
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

5-1995

A Domain-Specific Parallel Programming System II. Automatic A Domain-Specific Parallel Programming System II. Automatic

Data Partitioning Data Partitioning

Elaine Wenderholm
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wenderholm, Elaine, "A Domain-Specific Parallel Programming System II. Automatic Data Partitioning"
(1995). Electrical Engineering and Computer Science - Technical Reports. 141.
https://surface.syr.edu/eecs_techreports/141

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/141?utm_source=surface.syr.edu%2Feecs_techreports%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-95-2

A Domain-Specific Parallel
Programming System

II. Automatic Data Partitioning

Elaine Wenderholm

May 1995

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, NY 13244-4100

A Domain-Specific Parallel Programming
System

II. Automatic Data Partitioning

Elaine Wenderholm
School of Computer and Information Science

Syracuse University, NY 13244

wender@top.cis.syr .ed u

May 1995

Abstract

em is a high-level programming system which puts parallelism within the
reach of scientists who are not sophisticated programmers. em both restricts
and simplifies the programming interface, and thereby eases both the concep
tual task of the programmer and the analytical task of the compiler.

The em compiler perforinS automatic data structure definition, scheduling
and data partitioning.

This document presents the automatic data partitioning algorithm used in
em.

1

1 Introduction

em is a high-level programming system which puts parallelism into the hands of

scientists who are not sophisticated programmers. em both restricts and simplifies the

programming interface, and thereby eases both the conceptual task of the programmer

and the analytical task of the compiler.

There are several examples of successful specialized programming systems, two of

which are financial spreadsheets such as Lotus, and symbolic computation systems

such as Mathematica. Each of these tools has allowed a community of users to write

applications that previously required specialist programmers. Many users simply

would be unable to develop such applications without the use of these specialized

software systems. These tools share three characteristics:

1. Each addresses a restricted and well-defined problem domain.

2. The interface to each tool is designed to be intuitive to the target user commu

nity.

3. Features from declarative and functional programming are incorporated into

the language, thereby freeing the user from programming details, and the need

to manage storage and other machine resources.

The design of em exhibits these same characteristics:

1. em's problem domain centers on the class of simulation problems which is stat

ically decomposed, has communication localized to a fixed neighborhood, and

is loosely synchronous, i.e., time is incremented synchronously after all spatial

components are updated.

2

2. £m provides a high-level interface with a domain-specific library. The library

can be customized to a specific area of scientific investigation.

3. £m programs are almost purely functional. This relieves the programmer of the

need to manage storage and other machine resources, a most difficult task when

writing parallel programs.

This paper proceeds as follows. Section 2 defines the semantics of the loop nest in

an £m program. Section 3 describes the types of problems which may be solved

using £m. In Section 4, the main features of the data partitioning strategy are

presented, along with definitions necessary for understanding the rest of the paper.

A three-dimensional iteration space is used, in Section 5, as an example to present

the algorithm to minimize communication. The algorithm and proof are presented in

full generality in the Appendix. Calculation of communication weights is presented in

Section 6. Section 7 presents examples of the partitioning algorithm, and is followed

by concluding remarks.

2 Loop Structure

An £m program contains one loop. Figure 1 shows an £m loop and its semanti

cally equivalent loop nest. The outermost loop (time) is sequential, and enforces

synchronization at the end of each iteration. The set of n-1 inner loops have no

loop-dependent dependences and may be written as DoAllloops. These inner loops

are parallel and generally update large data sets. The data updates are performed

relative to a statically defined neighborhood. The code body, S, resides within the

innermost loop. It consists of procedure calls and may contain conditional statements.

Associated with each £m procedure is a procedure summary. The procedure summary

contains data access information as read, write, +reduce (sum reduction) and *reduce

Em Loop

loop

s

end loop

Semantic Equivalent

L1: Do time= ltime, utime

L2: DoAll h = L2, U2

s

End DoAll In

End DoAll h

End Do time

Figure 1: em Loop and Semantically Equivalent Loop Nest

3

(product reduction). Each data access is specified as relative address (offset) to the

current cell, or as an absolute address of the iteration space. The set of array accesses

for each cell, which contains one or more array variables, is referred to as the cell's

stencil [RAP87, FJL+ss, HA90]. Since a data access is a component-wise definition

of communication, the stencil may be used to quantify communication by component.

3 Problem Domain

em is a system which is used to solve problems in which array accesses are localized

to a statically defined neighborhood.

