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Abstract 

Many applications require the extraction of spatiotemporal correlations among dynamically emergent 

features of non-stationary distributions. In such applications it is not possible to obtain an a priori 

analytical characterization of the emergent distribution. This paper extends the Growing Cell Struc­

tures (GCS) network and presents two novel (GIST and GEST) networks, which combine unsupervised 

feature-extraction and Hebbian learning, for tracking such emergent correlations. The networks were 

successfully tested on the challenging Data Mapping problem, using an execution driven simulation of 

their implementation in hardware. The results of the simulations show the successful use of the GIST 

and GEST networks for extracting spatiotemporal correlation information among emergent features of 

previously unknown distributions and, indicate the feasibility of hardware implementation for online 

use. Of the two networks, the GEST network evinced better performance in terms of the network map 

stability, feature/correlation tracking ability and network sizes evolved. 

"This work was supported in part by an NSF Young Investigator Award CCR-9357840. 



1 Introduction 

Several important and difficult problems require tracking emergent spatio-temporal correlations. This 

involves tracking correlations among useful features of time-varying data distributions, where it may not 

be possible to obtain a priori analytical characterization of the processes generating the data. Hence, tools 

used to model such distributions need to function without assumptions about the underlying distributions. 

Artificial Neural Networks (ANNs) provide such tools. In this paper, we present two ANN models for (a) 

modeling emergent distributions and (b) tracking emergent correlations among distribution features. 

Time-varying distributions arise in many stochastic physical processes such as tracking co-ordinated multi­

target movements, Brownian motion and dynamics of insect swarms [1). Usually, the aggregate temporal 

behavior of similar groups of points in the signal space (perhaps modes of the distribution) is of interest, 

rather than the behavioral evolution of individual points. Thus, a system to track these distributions must 

extract such modes or aggregates of similar data points in the signal space online. Unsupervised clustering 

algorithms (including ANNs) can be used for modeling such time-varying aggregates. Temporal behavior 

of the aggregates can be characterized in various application-specific ways. In this paper, we use a widely 

applicable measure, obtained in terms of temporal correlations in the evolution of the aggregates in the 

Signal Vector Space (SVS). 

A prime illustration of emergent spatiotemporal dynamics is seen in the Data Mapping problem [2, 3). 

This problem requires the mapping of disjoint sets of data to processors in a multiprocessor system, such that 

off-processor data accesses are minimized [3). The mapping or migration of data requires online modeling of 

the distribution of references to data and tracking temporal correlations in the references. Data Mapping 

is known to be an NP-complete problem since it can be viewed as a graph partitioning problem [4) or as 

resource allocation problem [5] and hence one can only hope to obtain good 'suboptimal' solutions. ANNs 

have been used primarily as a decision making tool in their application to Data Mapping, for optimizing 

the allocation of computations on data to processors, in minimizing an objective function. In contrast, this 

paper develops and uses ANNs to serve as online modeling tools for capturing emergent data correlations 

among concurrent computations. The emergent correlation information is also described in terms of data 

locality or computational locality. 

An unsupervised algorithm is needed for modeling the emergent (and previously unknown) distributions 

of data-aggregates in processor references. Among unsupervised ANNs, Fritzke's Growing Cell Structures 

(GCS) network in [6, 7) is more promising for such applications, primarily because of its non-stochastic 

learning dynamics and its adaptive architectural dynamics (network growth and shrinkage). The superior 
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performance of the GCS network (7] over other unsupervised ANNs such as Kohonen's SOM [8] can be traced 

to these two features. Further details are provided in Section 2. However, the GCS algorithm contains no 

provisions for tracking the emergent temporal correlations in the evolution of data-clusters. This paper 

presents two new networks, viz. the GCS Instantaneous Spatio-Temporal (GIST) network and the GCS 

Epochal Spatio-Temporal (GEST) network, as well as their learning algorithms, and demonstrates their 

success in learning the spatiotemporal dynamics on the challenging Data Mapping problem. The GEST 

network combines the Hebbian learning algorithm with the self-organized learning methodology. The GIST 

and GEST networks are collectively referred to as the GST network in the remainder of the presentation. 

The rest of the paper is organized as follows. Section 2 provides a survey of the background for the current 

efforts. Section 3 provides details of the GST network architecture. Subsequently, Section 4 describes the 

spatial mapping dynamics of the GST network. Section 5 then formulates the instantaneous and epochal 

methods for capturing the temporal correlations in emergent features within the GIST and GEST networks. 

The data mapping problem is defined in Section 6, and the use of the GST network in solving this problem is 

detailed in Section 7. Sections 8 and 9 describe the data mapping problem in relation to three representative 

application programs and the GST network hardware implementation model assumed. The simulation results 

using the GST network in these three cases are presented in Section 10. Finally, Section 11 presents the 

conclusions derived from the experiments. 

2 Background 

Data mapping and similar applications in other fields, such as pattern recognition and adaptive control, 

are commonly concerned with the decision-making problem of allocating/partitioning/classifying incoming 

signals or data into one of many decision classes while minimizing an objective or cost function [4, 9]. 

Usually, decision-making systems have a preprocessing stage for performing feature-selection (and consequent 

dimensional selection) using incoming signals to ease the decision-making task. This study, by contrast, is 

focussed on the use of ANNs for modeling (i.e. feature extraction/selection) rather than decision-making. 

The most common technique in the literature performs feature-selection by minimization of an entropy 

measure derived from a priori probability distributions of the fixed decision-classes (9]. 

The Karhunen-Loeve expansion offers an alternative strategy in situations where the fixed decision class 

distributions are not known a priori (10]. Another class of techniques involve functional approximation of so 

called ''feature-functions" using stochastic methods or kernel-approximation techniques (9]. An interesting 

variant of such stochastic methods is the Self Organizing Map ANN (SOM) (8], which performs automatic 
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feature-selection and dimensional-selection while formulating spatial maps of the unknown distributions. 

There is no strict statistical analog for the SOM network since it maps from a discrete or continuous high­

dimensional space to a discrete low-dimensional space of feature-clusters [11]. 

