge) | (cog1)  (1691)  (S¥pe)  (¥P1I¥°Q)

610°0 6100 1000~  T¥00 100°0 1000 ¥&g0'0 9000 | 9100 9100 9000  9€0°0 0z=1'u
Oﬂﬂmb

WAdnpy  pgdnp  Wdasg  AAST | WAdn)  pgdn)  WdAsg  AdST | WAdn)  pgdn) WSz AdST

OHHmb

S219S17e)S-} JO UOIJRIAD(] plepue)}S pue selqg UedI\ :€ 9[qel,

42



Table 4: Mean Bias and Standard Deviation
of t-statistics for Different n and T

c=35 c=10

(n,T) LSDV ~ 2sFM  CupBC CupFM | LSDV  2sFM  CupBC CupFM

(20,20)  0.070  0.037 -0.013  0.169 | 0.036 0.030 -0.013  0.169
(2.529) (2.453) (1.561) (1.497) | (2.532) (2.562) (1.560) (1.496)
(20,40)  0.130  -0.007  -0.009  0.110 | 0.106 -0.011  -0.009  0.110
(3.539) (1.863) (1.313) (1.286) | (3.541) (1.896) (1.313) (1.286)
(20,60)  0.029  0.009  0.015  0.085 | 0.009 0.003  0.016  0.085
(4.303) (1.553) (1.253) (1.239) | (4.305) (1.569) (1.253) (1.239)
(20,120)  -0.090  0.015  0.057  0.064 | -0.105 0.013  0.057  0.064
(6.131) (1.222) (1.156) (1.151) | (6.132) (1.220) (1.156) (1.151)
(40,20)  0.119  -0.015 -0.086  0.242 | 0.073 -0.019 -0.086  0.241
(2.518) (3.376) (1.549) (1.443) | (2.520) (3.610) (1.549) (1.443)
(40,40)  0.134  -0.022 -0.085  0.142 | 0.100 -0.026 -0.085  0.142
(3.578) (2.639) (1.307) (1.252) | (3.580) (2.739) (1.307) (1.252)
(40,60)  0.113  0.012  -0.048  0.109 | 0.085  0.008 -0.047  0.109
(4.328) (2.164) (1.209) (1.177) | (4.329) (2.222) (1.209) (1.176)
(40,120)  0.133  -0.014  -0.007  0.059 | 0.113 -0.019 -0.007  0.059
(6.097) (1.519) (1.131) (1.123) | (6.098) (1.535) (1.131) (1.123)
(60,20)  0.123  0.005 -0.161  0.276 | 0.067 -0.002 -0.160  0.276
(2.521)  (4.042) (1.579) (1.424) | (2.524) (4.409) (1.579) (1.425)
(60,40)  0.100  0.069  -0.109  0.192 | 0.059  0.065 -0.109  0.192
(3.532) (3.206) (1.352) (1.272) | (3.534) (3.375) (1.352) (1.272)
(60,60)  0.027  0.013  -0.094  0.123 | -0.006 0.010  -0.094  0.122
(4.426) (2.613) (1.215) (1.174) | (4.359) (2.751) (1.215) (1.174)
(60,120)  -0.020  0.031  -0.024  0.077 | -0.044  0.030  -0.025  0.077
(6.131) (1.866) (1.118) (1.104) | (6.132) (1.902) (1.118) (1.104)
(120,20)  0.139  0.044 -0.243  0.386 | 0.060 0.063 -0.243  0.386
(2.478) (5.269) (1.681)  (1.404) | (2.479) (5.969) (1.681) (1.404)
(120,40)  0.135  0.037  -0.186  0.268 | 0.078  0.040 -0.186  0.268
(3.588) (4.369) (1.366) (1.233) | (3.589) (4.706) (1.366) (1.233)
(120,60)  0.099  0.011 -0.162  0.174 | 0.052  0.004 -0.162  0.174
(4.272) (3.683) (1.249) (1.166) | (4.273) (3.902) (1.249) (1.167)
(120,120)  0.097 -0.189 -0.589  0.114 | 0.063 -0.027 -0.059  0.114
(6.084) (2.645) (1.115) (1.093) | (6.086) (2.741) (1.115) (1.093)

(a) 091 = 0.2, 031 — 0.8, and 0392 — 0.4.
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Appendix B (for web posting and reference only)