The iterative solution of simple elliptical partial-differential equations provides an

4

easy example of a nearest neighbor problem. Given Laplace's equation

EJ2¢ 82¢
8x2 (x, y) + 8y2 (x, y) = 0

the central-difference equation is

4</J(i,j) - ¢(H1,j) - ¢J(i-1,j) - </J(i,j+l) - </J(i,j-1) = 0

where i, j are indices over the grid. Using the Jacobi iteration, the approximation at

iteration k of a grid point at (i, j) is the average of the neighboring values at iteration

k-1.

¢(i,j)k = .25 * (¢(i + l,j)k-1 + ¢(i -l,j)k-1 + ¢(i,j + l)k-1 + ¢(i,j -ll-1)

These array accesses have center symmetry, and an optimal partitioning of a square

data space is square [F JL +ss].

The partitioning problem is not always so obvious: array accesses need not be center

symmetric, e.g., when forward-difference and backward-difference methods are used;

or the iteration space may not be regular.

4 Data Partitioning

This paper presents a new data partitioning strategy. In particular,

1. There is no restriction to a square iteration space as in [HA90, RAP87]; it is

generalized to a non-regular n-dimensional iteration space D1 x D2 x ... x Dn.

In practical physical simulations, however, n does not exceed four.

2. One or more data sets may be used.

3. Conditional procedure invocation, whose execution count may be determined

at compile time, is incorporated into the strategy.

5

4. Data sets which have an iteration space of less than n dimensions are accommo

dated. This is motivated by practical ecological modelling problems. Ecological

modelling generally requires several state variables, and often requires state

variables which span different dimensions. As a case in point, the wetland ex

ample presented in [WB94] defines a 3-dimensional iteration space: water spans

the entire space; ducks span only the x-y plane at z=1.

The partitioning strategy assumes a distributed multiprocessor system. The number

of processors is a power of two. The data is partitioned statically across processors.

The loop nest is the type shown in Figure 1.

6

4.1 Definitions

Definition 1 Given a loop L = L~, ... , Ln, and a statement S within L, an iteration

vector i = (i~, ... , in) E zn, i; E [L; : U;](l~j~n) corresponds to an execution instance

of S {ZC91}.

Definition 2 The iteration space, Itn, of loop L = L1 , ... , Ln is a finite region in n

dimensional discrete Cartesian space whose points correspond one-to-one to iteration

vectors {ZC91}.

It follows that: the axes of the iteration space lexicographically correspond one-to-one

to the loop nest; all edges incident on a vertex are mutually orthogonal.

Definition 3 D;(Ig~n) denotes the span, U;- L; + 1, of the lh-dimension of Itn.

Definition 4 By P, denote the number of processors. A partition of the iteration

space Itn is a set, blockb (l~b~P), of discrete Cartesian subspaces such that

1. the subspaces are mutually disjoint, blockb1 n blockb2 = 0, for (1 ~ b1 < b2 ~ P),

2. exhaustive, U blockb = Itn,
l~b~P

3. and nonempty.

Definition 5 A blockb (I~b~P) consists of a set of iteration vectors~= (i~, ... , i~) E

zn, i~ E [l~ : u~], L; ~ l~ ~ u~ ~ U;, (l~i~n).

Definition 6 d~(l~j~n) denotes the span, d~ = u~ - l~ + 1 of the lh-dimension of

blockb (l~b~P).

7

Definition 7 A face, face~, perpendicular to the ith component of blockb, (1:5i::5n),

is that subset of blockb, {i?' = (it, ... , fib, ... , i~) : i~ E [l~ : u~] (1:5#i:5n) and either

fib= l~ or fib= un. The face in which fib= l~ is the lower face, denoted lface~; the

face in which fib= u~ is the upper face, denoted uface~. A face has dimension n-1.

The faces are the extremal (n-1)-dimensional subspaces bounding the n-dimensional

block. There are two parallel faces per dimension, which are orthogonal to all other

faces.

The number of extremal subspaces of dimension k < n is determined by first choosing

k dimensions in the space. There are (i:) ways to chose k dimensions. Fixing the

remaining n - k dimensions to one of the extremal values, gives the number of k < n

subs paces as (i:) 2n-k. For example the number of faces in 3-dimensional space is

2n = 6. In general, since there are two parallel faces per dimension, this results in a

total of 2n faces for an n-dimensional block.

