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1. INTRODUCTION 

For the past decade, a growing number of computer scientists have 

advocated the use of functional programming as a means of easing the 

software crisis. These advocates claim that functional programming 

languages and techniques increase programmer productivity and enhance 

the clarity of programs, thereby aiding in their veri fi cation and 

maintenance. A major obstacle to industrial experi mentation and 

acceptance of functional programming languages is that conventional von 

Neumann computer architectures require considerable compiling efforts 

and restrictions of the generality of the languages before they can run 

the problem; consequently, the use of functional languages has been 

largely confined to small, "academic" applications. Until large, industrial 

applications are written in a functional language, it will be difficult to 

objectively evaluate the claims put forth by functional programming 

advocates. Functional languages are "clean" (or they do not deserve the 

nameD, thus they are limited to equivalence preserving transformations. 

This is another obstac 1 e to their genera 1 adoption, because rea 1 

applications in data processing require "updating" or persistent state 

changes, which destroy the clean theoretical base, and therefore destroy 

clear and easy to comprehend semantics. A pragmatical and operational 

separation of the different concepts has to be installed 

Let us first consider functional languages and then consider their 

place in the larger picture. What, then, are some of the characteristics 

of functional languages that advocates claim make them superior to 

conventional programming languages? The most striking characteristic 
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of these languages for a conventional programmer is the absence of 

assignment statements and most control constructs. Functional 

languages have no notion of a global state or a program counter. The value 

of a function a 1 expression depends on 1 y on its textua 1 context, not on a 

computational history. The value of an expression is determined only by 

the va 1 ues of its constituent expressions. This property is known as 

referential transparency, and it is tile cornerstone of functional 

programming. 

Referential transparency brings programming closer to the world 

of mathematics-- "functional programs" are compositions of functions in 

the true mathemat i ca 1 sense. Programming in a functional 1 anguage is 

much closer to writing a set of formal rules, either numeric or symbolic, 

than to conventional programming. Functional programs are primarily 

concerned with describing what computation is to be done, while 

conventional programs are more concerned with how a computation is to 

be done. Another formulation of this is: " ... the underlying concern of a 

convention a 1 program mer is to guide a single 1 ocus of contro 1 through a 

cunningly designed maze of assignment, conditional, and repetitive 

statements, ... " [KENN84]. 

Because functional programs behave as mathematical functions, the 

semantics of functional languages are simple and elegant. This aids in the 

veri fi cation of programs and reasoning al)out their properties. A sm a 11 

example is in order. We have chosen this example from non-numeric, 

symbolic programming to emphasize the generality of the approach 

advocated herein. While the example is given in functional style without 
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prejudice to a specific language, one must realize, that a functional 

language as such is usually not equipped to support or even automate such 

proofs. How ever, a full and correct imp 1 em entation of the 1 am bda 

calculus supports the equiva 1 ence preserving transform at ions needed in 

this application. 

Let us prove that appending 1 ists together is associative. The 

following example is a private communication by M. Hilton. Here is the 

definition of append, written as ++, in a representative function a 1 

language, where : is the infix 1 ist constructor and [] represents the 

empty 1 ist : 

[] + + ys "' ys ( 1) 

<x : xs) ++ ys "' x : (xs ++ ys) (2) 

We wish to prove that for all 1 ists xs, ys, and zs: 

(XS ++ ys) ++ ZS "' XS ++ (ys ++ ZS) 

The proof is by structural induction on xs [BURS69]. 

Base Case: Replace xs by[]. 

([] ++ ys) ++ zs "' ys ++ zs 

"' [] ++ <ys ++ zs) 

Inductive Case: Replace xs by x: xs 
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((x: xs) ++ ~s) ++ zs 

= <x: <xs ++ ~s)) ++ zs b~ rhs of (2) 

= x : ((xs ++ ~s) ++ zs) b~ rhs of (2) 

= x: <xs ++ (~s ++ zs)) b~ induction 

h~pothesis 

= <x: xs) ++ (~s ++ zs) b~ lhs of (2) 

This completes the proof. The conciseness of this proof demonstrates the 

semantic "power" of functional languages. While the proof structure is a 

language propert~, which is independent of the language implementation, 

the lambda calculus based machine makes it possible to automate the 

transformations, substitutions, and rule app 1 i cations in such proofs w hi 1 e 

avoiding variable clashes. 