Lemma B.1 Under Assumptions 1-4,
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s%p TQ;ul U op (1)

where the sup is taken with respect to F such that I;ZF =1
Proof. Note
5
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1
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The other two can be shown similarly. l



Proof of Proposition 3
Without loss of generality, assume $° = 0. Using
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we get
1 « / 1 <&
Snr (B, F) WZ(%*M@ Mp (y; — x:8) — WZWMFO%
=1 1=1
1 & , T
— 0y . o 0y . _ .8 — ' .
= W;(F Ao+ u; — x8) Mp (FON; + u; — 2:0) nT2;uiMFoul
1 n ’ ’ 1 n ’ ’ 1 n ’ /7 ’
= — Y AMNFOMpFAN+ — Y M F° i — — FO ,
nTQi; i Mp +nT2; PO Mpu nTQZ;AZF M8
1 & 0 1 & 1 <&
+W;uiMpF )\i'i-miz::luiMpui—WZ:luiMpxiﬂ
1 <« 1 & 1 &
’ ’ O ’ ’ ! ’
- rT2i§g¢~i1\4FF Xi — W;xiMpui+ﬂ (W;IMM>5
I &
_WZUiMFO’U@
i=1
FOMpFOA'A I 1 &
tr T3 - 2 T2;>\1F MpuiJrW;ui(MprFo)ui
1 & 1 <& 1 &
’ ’ O ’ ’ ’ ’
Y W;xiMFF =26 — ;miMpui + 5 <nTzz_;xMFx> 3
-~ / 1 n ’ 1 n ’ 0/
= SnT(ﬁvF)_2ﬁ WFZIZ‘ZMFU@+2W;)\1F Mpui
1 <
+WZU1(MF—MF0)%
i=1
where
~ 1 FYMpFOA'A A L 0
Snr (B, F) = (TLTQ;%MF%) B+tr T, -2 W;xiMFF i

By Lemma B.1
Swr (B, F) = Sur (B, F) + 0, (1)



uniformly in (8, F') such that
F'F
T
Clearly, gnT (ﬂO,FOH) = 0 for any r X r invertible H, because Mpo = Mpo
and MpoF? = 0. We next check that gnT (B, F) > §nT (ﬁO,FOH) = 0 for any

(B, F) # (ﬁo, FOH) e, Sur (8, F') attains a unique minimum at (BO7 FOH) =

1.

(0,F°H).
Define
1 <&
A:m;{l]lMFfE“
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1
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g (A - C/B*IC> B+ (n' n ﬁ’CB*l) B(n+ B 'CB)
B D(F)B+6 Bo

Y

0

since D (F) and B are positive definite, where § = n + B~1CB. Of course,
Sor (B, F) > 0 if either 8 # 3° = 0 or F # FOH. Further, for ||8]| > ¢ > 0,
S (B, F) > pmin€?, where p_ . is the minimum eigenvalue of the positive
definite matrix infD (F). This implies that B is consistent for 5, = 0. W

The followingF Proposition establishes the consistency of F in terms of an
average norm. Proposition B.1 shows the average (norm) consistency of F for
FYH and it extends the results of Bai (2004) to models with regressors.

Throughout, let 6,7 = min {\/n, T} .



Proposition B.1 Under Assumptions 1-4, we have
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Then multiplying it by T on each side

sl =ro, (Jr-31) v ()

7|
T nT

as required. l

Lemma B.2 Under Assumptions 1-4, we have

(a)
| o LT 2
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(b)
1 n 1 T T 2
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Proof. This follows easily from the assumptions. W

Throughout the rest of the proof, we define the matrix G to be

N |
o (FFY T (xn
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Lemma B.3 Under Assumptions of Proposition (B.1),

(@) 3P (F - FoH) =10, (5 6) + 0, ().
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Proof. Consider (a). Using the identify in (1) we have

1/
—%“@—W@
T
| FOR\ T AN
= —FY ([ + - +T) | —— el
= Jitet Js



We begin with J;.

Ly =1
1 FoF
|1l = TFO (h( Tz )

Fx
T2

< TYq| lz

- o, (jp-)

For Js, we write it as
1o (FUR\ T (A
i o= L (IQ(TQ) () )
L o1& N aa\
= 7t (ml_l (BB NFTF (T) <n> )

- (i (2




For Js.

