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Abstract 

In the predicate calculus, variables provide a flexible indexing service that 
selects the actual arguments to a predicate letter from among possible argu
ments that precede the predicate letter (in the parse of the formula). In the 
process of selection, the possible arguments can be permuted, repeated (used 
more than once), and skipped. If this serviCe is withheld, so that arguments 
must be the immediately preceding ones, taken in the order in which they oc
cur, the formula is said to be fluted. Quine showed that if a fluted formula 
contains only homogeneous conjunction (conjoins only subformulas of equal ar
ity ), then the satisfiability of the formula is decidable. It remained an open 
question whether the satisfiability of a fluted formula without this restriction 
is decidable. This paper answers that question. 
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1 Introduction 

In 1960, in "Variables explained away" [6], Quine presented his Predicate Functor 

Logic (PFL), a system equivalent to predicate logic, but without variables. Quine 

sought to explicate the notion of variable by carefully delineating the roles that vari

ables play in predicate logic. He did this by introducing predicate functors that 

provided the various services normally provided by variables. 

Quine returned to PFL in a number of his papers and books in the following years 

(e.g., [8, 9, 10]). The set of predicate functors varied in different versions of PFL. One 

could try to make do with as few as possible, or try to make the functors individually 

as simple as possible. A set that achieves the latter goal is the following. 

::3 (crop), --., /\, perm, Perm, pad, ref 

This set falls naturally into two subsets: 

(i) the alethic functors, ::3, --., /\; and 

(ii) the combinatory functors, perm, Perm, pad, ref. 

The formulas (or schemas) that can be formed using only predicate letters and the 

alethic functors were named fluted formulas by Quine. In 1969 in "On the limits of 

decision" [7], Quine showed that if the fluted formulas are restricted to conjoin only 

subformulas of the same arity (called homogeneous conjunction), then their satisfia

bility is decidable. However the method used (an extension of the method used by 

Her brand to show monadic logic decidable) breaks down when the restriction on con

junction is relaxed (see Noah [3]). It remained an open question whether satisfiability 

of unrestricted fluted formulas is decidable. 

This paper answers the latter question in the affirmative. 
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2 Preliminaries 

This paper assumes the usual definition of the pure predicate calculus. The set of 

predicate symbols typically will be defined by some given finite set of formulas or 

premises. The finite set of predicate symbols will be referred to as the lexicon. Let 

L be a lexicon and R E L. Then ar(R) denotes the arity of R. Define ar(L) ·

max{ ar(R) : R E L }. Without loss of generality, we will assume ar(L) > 0. 

A standard result from predicate calculus is given here without proof. 

THEOREM 1 (The Principle of Monotonicity) Let 0 be a subformula! not in the scope 

of-.! that occurs as a conjunct in formula ¢. Then ¢' can be inferred from ¢! where 

¢' is obtained from ¢ by deleting e. 

The empty conjunction is defined to be equivalent to T (verum). 

An interpretation I of a lexicon L consists of a set D, the domain of I, and a 

mapping that assigns to each R E L a subset of var(R). If ¢ is a formula over L 

with free variables among {x 1 , ... , xk}, and ¢is satisfied in I by the assignment to 

variables {Xi r--t ai} 1 ~i~k, we write a1 · · · ak f= ¢. 
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3 Fluted formulas 

Let L be a finite set of predicate symbols. Let Xm := { x1 , ... , xm} be a set of m 

variables where m ~ 0. An atomic fluted formula of L over Xm is Rxm-n+l · · · Xm, 

where R E L and ar(R) = n ::=;; m. The set of all atomic fluted formulas of L over 

Xm will be denoted AJL(Xm)· Define Ah(Xo) := {T}. 

A fluted formula of Lover Xm is defined inductively. 

(i) An atomic fluted formula of Lover Xm is a fluted formula of Lover Xm. 

(ii) If 4> is a fluted formula of Lover Xm, then 3xm1> and 't!xm</> are fluted formulas 

of L over Xm-1· 

(iii) If 1> and 'ljJ are fluted formulas of Lover Xm, then 1> A¢, 1> V ¢, 1> -t ¢,and •1> 

are fluted formulas of L over Xm-

This definition can be generalized as follows. Call the fluted formulas just defined 

standard fluted formulas. Now any formula that is alpha-equivalent to a standard 

fluted formula is defined to be a fluted formula. 