Another d i st i net ive characteristic of functional languages is the 

use of higher-order functions. A higher-order function is one which 

takes another function as one of its arguments and/ or returns a function 

as its result. For example, the concept of summation -- summing the 

values for a given function f evaluated at discrete points along the 

i n t e rv a l bet w e en t w o bounds a and b -- can be expressed b ~ the h i g her

order function sum: 

sum f a b next = 0, 

= (f a) + sum f <next a) b next, 

if a> b 

otherwise 

Next is a function which produces the next point in the i nterva 1. Man~ 
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m a them at i cal concepts such as integration and Ta~l or-series expansion, 

can now be implemented in terms of sum. Higher-order functions make it 

possible to define ver~ general functions that are useful in a wide variet~ 

of app 1 i cations and not just functions that deal with numbers -- higher

order functions can be used with an~ data t~pe. This can lead to a 

substantial reduction in the amount of software necessar~ to perform 

si gni fi cant tasks. Higher order functions are not new, the~ have been 

used in L 1 SP with speci a 1 de notation, and in other functional 1 anguages, 

but there a higher order function can onl~ be returned into a larger 

context. The production of one function from another one, consisting of 

nested subfunct ions with arbi trar~ free variables requires the capabi 1 it~ 

to handle free vari ab 1 es correct 1 ~ with respect to scope and poss i b 1 e 

name clashes. This is something which onl~ the full, complete and 

correct implementation of the lambda calculus can provide. This is one 

case where the proposed lambda calculus machine instruction set 

provides more functionalit~ than is necessar~ for the mere 

implementation of functional languages. 

Equipped with capabilities like higher-order functions and 

verifiable programs how could one not think that functional programming 

is "the onl~ wa~ to go?" For its advocates there is no other wa~ to go, 

but for the more pragmaticall~ minded software industr~ there are 

several issues which must be resolved if functional programming is to 

achieve widespread use. Foremost is the problem of execution speed. 

Functional 1 anguage imp 1 ementati ons have tradit ionall~ executed slower 

on stock hardware than conventional imperative language 

implementations Cwe shall explain wh~ in the next section). All of the 
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wonderful properties of function a 1 1 anguages don't count for much if 

programs won't execute in an acceptable period of time. Second is the 

question of whether functional languages are suitable for "real world" 

app 1 i cations. 

Also, it is unclear if the high productivity attributed to functional 

programming is due to referential transparency or to other properties 

such as abstraction, extensibility, higher-order functions or automatic 

memory management, all of which could be incorporated into more 

conventional 1 anguages. To find out the answer to questions 1 ike these it 

will be necessary to try writing large, "real world" applications in a 

functional language. But to make this practical, there must exist 

imp 1 ementat ions of functional languages that are of comparab 1 e execution 

efficiency to the conventional languages the software industry is using, 

which means new implementation technologies will need to be developed 

for functional languages. In preparation of considering new 

implementation methods we shall reflect in the next section on the 

principles of computation. This section is thus conceptual and serves as 

background material. 
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2. Mode 1 s of Computation 

As we have mentioned above, the functional approach to computing 

can only be part of a larger picture. It is therefore necessary to reflect 

generally on the mechanization of computing. There are in essence three 

bodies of theoretical knowledge leading to the embodiments of 

computational machinery. 

2.1 The Turing Machine 

The Turing Machine, created as an abstract machine by Turing [TURI36] in 

the nineteen thirties to define computability, may be considered as the 

conceptual base for what is today known as the von Neumann 

Architecture. The Turing Machine reads symbols from and stores 

symbols to a storage medium, while undergoing transitions from state to 

state. It uses bit strings as symbols. The recognition of a certain state, 

ensuing transitions, and actions are automated. It is not significant that 

the storage medium is a tape, but there must be an extendible state space. 

Conventional computers are generally of the von Neumann type which rely 

on a programs stored in consecutive memory locations. The program is 

executed under control of a program counter stepping through these 

locations. According to the von Neumann principle, data and instructions 

are stored as words of binary byte data in addressable cells in random 

access memory. An arithmetic-logic unit performs logical operations 

(e.g. addition) on the data based on the stored program instructions. 
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These re 1 ate to fetching of the data between the respective m em or!:J ce 11 s 

to the arithmetic logic unit, and storing results in other memor!:J cells in 

the memor!:J whereb!:J state changes are effected. 