7]l

IN

4]

<

The terms Jg, J7, and Jg are considered in Lemma B.4 in Bai (2004) and each
terms is shown to be O, (%) +0, (ﬁ) =0, (Max {%, ﬁ}) =0, (ﬁ) in

9



the absence of 8. Thus
1o (ﬁ - FOH)
T

- 0, (Jp-[') +70s(1-7) 0 (5%

= TO, (6—3) + Op <5an)

proving (a). For part (b),

IA

‘ﬁ _ FOHH2 +H] ‘FO/ (ﬁ _ F0H> H

1 =
T T
ro, (Jo-3") + 0 (55) <70, (3-5) + 0, ()

:T%@-@+@(1)T

6nT

proving (b). The proof of (c) is similar to (a). For (d),

n n n //\A, A_ 0
LS g (Forom) = 2y Lo (Forom) 1Z%F(FFH)
nT [ F - nile 7 n - T2 T

i=1 i=1
-~ 1
= 10, (B-5)+0, ()
6nT
since the first term is an average of (¢) over ¢ and the second term is an average
of (b)
i~ (T 0 (5 0

| & P F (F-FoR) Lo F(F-Fm)

e = om0
n T2 T n = T

i [TOp (B-5)+0, (57;) }

This proves (d). H
Lemma B.4 Under Assumptions of 1-4,

(a)

e =000 ()0 ()0 () 0 ().

nT

10



(b)
\/:,Jzn:u;(ﬁFOH) » (8- ﬂ)+0<f) <T31/2>+O <5

k=1
(c)
1Sy (ﬁ 70
nT k k
k=1
1 1 1 1 1
= nop(ﬁ—ﬁ)JrO(>+O(\/ﬁT3/2)+\/ﬁOp<62T>,
(d)
1 Gz FOFYFO (N
ﬁz T2 T2 (FH _F)“’“

I
SM‘,_.
M= 1
)=
Sl
S
o
52
)
=
3‘5
N——
|
N
I
]~
£
=
=
N———

Proof. Consider (a). From the identify in (1) we have

,~\ —1 , -1
1m0 1 FOF A'A
Tuk(FH —F) - T [(11+~-~+18)<T2 —

= a1+...+a8_

We begin with a; which can be written as

L, —1 Lo\ -1
1 FOUF AA
llax ] i o

=1
1 || upz T F ~112
< el X 1= | 7= o3l
< 1o 23| 1) e
~|12
- 0,(1)[8-3|

11



~ ~\ —1 —1
1 /1 ~ FYF [(FOF AA
Tk 27 (B=B) N (T> <n>
, 1

~ | Sovin (-5 ]
i=1

T nT?

1 1< | s u{A -~
< ks[4 o3
< gl -5

1 ~
= 70 (5-75).

;N —1 , 1
1. FOF A
et W B G
R ' FOR\ T AA)
S o (g_38) +F [ -
Tk T2 ;F i (5 5) xF( T2 ) < n )
1 = uy, FO ' @ F
LI (1-5) 2

0,(8-3).

12



as

I
Q
s
—
=<
|
=)
—
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since
1 & Lo (F-Pom)
T 2 e | o D s

Y w) H |- s Tl
1

T
1
6nT ’

G

IN
N~
]~
S
3
£
/N
=

T
is bounded by O, (\/%) + O, (1) (e.g., Bai, 2003, p. 164).

, ~\ —1 , -1
_ 1y FOF A A
T n
1, 1 & )~

1/ 1 &~ o 1/ 1 &~ (s .0
= f“kW;“ﬂ%F HG—i—TukW;uiui (F—F H)G

= I+1I.
Consider 1.

1,1 &

_ 11 > <1iuktuit> <1iuistO> HG
T'n T t=1 T s=1

i=1

- o (3)

14



11 =

%u;% zn:ulu; (ﬁ—FOH) GH
< @ || Z i

- 0<ﬁ>( (-3 + 770 (57))
w=or(z) +o () (o

1
?uk(FH 17F0>
1

1 HUkH

ﬁ—FOHH
7

Thus

7+ 7 ()

Hence

ou]] =

1 n T
Z m ; ; UktFt

~112
- o(Js-7I)

1 n
< G|l <n Z
=1

] )Hﬂ BH2

15



ba

~ 1 —1
1 <& FYF AA
i = [ (52) " (2)
1 — 1 & ~\
_ T\/ﬁ;ukm;xi(ﬁ—ﬂ)uiFG
I 1~ juga | ||uF -
< el o [P 1 | 1 -2
=1 k=1
= Op(ﬂ_B)-
1 & FOF ANAY
“Z“kf4<w> <n>
k=1

16



Consider bs.

