
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

2-1992

Conceptual Background for Symbolic Computation Conceptual Background for Symbolic Computation

Klaus Berkling

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Berkling, Klaus, "Conceptual Background for Symbolic Computation" (1992). Electrical Engineering and
Computer Science - Technical Reports. 179.
https://surface.syr.edu/eecs_techreports/179

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/179?utm_source=surface.syr.edu%2Feecs_techreports%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-92-02

Conceptus/Background
for Symbolic Computation

Klaus Bedding

February, 1992

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

CONCEPTUAL BACKGROUND
FOR SYMBOLIC COMPUTATION

Dr. Klaus Berk 1 i ng
Professor of Computer and Information Science

ABSTRACT: This paper is a tutorial which examines the three major models of computation-the
Turing Machine, Combinators, and Lambda Calculus-with respect to their usefulness to practi
cal engineering of computing machines. W'hile the classical von Neumann architecture can be
deduced from the Turing Machine model, and Combinator machines have been built on an experi
mental basis, no serious attempts have been made to construct a Lambda Calculus machine. This
paper gives a basic outline of how to incorporate a Lambda Calculus capabi 1 ity into a von
Neumann type architecture, maintaining full backward compatibility and at the same time
making optimal use of its advantages and technological maturity for the Lambda Calculus capa
bility.

School of Computer and Information Science
Sutte 4-1 16

Center for Science and Technology
Syracuse University

Syracuse, NY I 3244-4 I 00

1. INTRODUCTION

For the past decade, a growing number of computer scientists have

advocated the use of functional programming as a means of easing the

software crisis. These advocates claim that functional programming

languages and techniques increase programmer productivity and enhance

the clarity of programs, thereby aiding in their veri fi cation and

maintenance. A major obstacle to industrial experi mentation and

acceptance of functional programming languages is that conventional von

Neumann computer architectures require considerable compiling efforts

and restrictions of the generality of the languages before they can run

the problem; consequently, the use of functional languages has been

largely confined to small, "academic" applications. Until large, industrial

applications are written in a functional language, it will be difficult to

objectively evaluate the claims put forth by functional programming

advocates. Functional languages are "clean" (or they do not deserve the

nameD, thus they are limited to equivalence preserving transformations.

This is another obstac 1 e to their genera 1 adoption, because rea 1

applications in data processing require "updating" or persistent state

changes, which destroy the clean theoretical base, and therefore destroy

clear and easy to comprehend semantics. A pragmatical and operational

separation of the different concepts has to be installed

Let us first consider functional languages and then consider their

place in the larger picture. What, then, are some of the characteristics

of functional languages that advocates claim make them superior to

conventional programming languages? The most striking characteristic

2

of these languages for a conventional programmer is the absence of

assignment statements and most control constructs. Functional

languages have no notion of a global state or a program counter. The value

of a function a 1 expression depends on 1 y on its textua 1 context, not on a

computational history. The value of an expression is determined only by

the va 1 ues of its constituent expressions. This property is known as

referential transparency, and it is tile cornerstone of functional

programming.

Referential transparency brings programming closer to the world

of mathematics-- "functional programs" are compositions of functions in

the true mathemat i ca 1 sense. Programming in a functional 1 anguage is

much closer to writing a set of formal rules, either numeric or symbolic,

than to conventional programming. Functional programs are primarily

concerned with describing what computation is to be done, while

conventional programs are more concerned with how a computation is to

be done. Another formulation of this is: " ... the underlying concern of a

convention a 1 program mer is to guide a single 1 ocus of contro 1 through a

cunningly designed maze of assignment, conditional, and repetitive

statements, ... " [KENN84].

Because functional programs behave as mathematical functions, the

semantics of functional languages are simple and elegant. This aids in the

veri fi cation of programs and reasoning al)out their properties. A sm a 11

example is in order. We have chosen this example from non-numeric,

symbolic programming to emphasize the generality of the approach

advocated herein. While the example is given in functional style without

3

prejudice to a specific language, one must realize, that a functional

language as such is usually not equipped to support or even automate such

proofs. How ever, a full and correct imp 1 em entation of the 1 am bda

calculus supports the equiva 1 ence preserving transform at ions needed in

this application.

Let us prove that appending 1 ists together is associative. The

following example is a private communication by M. Hilton. Here is the

definition of append, written as ++, in a representative function a 1

language, where : is the infix 1 ist constructor and [] represents the

empty 1 ist :

[] + + ys "' ys (1)

<x : xs) ++ ys "' x : (xs ++ ys) (2)

We wish to prove that for all 1 ists xs, ys, and zs:

(XS ++ ys) ++ ZS "' XS ++ (ys ++ ZS)

The proof is by structural induction on xs [BURS69].

Base Case: Replace xs by[].

([] ++ ys) ++ zs "' ys ++ zs

"' [] ++ <ys ++ zs)

Inductive Case: Replace xs by x: xs

4

by rhs of (1)

by lhs of (1)

((x: xs) ++ ~s) ++ zs

= <x: <xs ++ ~s)) ++ zs b~ rhs of (2)

= x : ((xs ++ ~s) ++ zs) b~ rhs of (2)

= x: <xs ++ (~s ++ zs)) b~ induction

h~pothesis

= <x: xs) ++ (~s ++ zs) b~ lhs of (2)

This completes the proof. The conciseness of this proof demonstrates the

semantic "power" of functional languages. While the proof structure is a

language propert~, which is independent of the language implementation,

the lambda calculus based machine makes it possible to automate the

transformations, substitutions, and rule app 1 i cations in such proofs w hi 1 e

avoiding variable clashes.