Computer programming for the von Neumann computers involves 

keeping track of a multi tude of instructions and data and the m em or!:J 

locations in which the!:J are stored, both before the!:J are processed in the 

ari thm et i c unit and thereafter. This requires the he 1 p of a com pi 1 er 

which trans 1 ates a user friend l!:J higher 1 eve 1 programming 1 anguage into 

machine language. A minor error in the details of the program can lead 

to an inabilit!:J to identif!:J the specific locations in memor!:J wherein large 

amounts of data and program instructions are stored. These problems can 

become quite involved where there are complicated conditional branch 

structures, recursion, and loops. This inevitabl!:J requires extensive 

debugging with so-called software engineering tools, or even manual 

debugging on the machine code itself. 

2.2 Combinator!:) Logic 

Schoenfinckel [SCH024] created the Combinator Logic to solve problems 

centered around the variables in logic <and other computational 

expressions), their meaning and representation. The representation of a 

variable (standing for one or more objects) as a string of letters lead to 

confusion of their meaning because the objects denoted b!:J the string 

change wh i 1 e transforming the expressions. Schoenfi ncke l's comb i nators 

provided a "variable-free" mechanism to prevent confusion. Because of 

the close re l at i onshi p of comb i nators to functions, Turner [TURN79] 
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suggested to implement functional languages in terms of a combinator 

reduction system. Languages based on his system are SASL, KRC, and 

current 1 y, the 1 a test deve 1 opment, Ml RANDA Computer Architectures 

emerged, first SKIM [CLAR80], and then NORMA [RICH85] (a Burroughs 

development). They are based on the combinator reduction system 

originating from Turner's and Schoenfi ncke l's work. 

Combinator reduction systems have several considerable 

drawbacks. The applicative source code using variables for the sake of 

ease of use has to be first compiled into combinator code. The selection 

of combi nators has consi derab 1 e influence on the size of the resu 1t i ng 

object code. The best results known lead to a size increase of A * n * log 

n, where A is about 10, and n is a measure for the original size. This 

translates into a roughly ten-fold increase in running time over a 

machine which could directly execute the source code. Another 

drawback is the obscure nature of the combinator object code, which has 

no obvious relationship to the source code which would be discernible by 

a human being. 

Combinator reduction is intrinsically of a weaker nature than 

reduction with variables, it is "weakly normalizing." This means that the 

result of a combinator reduction may contain more possibilities of 

reduction which cannot be done due to the theoretical properties of the 

reduction system. As a consequence, the power of the language 

implemented by a combinator reduction system is severely limited to 

conventional application of functions to arguments, which is already made 

available by procedural languages. Another drawback of a combinator 
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reduction system is the replacement of code (forming a redex) in situ by 

computed code (forming the reductum). Although correct- such 

replacements do not change the result or meaning of the computation -

this method destroys the problem statement. It has to be recompiled or 

explicitly copied before another run of the reduction process. Also~ 

because of this replacement in situ~ the representation needs to be based 

on a mu 1 t i tude of two ce 11 nodes connected by pointers~ and this in 

turn requires provisions in hardware <marking bits) and software 

(garbage collection process) to keep track of free and used nodes. 

2.3 The Lambda Calculus 

In the early nineteen thirties Alonzo Church [CHUR41} created the lambda 

calculus. This formal system was to be the theoretical foundation for the 

definition of functions~ particularly with respect to the theory of 

recursive functions and the definition of computability as such. The 

lambda calculus is about functions with variables, but it goes far beyond 

the conventional notion of a function~ which has a fixed number of formal 

parameters and expects the same number of actua 1 parameters. A 1 so~ 

conventionallY~ a 11 forma 1 parameters~ and at most a 11~ occur in the body 

of the function. In contrast~ as a matter of fact~ the lambda calculus does 

not "know" about functions in the sense that "function" is a defined entity. 

The lambda calculus is a simple language with few syntactic constructs. 