For bg.

~\ —1 —1
1 & FYF AA
by = —— o Al
6 Tﬁkz_lu“<T2> <”>
= L LS w0y wuFe
Ty/nnT? Rt
k=1 =1
11

n n
E " 10 E " 10
T/nnT Pt

=1
LN Xn:u;cFO zn: A (ﬁ - FOH) G
2 it
Tv/nnT Pt P
= I+1I

n

11 1 G 1 Lo
I = v Wzgﬂ Upet WZZA@ wy | HG

=1 t=1

1 1
- o(77m)
1| = T\l/ﬁn;QZu;FOZ;)\zul (F—FOH)G
=
| L oAd ) 1 (F-PoR)
- (R et
1 1 G L [illllwll\ 14
< Wia (m];;ﬂo kt)‘(n; T THFfFOHHHGH




Then

11 1 ~ 1
o (1) gy 0= w0 3

Next consider b;.

1 n ’ 1 n ’ [y FO/F\
by = — NEFYF
7 T\/ﬁ;uknTz Zu i ( T2 )
F

~\ -1 -1
1 &1 &K ~FF A'A
b = mlg“’kanwF( 7 ) <n>

1 1 n n , , o~
= T\/ﬁml;;ukul(ulF)G
1 1 n n , ,
= mm;;ukui(uiFo)HG
1 1 n n , , N
*mm;;“k”(uz‘(“ﬂﬂ)ﬁ
= I+1II

1 1 n n , ,

T o e () 6

1 I St 170

T nT? 2 D 2 ikt (wiFm) G

11 1 & L, o
7 2 | | o 2o 2 (ke — B () | ( 7 Do i, FOH

=1
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Ukt Wiy (u; (A — H)) G

=
Il
H‘H
=
3
5 -
.
M:
P%
eS|
3

i=1 k=1 t=1
11i 1 "ZT:( B( ))u;ﬁ—FOH
= =— — UptWip — B (Ugtit)) ——=——7—
T n gt ’I’LT e kt Wit kt Wit \/T T
11 "1 & u' F_Fom
—— —_— E (upsu; G
n n T ’ =
11 1 w, F—F'H
= =) — Uiz — B (Uru; L G
Tn; TT;;( wettiy — B (g t))ﬁ -
111””<1T u, F—FOH
= D > | DL B (ki) |
ﬁni:lk:l t=1 \/T T

Nl- [l= |
Nl =
Sl
N—
/N
@)
=
—~ N
=

|
™®)

N
_|_
5
S
7N
-
SN—
~—

since

N
_ op(ﬁ—ﬁ)+;fop(5;>

It follows that

bs I+11

- ofit) o (5te) (1) (09 o ()



nﬁg%@”W@

= 0,(3-0)+0,(5-) 03 5) + 770 (- ﬂ> (5)

w0 () +0 () +o(zm) + (1) (0 (6-5) + 50 (57)
= 0,(3-7) +0,(5-3) + =0, (3-) 0y (- ) o(z)+o ()
- o(0-B)+o () +o(5) o (mm)

proving (b).
Consider (c).

B (P = o330 () v () <0 (13|
= 50 (9 350 () +0 (3) =0 ()
proving (c).