Another d i st i net ive characteristic of functional languages is the

use of higher-order functions. A higher-order function is one which

takes another function as one of its arguments and/ or returns a function

as its result. For example, the concept of summation -- summing the

values for a given function f evaluated at discrete points along the

i n t e rv a l bet w e en t w o bounds a and b -- can be expressed b ~ the h i g her

order function sum:

sum f a b next = 0,

= (f a) + sum f <next a) b next,

if a> b

otherwise

Next is a function which produces the next point in the i nterva 1. Man~

5

m a them at i cal concepts such as integration and Ta~l or-series expansion,

can now be implemented in terms of sum. Higher-order functions make it

possible to define ver~ general functions that are useful in a wide variet~

of app 1 i cations and not just functions that deal with numbers -- higher

order functions can be used with an~ data t~pe. This can lead to a

substantial reduction in the amount of software necessar~ to perform

si gni fi cant tasks. Higher order functions are not new, the~ have been

used in L 1 SP with speci a 1 de notation, and in other functional 1 anguages,

but there a higher order function can onl~ be returned into a larger

context. The production of one function from another one, consisting of

nested subfunct ions with arbi trar~ free variables requires the capabi 1 it~

to handle free vari ab 1 es correct 1 ~ with respect to scope and poss i b 1 e

name clashes. This is something which onl~ the full, complete and

correct implementation of the lambda calculus can provide. This is one

case where the proposed lambda calculus machine instruction set

provides more functionalit~ than is necessar~ for the mere

implementation of functional languages.

Equipped with capabilities like higher-order functions and

verifiable programs how could one not think that functional programming

is "the onl~ wa~ to go?" For its advocates there is no other wa~ to go,

but for the more pragmaticall~ minded software industr~ there are

several issues which must be resolved if functional programming is to

achieve widespread use. Foremost is the problem of execution speed.

Functional 1 anguage imp 1 ementati ons have tradit ionall~ executed slower

on stock hardware than conventional imperative language

implementations Cwe shall explain wh~ in the next section). All of the

6

wonderful properties of function a 1 1 anguages don't count for much if

programs won't execute in an acceptable period of time. Second is the

question of whether functional languages are suitable for "real world"

app 1 i cations.

Also, it is unclear if the high productivity attributed to functional

programming is due to referential transparency or to other properties

such as abstraction, extensibility, higher-order functions or automatic

memory management, all of which could be incorporated into more

conventional 1 anguages. To find out the answer to questions 1 ike these it

will be necessary to try writing large, "real world" applications in a

functional language. But to make this practical, there must exist

imp 1 ementat ions of functional languages that are of comparab 1 e execution

efficiency to the conventional languages the software industry is using,

which means new implementation technologies will need to be developed

for functional languages. In preparation of considering new

implementation methods we shall reflect in the next section on the

principles of computation. This section is thus conceptual and serves as

background material.

7

2. Mode 1 s of Computation

As we have mentioned above, the functional approach to computing

can only be part of a larger picture. It is therefore necessary to reflect

generally on the mechanization of computing. There are in essence three

bodies of theoretical knowledge leading to the embodiments of

computational machinery.

2.1 The Turing Machine

The Turing Machine, created as an abstract machine by Turing [TURI36] in

the nineteen thirties to define computability, may be considered as the

conceptual base for what is today known as the von Neumann

Architecture. The Turing Machine reads symbols from and stores

symbols to a storage medium, while undergoing transitions from state to

state. It uses bit strings as symbols. The recognition of a certain state,

ensuing transitions, and actions are automated. It is not significant that

the storage medium is a tape, but there must be an extendible state space.

Conventional computers are generally of the von Neumann type which rely

on a programs stored in consecutive memory locations. The program is

executed under control of a program counter stepping through these

locations. According to the von Neumann principle, data and instructions

are stored as words of binary byte data in addressable cells in random

access memory. An arithmetic-logic unit performs logical operations

(e.g. addition) on the data based on the stored program instructions.

8

These re 1 ate to fetching of the data between the respective m em or!:J ce 11 s

to the arithmetic logic unit, and storing results in other memor!:J cells in

the memor!:J whereb!:J state changes are effected.

Computer programming for the von Neumann computers involves

keeping track of a multi tude of instructions and data and the m em or!:J

locations in which the!:J are stored, both before the!:J are processed in the

ari thm et i c unit and thereafter. This requires the he 1 p of a com pi 1 er

which trans 1 ates a user friend l!:J higher 1 eve 1 programming 1 anguage into

machine language. A minor error in the details of the program can lead

to an inabilit!:J to identif!:J the specific locations in memor!:J wherein large

amounts of data and program instructions are stored. These problems can

become quite involved where there are complicated conditional branch

structures, recursion, and loops. This inevitabl!:J requires extensive

debugging with so-called software engineering tools, or even manual

debugging on the machine code itself.

