
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

3-1992

A Non-Deterministric Parallel Sorting Algorithm A Non-Deterministric Parallel Sorting Algorithm

Xue Shirley Li

F. Lockwood Morris
Syracuse University, lockwood@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Xue Shirley and Morris, F. Lockwood, "A Non-Deterministric Parallel Sorting Algorithm" (1992). Electrical
Engineering and Computer Science - Technical Reports. 176.
https://surface.syr.edu/eecs_techreports/176

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/176?utm_source=surface.syr.edu%2Feecs_techreports%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-92-05

A Non-Deterministic
Parallel Sorting Algorithm

Xue Shirley Li and F. Lockwood Morris

March 1992

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

A NON-DETERMINISTIC PARALLEL SORTING ALGORITHM

XUE LI AND F. L. MORRIS

ABSTRACT. A miniswap Si, 1 S i < n, compares two adjacent keys 11"i, 11"i+l in the
sequence {1r1 , ... , 7rn}, and transposes them if they are out of order. A full sweep is
any composition of all n - 1 possible miniswaps. We prove that the composition of
any n - 1 full sweeps is a sorting function.

Let n be a fixed (through most of our discussion) positive integer. Following de
Bruijn [1], we model networks for sorting as discussed, e.g., by Knuth [2, Section
5.3.4] as compositions of swaps, where for 1 ~ i < j ~ n the effect of the swap Sij
on an arrangement 1r = (1r1 , ... , 7rn) of n distinct keys is given by

if k =/= i and k =/= j,

De Bruijn considers an arrangement 1r as simply a permutation on the set { 1, ... , n},
which of course does no real harm, and is certainly the most natural choice of n
sortable things. On the other hand, we feel that in principle it would slightly
cloud the exposition if we were needlessly to conflate the data type of indices with
that of keys. As a compromise, we write constants and variables for keys in bold
type; that is, we say that the keys are some n distinct elements 1, . . . , n from
a totally ordered set with 1 < 2 < · · · < n, and an arrangement is a bijection
1r: {1, ... , n} -+ {1, ... , n }. Let Sn be the set of all arrangements.

We will be concerned here entirely with miniswaps Si(i+I) (also discussed by
de Bruijn) which compare adjacent keys; we denote a miniswap more concisely as
si (1 ~ i < n).

We are interested in compositions C of miniswaps which sort, that is, such that
for all 1r E Sn, C1r = 1r0 , where 1r0 denotes the sorted arrangement (1, ... , n).

We denote (to begin with-other notations will follow) composition in diagram
matic order of functions from Sn to Sn by infixed semicolon:

[C;D]1r = D(C1r),

using for clarity brackets to group compositions and parentheses to group applica
tions.

Key words and phrases. sorting networks, adjacent transposition sorting, comparators, swaps,
miniswaps, sweeps.

We thank Roy Heimbach and Dr. Nancy McCracken for helpful discussions.

Typeset by AM-5-'fEX.

2 XUE LI AND F. L. MORRIS

De Bruijn introduces a partial order on arrangements, which we denote here by
~, defined by

u ~ 71" -¢::=::} u = E7r for some composition E of swaps,

and observes that the sorted arrangement 7!"0 is least in the partial order. He proves
(1, Theorem 4.2] that miniswaps (and consequently compositions ofminiswaps) are
monontone with respect to~:

It is essential to the truth of this result that the partial order on arrangements be
defined in terms of swaps not restricted to being mini.

De Bruijn then proves, generalizing a discovery of Knuth's, a result [1, Theorem
6.2] which we repeat here, because the strong form we shall need below is given by
de Bruijn only as an aside.

Proposition 1 (de Bruijn). HC is a composition ofminiswaps, and if D arises
from C by inserting extra swaps, then D7r ~ C7r for all arrangements 71".

Proof. Let C be written as Co; C1 ; ... ; Cm, each Ck a composition of miniswaps, in
such a way that D =Co; Sid1 ; C1; ... ; Sim;m Cm. We may observe for each segment
Si,;,Ck, and any arrangements p and u:

if p ~ u, then [Si,;,; Ck]P = Ck(Si,;, p)
by definition of ~ and
monotonicity of ck
by monotonicity of ck.