However, all the aforementioned techniques for feature-selection implicitly assume stationarity of the 

underlying decision class distributions. In the class of applications being considered in this study, there 

is no a priori knowledge of the decision class distributions or their stationarity properties. Hence, the 

feature-selection technique must be able to adaptively remap nonstationary distributions online. For such 

applications, it is most natural to use non-parametric artificial neural networks whose architecture is adapt­

able, such as the GCS network [6], for performing automatic feature-selection and for mapping non-stationary 

distributions. 

The GCS network has two advantages over the Kohonen Map. Firstly, its architectural adaptivity en­

ables it to remap temporally-varying unknown distributions quickly. There is a fair amount of research 

into network-architecture construction using various approaches such as the analytic approach in the Cas­

cade Correlation algorithm [12], stochastic optimization approach for pruning [13], genetic algorithms for 

evolutionary optimization in network construction [14] as well as the GCS method [6]. The simplicity of 

the GCS algorithm furthers its appeal among all these algorithms and is the second advantage of the GCS 

algorithm. The simpler non-stochastic GCS algorithm uses fixed network-parameter values, eliminating the 

need for a network-parameter cooling schedule during stochastic approximation. The time-varying nature 

of the distributions being modeled complicates the formulation of cooling schedules for approaches based on 

stochastic approximation. Other performance comparisons are provided by Fritzke in [7]. 

The use of ANNs for temporal processing can be classified into two categories. The first category uses 

variants of feedforward ANNs incorporating temporal filtering, feedback and error-correction learning for 

prediction tasks. The FIR Multilayer Perceptron [15] variant of the Backpropagation algorithm [16] and the 

Real Time Recurrent Network [17], for example, are commonly used in predicting values of system output­

parameters based on the past history of such parameter values. The second category uses Hebbian learning 

and its variations for learning, recognition and recall of spatial patterns using temporal correlations among 

pattern-features which are determined a priori. An example application is character recognition using an 

instar-outstar network-mesh [18] or the Hopfield network mesh [19], where the neurons representing the 

image pixel-grid constitute the features of various characters. Other examples of such networks include the 

avalanche matched-filter and temporal associative memory among many others [20]. Usually, the network 

architecture constitutes an implicit and static determinant of the features in feature-space in such Hebbian-
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learning networks. 

The class of problems studied here produces temporally variable features (dynamically changing data­

clusters) and requires the determination of temporal correlations in the evolution of these features. Hence, 

the architecturally adaptive GCS network is enhanced for capturing temporal correlations in the spatial 

feature-clusters as follows: 

• The GCS spatial mapping dynamics is enhanced for remapping and tracking features in emergent 

non-stationary distributions and, 

• Additional temporal connections is used to learn emergent correlations in the evolution of features 

using the Differential Hebbian learning dynamics [21, 22, 23]. 

There could be many applications for such a network combining the Hebbian learning schema with the un­

supervised feature-mapping dynamics of architecturally adaptive ANNs. The data mapping problem solved 

in this study is one such application. Another example would be in learning production rule probabili­

ties of stochastic grammars in syntactic pattern-recognition [24]. In such grammars, the emergent features 

would map to linguistic non-terminals and the temporal-correlations among features would translate to the 

production-rule probabilities of formulating strings using the non-terminals. Further exploration of this 

application is left for future work. 

3 Spatia-Temporal Growing Cell Structures 

This section describes the network architectures of the GIST and the GEST networks, and highlights the 

extensions made to the basic GCS architecture. 

The STGCS network is a 2-dimensional network forming planar maps and the initial topology is a 2-

dimensional triangle. Neuron addition and deletion during self-organization must always result in a network 

topology consisting of triangles as in the 2-d GCS network. Figure 1 illustrates the basic topology labelled 

[A], the topology after neuron addition labelled [B] and the topology labelled [C] after neuron deletion. 

Note that the deletion of N2 would leave Nl connected only to NS and would not form a complete triangle. 

Since the topology must always consist of triangles, Nl must consequently be deleted as well. Inputs to the 

network are simultaneously fed to all neurons via weighted input lines labelled W 1 as shown in figure 2[A]. 

The STGCS network, in addition, connects every neuron to all neurons by weighted, directed lateral 

temporal connections, as shown in Figure 2[B]. The lateral weight W;i, indicates the connection from neuron 

j to neuron i and records raw measures of the emergent (pairwise) temporal correlations in the activations 
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N4 

Basic STGCS Network: 

[A] 

~etwork After Deleting N 
(and consequently Nl) 

[C) 

N1 N2 

etwork After Adding N6 

[B) 

Figure 1: GIST and GEST Topology and Architectural Dynamics 

of neuron i and neuron j (Wij =F Wji)· Thus each neuron has three kinds of connections associated with it, 

viz. the input connection, the topological connection and the lateral temporal connection as illustrated in 

Figure 2. A Signal Receptivity Meter (SRM) records the number of hits to each neuron over an epoch as 

in figure 2[B). The SRM is an enhancement over the Signal Frequency Counter (SFC) ofthe GCS network, 

which improves network stability during neuron deletions. 

The next two sections describe the spatial and temporal dynamics of the GIST and the GEST networks. 

The spatial dynamics map the emergent data-aggregate or data-cluster distributions in the signal space and 

are common to both the GIST and GEST networks. The temporal dynamics track the correlations in the 

evolution of such clusters and differ for the two networks. In what follows the two networks will be jointly 

referred to as the GST network, unless one or the other is explicitly specified. 

4 GST Spatial Mapping Dynamics 

The GST spatial mapping dynamics position neurons at cluster centers in the input signal space. There 

are two modes of GST network operation: the training mode and the production mode. In the training mode, 

the network learns an approximation of the time-varying distribution offline, using training data. During 

the production mode, the approximate mapping is continually refined online using actual incoming data. 