The 1 am bda ca 1 cu 1 us defines on 1 y abstraction~ app 1 i cation~ and vari ab 1 es. 
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It has simp 1 e semantics, yet it is powerful enough to express a 11 

computable functions. 

Function a 1 app 1 i cation is, as its name suggests, the capab i 1 i ty of 

applying a function or operator to an argument. In the lambda calculus, 

application is normally denoted by juxtaposition, with the operator on the 

left and the argument on the right. As in everyday arithmetic 

expressions, juxtaposition may be overridden using parenthesis. 

Function a 1 abstraction pro vi des the capabi 1 i ty of abstracting out 

particular data from an expression, so that the expression may be used in 

different contexts with different data. Lambda bindings are the 

mechanism used to provide abstraction. A lambda binding is signified by 

the Greek letter, A, followed by the name of the variable which has been 

abstracted. This vari ab 1 e is referred to as a bound vari ab 1 e with respect 

to the following expression from which the bound variable is abstracted. 

This expression is called the body of the abstraction and is separated 

from the binding prefix by a period. For example, the expression which 

adds 3 to a value is (AX.(+ 3 x)). When a lambda binding is applied to an 

argument the argument is substituted for the bound vari ab 1 e everywhere 

the bound variable occurs in the body of the abstraction. Continuing with 

the previous example, applying the expression (AX.(+ 3 x)) to the number 

10 yields the expression(+ 3 1 0), which then yields 13. 

Current function a 1 1 anguages em p 1 oy the 1 am bda ca 1 cu 1 us' 

facilities for function application only, while ignoring its powerful 

abstraction facilities. Because it is strongly norm a 1 i zing, it can 
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represent more complicated computations b~ fewer means. 

For all these reasons it is a reasonable objective to implement the 

full and complete lambda calculus on a s~stem with hard, firm and soft 

components. We not on 1 ~ get the speed needed to test if function a 1 

programming is a viable alternative for the production of "real world" 

software, we will also have a platform for experimenting with a whole 

new generation of programming 1 anguage concepts which exp 1 o it the 

power of abstraction. We therefore propose to construct a small set of 

new instructions which directl~ implement the lambda calculus in terms 

of sequences of such instructions. Thus a significant increase in 

performance can be obtai ned, because both the comp i 1 i ng effort as we 11 as 

the generated object code are substantia1l~ decreased in size. 

Let us now review some earlier and contemporar~ work concerning the 

implementation of functional languages and/or the lambda calculus. 

The pioneering work of P. Landin [LAND64] in the sixties introduced 

first the idea of founding computation on the lambda calculus in terms of 

the SECD Machine. In the following, implementations of applicative 

languages based on the SECD Machine turned out to be ver~ slow and not 

competitive with procedural languages. The inefficienc~ was so large 

that the detour using combinators appeared at one point to be more 

promising than a direct lambda calculus implementation. Following 

Turner's work, SUPER combinators [HUGH81], the G-Machine [JOHN84], 

[KIEB84], and TIM [FAIR87] were developed to alleviate the efficienc~ 

problems, The~ did so to some degree b~ restricting the interpreted 

code to the conventional use of functions namel~, equating the number of 
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formal parameters to the number of actual parameters and to the set of 

parameter actual occurring in the function body. The general case, that a 

function may contain many more parameters, relative free in the body, 

but bound in various higher, encompassing contexts, is not part of the 

implementation. Source code which is employing the "general use" needs 

to be compiled to the conventional function usage, thus the power of 

general variables is again lost. 

A computer based on the lambda calculus has been proposed by 

Berkling [BERK69]. That computer was intended for use with a new 

programming language. In the computer, an input channel breaks up the 

input expression into three cell nodes containing an operation code (e. g. 

"apply") and pointers to two subtrees. These three cell nodes are stored 

in a "tablet" which serves as central communication device between a 

multitude of functional units (e.g. adders) and 1/0 units. These units have 

associative access to a subset of nodes, while the tablet is also a shift 

register shifting nodes cycl i call y such that all nodes pass by all 

functional units. If nodes match the input characteristics of functional 

units, these nodes will be executed concurrently, the results then waiting 

for passing by target nodes receiving these results. 