Consider (d). Proof of (d) is the same as (¢) with A, replaced by

x, FO FO' F°

b =0, (D).

n n ’ 4 ’ -1 T
1 2 FOFYFO (A'A 1
= wl X () lg e

~ 1 1 1
—0 — —0, | — O ——== |-
7m0 (B-5) + 70 <6ZT> ' (ﬁTS”)
The first term on the right is an elaboration of the corresponding O (%) term

in (c¢). This proves (d).
[ |

Proposition B.2 Under Assumptions 1-4, and if (n,T) — oo, then

1 n , 1 n ,
N> (fMF ) Zaik%—Mﬁ) ui| +o0p (1)
=1 k=1

i (5-#) =0 (5)”
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where

and
1 <
D(F) = nTQZ;ZlZZ
with
1 n
Zi =M ;i — — .
i Fox; " Z ]\4F0.T]€CLZ]C
k=1
Proof. Note
1 & B
~ o _ b .
p-p = (W;%MF%) TTQ;%MFF A
1 <& e
+ (TlT2 ;.’EiMﬁzTi) TTZ LzzlleﬁuZ
or

1 < ~ 5 1 < o 1 X,
(m Zxﬂﬁzi) (B=8") = gz o wiMaF N+ o > M
i=1 i=1

i=1

We know that from (1)

;~\ —1 , —1
~ FOF AA
FO=FH '— (L +- -+ 1) | —— - .

It follow that

n n ;~\ —1 ’ -1
n;ﬂ;x;MﬁFo)\i = n;;x;Mﬁ FH™' (I, +- -+ Iy) <F;2F> <AnA> A\
1 FOR\ (AN
= Ji+-+Js
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with Mﬁﬁ = 0. Consider J;.
J N
J1 = _W ZJCZMF

S (o) (-7)

Tszk(ﬂ 3) (8-5) aiF

(52) () )
152) (2 )

e () () (2)):
_ TQZIM ( Zn: (B-5) A (AIA>_1) A
L lZZxM m"“am] (3—6)

=1 k=1

with a;, = /\,C (A A) A; a scalar.
Consider Js.

1
i=1

11 e Jc; ST u.F ~
~ TwlrT ('%)GAi(ﬁ—ﬁ)
= Op(%) (5_5) = Op(l)(g_ﬁ)

’ ]_ ’ ]_ ’ ~
ZuF = S FOH 4 s (F - FOH)

_ 1 0 > 1 1 1
= *ZuktFtpr(ﬂ—ﬂ)w (m)w ( >+o ( )+op(63ﬁ)
= TZUMFH"‘OP 1)

t=1

p (1

I
Q
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by Lemma B.4. Next
ZFO)\k (ﬂ 5) o F

1 <&
J4 = _W _Elszﬁ(
1 cam ov (5 "2 F
= 53> aMpFoA (B 8) TEGA

i=1 k=1
= op(1) (B - 5)

where M, FO = My (F° — FH™') and use T~1||F° — FH~!|| is small.

() (2))-

Now

23



by Lemma B.4. Then

Jo = % [Top (B ﬁ) +0, <5711T>:| <Op <1n) + %OP <5311T>>
- 0,(5=) 70, (3-8) + 0 (5= ) 700 (5)
+70 (-7 700 (37;) + 750 (7,) =0 ()
_— <1n> 20, (B-58)+0, (- T12Op<5iT)+\lrz}20p ((sf;lT)
= 0,(==) 30, (5-0) 1 ()

|
|
s
)ﬂ —
|‘M\
sH\
5
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n

~\ —1 -1
1 <& FOF AA
Jg = _7nT2 l:E - .’L‘ZMﬁ IS <T2 > (n ) )\1

VAR -1 ’
1 S 1 Z” '~ FOF AA
= —W I‘LMﬁ mkilf,LkU,kF (1_?) <n

CA AT
where a;;, = A (—) \; a scalar.

I 1 K& P
nT? nT =
I 1 - : N\ &
= e 2 DM [ = B (wwa) PO

i=1 k=1

Note
L Zn:i /ME( ') FGA
> 5 T, Mz ukuk) i
nl=n i=1 k=1
1 1 &/ 1 ,
1 1 &
- 77RT2—22:C¢M§QFG/\Z
1=1
1 1< FF'
= _nTQQin<I_ 2>QFG)\1
i=1
1 1 <&
- ——nTQﬁZ(xZQF) G\
=1
1 1 ~aF [~
ﬁnzﬂz T2 (F QF) GAs
=1
where

k=1
Consider the first term. Note
/o~ 1 /o~
‘ xQFH < Fhmax () ‘ a:FH
1 /12 ~12
< Do [J[ <41




and

7o

IN

e (0 [F 7]
< A @[ B

where Apnax is the largest eigenvalue of €2 and is bounded by assumption. It

follows that

1 n ( , R
e > (110F) G
nT?T P

no

‘ 2

< 1/\ o) |2 ’ﬁ‘ G|l A
< ﬁmaX() EZ = T NG Al

o.(2)

1 1 &aF (=~ = 1
DI (FQF)GAi—Op()

i=1

and similarly

h = g s -2 (i) P ()
: szﬂ - ] o (7
1=1 k=1
= _WW;; {ukuk (uku;c)}ﬁG/\

11 wiF N\ & 1
+WWZZ T2 F [ukuk - F (ukuk)} FGX+ O, <T2)

Consider I.