2.2 Combinator!:) Logic

Schoenfinckel [SCH024] created the Combinator Logic to solve problems

centered around the variables in logic <and other computational

expressions), their meaning and representation. The representation of a

variable (standing for one or more objects) as a string of letters lead to

confusion of their meaning because the objects denoted b!:J the string

change wh i 1 e transforming the expressions. Schoenfi ncke l's comb i nators

provided a "variable-free" mechanism to prevent confusion. Because of

the close re l at i onshi p of comb i nators to functions, Turner [TURN79]

9

suggested to implement functional languages in terms of a combinator

reduction system. Languages based on his system are SASL, KRC, and

current 1 y, the 1 a test deve 1 opment, Ml RANDA Computer Architectures

emerged, first SKIM [CLAR80], and then NORMA [RICH85] (a Burroughs

development). They are based on the combinator reduction system

originating from Turner's and Schoenfi ncke l's work.

Combinator reduction systems have several considerable

drawbacks. The applicative source code using variables for the sake of

ease of use has to be first compiled into combinator code. The selection

of combi nators has consi derab 1 e influence on the size of the resu 1t i ng

object code. The best results known lead to a size increase of A * n * log

n, where A is about 10, and n is a measure for the original size. This

translates into a roughly ten-fold increase in running time over a

machine which could directly execute the source code. Another

drawback is the obscure nature of the combinator object code, which has

no obvious relationship to the source code which would be discernible by

a human being.

Combinator reduction is intrinsically of a weaker nature than

reduction with variables, it is "weakly normalizing." This means that the

result of a combinator reduction may contain more possibilities of

reduction which cannot be done due to the theoretical properties of the

reduction system. As a consequence, the power of the language

implemented by a combinator reduction system is severely limited to

conventional application of functions to arguments, which is already made

available by procedural languages. Another drawback of a combinator

10

reduction system is the replacement of code (forming a redex) in situ by

computed code (forming the reductum). Although correct- such

replacements do not change the result or meaning of the computation -

this method destroys the problem statement. It has to be recompiled or

explicitly copied before another run of the reduction process. Also~

because of this replacement in situ~ the representation needs to be based

on a mu 1 t i tude of two ce 11 nodes connected by pointers~ and this in

turn requires provisions in hardware <marking bits) and software

(garbage collection process) to keep track of free and used nodes.

2.3 The Lambda Calculus

In the early nineteen thirties Alonzo Church [CHUR41} created the lambda

calculus. This formal system was to be the theoretical foundation for the

definition of functions~ particularly with respect to the theory of

recursive functions and the definition of computability as such. The

lambda calculus is about functions with variables, but it goes far beyond

the conventional notion of a function~ which has a fixed number of formal

parameters and expects the same number of actua 1 parameters. A 1 so~

conventionallY~ a 11 forma 1 parameters~ and at most a 11~ occur in the body

of the function. In contrast~ as a matter of fact~ the lambda calculus does

not "know" about functions in the sense that "function" is a defined entity.

The lambda calculus is a simple language with few syntactic constructs.

The 1 am bda ca 1 cu 1 us defines on 1 y abstraction~ app 1 i cation~ and vari ab 1 es.

11

It has simp 1 e semantics, yet it is powerful enough to express a 11

computable functions.

Function a 1 app 1 i cation is, as its name suggests, the capab i 1 i ty of

applying a function or operator to an argument. In the lambda calculus,

application is normally denoted by juxtaposition, with the operator on the

left and the argument on the right. As in everyday arithmetic

expressions, juxtaposition may be overridden using parenthesis.

Function a 1 abstraction pro vi des the capabi 1 i ty of abstracting out

particular data from an expression, so that the expression may be used in

different contexts with different data. Lambda bindings are the

mechanism used to provide abstraction. A lambda binding is signified by

the Greek letter, A, followed by the name of the variable which has been

abstracted. This vari ab 1 e is referred to as a bound vari ab 1 e with respect

to the following expression from which the bound variable is abstracted.

This expression is called the body of the abstraction and is separated

from the binding prefix by a period. For example, the expression which

adds 3 to a value is (AX.(+ 3 x)). When a lambda binding is applied to an

argument the argument is substituted for the bound vari ab 1 e everywhere

the bound variable occurs in the body of the abstraction. Continuing with

the previous example, applying the expression (AX.(+ 3 x)) to the number

10 yields the expression(+ 3 1 0), which then yields 13.

Current function a 1 1 anguages em p 1 oy the 1 am bda ca 1 cu 1 us'

facilities for function application only, while ignoring its powerful

abstraction facilities. Because it is strongly norm a 1 i zing, it can

12

represent more complicated computations b~ fewer means.

For all these reasons it is a reasonable objective to implement the

full and complete lambda calculus on a s~stem with hard, firm and soft

components. We not on 1 ~ get the speed needed to test if function a 1

programming is a viable alternative for the production of "real world"

software, we will also have a platform for experimenting with a whole

new generation of programming 1 anguage concepts which exp 1 o it the

power of abstraction. We therefore propose to construct a small set of

new instructions which directl~ implement the lambda calculus in terms

of sequences of such instructions. Thus a significant increase in

performance can be obtai ned, because both the comp i 1 i ng effort as we 11 as

the generated object code are substantia1l~ decreased in size.