A computer system employing string reduction based on the lambda 

calculus was proposed by Berkling [BERK75]. That computer employs a 

multitude of stack registers holding linearized tree structures in form of 

sequences of binary encoded node and leaf symbols representing lambda 

expressions. A program, i.e. a lambda expression, is traversed by 

shifting these codes up and down the stack registers exposing instances 
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of reduction rules at the collection of top cells of these stack registers. 

An instance of a reduction rule Credex) is rep 1 aced by its result 

<reductum) by the reduction processor, which has access only to the top 

cells of the stack registers and performs state transitions on these top 

cells, several times if necessary, to accomplish a reduction. Because of 

its intrinsic structure requiring lots of copying in particular for large 

data structures, it is too inefficient for present day computing 

requirements. 

Because of its power and simplicity, the lambda calculus is often 

used as an intermediate language in the implementation of functional 

1 anguages. Programs in a hi gh-1 eve 1 function a 1 1 anguage are trans 1 a ted 

into lambda expressions which are then com pi led into convention a 1, 

lower-level machine code. Our approach is similar but requires less 

compiling effort. The design objective can best be exp 1 a i ned by the 

following metaphor. 
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3. A Metaphor 

The von Neumann computer architecture (in particular modern high

performance, pipelined machines) can be likened to a jet engine, where 

air intake, compression, combustion, and exhaust follow in sequence 

continuously, much 1 ike instruction fetch, decoding, data fetch, and 

instruction execution follow in sequence over and over again. In the jet 

engine, performance peaks when all the parts are in a straight 1 ine; in the 

von Neumann computer performance peaks when all the instructions are 

in a straight line. It is therefore a main objective to compile all 

languages to in-line conventional von Neumann computer code. If this is 

done for a functional language, the result is not much different from a 

procedural language providing functions and procedures. Conventional 

procedural languages such as FORTRAN, were designed using the von 

Neumann architecture as their underlying semantic mode 1; thus they fit 

von Neumann machines reasonably well and run efficiently. These 

1 anguages pro vi de a 1 i m i ted ability to structure abstraction and 

application in terms of expressions and commands, and compilers are 

needed to convert any "piston" movements to "turbine" movements for 

efficient execution. 

Convention a 1 implementations of genuine function a 1 1 anguages, 

however, are more like piston engines. Functional languages express 

computation in terms of expressions which are composed of abstractions 

and applications. In order to interpret these expressions, conventional 
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techniques perform up and down movements between the root of an 

expression and its leaves. An expression is composed of an operator 

applied to one or more operands. In order to evaluate the expression, a 

convention a 1 imp 1 em entation first steps down into the expression and 

evaluates its operator and its operands. After these have been evaluated, 

it steps back up to the root of the expression and app 1 i es the operator to 

the operands. Note that the evaluation of the operator and operands is 

recursive and may require many up and down motions. These up and down 

motions are more amenable to a "piston engine" computer than a "jet 

engine" one. These up and down actions are intrinsically less efficient on 

von Neumann machines because of the continuous testing that must be 

done in order to determine when and where to reverse direction. These 

motions are also expensive because each up and down cycle requires the 

expression be rescanned. 

The specific background of the method of dealing with the lambda 

calculus in this paper is called Head Order Reduction. This method has 

been especi a 11 y designed to efficiently embody the 1 am bda ca 1 cu 1 us. 

Following the design objective conveyed by the metaphor one would like to 

represent the lambda expression as "instruction" sequences as long as 

poss i b 1 e to obtain the jet engine - pipe 1 i ne effect. The Head Order 

Reduction method accompli shes just that by recursive 1 y bu i 1 ding up a 

lambda expression from linked straight line code. It is therefore 

necessary to give a short introduction to Head Order Reduction [BERK86]. 

3. 1 Head Order Reduction 
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An arbitrary lambda expression may be represented in preorder form: 

AXn . . . AXO @ . . . @ { xj I "Y ... } em . . . eO for j,n,m ~ 0 

In general a lambda expression contains a sequence of bindings (AX 

... ), fo 11 owed by a sequence of app 1 icat ion nodes denoted by the @'s, 

followed by, what is referred to as the "head". The head can only be a 

variable (xj) or another lambda expression (Ay ... ). Following the head 

are as many lambda expression as there are @'s in the formula. Lambda 

expressions in these positions are called arguments and are given in the 

same format. 