1 1 / , N\ &
o= s 30> [wy — B (wa )| FOX,



The first term is

1 1 oL, , ,
—oTaTE Z le {ukuk - K (ukuk)] FOHG )\,
k—

n n T T
1 1
- TzﬁZZZZm [ursurs — B (ugrurs)] Fs HGA;
nasn i=1 k=1t=1 s=1
iy ilii [ E( ) FOHGA
= T /nl?n n T2 Tt (UktUks — UktUks s i
\/ﬁT " =1 n k=1 t=1 s=1
B 1
TP\ (/i1

n T
1
as = —F7—+ Z Z Tyt [Uprugs — E (uprups)] = Op (1) .
v/nT — =

[

Then the second term is

11 1 K& , , ~
—WWW;’;% [ukuk - F (ukuk)} (F—FOH) G\
- L1 2": = Xn:iix [ugturs — E (ukru )](ﬁ—FOH)G)r
= T2 \/HT 2 \/ﬁT Lolaly it |[UktUks ktUks s s 4
1 1 11— /=
= = T 2 (FS—FSOH)G)V
=1 s=1
1 1 ~ 2 1
- (Tn) [Top (Hﬂ‘ﬁH )+0p ((gﬁﬂ
where
1 1 <& 9 e 1 <& 2
~ 0 N .
T;a(FFH)H < (T;nasII) <T;‘FFHH>
= 10, ([p-5[) 0, ()
nT
Then

=0 () + () [ron (-1 v (2]
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Consider I1.

11 o, F 1 ,
= ﬁﬁz T2 IGA] FZF [“k‘uk -E (Uku;g)}
i=1 k=1
But
1 &~
nT? Z F {ukuk - F (ukuk)} F
k=1
1 o ,
k=1
1 < 0 o
+H—nT2 ZF {ukuk - F (ukuk” (F - F H)
k=1
1 & ’
s > (F —F H) [ukuk - B (ukukﬂ FOH
n k=1
1 - ' / / ~
o 30 (B~ ) [, — B (wia)] (F - FOR)
k=1
= ai+az+ a3+ as.
Now
1 n T T
o = Heom > Y D IR lukeuns — B (ukugs)| H
k=1t=1 s=1
1 1 &1 K&
= Hzom) 75 2 2 PR [k = B (weu)| H
k=1 t=1 s=1
1
- 0,() o
1
- (%)
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by Lemma B.4. Next

I < , , ~
ol = |1 3 [~ ()] (FFOH)H

11w 1 N

= |H—==) — F s—E ] (Fs — HF?
nT;\/ﬁT ;kzl b Ukt (untug )]( )
11«

_ i 0

_ HnTZ;AS(FS—HFS)

IN

E
<~
7 N
N[~
7

=
>

s=1 s=1
- L(wou (o) vou (1))
= 7 V7o, ([-5]) 0 (55
with .
As = % SN F [uritns — E (upugs)]
t=1 k=1
a = 3 (F-FR) [wa - B (wa)| PO
k=1

~ L [0, (p-s)rou ()

Note ag is the transpose of as.

as = — > (F=FH) |wu— B (wuy)| (F-FH)

[laall

A\
:‘H
VN
| =
M-
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Then

17

%(a1+~ +aq)

% (75) + 75 [0 (=ol) 00 (55)

e [VE0u ([3-9]) 0, (%)

o 10 (IP-71) +or (37)

70 (7) s [YT0 (-4l + 00 (5]
. 1}

It follows that

Jg

I+I1+0, <T12>

o(fw»%1}>k%<ﬂﬂ©+%@%ﬂ
(o) i (3 e ()
#1770 (- ) 70 (27) +or ()
( m)* (o >[ < (e
s () oo () o ()
( )*( ) (ﬁ)