Let us now review some earlier and contemporar~ work concerning the

implementation of functional languages and/or the lambda calculus.

The pioneering work of P. Landin [LAND64] in the sixties introduced

first the idea of founding computation on the lambda calculus in terms of

the SECD Machine. In the following, implementations of applicative

languages based on the SECD Machine turned out to be ver~ slow and not

competitive with procedural languages. The inefficienc~ was so large

that the detour using combinators appeared at one point to be more

promising than a direct lambda calculus implementation. Following

Turner's work, SUPER combinators [HUGH81], the G-Machine [JOHN84],

[KIEB84], and TIM [FAIR87] were developed to alleviate the efficienc~

problems, The~ did so to some degree b~ restricting the interpreted

code to the conventional use of functions namel~, equating the number of

13

formal parameters to the number of actual parameters and to the set of

parameter actual occurring in the function body. The general case, that a

function may contain many more parameters, relative free in the body,

but bound in various higher, encompassing contexts, is not part of the

implementation. Source code which is employing the "general use" needs

to be compiled to the conventional function usage, thus the power of

general variables is again lost.

A computer based on the lambda calculus has been proposed by

Berkling [BERK69]. That computer was intended for use with a new

programming language. In the computer, an input channel breaks up the

input expression into three cell nodes containing an operation code (e. g.

"apply") and pointers to two subtrees. These three cell nodes are stored

in a "tablet" which serves as central communication device between a

multitude of functional units (e.g. adders) and 1/0 units. These units have

associative access to a subset of nodes, while the tablet is also a shift

register shifting nodes cycl i call y such that all nodes pass by all

functional units. If nodes match the input characteristics of functional

units, these nodes will be executed concurrently, the results then waiting

for passing by target nodes receiving these results.

A computer system employing string reduction based on the lambda

calculus was proposed by Berkling [BERK75]. That computer employs a

multitude of stack registers holding linearized tree structures in form of

sequences of binary encoded node and leaf symbols representing lambda

expressions. A program, i.e. a lambda expression, is traversed by

shifting these codes up and down the stack registers exposing instances

14

of reduction rules at the collection of top cells of these stack registers.

An instance of a reduction rule Credex) is rep 1 aced by its result

<reductum) by the reduction processor, which has access only to the top

cells of the stack registers and performs state transitions on these top

cells, several times if necessary, to accomplish a reduction. Because of

its intrinsic structure requiring lots of copying in particular for large

data structures, it is too inefficient for present day computing

requirements.

Because of its power and simplicity, the lambda calculus is often

used as an intermediate language in the implementation of functional

1 anguages. Programs in a hi gh-1 eve 1 function a 1 1 anguage are trans 1 a ted

into lambda expressions which are then com pi led into convention a 1,

lower-level machine code. Our approach is similar but requires less

compiling effort. The design objective can best be exp 1 a i ned by the

following metaphor.

15

3. A Metaphor

The von Neumann computer architecture (in particular modern high

performance, pipelined machines) can be likened to a jet engine, where

air intake, compression, combustion, and exhaust follow in sequence

continuously, much 1 ike instruction fetch, decoding, data fetch, and

instruction execution follow in sequence over and over again. In the jet

engine, performance peaks when all the parts are in a straight 1 ine; in the

von Neumann computer performance peaks when all the instructions are

in a straight line. It is therefore a main objective to compile all

languages to in-line conventional von Neumann computer code. If this is

done for a functional language, the result is not much different from a

procedural language providing functions and procedures. Conventional

procedural languages such as FORTRAN, were designed using the von

Neumann architecture as their underlying semantic mode 1; thus they fit

von Neumann machines reasonably well and run efficiently. These

1 anguages pro vi de a 1 i m i ted ability to structure abstraction and

application in terms of expressions and commands, and compilers are

needed to convert any "piston" movements to "turbine" movements for

efficient execution.

Convention a 1 implementations of genuine function a 1 1 anguages,

however, are more like piston engines. Functional languages express

computation in terms of expressions which are composed of abstractions

and applications. In order to interpret these expressions, conventional

16

techniques perform up and down movements between the root of an

expression and its leaves. An expression is composed of an operator

applied to one or more operands. In order to evaluate the expression, a

convention a 1 imp 1 em entation first steps down into the expression and

evaluates its operator and its operands. After these have been evaluated,

it steps back up to the root of the expression and app 1 i es the operator to

the operands. Note that the evaluation of the operator and operands is

recursive and may require many up and down motions. These up and down

motions are more amenable to a "piston engine" computer than a "jet

engine" one. These up and down actions are intrinsically less efficient on

von Neumann machines because of the continuous testing that must be

done in order to determine when and where to reverse direction. These

motions are also expensive because each up and down cycle requires the

expression be rescanned.

The specific background of the method of dealing with the lambda

calculus in this paper is called Head Order Reduction. This method has

been especi a 11 y designed to efficiently embody the 1 am bda ca 1 cu 1 us.