Definition 8 Given vectors Pl, P2 in I tn, Po is an offset vector of P1 if P1 +Po = P2.

Definition 9 An access vector, av = [av1, ... , avn], is an ordered tuple where each

component, avi, (1:5i:5n), of av is either

1. an offset address, avi E Z,

2. or an absolute address avi E {lb[+E], ub[-E]}, E E Z, and Li ::5 avi ::5 Ui.

Let v be a variable, and let p be a procedure invocation in an £m program. By

av(v), denote an access vector for variable v. By av(v,p), denote an access vector for

variable v in procedure invocation p. By avi(v), denote the ith component of av(v).

By avi(v,p), denote the ith component of av(v,p). A stencil will be regarded as a set

of access vectors.

8

Definition 10 The communication weight is a vector w = (WI, ... , wn) E Nn. I

Definition 11 The communication weight along component i, wi, is the weight as

signed to f acei. 2

Figure 2 shows a 3-dimensional iteration space of D1 xD2 xD3 . Within this space is

block did2d3• Communication may occur at block boundaries across the upper and

lower faces of did2 , d2d3, and d3di. The vectors WI w2 and w3 denote the dimen

sion along which communication may occur. Section 6 presents the computation of

communication weights.

Definition 12 The surface area of face facei isS~;= II dj.
j#i

I:5j:5n

Definition 13 The weighted surface area of face facei is wiSJ; = wi(II dj)·
j#

I:5j:5n

It can be seen that positive-valued Wi cross ufacei, and negative-valued wi cross

lfacei.

5 Minimizing Communication

The objective in any data partitioning strategy is to minimize the ratio of communi

cation to computation. Additionally, in order to have the workload balanced between

all processors, each processor should perform an identical amount of computation. In

general, communication is minimized by minimizing the "surface area" of the data

1 Definition 19 will refine this to w E (~)n.
2The superscript denoting the block, as in blockb, d~ and face~, will be omitted whenever no

confusion exists.

9

space; load balancing is accomplished by partitioning the data space into equal "vol

umes" across processors. 3

This partitioning strategy uses the weighted surface area. Using Figure 2 as the

example, and assuming all communication weights are nonzero, the weighted surface

area of each block is the sum of the weighted surface areas of all faces:

(1)

The data is to be partitioned equally among the processors, so that the volume V of

each block is

d d d - v- DID2D3
1 2 3- - p

The problem is to minimize the surface area per block

asb asb asb
adl ddl + od2 dd2 + ad3 dd3 = o

subject to the constraint imposed by equation 2, i.e.,

Using the technique of Lagrange multipliers [SR58], equations 3 and 4 yield

asb + ..\(B<p) + w2d3 + w3d2 + ..\(d2d3) 0
8dl 8dl

oSb + ..\(B<p) w1d3 + + w3d1 + ..\(d1d3) 0
8d2 8d2

asb + ..\(o<p) wld2 + w2dl + + ..\(dld2) = 0
8d3 8d3

(2)

(3)

(4)

To simplify these equations, multiply the first by d1, the second by d2, and the third

by d3 . The result is

w2d1d3 + w3d1d2 + ..\(d1d2da) - 0
w1d2d3 + + w3d1d2 + ..\(d1d2da) 0
w1d2d3 + w2d1da + + ..\(d1d2d3) 0

3It should be noted that blocks are always of dimension n. In discussions of partitioning strategies,
one commonly encounters phrases such as " .. .in ann by n domain, a one-dimensional decomposition
is ... and the two-dimensional case is ... ". This dimension refers to the number of dimensions over
which communication occurs. In the case where there are k < n dimensions of communication, the
iteration space itself forms n - k boundaries, obviating the need for communication. A toroidal Itn
has no boundary conditions, and communication is of dimension n.

10

By subtracting the equations "round robin", i.e., first from second, second from third,

and third from first, the equations are simplified to the ratios

Solving for d1 using equations 5 and 2,

and

Substituting for V,

d _ d w1 _ Vw1
1- 2--

w2 d1d3w2

V(w1) 2

(d1) 2w2w3'

(di)3 = D1D2D3(wi)2

W2W3

Defined logarithmically (the base is irrelevant),

so that

and similarly for d2 and d3•

l d _ ~ l (w1)2 D1D2D3
og1- 3 og p

W2W3

(5)

A proof is provided in the appendix for a general n-dimensional iteration space, where

communication weights may be zero. In [HA90], zero communication weights are not

considered.