Network performance parameters, evaluated at epochal checkpoints, help decide if the network needs offline 

retraining. The training-set size during a training phase determines the epoch length during the subsequent 

production mode of operation in the GIST network. In the GEST network, however, the production mode 
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[A] 

----ISA 
3-dim Input Vector TopologicalConneclim 

---- ISAN 
Input Connection 

-------.;. IS A 
~g:al 

[B] 

Figure 2: GIST and GEST Networks: Sub-figure [A] illustrates: (a) Inter-neuron topological connections 
within the network-plane, {b J Input connections to all neurons labelled WI. Sub-figure [B] illustrates: (a) 
Input connections to neuron i, (b J Lateral connections of neuron i to all neurons in the network, (c) Neuron 
SRM. 

epoch length is dynamically determined, as outlined in Section 7. Both the training and production modes 

of operation involve the following basic operations in the GST network. 

1. Let A be the set consisting of all the neurons in the GST network. Let WI to be the set of all incoming 

· -I_ -I -I · weight vectors Wi - (Wil, ... , WiN), z E A. 

2. Let ii be drawn from the emergent temporal distribution of the N -dimensional Signal Vector Space 

SVS (ii E SVS). 

3. Determine, for a given input signal ii, the Quantization Error (QE) of each neuron based on which the 

winner neuron is chosen such that: 

II w~in - ii II= ~T II w/ - ii II 

where II • II indicates the Euclidean norm (QE) and W~in denotes the winner neuron's input weight 

vector. 

4. The set, Neigh, of all neighbors of the winner neuron consists of all neurons directly connected to the 

winner neuron in the triangular topology of the GST network. Adapt the input weight vector W~in of 
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the winner and those of its neighbors cwj) according to: 

(1) 

1Jwin and 1JN are adaptation constants (learning rates) for the winner and its neighbors, respectively1 . 

5. Let T; be the SRM value of the neuron i E A. The SRM update rule for the winner and its neighbors 

lS: 

D.Twin = 1.0 and 
~I ~ 

D. T·- II wwin- vII j E Neigh 
1 - II wf- vii ' 

(2) 

6. All the r values in the network are decremented by a fixed fraction a to prevent unbounded growth: 

(3) 

7. All simulations in this study used the following parameter values, adapted from Fritzke's simulations 

in [6): a = 0.01, ~B = 0.05 and ~N = 0.05 x ~B· Variations in the choice of these parameters do 

not affect the quality of the resulting maps unduly. Fritzke's parameter settings were determined 

empirically to produce a reasonably fast solution. 

4.1 GST Performance Measures 

The averaged neuronal QE of a neuron i E A is defined to be the statistical mean of its QEs over all inputs 

mapped to it (i.e., input signals for which i was the winner) over an epoch. Map quality is measured by 

the Averaged Map QE (AME) which is the network average of all averaged neuronal QEs. In the training 

mode, the network is trained to map the offline exemplar SVS distribution until the AME decreases to a 

preset upper bound. The efficacy of individual neuronal mapping is estimated by the Deviation in the AME 

(DME). The DME is simply the standard deviation of the averaged neuronal QE distribution, where the 

distribution-mean is the AME value. The GST network is said to have converged on the training set during 

the training phase, when the network AME and DME satisfy their bounds under "positional equilibrium" 

(to be defined in Section 4.2). 

Another performance criterion is the network sizes evolved using the GST algorithms. Finally, the network 

disregards incoming signals from the SVS during training mode. The sampling efficiency of the STGCS 

1 The update rule is X new= Xold + C:..X. 
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network measured by the ratio 

ff No. of Inputs Processed 
SampE = --------:-~--:--=---­

Total No. of Inputs 

indicates the network efficacy in mapping and tracking changes in the emergent SVS distributions online, 

without resorting to offline retraining. 

4.2 GST Architectural Dynamics 

The GST architectural dynamics relates to the structural adaptations in the network, i.e., the addition 

and deletion of neurons in the network as illustrated in subfigure [A] in Figure 1. In what follows, the 

original GCS addition and deletion dynamics are briefly described. Subsequently, extensions to the GCS 

dynamics incorporated in the GST networks are described. The GCS network positions neurons such that 

the preset network DME bound is achieved while satisfying the AME bound. The GCS dynamics accomplish 

this in two ways: 

1. Periodic addition of a neuron, after every r a input presentations. The new neuron is introduced as a 

topological neighbor of the neuron with the highest average QE in the GCS network. 

2. Periodic deletion of all superfluous neurons, after every r d presentations. Neurons become superfluous 

when their relative SFC values, r;/_L) Tj ), are less than a preset threshold, where Tj is the jth neuron's 
jEA 

SFC value. 

In equilibrium, for a given static input distribution and fixed network architecture, the input weight vector 

(W1 ) of each neuron oscillates about the centroid of the data samples mapped to it. In the simulations 

presented here, the GST network is considered to be in positional equilibrium if 6AM E over the current 

interval is less than 10% of 6AM E over the previous interval. Each interval refers to fa or f d presentations 

and equilibrium is usually achieved over several such intervals. In the GCS network, interval-lengths smaller 

than the time needed for achieving equilibrium produced unduly large networks. This problem was solved, 

in the GST network, by allowing neuron addition/deletion only under conditions of positional equilibrium. 

The GCS deletion dynamics required the deletion of superfluous neurons as well as their neighbors possibly 

removing useful neurons in areas of high signal density in the SVS. The main reason for this was the SFC 

update rule which rewards only the winner neuron. This problem was solved in the GST network by replacing 

the SFC with the SRM. According to the SRM Update Rule (equation 2), the winner shares its win with 

its neighbors in proportion to their 'receptivity' to the input (quantified by the ratio of their QEs); hence 
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the name Signal Receptivity Meter. In doing so, the winner indirectly increases chances of its survival by 

sharing its "win" {increment in r) with its neighbors which may be in areas of low signal density2 . As a 

further precaution against undue map destruction and instability, the GST dynamics allow deletion of only 

one neuron (and resulting topologically dangling neighbours) every r d presentations. This is in contrast 

with the GCS dynamics which require the deletion of all superfluous neurons and the resulting dangling 

neighbours. 

4.3 GST Spatial Mapping Dynamics Summary 

In summary, the basic GST dynamics differ from the GCS dynamics in three respects. The W1 adaptations 

continue during the production mode enabling refinement of training mode maps. The SRM values of both 

the winner and its neighbors are incremented. The SFCs are replaced by the SRMs in the GST network. 