Following the design objective conveyed by the metaphor one would like to

represent the lambda expression as "instruction" sequences as long as

poss i b 1 e to obtain the jet engine - pipe 1 i ne effect. The Head Order

Reduction method accompli shes just that by recursive 1 y bu i 1 ding up a

lambda expression from linked straight line code. It is therefore

necessary to give a short introduction to Head Order Reduction [BERK86].

3. 1 Head Order Reduction

17

An arbitrary lambda expression may be represented in preorder form:

AXn . . . AXO @ . . . @ { xj I "Y ... } em . . . eO for j,n,m ~ 0

In general a lambda expression contains a sequence of bindings (AX

...), fo 11 owed by a sequence of app 1 icat ion nodes denoted by the @'s,

followed by, what is referred to as the "head". The head can only be a

variable (xj) or another lambda expression (Ay ...). Following the head

are as many lambda expression as there are @'s in the formula. Lambda

expressions in these positions are called arguments and are given in the

same format.

The operational representation of a lambda expression in a

computer must be unique and must protect against the possibi 1 ity of

variable confusion and collision which occur if variables are represented

in an inappropriate way, e.g. as character strings. Confusion and collision

are standard terms in the theory of the lambda calculus denoting certain

fundamental problems. In order to avoid these problems we employ

DeBrui j n indices [DEBR72L a 1 so called binding indices to represent

vari ab 1 es in the operation a 1 representation of the 1 am bda expressions.

This method is a unique, user and machine independent denotation for

variables. It avoids confusion and collision of variables.

The binding index method is described as follows: The value of the

index standing in for a variable x is the number of bindings (of other

variables) located on the path in the expression tree between its

18

occurrence x and its binding occurrence AX.

For example, the lambda expression:

AX AY AZ @ @ (@ (@ X y) Z) (AW W)

transforms using binding indices as follows:

AAA@@ (@(@21)0) (AO)

Although different variables <w, z) may be represented by equal

indices (0) and the same variable may have for different occurrences

different index values, the representation is unique and depends only on

the structure of the lambda expression. It lends itself to the

implementation technique described herein.

The general form of the lambda expression given above

AXn . . . AXO @ . . . @ { xj I AY ... } em . . . eO for j,n,m ~ 0

corresponds to this binding index form:

H => A A

A => An @m { # I H } Am for n,m ~ 0

Here the distinction between H (for head) and A (for argument) is

that the head expression must begin with a lambda. The sharp sign

19

denotes an index, superscripted indices denote the multiplicity of

occurrence.

By using the syntax rules repeatedly we arrive at the general form

for every lambda expression where the superscript * means any number

n~O:

A* @* A* @* A* @* :tt A*

The part up to and including the head variable :tt is called the spine

and plays a major role in the novel method described here. To visualize

the spine as graph we represent a sequence of bindings (A*) by a 45

degree line from the upper left to the lower right, and a sequence of

application nodes(@*) by a 45 degree line from the upper right to the

lower left. Thus a terse, graphical representation of a general lambda

expression is a zigzag line as shown in Figure 1. The A's are not shown.

The complete representation would be a recursive nesting of zigzag lines.

The employment and embodiment of the lambda calculus as a system

of computation requires that complex lambda expressions be reduced to

simplified equivalent forms which are called normal forms. Two

reduction rules have been developed for simplifying complex lambda

expressions, they are:

Beta-Conversion Rule B = (AX. M) N; B reduces to [N/x]M, where N

and M are arbitrary lambda expression containing free variables and

where [N/x]M means the consistent replacement of N for all occurrences

of x in M, whereby means and precautions are taken to avoid confusion

20

of variab 1es.

Eta Conversion Ru1e E = t--x. CM x); E reduces to M, where M is an

arbitrary 1 am bda expression containing free vari ab 1 es except the

vari ab 1 e x.

A 1ambda expression is called reducible if it contains at 1east one

instance of either a Beta-Conversion Ru1 e, which is ca 11 ed a beta-redex,

or an instance of Eta Conversion Rule, which is called a eta-redex. An

expression which does not contain any redices is said to be in Normal

Form.

Returning to the graphi ca 1 representation of an arbitrary 1 am bda

expression in Figure. 1, it is observed that the zigzag 1 i ne structura 11 y

has several corners associ a ted with it. In Figure. 1, the corners

projecting to the right are called betas-aps and those projecting to the

1 eft are ca 11 ed aps-betas. The deta i 1 ed structure of the corner corners

is i 11 ustrated in Figure. 2. The corner of an aps-betas is a beta-redex.

The corner of the aps-betas in Figure. 2 is the beta-redex Ct--a . M) Aa,

where M represents the remainder of the zigzag line which is a lambda

expression.

No red ices are associ a ted with betas-aps. Thus, the zigzag 1 i ne, or

expression that it represents, w i 11 be smoothed out or transformed into a

single betas-aps graph, or equivalent expression by executing Beta

Conversions (or beta-reductions).

21

A transformation technique that accomplishes this objective is

ref erred to as beta-reduct ion-i n-the-1 arge, because the set of single

beta-reductions associated with a aps-betas corner is considered as one

reduction step.