The total number of processors, P, is an integer power of 2, and P = p1 · ... · Pn,

where Pi is the number of subdivision of component i, (l~i~n). Therefore each Pi is

also an integer power of 2. The Pi are calculated using Pi= ~~.
~

11

In those cases where the calculated Pi is not an integer power of 2, the Pi are ap

proximated by rounding up/down to the nearest integer power of 2, and calculating a

non-minimal surface area. The chosen values of Pi are those which give the smallest

calculated surface area. In the worst case, n dimensions must be estimated, resulting

in an upper bound of 2n comparisons of calculated surface areas. In most cases, n is

quite small.

6 Quantification of Communication Weight

The communication weight is computed using a min-max construction [HA90], and

is considered a "best case" estimate since it assumes that all data external to a block

need be communicated only once to satisfy all internal references. This construction

is suitable to an £m program. £m programs are highly functional, and £m array

access rules require that all updates are local to the cell.

6.1 Simplest Programming Model

The simplest programming model in £m is comprised of one array variable spanning

the iteration space, and one procedure inside the loop. In addition, there is no con

ditional procedure execution. This insures identical communication between blocks.

Communication weight calculation for this model is identical to [HA90]:

Definition 14 The simplest communication weight along component i, Wi, is defined

wi - max({avi: avi 2:: 0} U {0}) +

I min({avi: avi < 0} U {0}) I

where avi denotes an access vector along component i, and (1 ::::; i ::::; n)

12

6.2 £m Program Model

An em program consists of one or more procedure invocations within a loop, and one

or more array variables.

For this model, communication weight is extended to be a function of variable. Let

V ar be the set of array variables.

Definition 15 The variable communication weight, wi(v), along component i for

variable v E V is

where (1 ~ i ~ n).

wi(v) - max({avi(v): avi(v) ~ 0} U {0}) +

lmin({avi(v): avi(v) < 0} U {0})1

Obviously, the component-wise communication weight incurred for several variables

is additive.

Definition 16 The communication weight Wi for component i over variables v E V

is

Definition 17 Since expansion of the scalarwi into vector lwl = n is wi = (01 , ... , wi, ... , On),

(1 ~ i ~ n), the overall communication weight, w is

w= 2:: wi
l:S;i:S;n

13

6.3 Iteration Subspaces

An £m procedure summary may contain array accesses which define a subspace of

the iteration space.

Definition 18 A slice is a subset of the iteration space over which an array variable

is accessed.

Procedures may be required which only handle iteration space boundary conditions.

Therefore, array accesses performed by such procedures occur only at boundaries of

the iteration space. Section 4 provides a good example: given an iteration space

(x, y, z), variable v spans the x-y plane only at z=l. An access vector for v is, say,

av(v) = [0, 2, lb], where lb denotes the lower bound of the third component of the

iteration space.

Assuming a span, D3 , for the third component, this array access may be weighted as

(1/ D3)[0, 2, OJ = [0, 2/ D3 , 0]. In other words, a slice has width 1 and contributes 1/ D 3

to the communication of the access vector, and the remaining D3 - (1/ D3) "slices"

have no communication.

Conversely, consider an access vector for variable v, av(v), where avi(v) is an offset

address. Then avi(v) applies to the span of component i; there are Di "slices", each

contributing 1/ Di to the communication. The sliced communication weight is simply

(Di)(1/Di) x av(v) = av(v).

Definition 19 The function slice is defined:

and

slice: (v xi) x av ~ {1,1/Di},

l . (.)[] { 1/ Di s zce v, 'l ... , avi,. . . = 1
if avi = lb[+E] or avi = ub[-E]

otherwise

where, av is an access vector [avb ... , avn] for variable v E V, and (1 ::; i::; n).

Lastly, a sliced access vector must be transformed into a nonsliced vector.

Definition 20 The function '*'is defined:

and

* : av t---t av

if avi = lb[+E] or avi = ub[-E]
otherwise

where av is an access vector, and 1 ::; i ::; n.

14

It is then possible to weight the sliced access vectors and use weighted access vectors

to calculate the communication weights.

wavi(v) = (slice(v, i)av(v))(*av(v))

where (1 ::; i ::; n). This definition states the weighted slice of an access vector with

one "slice" at i. However in general, an access vector may be sliced over more than

one component. Obviously, the sliced area of the access vector is simply calculated

as the product of the slices over all components.