Further, there are three differences between the training and production phases of operation in the GST 

network dynamics. The Wii updates occur only in the production phase. Training phase WI adaptations 

occur offline for a fixed set of training vectors while production phase WI adaptations occur online in response 

to incoming data. Both neuron addition and deletion are allowed in the training mode while only neuron 

deletion occurs in the production mode. 

These alterations to the GCS dynamics allow the GST network to quickly converge to stable maps of (and 

also track) non-stationary distributions online. 

5 GST Temporal Mapping Dynamics 

The dynamics described in the previous sections produce spatial maps of the underlying distributions in 

the SVS. This section details the production mode temporal dynamics involving: (a) lateral weight updates 

and (b) computation of temporal correlations in neuronal activations. A neuron i is said to be activated 

at timet, if it is the winner, denoted Win(t), for the input at timet (i.e. i = Win(t)). The temporal 

correlation of a neuron's activations is a measure of the extent to which its activations are predicated upon 

the activations of some or all neurons in the network (including itself) over a prespecified interval of time. The 

instar lateral weights impinging on a neuron record the measure of that neuron's activational correlations over 

the prespecified correlation interval. Such temporal correlations in neuronal activations reflect correlations 

in the evolution of data aggregates or clusters in the SVS. 

Two algorithms are presented in this section, viz., the instantaneous method defining the GIST network 

2 This bears a resemblance to Richard Dawkins' explanation for apparently "altruistic" behavior in biological organisms (d. 
The Selfish Gene) 
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and the epochal method defining the GEST network, to capture activational correlations via update rules 

for the lateral weights. Both methods are specified using a tuple (A, cll) representing the Correlation Interval 

and the Correlation Update Rule respectively. In the specification, ci> specifies the lateral weight update rule 

at the end of all neuronal activations within the correlation interval [t -A, t]. At the end of a correlation 

interval, each neuron i computes its total probability of activation (P;) with respect to all neurons using its 

lateral weights, as described in Section 5.1. 

The total probability (P;) of neuron i is defined to be the Signal Utility of the cluster of input signals in 

the SVS mapped to this neuron. The Signal Utility measures the usefulness or contribution of this cluster 

toward the overall temporal evolution of the emergent SVS distributions. 

5.1 Signal Utility Determination 

This section details the computation of the total probabilities, given the network W;j values. The local 

probability of signals in the data-cluster mapped to neuron j in the SVS is measured by the ratio Pi, where: 

(4) 

The correlation of neuron i's activations with the activations of neuron j, normalized with respect to all 

correlations predicated upon j's activations is given by P(ilj) where: 

(5) 

P(ilj) is the conditional probability of the evolution of cluster i with respect to the evolution of cluster j in 

the current SVS. The conditional probability P(ilj) together with the a priori probability Pi yields the total 

probability P;. From the theorem of total probability (25], we obtain the Signal Utility of cluster i to be: 

P; = L(P(ilj) x ·f>i) 
j 

Substituting for P(ili) produces an equation purely in terms of the GST network parameters: 
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where the total probability is computed from the neuronal SRM and lateral weight values of the network. 

Both the GIST and the GEST networks compute the Signal Utility using this formulation. The primary 

difference between the networks is in their lateral weight update rules which are the subject of Section 5.2 

and Section 5.3. Subsequently, Section 5.4 compares the two networks and their temporal dynamics. 

5.2 GIST Network: Instantaneous Method 

The instantaneous method dynamics for lateral weight updates in the GIST network is specified as follows: 

• A = 1. Thus, successive input signals at times t- 1 and t defining the correlation interval, correlate the 

successor-neuron's (i = Win(t), i E A) activation with the activation of the predecessor-neuron (j = 

Win(t- 1), j E A). In effect, the instantaneous method records the first-order pairwise correlations 

among neuronal activations. 

• Given A, i and j as above, <I> defines the Wij update to be b. Wij (t) = 1.0. 

The lateral weights are normalized at the end of every 100 epochs by dividing each Wi; by ~ax(Wu ). All 
I,JEA 

lateral weights then have magnitudes less than unity, and subsequent <!>-updates (increments of unity) erase 

previous correlation information. The normalization thus accomplishes two tasks: 

• It prevents unbounded growth of the Wij weights. 

• Lacking any means for recording decreases in correlation, it serves to erase outdated correlation infor-

mation and forces the network to relearn the correlations periodically. 

Thus, first-order correlations among pairs of neurons are continuously quantified by the instantaneous 

frequency (recorded in the lateral weights) with which the predecessor-successor relationship is established 

between them. These raw frequencies are normalized into relative frequencies (P(ilj)) by equation 5. The 

total probability (Pi) of each cluster i ( i E A), is the probability of its evolution over the correlation interval 

given its normalized first-order correlations captured in P(ilj)· The total probability of a cluster's evolution 

can be seen as a measure of its utility in defining the emergent overall distribution in the SVS and is taken 

to be the cluster's Signal Utility in the GIST network. 

5.3 GEST Network: Epochal Method 

The epochal method is inspired by the Drive Reinforcement Theory (DRT) of differential Hebbian learning 

developed independently by Harry Klopf [22] and Bart Kosko [21]. In the DRT, inputs arriving at a neuron 

are termed the pre-synaptic activations, while the output after processing the inputs via lateral weights 

is termed the post-synaptic activation. The DRT modifies lateral weights to reflect correlations between 
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changes in the current post-synaptic activation and the history of changes in the pre-synaptic activations. 

A re-examination of equation 6 reveals it to be an activation equation where P; represents the post-synaptic 

activation and the P(ilj) terms define a squashing function acting on the Pi pre-synaptic activations. In the 

epochal method, lateral weight updates capture correlations between changes in P; (at the end of the current 

correlation interval) and the history of changes in p over several recent correlation intervals. 

The epochal method temporal dynamics of the GEST network is specified below: 

• The correlation interval A is defined as follows: 

(7) 

where f represents the statistical mean of all the SRM values in the network and u r represents the 

standard deviation of the SRM values. This value estimates the number of inputs required to enable 

each neuron to be the winner at least once in one correlation interval, based on the statistical distri-

bution of hits to neurons estimated by the T values. The variable correlation interval (A ~ 1) allow 

the lateral weight updates to adaptively capture higher-order pairwise correlations as well. 