So we have, for any arrangement 71", successively

that is, D7r ~ C7r. 0

Co7r = Co7r,

[Shit; CI)(Co7r) ~ cl (Co11"),

),

Let a sweep, W (more explicitly when necessary, ann-sweep) be any composition
of zero or more miniswaps Si, Si+l, ... , S;-1 (1 ~ i ~ j ~ n) used once each in
any order. We say that W extends from i to j, and write W: i--+ j. If W: 1--+ n
we call it a full sweep. The composition of no miniswaps is of course the identity
function I on Sn; we call I the empty sweep, other sweeps non-empty, and note
that I: i--+ i for every i.

Lemma 2. If V : i --+ j and W: k --+ l are sweeps with j < k, then V and W
commute: V;W = W;V.

Proof Self-evident. 0

A NON-DETERMINISTIC PARALLEL SORTING ALGORITHM 3

Call sweeps satisfying the hypothesis of Lemma 2 disjoint. In particular, if k = j + 1
in Lemma 2, denote the common value of V; Wand W; V by v~w.

We introduce ~ as a first step towards an algebraic notation for sweeps and
their compositions that retains some of the visual appeal of the diagrams used by
Knuth and others to exhibit sorting networks-n parallel wires with some pairs
(adjacent pairs only as long as we stick to miniswaps) connected by "comparators".
Continuing with this plan, for sweeps V : i --+ j and W : j --+ k, we denote V; W
by V \. W and W; V by V ,/ W.

Lemma 3. If U : i --+ j, V : j --+ k, and W : k --+ l are sweeps of which V at least
is non-empty, then all four associative laws for \. and ,/ hold:

(i, ii)
[U \. V] \. W = U \. [V \. W], [U ./ V] ,/ W = U ,/ [V ./ W],

(iii, iv)
[U \. V] ,/ W = U \. [V ./ W], [U ,/ V] \. W = U ,/ [V \. W].

Proof. Parts (i) and (ii) are by the associativity of functional composition. For (iii),

[U \. V] ,/ W = W; U; V
L2
=U;W;V because U and W are disjoint

= U \. [V ,/ W].

The proof of (iv) is symmetrical to that of (iii). 0

As a consequence of Lemma 3, any sweep extending from i to j can be written
unambiguously without brackets in the form si X · .. X s j-1, where "X" stands
for "\. or ,/". It is not difficult to see that this expression for a sweep is unique,
starting from the observation that definitely Si \.Si+1 =/= Si/Si+1 for every i < n-1.

For i ~ j, define the left-to-right sweep Zf : i --+ j by

Z j def S S S
i = i \. i+1 \. ' .. \. j-1·

For n > 1 and 1 ~ i ~ j ~ n, let an arrangement 0' have n at position i
and suppose that some full sweep W takes n from i to j; that is, let 0' i = n and
(W O')j = n. Then we may write

W=PXZf ,/ R.

Since n wins every comparison, Zf will be the longest left-to-right sweep starting
at position i to be found in W. Consequently we must have i < j (that is, Zf
non-empty) unless i = j = n; in either case j > 1, so that R : j --+ n is non-full.

+-
Denote by R the "left shift" of R by one position, that is

+-- def .
R = Sj-1 X··· X Sn-2 : J - 1 --+ n- 1

where the succession of \.'s and ,/'s is the same as for R. Then we have the
following rather specialized but straightforward lemma, saying that left-to-right
sweeps can, in a sense, be pulled to the front of certain other sweeps:

4 XUE 11 AND F. L. MORRIS

Lemma 4. For n > 1, let O" be an arrangement and W a full sweep such that

O"i = n, (W O")i = n, and W = P X zf / R. Then

. f-

[[Zf / R]; Zj]O" = [Zf; R]0".

Proof. If j = n, then R = I = R, and the asserted equation holds simply be
cause Z/;Zj = Zf. Otherwise, as noted above, i < j < n; let R(O"t, ... ,O"n) =
(O"t, · · ·, O"j-t, Pj, ... , Pn)· Then

[[Zf / R];Zj]O" = [Z/;Zj](O"t, ... ,O"i-t,n,O"i+t, ... ,O"j-t,Pi, ... ,pn)

= Zf (O"t, ... , O" i-1, n, O" i+l, ... , O" i -1, pj, ... , Pn)

= (O"t, ... , O"i-1, O"i+t, ... , O"j-1, Pi,··., Pn, n)
f-

= R (O"t, ... , O"i-t, O"i+t, ... , O"j-t, O"j, ... , O"n, n)

= R(ZiO")
f-

= [Zf; R]O". D

If we compose arbitrarily chosen full sweeps, it is clear that n- 1 of them will
be sufficient, and may be necessary, to make sure that n arrives at position n. This
suggests our theorem:

Theorem 5. For n ~ 1, any composition of n- 1 full n-sweeps sorts.