Beta-reduction- i n-the-1 arge can be described in terms of the

graphical representation of an arbitrar!:J lambda expression. A maximal

aps-betas corner is cut from the zigzag line and moved down the zigzag

line up to the next sequence of betas. This graph manipulation does not

change the meaning (i.e., it is an equivalence preserving transformation)

of the expression as long as a COP!:J of the cutout aps-betas corner is

inserted, as a prefix, before a 11 arguments pending from the sequence of

aps located between the original and final position of the cutout.

Beta-reduction-in-the-large is illustrated in Figure. 3. The cut c
C in Figure. 3 is the maximum possible aps-betas grouping in the upper

most part of the zigzag line. The letters a through r represent arbitrar!:J

1 am bda expression (arguments and vari ab 1 es) pending from the zigzag

line.

The graph on the right in Figure 3 illustrates that in the

transformation, the cut c-c has been moved down the zigzag 1 ine to the

farthest possible position, namel!:J before the next set of bindings q and r.

In addition, the cut c-c has to be inserted as a prefix before all pending

argument k top. The insertion is denoted by underlining in Figure 3,

except for argument m where, as an example, the inserted cut is

explicitl!:J shown.

22

1 n the example of Figure 3, the betas are exhausted before the aps.

An example where the aps are exhausted before the betas is shown in

Figure 4. In this case, a transformation cannot be executed because the

immediately following betas prohibit any downward move. But an

extension of the cut C-C, as shown in Fig 4. to the cut D-D allows to

capture the betas which are in the way. This technique is ca 11 ed eta

extention-in-the-large and is graphically accomplished by inserting the

new betas-aps Aj Ak @ @ ... j k in the zigzag 1 ine such that the aps @ @

... j k can be taken together with the betas which are in the way to form

the new cut D-D. Eta-extent ion is the app 1 i cat ion of the Eta-Conversion

Rule in reverse. Eta-extent ion-in-the-large is a repeated application of

the Eta-Conversion-Rule in reverse.

As can be seen from Figure 3 and Figure 4, the application, beginning

at the top of the zigzag line, of beta-reduct ion-in-the-1 arge combined

with eta-reduct i on-i n-the-1 arge combined with eta-extent ion-in-the-

1 arge , where appropriate, transforms an arbitrary zigzag line into a

single betas-aps-betas-# graph. There is now one more aps-betas cut to

make, but it sits just in front of the variable# (assuming DeBruijn index

representation for variables). It obviously cannot be moved downward

any further.

A special treatment of the head variable #, however, makes the

continuation of the computation possib 1 e. Considering the betas-#

portion of the transformed expression, one can see that it works as a

selector on the preceding aps. A selector is a betas-# and has the

23

detailed structure:

AX 1 AX2 ... AXn . xm

The transformed expression therefore contains an application of a

selector to some aps, respective some arguments:

(AX 1 AX2 ... AXn . xm) a 1 a2 ... an => am for 1 ~ m ~ n

=> xm otherwise

The application reduces either to a new argument am, which is

simp 1 y another zigzag 1 i ne and the process of headorder reduction

continues, or the variable xm.

The selector in DeBruijn index form is very simple, namely An. m .

It can be conveniently implemented as an indexed access of an array of

length n of arguments by an index m. The arrangement of arguments in

such an array, which is called an environment is part of the

implementation as explained later.

Finally, the result is a betas-aps-# corner, which is called the

head-normal-form. Except in its arguments, it does not contain any more

redices. This resulting skeleton structure has the important property

that it will not be altered by later transformations within the arguments,

no matter what reduction sequences take place in the arguments pending

to the right of the head-normal-form. Moreover, these arguments are

independent from one another, i.e. no conversion rule application in the

24

arguments will cause any two of these arguments to interact. Thus, this

independence suggests an implementation whereby the order in which the

arguments are reduced is immaterial; moreover, the reduction of these

arguments may be performed concurrently. This property deserves

further investigation with respect to the availability of parallel

computers. The reduction of an argument takes place by recursively

applying the method just described.

The reduction method applied herein is termed head-order

reduction and is closely related to normal-order-reduction. In contrast,

Head order reduction does not reduce the beta-redices one by one

separately, but rather employs an environment. The notion of the "head

normal form" has been introduced by Wadsworth [WADS71].

The prefix portion of the arguments, that is the collection of cuts

accumulated in front of the original expressions, can be conveniently

represented as a pointer into an environment shared by several

arguments. The tuple formed of an environment and an argument

expression, respective pointers to them, is generally called closure.

The implementation of head-order-reduction preserves this sharing

property. Since environments expand and shrink when changing from one

argument to another, a naive sharing of environments would lead to

corruption. To solve this problem, an implementation approach must

include proper control over the shrinking or cutting back, and the

restoring of environments.

Because of its encompassing nature, the lambda calculus reduction

25

system can emulate a combinator reduction system and make it appear

strongly norm a 1 i zing. The reason for this is that comb i nators are

representable by special lambda expressions of a form such that a

multitude of bindings is prefixed to an app 1 i cat ive structure containing

only application nodes and only variables which occur in the bindings. The

example in the appendix shows a lambda expression first compiled into a

combinator expression. This expression is then strongly normalized to a

lambda expression. (Weakly normalizing would terminate earlier with a

more complicated expression). Finally~ the original lambda expression is

directly reduced to the same small lambda expression~ proving the

correctness of both approaches.