• Given A, the lateral weight update rule (<I>) at the end of the correlation interval [t - A, t], is defined 

as follows: 
I< 

<I>: b.W;j(t) = b.P;(t) x 2)1 W;j(t- nA) I x b. Pj(t- nA)) 
n=l 

In all experiments presented here, the length of history chosen was K = 2. The lateral weight update 

correlates changes in the post-synaptic activation (b.Pi(t +A)) at the end of the current correlation 

interval, with the history of changes in pre-synaptic activations over the past two correlation intervals. 

The history of pre-synaptic activations values and lateral weights values over K is maintained using 

tapped delay lines on the neuronal SRMs and lateral weights. A positive correlation indicates that 

the (total probability of) evolution of data duster i has an increased correlation with (the a pnon 

probability of) the evolution of data cluster j and a negative correlation indicates otherwise. 

Given the updated lateral weights that capture higher-order correlations in neuronal activations, the GEST 

network computes the Signal Utility as defined in Section 5.1. The use of higher-order correlations smoothes 

high-frequency variations in the correlations and extracts the long-term low-frequency correlations in neu-

ronal activations. Thus, the GEST network's Signal Utility expresses an evolving cluster's long-term corre­

lations with the evolution of other clusters in the SVS. For a more comprehensive discussion of the DRT 

12 



update rule, the interested reader is referred to [22] or [18]. 

5.4 GIST vs. GEST: Temporal Dynamics Comparison 

The GIST network (instantaneous method) dynamics are simpler to understand and implement than 

the relatively sophisticated GEST network (epochal method) dynamics. One difference between the two 

dynamics is the A value from which they derive their names. The second difference lies in the network features 

being correlated. GIST network dynamics implicitly correlate first-order (successive) neuronal activations, 

whereas GEST dynamics implicitly correlate higher-order changes in probabilities of neuronal activations as 

well. 

The GEST network has two distinct advantages over the GIST network. Firstly, the GEST dynamics use 

higher-order correlations in changes in P; and p to smooth out high-frequency noise. Potentially, therefore, 

the GEST network Signal Utility values express low-frequency long-range variations. Secondly, the GIST 

dynamics do not explicitly decrement the lateral weight values (Wij ), and thus, large P; values do not decay 

at times of low dependencies. The GEST dynamics correlate changes in (pre- and post-synaptic) activations 

and thus effect both increments and decrements in the lateral weights to automatically solve this problem. 

Both the GIST and GEST dynamics assign the neuron total probability (P;) as the Signal Utility value of 

all input signals mapped to neuron i. The P; computation involves the generation of P(winli) and Pk values. 

The latter values are recomputed at every presentation, but extraction of P(ili) differs in the two networks. In 

the GIST network, only P(win(t)IWin(t-1)) changes for each input signal requiring recomputations only at the 

winner neuron for deriving its new Signal Utility. In the GEST network there are no recomputations within 

a correlation interval, but a network-wide P(ilj) recomputation is required at the end of every correlation 

interval. 

The weight update rule in the GIST dynamics is a simple increment, whereas the GEST weight update 

rule demands more bookkeeping (taps on neuronal p and W;i) as well as increased computation. Thus, 

GEST dynamics are computationally tractable only ifthe network sizes are small (requiring fewer taps), and 

the A intervals are large enough to offset the periodic network wide P(ili) recomputations. 

6 GST Application: Problem Formulation 

There has been a growing interest in the use of neural networks for solving diverse systems-related prob­

lems in modern computer systems. For example, at the architectural level, a Backpropagation network is 

evaluated in [26] for use as an alternative cache-replacement policy. At the operating system level, a Back­

propagation network has been used for automatic allocation of computational resources in a heterogeneous 
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system to service incoming tasks in [27]. Similarly, comparator networks have been used in [28] for the same 

purpose. At the runtime-systems level, the PARTI system [2] uses the Hopfield-Tank network for suboptimal 

partitioning of data-dependancy graphs to achieve computational locality and load balance. All these efforts 

use neural networks as decision-making tools for optimization. It is generally known that there are faster 

decision-making tools which outperform ANNs and hence this study does not focus on this issue or use ANNs 

for optimization. 

Rather, the GST network is used for modeling data-locality online in solving the data mapping problem. 

By online, it is meant that the GST networks operate concurrently with the ongoing application program 

execution. The following characterizing assumptions about computer systems and programming styles are 

made in formulating the problem: 

• It is assumed that the computer system is a multiprocessor in which all processors execute the same 

set of instructions on different data elements (SPMD programming model). 

• Memory in the system is distributed into geographically separated modules associated with processors 

in the system (Distributed Memory system). 

• Processors are assumed to have direct access to data resident in remote-memory modules (Global 

Address Space model). The cost of access is higher for data in remote modules than local modules. 

• Every data element is owned by one processor which performs computations on it ("Owner Computes" 

rule). 

• Computation on a data element at every processor is abstracted into the sequence of memory accesses 

(or memory references) for other data elements and such references to other data elements (resident 

locally or remotely) during ongoing computation define data-dependancies. 

Figure 3 illustrates the computational environment assumptions listed above. In data mapping, the data­

dependency information is needed for the allocation of computations on data to processors. The problem of 

modeling temporally emergent dependencies (data locality) is solved by determining temporally emergent 

probabilities of correlations in references to data elements. 