The operational representation of a lambda expression in a 

computer must be unique and must protect against the possibi 1 ity of 

variable confusion and collision which occur if variables are represented 

in an inappropriate way, e.g. as character strings. Confusion and collision 

are standard terms in the theory of the lambda calculus denoting certain 

fundamental problems. In order to avoid these problems we employ 

DeBrui j n indices [DEBR72L a 1 so called binding indices to represent 

vari ab 1 es in the operation a 1 representation of the 1 am bda expressions. 

This method is a unique, user and machine independent denotation for 

variables. It avoids confusion and collision of variables. 

The binding index method is described as follows: The value of the 

index standing in for a variable x is the number of bindings (of other 

variables) located on the path in the expression tree between its 
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occurrence x and its binding occurrence AX. 

For example, the lambda expression: 

AX AY AZ @ @ ( @ ( @ X y ) Z ) ( AW W ) 

transforms using binding indices as follows: 

AAA@@ (@(@21 )0) (AO) 

Although different variables <w, z) may be represented by equal 

indices ( 0 ) and the same variable may have for different occurrences 

different index values, the representation is unique and depends only on 

the structure of the lambda expression. It lends itself to the 

implementation technique described herein. 

The general form of the lambda expression given above 

AXn . . . AXO @ . . . @ { xj I AY ... } em . . . eO for j,n,m ~ 0 

corresponds to this binding index form: 

H => A A 

A => An @m { # I H } Am for n,m ~ 0 

Here the distinction between H (for head) and A (for argument) is 

that the head expression must begin with a lambda. The sharp sign 
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denotes an index, superscripted indices denote the multiplicity of 

occurrence. 

By using the syntax rules repeatedly we arrive at the general form 

for every lambda expression where the superscript * means any number 

n~O: 

A* @* A* @* ..... A* @* :tt A* 

The part up to and including the head variable :tt is called the spine 

and plays a major role in the novel method described here. To visualize 

the spine as graph we represent a sequence of bindings (A*) by a 45 

degree line from the upper left to the lower right, and a sequence of 

application nodes(@*) by a 45 degree line from the upper right to the 

lower left. Thus a terse, graphical representation of a general lambda 

expression is a zigzag line as shown in Figure 1. The A's are not shown. 

The complete representation would be a recursive nesting of zigzag lines. 

The employment and embodiment of the lambda calculus as a system 

of computation requires that complex lambda expressions be reduced to 

simplified equivalent forms which are called normal forms. Two 

reduction rules have been developed for simplifying complex lambda 

expressions, they are: 

Beta-Conversion Rule B = (AX. M ) N; B reduces to [N/x]M, where N 

and M are arbitrary lambda expression containing free variables and 

where [N/x]M means the consistent replacement of N for all occurrences 

of x in M, whereby means and precautions are taken to avoid confusion 
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of variab 1es. 

Eta Conversion Ru1e E = t--x. CM x); E reduces to M, where M is an 

arbitrary 1 am bda expression containing free vari ab 1 es except the 

vari ab 1 e x. 

A 1ambda expression is called reducible if it contains at 1east one 

instance of either a Beta-Conversion Ru1 e, which is ca 11 ed a beta-redex, 

or an instance of Eta Conversion Rule, which is called a eta-redex. An 

expression which does not contain any redices is said to be in Normal 

Form. 

Returning to the graphi ca 1 representation of an arbitrary 1 am bda 

expression in Figure. 1, it is observed that the zigzag 1 i ne structura 11 y 

has several corners associ a ted with it. In Figure. 1, the corners 

projecting to the right are called betas-aps and those projecting to the 

1 eft are ca 11 ed aps-betas. The deta i 1 ed structure of the corner corners 

is i 11 ustrated in Figure. 2. The corner of an aps-betas is a beta-redex. 

The corner of the aps-betas in Figure. 2 is the beta-redex Ct--a . M) Aa, 

where M represents the remainder of the zigzag line which is a lambda 

expression. 

No red ices are associ a ted with betas-aps. Thus, the zigzag 1 i ne, or 

expression that it represents, w i 11 be smoothed out or transformed into a 

single betas-aps graph, or equivalent expression by executing Beta

Conversions (or beta-reductions). 