The fluted formulas of L are a proper subset of the formulas of the pure predicate 

calculus with predicate symbols L. The semantics of the fluted formulas of Lis defined 

to coincide with the usual semantics of the pure predicate calculus. In connection 

with standard fluted formulas, abc··· f= ¢will always mean that 1> is satisfied (in the 

interpretation given by the context) by the assignment to variables { x1 ~----+ a, x 2 ~----+ 

b, X3 1---+ C, ... } . 

It might be noted in passing that in the predicate calculus restricted to fluted 

formulas, it would be possible to dispense with variables entirely, since the arity 

and position of a predicate symbol completely determines the sequence of variables 

that follow the predicate symbol. However, variables will be retained to make the 

presentation more familiar and more explicit. 
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4 Fluted constituents 

The set of conjunctions in which for each p E Ah(Xm) either p or •p (but not both) 

occurs as a conjunct will be denoted b..AfL(Xm) (cf. Rantala [11]). Note that if 

b..AfL(Xm) = {01 , ... , Oz}, and</> is any quantifier-free formula over AfL(Xm), then 

(ii) 01 V · · · V Oz, and 

(iii) either oi ---+ </>, or oi ---+ •</>, for 1 ~ i ~ l 

are tautologies. 

Let N be the natural numbers, and N* the set of finite strings over N. String 

concatenation is denoted by juxtaposition. The empty string is €. If a = i 1 ···in E 

N*, then fork~ n, (k: a):= i1 .. ·ik is the k-prefix of a. We define a (balanced) 

tree domain T ~ N* with a height function h as follows. w(a) is the number of 

immediate descendants of a. 

(i) € E T and h(c) = 0. 

(ii) If a E T, then al, ... , aw(a) E T and h(al) = .. · = h(aw(a)) = h(a) + 1. 

(iii) If a, (3 E T and w(a) = w((3) = 0, then h(a) = h((3) =: h(T). 

If w(a) = 0, then a is terminal in T. If 0 < h(a) < h(T), then a is internal in T. 

The subtree of T rooted on a will be denoted (a J. The path in T from € to a will be 

denoted [a). 

Let T be a tree domain. The labelled tree domain TL is defined to be T with a 

formula ()a E b..AfL(Xh(a)) associated with each a E T. The subtree of TL rooted on 

a will be denoted (()a J. The path in TL from E to a will be denoted [()a). The subtree 

( Ba] is given the following interpretation. 

(i) If a is terminal, then (Ba] denotes Ba. 
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(ii) If a is nonterminal with height k, then (Ba] denotes Ba 1\ ::lxk+l(Bal] 1\ · · · 1\ 

::Jxk+l(Baw(a)] 1\ Vxk+I((Bal] V · · · V (Baw(a)]). 

The formula denoted by ( Ba] is a fluted constituent of L of height h(T)- h( a) over the 

variables Xh(a). If h( a) = 0, the formula denoted by ( Ba] is a constituent sentence. 

The path [Ba) denotes Be 1\ Bl:a 1\ B2:a 1\ · · · 1\ Ba· In the remainder of this paper, 

( Ba] and [Ba) will not be distinguished from the formulas they denote. If Be = -, T, 

then TL is trivial. In the remainder of this paper, TL will always be assumed to be 

nontrivial. Under this assumption, Be can usually be elided. 

Let a E T and Ba E .6-AfL(Xh(a))· Define g(a) := max(l, l+h(a) -ar(L)). Then 

the variables occurring in Ba are precisely Xg(a),· .. , Xh(a)· 

If <P is a constituent or path, then define: 

(i) ¢(-k] is <P with the last k variables eliminated; 

(ii) <P[-k) is <P with the first k variables eliminated. 

Here elimination of a variable is accomplished by removing all atomic formulas in 

which that variable occurs, as well as the quantifier, if any, associated with that 

variable. 

If <P is a fluted formula (including tree and path), containing occurrences of vari

ables xz, ... , Xk, then ¢t := <P{xz ~---+ x1 , ••• , Xk ~---+ Xk-l+d is the standardization of 

¢. 

Fluted constituents are related to Hintikka constituents of the second kind (see 

[11]). Indeed, the main results for Hintikka constituents hold for fluted constituents. 