Proof. We proceed by induction on n; the case n = 1 is immediate. For n ~ 2,
let W1 , ... , Wn-l be any full sweeps, and let O" be any arrangement. Follow
the rightward movement of n under the composition W1; · · · ; Wn-1, and let its
successive positions be i1, ... , in-1, in = n; that is, define i1 < · · · < · · · = · · · = in
(there may be from 0 to n - 1 strict inequalities and from n - 1 to 0 equalities,
but all the inequalities will come first) by the equations O"i 1 = n, (W1 O")i 2 = n, ... ,
([Wt; · · ·; Wn-t]O")in = n. We may write

[Pt X zf: / Rt];

[P2 X zf: / R2];

[Pn-t X z;:,_J
Note that P2, ... , Pn-1 are non-empty, but not necessarily P 1 •

Obviously our plan is, by n- 2 applications of Lemma 4, to collect all the Z's
into one solid Z~ at the top which can be skimmed off, leaving behind an instance
of sorting only n- 1 keys. Two complementary difficulties stand in our way: the
operations shown above as X, of unknown directionality, may prevent Lemma 4
from applying; and in order to appeal to induction we must get down from (n - 1)2

to (n- 2)2 miniswaps; that is, we need to discard (n- 1) + (n- 2) miniswaps, or
(i1 - 1) + (n- 2) in addition to then- i1 miniswaps occurring in the Z's.

A NON-DETERMINISTIC PARALLEL SORTING ALGORITHM 5

It is not difficult to see which miniswaps we will be as well or better off without:
the rightmost miniswap from each of P2, ... , Pn-l (each may or must be otiose
on account of having n as its right-hand input) and all i 1 -1 miniswaps of Pt. So,
fork= 2, ... , n -1, let Pk: 1-+ ik -1 be the sweep such that Pk = Pk X siAo-1·

Then by Proposition 1, we will have

[[P1 X zf: ./ R1];

[P2 X zf: ./ R2];

[[zf: ./ R1];

[P2'"""' zf: ./ R2];

In particular, to show that the left-hand side is 1r0 , it will be enough to show that
the right-hand side is.

Clearly the movement of n is unaffected by these deletions of miniswaps. Hence
we may make our n - 2 applications of Lemma 4 by the calculation

[[zf: ./ Rt];

[P2---zf: ./ R2];

[P n-2'"""' Zi"- 1 ./ Rn-2];
•n-2

[Pn-t'"""' Z4,_ 1 1] u

[[zf: ./ R1];

[P2'"""' zf: ./ R2];

=···

[P n-2'"""' Z4,_ 2];

[Pn-t./Rn-21]0"

···=

[[zf: ./ Rt];

[P2 ---z~];

- +-
[Pn-2./ Rn-3];

[Pn-t./Rn-21]0"

[Z!l·
It l

- +-
[P n-2./ R n-3];

[P n-1./ R n-21] 0".

In more detail, we may show the replacement effected in any one step, say for
n -1 > k ~ 1, by

[· .. [· ..
[· .. Pk; Pk; [· ..
[P ~ Z~k+l ./ R]· k lk k ' [Z~k+t ./ R]·

lAo k ' L4
zn.

i/c' [Pk ~ ZJ:];

[Pk+t ~ ZJ:+1];
zn . +-- - +--

ilc+l' Rk; [Pk+I./ R k];

. . ·] 0" pk+Ii pk+li .. ·] 0" .

.. ·] 0" .. ·] 0"

(When k = 1, omit "Pk ___ , from the first and last expressions, "Pk;" from the
middle two.)