Memory is abstracted as consisting of indivisible and contiguous Atomic Memory Units (AMUs). Data 

elements are assumed to be embedded within such AMUs and memory references generated during compu­

tations address such AMUs as illustrated in Figure 3. Each AMU has a vector of four descriptors associated 

with it. The fields in the vector are the AMU Tag for uniquely identifying each AMU, the AMU Owner 
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Processor Reference Stream 
(For Processor# 1) 

Signal Vector Space 
(SVS) 

Figure 3: Distributed Memory Multiprocessor system: AMU Processing Details 
A P processor-memory system is shown. Squares in local memory grids corresponds to AMUs. Reference stream of 
processor# I illustrates: (a) Local Reference to AMU1 and AMU2 and (b) Remote reference to AMU9 (resident in 
Memory Module #P). The CMS at processor# I illustrates mapping of AMUs into Processor Planes in the CMS. 
GST network maps emergent AMU clusters and learns the correlation strength between them. Refer text for further 
details. 

for tracking AMU ownership, the AMU Utility descriptor for recording the probability of local references 

to the AMU and finally, AMU Work for storing the computational workload of each AMU. The first three 

descriptors are used to capture the emergent locality. Hence, all AMUs reside in a three dimensional SVS 

as illustrated in Figure 3. Ongoing local computation induces changes in AMU descriptors producing non­

stationary SVS distributions at each processor, consisting of planar clusters shown by the shaded spatial 

envelopes. The planes arise due to the use of fixed integer processor numbers to specify AMU Owner values. 

The SVS distribution is thus a spatial map of the current local working set of the processor [29]. 

Variations in AMU Utility are due to increases (decreases) in the frequency of references to various AMUs 

as they are inducted (expelled) from the local working-set. These values are used to decide where AMUs 

are best relocated in order to reduce the number of remote-memory references. The relocation reassigns 

ownership of the data, thus incrementally correcting computational load gradients (based on AMU Work 

values) to minimize computation time for solving the data mapping problem. Thus, the problem of modeling 

emergent data-dependencies consists of two components: 

• Each processor must track the evolving subset of AM Us needed for the ongoing local computation. 

• The measure of need computed should reflect the usefulness of the AMU at each processor for deciding 
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data ownership. The Signal Utility of each AMU, measuring its correlation with other AMU s referenced 

locally, satisfies this criterion. 

7 GST Application: Solution Overview 

A GST (either GIST or GEST) network is used at each processor, to model each local working-set by 

capturing spatial maps of AMU distributions in the local SVS from the processor reference streams. The 

Signal Utility value of the duster to which each AMU is mapped is assigned as the AMU Utility value for the 

AMU. Offline training sets for networks are derived from past processor references and the current contents 

of local memory. 

In this context, it is reasonable to say that pj (a priori probability of neuron j activation) provides an a 

priori frequency-based probability measure, that AMU-cluster j contains AMUs of the current local working 

set. Also, P(ilj) (conditional probability of neuron i activation) can be viewed as the conditional probability 

that references to AMUs in cluster i are correlated with references to AMUs in cluster j. Thus, P; is naturally 

interpreted as the probability of the presence of references belonging to cluster i in the reference stream. In 

other words, it connotes the utility of (or 'need' for) this cluster in the local working set. Pi, recomputed 

every A presentations, is assigned as the new AMU Utility value for all AMUs mapped to cluster i. 

Further, under the constant decrementation in equation 3, each Ti in the GST network can be assumed 

to express a time-averaged frequency of reference to AMUs belonging to AMU-cluster i. Thus, the sum 

of all network Ti values is an approximation of the size of the local working set. This value (which is the 

numerator term in equation 7) is the size of the training set (and epoch-length in the subsequent production 

mode of operation) in the GEST network. Hence, variations inGEST A values provide a good indication of 

the variations in working set sizes. In the GIST network, however, the size of the training set is fixed at 512 

exemplars in all experiments. 

The network is required to distinguish between clusters resident on different processor planes in Figure 3 

for decisions regarding data ownership. In the worst cases, these clusters may be distinguished only by 

their AM U Owner values. Thus the GST network mapping resolution should exceed Tota}Proc to distinguish 

between AMUs owned by consecutively numbered processors. Also, the sample variance over an epoch 

indicates required mapping resolution. Hence the AME upper bound is set according to: 

AMEbound =min( ~p ,uv), v E CMS 
Tota roc 

where Uv is the standard deviation of the AMU distribution in the local SVS. The results presented later 
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are for applications using 4, 8, 16, 24 and 32 processors. 

The network is constrained to always maintain a DME value less than 50%. If the DME > 50% and the 

AME > AMEbound during the production mode, then the network is retrained. Neither the map AME nor 

DME are minimized as such, but are kept within bounds. The bound of 50% was determined empirically to 

produce relatively smaller network sizes (between 20 and 100 neurons) in the simulations. This study aims 

to provide an empirical proof-of-concept for using the GST network for capturing emergent locality. The 

quality of results obtained using a DME of 50% was sufficient for this purpose. Further tuning of parameters 

for optimizations is left for future studies. 

The sampling efficiency of each local GST network is redefined to be the ratio: 

No. of References Processed 
SampEff = Total No. of References Produced 

and is computed every 0.3 seconds of simulation clock time. 

8 GST Application: Testbed 

Three applications were used to test the GST network: (1) the Barnes-Hut algorithm for a Monte-Carlo 

N-body simulation of interacting galaxies (30, 31, 32], (2) the Unstructured Mesh kernel for an Eulerian 

solver [2, 33] and, (3) "WaTor", an ecological simulation of sharks and minnows in a toroidal ocean (34, 

35]. The primary goal was to evaluate how well computational locality was maintained or achieved by the 

proposed system. The three applications chosen were representative of the range of locality flux normally 

encountered in parallel programs. The unstructured mesh simulation exemplifies applications with static 

locality characteristics, the N-body simulation typifies slowly changing localities for fixed dataset sizes and 

WaTor exhibits rapidly fluctuating localities among slowly varying dataset sizes. 

The dataset for each of the 4, 8, 16 and 24 processor runs of the Unstructured Mesh application consisted 

of 2800 vertices and 17,377 edges, and was executed for 50 iterations. The 8 processor N-body simulation 

run involved 8192 stars, while the 16, 24 and 32 processor runs involved 16384 stars. The simulation was 

run for 10 iterations. Finally, the WaTor simulation parameters included a 200 x 75 ocean grid with 5000 

sharks and 1563 minnows. The minnow and shark breeding ages were 3 and 10 iterations respectively and 

the shark starvation age was set at 3 iterations. The simulation was run for 10 iterations unless otherwise 

indicated. 
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II GST Activities Co-Processor Execution Speed II 
Training Vector Generation (Trvect) 7 KSRl cycles 
Snoop Vector Generation (Tsvect) 62 KSR1 cycles 
Input Vector Quantization (Tquant) 10 KSR1 cycles 
Lateral Weights Update (TIM) 34 KSR1 cycles 
Lateral Weights Update (TEM) (n:.! + 30n) KSR1 cycles 
Neuron Addition (TAdd) 100 KSR1 cycles 
Neuron Deletion (TDel) 200 KSRl cycles 

Table 1: GST Simulation Timing Parameters. n in the TEM timing refers to the network size. 