THEOREM 2 (The Fundamental Property of Constituents) If <P and '1/J are fluted con

stituents of L of height k over the variables Xz, and <P =/:- '1/J, then <P 1\ '1/J is inconsistent. 

proof: See [11], Theorem 3.10 (i). 0 
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THEOREM 3 Let ¢ be a standard fluted formula of L containing variables Xm, where 

variables Xk ~ Xm are free. Then ¢ is logically equivalent to a disjunction of fluted 

constituents of height m - k over xk. 

proof: See [11], Theorem 4.1. D 
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5 Trivial inconsistency 

Note that if ¢> is a constituent sentence, ¢> ---+ ¢>[-k] and ¢> ---+ </>[-k] by the Principle of 

Monotonicity. Hence¢>---+ ( ¢>[-k]l\<f>[-k])· Moreover, ¢>[-k] and <1>[-k] are constituent sen

tences of the same height. It follows from the Fundamental Property of Constituents, 

that either ¢>[-k] and <f>[-k] are identical (up to possible repetition of constituents, or

der of conjunction and disjunction, and alpha-equivalence), or ¢> is inconsistent. In 

the latter case, ¢> is said to be trivially inconsistent ( cf. Hintikka [1, 2]). 

Let TL be a fluted constituent of height h, and suppose that TL is not trivially 

inconsistent. Assume further that ar( L) > 1. ( ar( L) = 1 yields monadic logic, 

the decidability of which is well-known.) These assumptions impose a significant 

constraint on the syntax ofT£. Two properties arising from this constraint, which 

will be used in Section 6, are described next. 

The first property is that the constituent Tl-h+I] is 'embedded' in every elementary 

subtree ofT£. Precisely stated, for any nonterminal a E T, 

If this property fails, then for some a E T : TL[-h(a)] f+- Tl-h(a)], in which case TL is 

trivially inconsistent. 

The second property is that elementary subtrees are 'repeated' throughout TL 

according to a certain pattern. This property is precisely stated as follows. For any 

internal a E T, .3!1' E T, such that h('y) < h( a) and 

(i) [O.y) = ([Oa)(-g(a)J)t, and 

(ii) {[O.yj): 1 ::=; j ::=; w('y)} = {([Oajh-o(a)J)t : 1 ::=; j ::=; w(o:)}. 

If this property fails, then for some a E T : TL[-g(a)] f+- Tto(a)], in which case TL is 

trivially inconsistent. 
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6 Satisfiability of fluted constituents 

Every fluted formula can be expressed as a disjunction of fluted constituents of suffi

cient depth of the lexicon of that formula. Therefore, the question of satisfiability of 

a fluted formula reduces to the question of satisfiability of a fluted constituent. The 

following theorem, which provides a decision procedure for the latter question, is the 

main result of the paper. 

THEOREM 4 A fluted constituent is unsatisfiable iff it is trivially inconsistent. 

proof: The 'if' direction is obvious. The 'only-if' direction is proved in its con

trapositive form. Let TL be a fluted constituent of height h, and assume that TL 

is not trivially inconsistent. We first define an interpretation I of L in the domain 

'D : = {a c. : (a E T) 1\ (a =J c)}. Then we show that I satisfies TL. 

It suffices to interpret the ()c. E TL, since this fixes a unique interpretation of the 

elements of L. I is defined in two parts. First, a basis for the definition is given as 

follows. 

For each a E T, define a1:c. · · · ac. f= ()c.· 

It follows that for each a E T, a1:c. · · · ac. f= [Oc.)· 

Second, the basis is extended inductively, ordered by height. The following prop

erty is to be maintained by this induction. 

For the first step, k = 0, we extend the interpretation of ()j, where 1 :S: j :S: w(c:), 

as follows. For each /3 E T, define af3 f= ()j iff ([Of3)[-h(f3)+IJ)t = ()j· Since TL is not 

trivially inconsistent, V(3 E T: (([Bf3)[-h((3)+1J)t = Bt) V · · · V (([Bf3)[-h(f3)+IJ)t = Bw(c))· 
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This follows from the first property given in Section 5. Hence Vaf3 E 'D : af3 f= 
(01 V · · · V Bw(e))· From the basis, 3a11 : a11 f= Oj. Thus the inductive property holds 

fork= 0. 

Proceeding inductively, let h(a) = k > 0 and consider Baj, where 1 :::=; j :::=; w(a). 

From the basis, a1:a · · · aa f= [Ba)· We extend the interpretation of Baj as follows. For 

each (3 E 7, if 

then define a1:a · · · aaaf3 f= Baj· Note that if (ii) fails for l = j, then the extension 

under consideration has already been made; if (ii) fails for l -=/= j, then the extension 

under consideration cannot be made without introducing inconsistency. Now since 

al:a · · · aa F [Ba), it follows that al:a · · · aa F [Ba)[-g(a)], since [Ba) ~ [Ba)[-g(a)]· 

Hence a1:0 · ··a0 f= ([Ba)[-g(a)J)t, where 8 is the suffix of a defined a= (g(a): a)8. 