6 XUE LI AND F. L. MORRIS

- +--
But ZI:_ a = (a~, ... , ai-l, ai+b ... , an, n), and the n - 2 sweeps P2,/ R 1, ... ,

Pn-I./Rn-2 : 1-+ n- 1 may be regarded as so many full (n- I)-sweeps whose
composition, which in effect acts on (a1, ... , ai-l, ai+l, ... , an), will by induction
hypothesis sort it. That is to say,

([zf~ ,/ R1]; [P2,.... zf: ,/ R2]; · · · ; [Pn-1 ~ ZJ:._ 1]]a
[- +-- - +--]

= [P2,/ R1]; · · · ; [P n-1/ Rn-2] (at, ... , ai-b ai+t, ··.,an, n)

= {1, ... , n- 1, n) by induction

= 71"0. 0

We could have insisted that P1 be empty: de Bruijn and Knuth credit R. W.
Floyd with the discovery that if a composition of miniswaps sorts the reversed
arrangement (n, ... , 1), then it sorts. It seemed to us that P1 caused too little
trouble to justify appeal to another substantial theorem.

The odd-even transposition sort described by Knuth [2, Exercise 5.3.4.37] can
be derived from the above algorithm by a particular choice of full sweeps. If we

take Wzigzag def S1 "'S2,/Sa "'S4,/ "' · · ·, Wza.gzig def S1,/S2"' ,/ · · ·, then n - 1

instances of Wzigza.g and Wza.gzig in alternation (starting with either) provides a way
to sort whose redundant comparisons are very evident. We may decompose these
sweeps as Wzigzag = Coddi Ceven, Wzagzig = Ceveni Codd, where

C de£ S ---s ,....
odd = 1 3 · · · ,

C de£ S ---s,
even = 2 4 • ·' ,

and then the whole sort becomes, say, Coddi Ceveni Ceveni Coddi Coddj • • ·• Applying
as often as possible the identity si; si = si (immediate repetition of a swap accom
plishes nothing) we can boil this down to Coddj Ceveni Coddj Ceveni · · ·, which may
be regarded as Lni2J iterations of Wzigzag followed, if n is odd, by an additional
Coddi this is the odd-even transposition sort.

Since there are sorting networks (using swaps which are not mini) that sort in
time O(log2 n) if executed with n-fold parallelism, it is a little hard to imagine
practical situations that would make our algorithm in its non-deterministic gen
erality, which plainly takes 11(n) time, desirable to use, unless as a by-product of
some computation that for its own reasons used n- 1 rounds of next-neighbor
communications between n processors connected in line. We mention one context
in which the algorithm would, however, be natural and easy to program: Sabot's
parallation model of parallel computation [3] provides, for any (not necessarily
associative) binary operation EB on a set A, a non-deterministic reduction tSJI appli
cable to positive-length vectors of elements of A such that EB I (a1 , ... , an) denotes
a1 EB a2 ffi · · · ffi an computed with some unspecified parenthesization. If we take ffi
to be "swapping concatenation" between non-empty sequences of keys:

(k~, ... , km) ffi (k~ ... , k~,) = (kt, ... , km-t,min(km, kD,max(km, kD, k;, ... , k~,),

then EEl I ((7rl), ... , (1r n)) computes W 7r for an unspecified full sweep W.

A NON-DETERMINISTIC PARALLEL SORTING ALGORITHM 7

REFERENCES

1. N. G. deBruijn, Sorting by means of swappings, Discrete Mathematics 9 (1974), 333-339.
2. D. E. Knuth, The Art of Computer Programming, Vol. 9: Sorting and Searching, Addison

Wesley, Reading, Mass., 1973.
3. G. Sabot, The Parallation Model, The MIT Press, Cambridge, Mass., 1988.

XuE SHIRLEY Lr, 29 FIRESIDE LANE, EAsT SETAUKET, NY 11733

F. LOCKWOOD MORRIS, SCHOOL OF COMPUTER AND INFORMATION SCIENCE, 4-116 CENTER

FOR SCIENCE AND TECHNOLOGY, SYRACUSE UNIVERSITY, SYRACUSE, NY 13244-4100

	A Non-Deterministric Parallel Sorting Algorithm
	Recommended Citation

	SU-CIS-92-05_001c
	SU-CIS-92-05_002c
	SU-CIS-92-05_003c
	SU-CIS-92-05_004c
	SU-CIS-92-05_005c
	SU-CIS-92-05_006c
	SU-CIS-92-05_007c
	SU-CIS-92-05_008c