This demonstrates how very little is accomplished by reducing one

combinator. A large number of combinators~ however~ is needed to

represent a computation. Not on 1 y is a non-trivia 1 com pi 1 i ng effort

required to compose the combinator expression~ but the increased size of

it alone uses more memory cycles than head order reduction. Thus a

combinator reduction system is intrinsically more inefficient~ and its

implementation is clearly a lengthy and costly enterprise [RICH85].

In a final remark to the conceptual background we observe that the

headorder reduction scheme may be considered as another "programming"

of a Turing machine~ where the problem instance is the input expression

and the reduced expression is generated as result instance following the

problem instance on the tape, which is of course replaced by a random

access memory.

26

II.

BIBLIOGRAPHY

[APPE87] Appel, A. W. and D. B. MacQueen. "A Standard ML Compiler,"

Function a I Programming Languages and Computer

Archnecture, Lecture Notes in Computer Science 27 4,

Springer-Verlag, 1987, pp. 301-324.

[AUGU84] Augustsson, L. "A Compiler forLazy ML," Proc. 1984 ACM

Symposium on Lisp and Functional Programming, 1984, pp. 218-

227.

[BARE72] Barendregt, H.P. The Lambda Calculus, its Syntax and

Semantics, North-Holland Publishing Co., Amsterdam,

Netherlands, 1981, 1984.

[BERK69] United States Pat. No. 3,646,523 "Computer," 1969.

[BERK75] Berkling, K. J. "Reduction Languages for Reduction Machines,"

Proc. IEEE International Symposium on Computer Architecture,

Jan. 1 975, pp. 1 33- 1 40.

[BERK86] Berk ling, K. J. "Head Order Reduction: A Graph Reduction

Scheme for the Operational Lambda Calculus," Proc.or the

Santa Fe Graph Reduction Workshop, Lecture Notes in Computer

Science 279, Springer-Verlag, 1986, pp. 26-48.

27

[BURS69] Burstall, R.M. "Proving Properties of Programs by Structural

Induction," The Computer Journal, Vol. 12, No.1, Feb 1969.

[CHUR41] Church, A. The Calculi of Lambda Conversion. Princeton

University Press 1941.

[CLAR80] Clarke, T.J.W., Gladstone, P.J.S., Macleen, C.D. and Norman, A.C.

"SKIM-The s, K, I Reduction Machine". Record of the 1980 LISP

Conference, Stanford, California.

[DARL81 l Darlington,J. and M .Reeve. "ALlCE- A Multiprocessor

Reduction Machine for Parallel Evaluation of Applicative

Languages," Proc. ACM Conference on Functional Programming,

Languages, and Computer Architecture, 1981, pp. 65-75.

[DEBR72] DeBruijn, N. G. "Lambda-Calculus Notation with Nameless

Dummies: A Tool for Automatic Formula Manipulation with

Application to the Church-Rosser Theorem," lndag. Math., Vol.

34, 1 972, pp. 381 -92.

[DENN79] Dennis J.B. "The Varieties of Data Flow Computers," Proc.

28

IEEE International Conference on Distributed Systems, 1 979,

pp. 430-439.

[FAIR87] Fairbairn, J. and s. Wray. "TIM: A Simple, Lazy Abstract

Machine to Execute Supercombinators," Functional

Programming Languages and Computer Architecture, Lecture

Notes in Computer Science 274, Springer-Verlag 1987,

pp, 34-45.

[GREE85] Green, K.J. "A Full hJ LaZhJ Higher Order pure 1 hJ Functional

Language with Reduction Semantics." Case Center Technical

Report No. 8503, ShJracuse Universith), 1985.

[HEND80] Henderson, P. Functional Programming. Prentice-Hall, 1 980.

[HUGH82] Hughes R. J. M. "Super-Combinators: A New Implementation for

Appl icative Languages," Proc. 1982 ACM Symposium on Lisp

and Function a I Programming, 1982, pp. 1 -10.

[JOHN84] Johnson, T. "Efficient com pi 1 at ion of 1 azhJ evaluation." In

Proceedings of the SIGPLAN '84 Symposium on Compiler

Construction, pp. 58-69, Montreal, 1984.

[KENN84] Kennaway,J.R. and M .R. Sleep, "The 'Language First' Approach,"

Distributed Computing, Academic Press 1984.

[KI EB84] Kieburtz, R. B. The G-machine: A Fast Graph-Reduction

Processor. Oregon Graduate Center, Technical Report 84-003,

1984.

29

[LAND64] Landin,P.J. "The Mechanical Evaluation of Expressions," The

Computer Journal, Vo 1. 6, No.4, Jan 1964.

[PEYT871] Peyton Jones,S. L. The Implementation of Functional

Programming Languages. Prentice-Hall, 1987.

[PEYT872] Peyton Jones, S.L., et al. "GRIP- A High-Performance

Architecture for Parallel Graph Reduction," Functional

Programm tng Languages and Computer Arch ttecture, Lecture

Notes in Computer Science 274, Springer-Verlag, 1987,

pp, 98-112.

[RICH85] Richards, H. An Overview of Burroughs NORMA. Austin Research

Center, Burroughs Corp., Austin TX, May 1 985.