9 GST Application: Simulation Model 

We postulate the use of an on-chip GST coprocessor unit per processor in the multiprocessor system as 

illustrated in Figure 4. The coprocessor is a functional unit executing concurrently with the main processor, 

which could be implemented using synaptic parallelism with EIIE pipelined functional units as in [36]. The 

timings for the main GST activities is given in Table 1, and have been derived from simulations on the KSRl 

and results in [37, 38, 36]. 

An execution driven simulation was implemented on the KSRl [38] to simulate concurrent execution of 

the GST coprocessor and the main application. A GST thread was spawned for each application thread 

and run concurrently on a dedicated processor. Each application thread's AMU references were buffered 

along with the inter-reference times and communicated to the corresponding GST thread, which regulated 

its actions as per Table 1 and the inter-reference times. GST threads periodically check load-levels of their 

application threads and the remote AMUs referenced in the recent past captured in the GST neuron memory. 

The load-levels are compared locally and at the current owner of each AMU. If the local load is less and 

the local AMU Utility is greater, the AMU ownership is acquired by the local thread and its AMU Owner 

descriptor updated. Thus, AMU transfers try to balance emergent load and locality gradients in the system 

via a task PULL mechanism. 

Finally, each WaTor application thread's task partition consists of minnows distributed in the toroidal 

ocean mesh. The minnow movement and survival dynamics loop (minnow loop) requires near-neighbor inter­

actions. Remote references would be minimized if each thread's partition consisted of neighboring minnows, 

thus maximizing local references to yield good locality characteristics. Hence, a measure of execution locality 

achieved is the average Euclidean distance (in the ocean) separating minnows within each task partition. 
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ANN CD-PROCESSOR r---------------------

(B) (C) 

Desc_STORE 
(Store newly computed AMU Utility) 

Figure 4: Architectural Support: Coprocessor Overview, (A) = AMU descriptor-SVS Mapping Logic, (B) 
= CoProcessor Buffers, (C) = GST Processor Unit 

10 Simulation Results 

The primary goal of the simulations was to evaluate how well the proposed system was able to maintain 

computational locality and achieve load balance in the face of an initial skewed load distribution. First, 

the performance of the GST network is described in Section 10.1. Subsequently, Section 10.2 presents the 

execution performances for only the WaTor application due to space limitations. 

10.1 GST Network Performance 

In this section, we examine the network sizes evolved and the sampling efficiency of the GST networks in 

the three applications. 

10.1.1 GST Network Sizes 

GST networks of widely varying sizes were evolved, underscoring the non-stationarity of the SVS dis-

tributions and the utility of an architecturally adaptive ANN. For example, in the GIST network runs of 

the WaTor simulation, the network sizes varied from 120 neurons (thread 15 in the 24 processor run) to 45 

neurons (thread 2 in the 4 processor run), as seen in Figure 5. The network sizes in the GEST network runs 

of the WaTor simulation (shown in Figure 6) were smaller, ranging between 5 and 20 neurons. 

The reason for larger GIST network sizes is the large fixed lengths of the offline training epochs mentioned 

in Section 7. The large training set sizes induced large GIST networks which tracked the state of the entire 

local memory including the local working set. However, the working set size estimates used as the offline 

epoch sizes induced GEST networks which tracked only the emergent working set. The variations in the 
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Figure 5: WaTor (15 iteration run) :: GIST Network Sizes 

--- Proc24::Thread15 

----- Proc16::Thread0 

- -- --- · · - Proc8::Thread3 

- - - - - - · Proc4::Thread2 

Procx::Thready => GIST network size for Application Thread#y in an x processor run 

Correlation Interval lengths, plotted in Figure 7, indicate the variations in working set sizes (see Section 7). 

The large initial values always decreased to working-set sizes of:::::: 25 AMUs and hence, GEST network sizes 

were correspondingly smaller than the GIST networks. 

The GEST network runs show that adaptive Correlation Intervals successfully track emergent active 

regions of the non-stationary SVS distribution (i.e. active working sets within local memory), providing an 

alternative to modeling the entire SVS distribution (i.e. entire local memory state). 

Interestingly, the GIST network size variations are a good indicator of the locality characteristic variations 

in the WaTor application. Further, the relatively smaller variations in the network sizes in the GEST 

simulation indicate smaller working sets. In this sense, the network sizes and their variations indicate how 

well the GIST network tracks the the overall locality flux inherent in the applications' SVS distributions: 

• Static locality characteristics and static dataset sizes in the Unstructured Mesh application produced 

negligible fluctuations in the corresponding GIST network sizes, as indicated in Figure 8. 

• Slowly varying locality with static dataset sizes in the Barnes Hut application initially induced large 

GIST networks. Subsequent slow changes in locality are tracked via online weight adaptations and the 

GIST network shrinks to map only the working set, as shown in Figure 9. 

• In WaTor, dramatic locality fluxes with slowly varying dataset sizes induced greater GIST network size 

variations than in other applications. This is evident in the multiple peaks in the 24 processor and 16 
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Figure 8: Unstructured Mesh :: GIST Network Sizes 
Procx::Thready =>GIST network sizes for Application Thread#y in an x processor run 

processor GIST runs as opposed to the single peak in the Barnes Hut runs. 