<0, (57) 70 (5 > ()

ac J+%< )+ ()

30
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Collecting terms from J; to Jg to get

1 o
=1
- op(l)(B—ﬁ)+J2+o,,(1)(
1
"'Op()(ﬁ ﬂ)"‘o < n>T
1 1 11 1
w40, () +00 (52) + 72720 (5
= J2+J7—|—Op(1)<ﬁ—ﬂ)
1 1 11 1
20 () + 0 () + 75 50 (57
~ 1 1 11 1
= J2+J7+Op(1)<ﬂ—ﬂ)+0p(\/ﬁ’f2)+Op<nTz)+T2\/ﬁOp<(5nT

Thus

B=15)+o,(1) (B-1)

)
0, (3-8 +0p(

(TL;Q Zx;Mﬁmz> (B _ 50> _
i=1
I
— W;xiMﬁuiJrh

w0590, (k) +0 (52) ko 15)

It follows that
1 n .
<TZM> (ﬁ—ﬁ) |t M] (5-9)
=1 =1
1 < 11 < ,

i=1 k=1

+o,(1) (B 8) +0, <fT2)+o (n;2)+;2;ﬁop ((5;)
Let

1 n
Zi = MpoX; — - ; Mrpozyai

and

1 &
i=1
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Then
(D (ﬁ) +op (1)) VnT (B _ ﬂ())
% ZZ:L;I;M?UZ T Z Z aikT; ‘Mz uk‘|

=1 k=1

o019 0 () 0 35) 500 ()
ﬁ i (@Mﬁui —~ Zamx Mg uk>

This proves the proposition. W

+0p (1).

Lemma B.5 Under the assumptions of Proposition (B.1),

= (5 o ()« o (1)

Proof. Recall from Lemma B.3

PG Y=o, ([5-of) +ou (1)

and

o (1-E8n) <o, (=) o0 ()

(525 a0 (p-sl)+ o (35)
() (5D 4o (i)

Hence

It follows that

P =0, (5 sl) o (5% ).

Multiplying F”F°/(T?) on both sides of above, we obtained the lemma.
|
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Lemma B.6 Suppose that the assumptions of Proposition (B.1) holds, then

|75 = 2rol = 0, (3 -3]) + 700 (5)-

5nT
Proof. Note

tr (Ps — Ppo)’

F' PpoF
Next we need to show

o (1 EE) =0 (Jo-3l) = 5or (5%)

1P~ Pol

Using

~ 0 =\ 0 P
7 o 1 (FH—F)F+HF0F0
T2 T T T

1 ~ 1 H FY FO
- = (Top (5-5)+0, (m)) =

This result together with

=~ = =~ ’ -1 [
F'PwF  F'F° <F° F0> FYF

T2 T2 T2 T2’
we have
F'ProF 1 ~ 1 H FYF
EPel 1 (1o, (5-5) L\ HEYF
and

H FOF , FO O 1 ~ 1
—H " —H+ = (Top(ﬁ—ﬁ)+op ())

T2 T T

Combing the above two equations, we get

5nT

F PpoF ,FOY RO, ~ 1 1
i et o, (|- o) + 700 (5 )

T2 T2

From Lemma (B.5) we know that

w0, (Jp-s]) + 300 (517)

(snT

Hence

- EERE o, ([5-3]) + 2o (5)

proving the result. H
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Proof of Proposition 4

Note
D(F)-D(F)
1 & 11 & ,
= szi(Mﬁ*MFO)%*ﬁ ﬁzzxi(MﬁfMFo)xkaik
=1 i=1 k=1
= I+1II
where

i = A, (A'A)_l A

Recall that
Mg — Mpo|| = [|Ps — Pro-

Consider I.

I
1] = |nTQin(Mﬁ—MFo)xi
i=1
1
< ‘nTQZl‘i(Pﬁ—PFo)l‘i
=1
< lzn: ||x2H2 ||PA—P0H
>~ n T2 F F

i=1

= o (ls-l) + 70 (517
= 0p(1)

by Lemma (B.6). Consider IT.