Since 7L is not trivially inconsistent, by the second property given in Section 5, 

::J!1 E 7, such that h(l) < k and 

(i) (0-y) = ((Ba)[-g(a)J)t, and 

(ii) {[0-yj): 1 :::=; j :::=; w(!)} = {((Baj)[-g(a)J)t: 1 :::=; j :::=; w(a)}. 

Therefore, au··· a0 f= [B-y)· By the inductive property, 

But then 

(i) Va11 E 'D: au··· a0aiJ F ([Oal)[-g(a)J) t V · · · V ([Baw(a))[-g(a)J) t, and 
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That is, 

(i) Va(3 E v: al:e> ... aaa(3 F [Oad[-g(a)] v ... v [Oaw(a))[-g(a)], and 

(ii) for 1 :::; j:::; w(a): ::laf3 E V: al:a · · · aaaf3 f= [Oaj)[-g(a)]· 

From the definition of the extension given above, 

Notice that the inductive property now holds for the 'point' a 1:a · · · aa. 

Finally, this extension is copied to other points that satisfy [Oa) as follows. Suppose 

af31 • • • a13k f= [Oa)· For each /3 E T, if a1:a · · · aaaf3 f= Oaj, then define a131 • • • a13kaf3 f= 
Oaj· Thus the inductive property holds at height k. 

This concludes the definition of the interpretation I. It remains to prove that I 

satisfies TL. The proof is by induction on the depth d = h- k, where k is the height 

of a E T. The induction hypothesis is: 

For the basis step, d = 0, Oa is at height h. Here (Oa] = Oa, and so the induction 

hypothesis is trivially true. 

For the induction step, d > 0, Oa is at height k = h-d. Suppose af31 • • • a13k f= [Oa)· 

By the inductive property, 

By the induction hypothesis, if af31 • • • a13kaf3 f= [Oaj), then a(31 • • • a13ka(3 f= (Oaj]· 

Therefore, 

(i) Va(3 E V: a(31 • • • a(3ka(3 f= (Oat] V · · · V (Oaw(a)], and 
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COROLLARY 5 If a fluted constituent of L of height h is satisfiable! it is satisfiable in 

a finite domain! whose cardinality is bounded above by 2h card(L). 

If </> is a fluted formula, Theorem 3 states that </> is equivalent to the disjunction 

of its constituents. Moreover, the proof of Theorem 3 provides an effective method of 

transforming ¢ into the disjunction of its constituents. Obviously ¢ is satisfiable iff 

one of its constituents is satisfiable. Theorem 4 states that a constituent is satisfiable 

iff it is not trivially inconsistent. Trivial inconsistency can be decided by a finite 

number of tests on the syntax of the constituent. Theorems 3 and 4 therefore yield 

the following conclusion. 

THEOREM 6 The satisfiability of a fluted formula is decidable. 
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7 Discussion 

Theorem 6 locates the boundary between decidable and undecidable logic more pre

cisely than heretofore, putting fluted logic on the same side as monadic logic and 

homogeneous fluted logic. Quine's conjecture that PFL (and general quantification 

theory) gets its 'escape velocity' from the combinatory functors is given further sup

port. 

But fluted logic may have an importance beyond its relation to the limits of 

decidability. It may be related to natural language in a way that sheds light on 

natural language reasoning. 

Nat ural language does not contain variables. When inter-sentence linking is re

quired, anaphoric pronouns are used, but these cannot be considered simply as vari

ables (see Purdy [5] and references cited there). This observation has inspired a 

number of variable-free formal languages, whose syntax is designed to closely parallel 

that of natural language (e.g., Suppes [14], Sommers [12], Purdy [4]). However, to 

match the expressive power of predicate calculus, they incorporate devices equivalent 

to the combinatory functors of PFL, and thereby deviate from natural language. 

It was noted (in Section 3) that variables play no essential role in fluted formulas, 

even though fluted formulas are deprived of the services of the combinatory functors. 

Moreover, it appears that much of natural language reasoning is conducted within the 

constraints of fluted logic. Many examples can be found in [12]. Even the infamous 

Schubert's Steamroller (Stickel [13]) can be stated in fluted formulas. The most 

complex premise is: 

Every animal either likes to eat all plants or all animals much smaller 

than itself that like to eat some plants. 

This can be rendered by the fluted sentence: 
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Perhaps it is no coincidence that fluted logic falls close to or at the boundary of 

decidability. If this intuition is correct, one can expect to find that there exists a 

reasonably efficient decision procedure for satisfiability of fluted formulas. 
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