10.1.2 GST Sampling Efficiency 

Sampling efficiency is consistently high in the GIST runs for all three applications, ranging between 90% 

to 100%. This indicates that the training phases, during which the references from the processor were 

not processed, are of relatively short durations. This is seen in the sampling efficiency plot of the GIST 

network in the Barnes-Hut simulation in Figure 10, for example. Due to constraints on space, the sampling 

efficiencies of the WaTor and Unstructured Mesh runs using the GIST network are not presented. The graph 

for the WaTor simulation is similar to the Barnes-Hut simulation, while the static locality characteristics of 

the Unstructured Mesh application induce little variations in the GIST network sampling efficiency. 

The large amount of computation per reference in the Barnes-Hut application produces larger inter-

reference times which allows the network to achieve 100% sampling efficiencies (Figure 10). This curve 

evinces high-frequency variations caused by frequent but short stints of network retraining. This effect is 

due to the locality flux which induced variations in the emergent SVS distributions over time. For example, 

at the 14 sec. point in the 32 processor run (Figure 10), the network size (Figure 9) increases from about 

130 neurons to about 200 neurons, indicating network retraining activity, since neuron additions occur only 

during retraining. 

It is interesting to note that the GEST network sampling efficiencies are always consistently high in 
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Figure 11: WaTor (10 iteration run) :: GEST Network Sampling Efficiency 
Procz::Thready => GEST network for Application Thread#y in an z processor run 

the WaTor simulation (Figure 11); further, they do not suffer the high frequency variations evident in the 

Barnes-Hut simulation runs using the GIST network. 

10.2 WaTor Application Performance 

This section presents the WaTor execution performance in terms of the locality achieved and maintained as 

well as the overall execution timings. The results for the Barnes-Hut and the Unstructured Mesh application 

performances are not presented here due to the limitations of space. 

The Minnow update loop execution timings are considered here since these were responsible for 75% to 

90% of the total execution time. This is evident from Table 2 presenting the execution timings for the runs, 

which are seen to scale well in performance. A plot of the locality measure (defined in Section 9) for the 

GIST network runs (presented in Figure 12) shows increasingly better execution locality. In each of the 

GIST runs, the inter-task distances decrease from an initial high of 75 to level off at about 40 as shown in 

Figure 12. This indicates that the local partitions achieved increasing contiguity and compactness in spite 

of the increasing dataset sizes. 

This is also evident in the locality characteristics achieved in the WaTor runs using the GEST network 

as illustrated in Figure 13. The larger correlation intervals (evidenced in Figure 7) and subsequent capture 

of higher-order temporal correlations results in an almost monotonic decrease in the inter-task distances. 

This follows, as mentioned in Section 5.4, from the long-range locality characteristics extracted in the GEST 
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Minnow Loop Shark Loop 
Run Size GIST Run GEST Run GIST Run GEST Run 

4 Processors 23.695952 sec 21.768551 sec 4.679540 sec 3.528160 sec 
8 Processors 13.460341 sec 13.248189 sec 2.312860 sec 2.040482 sec 
16 Processors 8.473986 sec 6.6604046 sec 1.409917 sec 1.273765 sec 
24 Processors 6.034877 sec 4.6708921 sec 1.140522 sec 1.208808 sec 

Table 2: WaTor Execution Timings (using GIST and GEST networks) 
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Figure 12: WaTor Locality Measure using GIST networks(15 iteration run) :: Thread Intra-Task Distances 
Procx::Thready => Locality Characteristics of Thread#y in an x processor run 

network, as opposed to the non-monotonic decreases in the GIST run resulting from the use of first-order 

correlation information containing short-range locality characteristics (noise) as well. 

11 Conclusions and Discussions 

In this paper we have extended the GCS network into the GIST and GEST networks (collectively re­

ferred to as the GST network) for solving spatia-temporal problems. The GST network has been shown 

to successfully extract spatia-temporal correlation information dynamically from real-time incoming signals. 

The results of applying the network to the data mapping problem demonstrated the feasibility of hardware 

implementations. The network sizes that evolved are easily within the grasp of state-of-the-art hardware 

neural network implementations which routinely deal with network sizes of the order of thousands of neurons. 

The main results (in Section 10) show network convergence to stable maps of emergent SVS distributions 

without undue loss in the Sampling Efficiency, in both the GIST and the GEST networks. This further 

implies that temporal correlations in the evolution of modes in emergent SVS distributions (local working-
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sets in the WaTor application) are tracked very well by both variants of the network, as shown by the 

improvements in locality in Figure 12 and Figure 13. The GEST network sampling efficiency is consistently 

high although lower than that of the GIST network. But the GEST network sampling efficiency does not 

suffer the high-frequency variations evident in the GIST network. This indicates that the GEST networks 

are more stable (relatively infrequent and/or short offline retraining stints) and track evolving active regions 

in the SVS more efficiently (using smaller network sizes). 

GIST networks needed large offline mappings of the entire SVS distribution which were refined online 

to track the emergent active regions (i.e. evolving data-clusters) of the SVS. In contrast, the adaptive 

correlation intervals of the GEST networks successfully tracked the active regions without needing offline 

estimates of the entire SVS distribution. 

As expected, the higher-order dependencies captured by the GEST network prove to be better indicators 

of the long-range evolution of the SVS distribution than the first-order dependencies used in the GIST 

network. This is manifest in the almost monotonic improvements in locality in the GEST network runs 

(Figure 13). However, the price paid takes the form of lower sampling efficiency in comparison with the 

GIST network. 

In data mapping problems, load-balancing and locality maintainence are often seen as top-down prob­

lems in the sense that the user maps domain knowledge about domain inspired data abstractions into the 

corresponding execution locality characteristics about architectural level data abstractions. However, the 
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current efforts shows excellent prospects for a bottom-up approach wherein locality /load-balance are seen as 

ultimately to do with architectural-level abstractions and successfully extracts locality and load information 

at this level thereby easing programming burden on the user. 

In summary, the results demonstrate the successful online use of the GST network for extracting spatio­

temporal correlation information among emergent features of previously unknown distributions. Further, 

execution driven simulations of the GIST and GEST networks on the challenging data mapping problem 

indicate the feasibility of their hardware implementations. Between the two networks, the GEST network 

trades a lower sampling efficiency (in comparison with the GIST network) for increased network stability, 

better dependency predictions, enhanced tracking abilities and smaller network sizes evolved. 
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