1 1 n n ,
1) = 72 |2 ZZ% (Mﬁ - MF") xkaik]
i=1 k=1
1 1 n n ,
723 2 2wk || (Mp = Mpo)|
=1 k=1
-~ 1 1
= Op (5 —/3) + ﬁOz) (5nT>
= o0,(1).



Next we show

We first show

Note

1 n , 1 n ,
1 & 1 & /
ﬁ ; <xiMF0 - ;aikkaF(J) u; + 0p (1).
I &
v(MFO*Mﬁ)ui:szi(Pﬁfppo)ui:Op(l).

1 , ( FF
\/ﬁT; ) < T2 F0> Uu
1 n ll';ﬁ ~/ 1 n ’
VT 2 F i g P
= =1
e (F-Fom) e (F-FH)
_ HF (F—F H) ;
NG T2 it N T2 b
1 2 FOH ' 1 &, FO . [FYFo\
e S () e S - ()
VAT & T VT & T T

Consider (a).

a+b+cH+d.

11 _ -
= D) (F—FOH)HFO 5
=1

L f: 1 ix (F —H/FO)/H ET:Fut

2 is s s t Uqg
\/ﬁT i=1 s=1 t=1

’ n T

1 o 1
LY (R E) B3 R
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’

since (ﬁs — H/FSO) H/FtO is a scalar thus commutable with z;s. So

1/2 y 2\ 1/2
1 T 2 1 T 1 n T
< [= F.— H F° - - 00 0y
lall < (T;’F H F, ) IH]| T; \/ﬁp;;ﬂxwun
2 1 1/2
_ <T0p (HB—@H )+0p (52» 0, (1)
nT
= o0p(1).
For (b).
oo (F-Fom) :
b = F—FH) v
\/HT; T2 ) b
_ lyy B Fo) (B - g po) Ly Tists
= mm > (B-HF) (F-HF) =3 =
s=1t=1 i=1
Thus
1 1 « 1< 2\
! 0 TisUis
bl < (TZ\FS—HFS ) ml2|ml T
t=1 s=1t=1 =1
~112 1
_ <Top <H5—ﬂ” )+op (52 )op(n
nT
= o0,(1).
Counsider (c)
1 G2 FOH (=~ o
¢ = ZFs g (F-FH)w
1 i LU;FO " Brr—1 0 !
_ WZ SHH (FHT = F°)

Let



By Lemma B.5,

= \/ﬁ[nop(ﬂ—ﬁ + 0 +
o ([p-3)+ 70 (57|

= [0p<‘5—ﬂH2)+O<ln +O(

= o,(1).

by Lemma B.4 and Lemma B.5.
Consider I. Using Lemma B.4

—1
1 <~ FO [ FOYFO S o)
I:ﬁT;T2<T2> (FH _F>

1 ~ 1 1
HVi =0, (- B) + Vi =0, ((SiT
1 ~ 1 1
= %wnT—i_Op (ﬁ_ﬁ) +OP 6?,1“) +O T3/2
= 0p(1)



where

Consider (d). Let

= \fTZ wF° @ T vecQ

= fT Z Z Foult ® vecQ
— 0, (1)vecq

= o([p-8) + 70 (5)
= o0,(1).

In summary, ignore dominated terms

1 &

- (ou(lo-30) o0 (1)) " (o (1) w0 ()
+%¢nT+o (8-3)+0, (5 )+0<T31/2>
“lon([B-a) +o (55) +o () 00 (32,)] [ov
w0, ([5-]) + 20, (5-)

= (ro, (Jo-7) +0u () + v + 00 (3-3) + 2ou (%)

= V70, ([ -3) +0u (5.7) + Jrtur

The above is o, (1) if (n,T) — oo without imposing a restriction on the relative

poal) + 70 ()

speed between n and T'. Thus

n

ﬁzgv; (Mpo — Mg) u; = op(1). (3)
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It remains to show

i=1 k=1
Let
1 n
Vi= = )
7 n Zazkxk‘
k=1
Then
1 1w
T ZfZalkxk (MFO Mﬁ) U;
S Ve
1 n
= 72‘/2/(MF0 Mﬁ)uz
VT i=1
1.
= %wnT +o0p (1)
= o0p(1)
where

-1
v FO FO' O AA 1 &
< > <n> )\k (T Zuitll,kt> = Op (1) .
=1 k=1 t=1

This proves the proposition.
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