21 



A transformation technique that accomplishes this objective is 

ref erred to as beta-reduct ion-i n-the-1 arge, because the set of single 

beta-reductions associated with a aps-betas corner is considered as one 

reduction step. 

Beta-reduction- i n-the-1 arge can be described in terms of the 

graphical representation of an arbitrar!:J lambda expression. A maximal 

aps-betas corner is cut from the zigzag line and moved down the zigzag 

line up to the next sequence of betas. This graph manipulation does not 

change the meaning (i.e., it is an equivalence preserving transformation) 

of the expression as long as a COP!:J of the cutout aps-betas corner is 

inserted, as a prefix, before a 11 arguments pending from the sequence of 

aps located between the original and final position of the cutout. 

Beta-reduction-in-the-large is illustrated in Figure. 3. The cut c
C in Figure. 3 is the maximum possible aps-betas grouping in the upper 

most part of the zigzag line. The letters a through r represent arbitrar!:J 

1 am bda expression (arguments and vari ab 1 es) pending from the zigzag 

line. 

The graph on the right in Figure 3 illustrates that in the 

transformation, the cut c-c has been moved down the zigzag 1 ine to the 

farthest possible position, namel!:J before the next set of bindings q and r. 

In addition, the cut c-c has to be inserted as a prefix before all pending 

argument k top. The insertion is denoted by underlining in Figure 3, 

except for argument m where, as an example, the inserted cut is 

explicitl!:J shown. 
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1 n the example of Figure 3, the betas are exhausted before the aps. 

An example where the aps are exhausted before the betas is shown in 

Figure 4. In this case, a transformation cannot be executed because the 

immediately following betas prohibit any downward move. But an 

extension of the cut C-C, as shown in Fig 4. to the cut D-D allows to 

capture the betas which are in the way. This technique is ca 11 ed eta

extention-in-the-large and is graphically accomplished by inserting the 

new betas-aps Aj Ak @ @ ... j k in the zigzag 1 ine such that the aps @ @ 

... j k can be taken together with the betas which are in the way to form 

the new cut D-D. Eta-extent ion is the app 1 i cat ion of the Eta-Conversion

Rule in reverse. Eta-extent ion-in-the-large is a repeated application of 

the Eta-Conversion-Rule in reverse. 

As can be seen from Figure 3 and Figure 4, the application, beginning 

at the top of the zigzag line, of beta-reduct ion-in-the-1 arge combined 

with eta-reduct i on-i n-the-1 arge combined with eta-extent ion-in-the-

1 arge , where appropriate, transforms an arbitrary zigzag line into a 

single betas-aps-betas-# graph. There is now one more aps-betas cut to 

make, but it sits just in front of the variable# (assuming DeBruijn index 

representation for variables). It obviously cannot be moved downward 

any further. 

A special treatment of the head variable #, however, makes the 

continuation of the computation possib 1 e. Considering the betas-# 

portion of the transformed expression, one can see that it works as a 

selector on the preceding aps. A selector is a betas-# and has the 
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detailed structure: 

AX 1 AX2 ... AXn . xm 

The transformed expression therefore contains an application of a 

selector to some aps, respective some arguments: 

( AX 1 AX2 ... AXn . xm ) a 1 a2 ... an => am for 1 ~ m ~ n 

=> xm otherwise 

The application reduces either to a new argument am, which is 

simp 1 y another zigzag 1 i ne and the process of headorder reduction 

continues, or the variable xm. 

The selector in DeBruijn index form is very simple, namely An. m . 

It can be conveniently implemented as an indexed access of an array of 

length n of arguments by an index m. The arrangement of arguments in 

such an array, which is called an environment is part of the 

implementation as explained later. 

Finally, the result is a betas-aps-# corner, which is called the 

head-normal-form. Except in its arguments, it does not contain any more 

redices. This resulting skeleton structure has the important property 

that it will not be altered by later transformations within the arguments, 

no matter what reduction sequences take place in the arguments pending 

to the right of the head-normal-form. Moreover, these arguments are 

independent from one another, i.e. no conversion rule application in the 
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arguments will cause any two of these arguments to interact. Thus, this 

independence suggests an implementation whereby the order in which the 

arguments are reduced is immaterial; moreover, the reduction of these 

arguments may be performed concurrently. This property deserves 

further investigation with respect to the availability of parallel 

computers. The reduction of an argument takes place by recursively 

applying the method just described. 