[SCH024] Schoenfinckel, M. "On the Building Blocks of Mathematical

Logic," 1924, From Frege to Godel: A Sourcebook in

Mathematical Logic, van Heijenoort Ed., 1967, pp. 355-366.

[STOY85] Stoye,W. R. The Implementation of Functional Languages

Using Custom Hardware. Ph.D. Thesis Computer Laboratory,

University of Cambridge, May 1985.

[TOYN86] Toyn,l. and Runciman, C. "Adapting Combinator and SECD

Machines to Display Snapshots of Functional Computations,"

New Generation Computing, Vol.4, 1986, pp. 339-363.

30

[TUR136] Turing, AM. "On computable numbers, with an application to

the Entscheidung's problem," Proc. London Math. Soc., Ser. 2-

42, 1 936, pp. 230-265.

[TURN79] Turner, D.A. "A New Implementation Technique for Applicative

Languages," Software Practice and Experience, Vo1.9, Sept

1 979, pp .31 -49.

[VEGD84] Vegdahl, S.R. "A Survey of Proposed Architectures for the

Execution of Functional Languages," IEEE Transactions on

Computers, Vo 1. C-23, No. 12, Dec 1984, pp. 1050-1 071.

[WADS71] Wadsworth, C. P. Semantics and Pragmatics of Lambda

Calculus. Ph.D. Thesis, Oxford University, 1971.

[WATS82] Watson, I. and J. Gurd. "A Practical Data Flow Computer," IEEE

Computer, Vol.15, Feb.1982, pp.51-57.

[WATS87] Watson, P. and !.Watson, 1 .. "Evaluating Functional Programs on

the FLAGSHlP Machine," Functional Programming Languages

and Computer Architecture, Lecture Notes in Computer Science

274, Springer-Verlag, 1987, pp. 80-97.

31

Appendix

****************** THIS IS LBTRD-100 **********************910430

<expr>
tqw

(-7 (-4 7 (-3 (-4 7 4 (-1 (-4 31 (2 9 11)) 5)) (-4 51) (-2 3 4)
2 3) 4 (-1 6 5)) (-4 5 1) (-2 3 4) 2 3)
abstraction

reds
0

nodes maxcln enmc
ll 0 0

sec

(k (k (k (w3 (cc (cc c)) (b (w3 (cc c)) (cc (bb (ss c)) (cc (ss c)
(cc (bb (ss (kk (kk (kk c))))) (b c (c b (w3 (cc (cc c)) (b (w3
(cc c)) (cc (ss (ss c)) (cc (cc (bb c)) (c (bb (ss (kk (kk (kk
k3))))) (b (w3 k3) (bb (bb (cc (bb (cc k3)))) i (cc c r)))) (k3
(k3 k3))) (c (kk k3))))))) k3) (k3 (k3 k3))) (c (kk k3))))))))
alI reductions

reds nodes maxcln enmc sec
2.11 1.1 .m 1700 .5.

(-7 3 (-3 6 0 (-4 4 (2 4 6))) 0 (-1 2 1))
tqw

(-7 (-4 7 (-3 (-4 7 4 (-1 (-4 3 1 (2 9 11)) 5)) (-4 5 1) (-2 3 4)
2 3) 4 (-1 6 5)) (-4 5 1) (-2 3 4) 2 3)
alI reductions

reds nodes maxcln enmc sec
9 ll ll 11.1 1

(-7 3 (-3 6 0 (-4 4 (2 4 6))) 0 (-1 2 1))

reds:
maxcln:

32

reductions used nodes: nodes generated
maxi rna I stack depth sec: actua I runtime (MAC II)

Fig. 1

Fig. 2

33

g

r r

Fi<J. 3

34

a

g

g

0 0 0

Fig. 4

35

	Conceptual Background for Symbolic Computation
	Recommended Citation

	SU-CIS-92-02_001c
	SU-CIS-92-02_002c
	SU-CIS-92-02_003c
	SU-CIS-92-02_004c
	SU-CIS-92-02_005c
	SU-CIS-92-02_006c
	SU-CIS-92-02_007c
	SU-CIS-92-02_008c
	SU-CIS-92-02_009c
	SU-CIS-92-02_010c
	SU-CIS-92-02_011c
	SU-CIS-92-02_012c
	SU-CIS-92-02_013c
	SU-CIS-92-02_014c
	SU-CIS-92-02_015c
	SU-CIS-92-02_016c
	SU-CIS-92-02_017c
	SU-CIS-92-02_018c
	SU-CIS-92-02_019c
	SU-CIS-92-02_020c
	SU-CIS-92-02_021c
	SU-CIS-92-02_022c
	SU-CIS-92-02_023c
	SU-CIS-92-02_024c
	SU-CIS-92-02_025c
	SU-CIS-92-02_026c
	SU-CIS-92-02_027c
	SU-CIS-92-02_028c
	SU-CIS-92-02_029c
	SU-CIS-92-02_030c
	SU-CIS-92-02_031c
	SU-CIS-92-02_032c
	SU-CIS-92-02_033c
	SU-CIS-92-02_034c
	SU-CIS-92-02_035c
	SU-CIS-92-02_036c