The reduction method applied herein is termed head-order

reduction and is closely related to normal-order-reduction. In contrast, 

Head order reduction does not reduce the beta-redices one by one 

separately, but rather employs an environment. The notion of the "head

normal form" has been introduced by Wadsworth [WADS71]. 

The prefix portion of the arguments, that is the collection of cuts 

accumulated in front of the original expressions, can be conveniently 

represented as a pointer into an environment shared by several 

arguments. The tuple formed of an environment and an argument 

expression, respective pointers to them, is generally called closure. 

The implementation of head-order-reduction preserves this sharing 

property. Since environments expand and shrink when changing from one 

argument to another, a naive sharing of environments would lead to 

corruption. To solve this problem, an implementation approach must 

include proper control over the shrinking or cutting back, and the 

restoring of environments. 

Because of its encompassing nature, the lambda calculus reduction 

25 



system can emulate a combinator reduction system and make it appear 

strongly norm a 1 i zing. The reason for this is that comb i nators are 

representable by special lambda expressions of a form such that a 

multitude of bindings is prefixed to an app 1 i cat ive structure containing 

only application nodes and only variables which occur in the bindings. The 

example in the appendix shows a lambda expression first compiled into a 

combinator expression. This expression is then strongly normalized to a 

lambda expression. (Weakly normalizing would terminate earlier with a 

more complicated expression). Finally~ the original lambda expression is 

directly reduced to the same small lambda expression~ proving the 

correctness of both approaches. 

This demonstrates how very little is accomplished by reducing one 

combinator. A large number of combinators~ however~ is needed to 

represent a computation. Not on 1 y is a non-trivia 1 com pi 1 i ng effort 

required to compose the combinator expression~ but the increased size of 

it alone uses more memory cycles than head order reduction. Thus a 

combinator reduction system is intrinsically more inefficient~ and its 

implementation is clearly a lengthy and costly enterprise [RICH85]. 

In a final remark to the conceptual background we observe that the 

headorder reduction scheme may be considered as another "programming" 

of a Turing machine~ where the problem instance is the input expression 

and the reduced expression is generated as result instance following the 

problem instance on the tape, which is of course replaced by a random 

access memory. 
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Appendix 

****************** THIS IS LBTRD-100 **********************910430 

<expr> 
tqw 

(-7 (-4 7 (-3 (-4 7 4 (-1 (-4 31 (2 9 11)) 5)) (-4 51) (-2 3 4) 
2 3) 4 (-1 6 5)) (-4 5 1) (-2 3 4) 2 3) 
abstraction 

reds 
0 

nodes maxcln enmc 
ll 0 0 

sec 

(k (k (k (w3 (cc (cc c)) (b (w3 (cc c)) (cc (bb (ss c)) (cc (ss c) 
(cc (bb (ss (kk (kk (kk c))))) (b c (c b (w3 (cc (cc c)) (b (w3 
(cc c)) (cc (ss (ss c)) (cc (cc (bb c)) (c (bb (ss (kk (kk (kk 
k3))))) (b (w3 k3) (bb (bb (cc (bb (cc k3)))) i (cc c r)))) (k3 
(k3 k3))) (c (kk k3))))))) k3) (k3 (k3 k3))) (c (kk k3)))))))) 
alI reductions 

reds nodes maxcln enmc sec 
2.11 1.1 .m 1700 .5. 

(-7 3 (-3 6 0 (-4 4 (2 4 6))) 0 (-1 2 1)) 
tqw 

(-7 (-4 7 (-3 (-4 7 4 (-1 (-4 3 1 (2 9 11)) 5)) (-4 5 1) (-2 3 4) 
2 3) 4 ( -1 6 5)) ( -4 5 1) ( -2 3 4) 2 3) 
alI reductions 

reds nodes maxcln enmc sec 
9 ll ll 11.1 1 

(-7 3 (-3 6 0 (-4 4 (2 4 6))) 0 (-1 2 1)) 

reds: 
maxcln: 
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reductions used nodes: nodes generated 
maxi rna I stack depth sec: actua I runtime (MAC II) 
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