Definition 21 Let

prod(avi(v)) = (II slice(v, i)av(v))(*av(v)).
1:5i:5n

Then the weighted access vector, wavi (v), over component i for variable v E V is

wavi(v) = max({prod(avi(v): prod(avi(v)) ~ 0} u {0}) +

I min({prod(avi(v): prod(avi(v)) < 0} U {0})1

15

Now, Definition 16, which defines wi(v) as a function of access vectors, may be defined

as a function of weighted access vectors, viz.,

wi(v) = max({wavi(v): wavi(v) ~ 0} U {0}) +

lmin({wavi(v): wavi(v) < 0} U {0})1

The option exists in the Em compiler to select the degree of accuracy for determining

the communication weight by either incorporating or not incorporating sliced access

vectors into the calculation.

7 Examples

This section presents examples of three kinds. First, array accesses where all commu

nication weights are greater than zero are discussed. 4 In fact, only those problems

whose weights are not zero have been considered by the researchers previously cited.

Next, communication weights of zero are discussed. And lastly, a simple example is

presented of iteration spaces slices, and how slices affect the data partition.

7.1 Non-Zero Weighted Communication

Frequently used discretization stencils [RAP87) are shown in Figure 3, along with

their communication weight vectors determined by the algorithm herein. The set of

access vectors for a 7-point star stencil is

{[-1, 1), [0, 1], [1, 0), [1, -1], [0, -1], [-1, 0]}

and the Wi are calculated

w1 = max({ -1,0, 1, 1,0, -1} U {0}) +I min{{ -1, 0, 1, 1,0, -1} U {0})1 = 2

4By definition, communication weights are not negative valued.

16

[0,1] [-1,1] [0,1] [-1,1] [0,1] [1,1]

(-1,0(+ [1,0] [-1,0] ~ [1,0] (-1,0(* (1,0(

[0,-1] [0,-1] [1,-1] [-1,-1] [0,-1] [1,-1]

5-point star 7-point star 9-point star

,;; = [2,2] ,;; = [2,2) ,;; = [2,2]

[0,2] [0,2]

[,1]

[-2,0] [2,0] [-2,0] [2,0]

(0 1] [-1,-1]

(0,-2] [0,-2]

9-point cross 13-point cross

w= (4,4] w= [4,4]

Figure 3: Discretization Stencils and Communication Weight Vectors

hence, w
max({1, 1, 0, -1, -1, 0} U {0}) + jmin({1, 1, 0, -1, -1, 0} U {0})1 = 2

[2, 2]

The communication wieghts of these stencils share a common property: all compo

nents are in a 1 : 1 ratio, indicating a center symmetric communication pattern. It is

possible to take exception to this statement by noting that, e.g., a 7-point star stencil

is not center symmetric due to the diagonal offsets which contain both horizontal and

vertical components. However, as proven in [HA90), this additional communication

[-1,0] T [1,0]

[0,-1]

backward difference

t1i = [2,1]

[0,2]

[,1]

[-1,0] [1,0]

[0 1]

[0,-2]

6-point star

t1i = [2,4]

[0,1]

[-1,0] _L [1,0]

forward difference

t1i = [2,1]

17

Figure 4: Nonuniform Discretization Stencils and Communication Weight Vectors

results in a constant error term, is independent of the dimension of the rectangular

partition, and whose magnitude is independent of optimization technique.

A naive approach to communication would construct four messages for the north,

south, east, and west faces of the block, and two additional messages for the two

remaining diagonal elements of the block. But as out in [F JL +ss] 5, separate commu

nication for diagonal elements is not necessary for Cartesian partitions: a maximum

of 2n messages are required. All stencils in Figure 3 require four messages.

Non-center symmetric stencils are shown in Figure 4. The communication weight

vector for the forward-difference and backward-distance stencil is w = [2, 1]; the

communication weight vector for the 6-point star stencil is w = [2, 4]. An optimal

5Ch. 16

18

nproc = 16 nproc = 32
defined w partition result w %error partition result w %error

[1,0,1] [4,1,4] [1,0,1] 0 [8,1,4] ([4,1,8]) [1,0,1] 5.6
[1,1,1] [2,4,2] [1,1,1] 5.8 [4,2,4] [1,1,1] 5.0
[1,2,1] [4,1,4] [1,2,1] 5.0 [4,2,4] [1,1,1] 0
[1,3,1] [4,1,4] [1,3,1] 0.9 [4,2,4] [1,3,1] 1.9
[1,4,1] [4,1,4] [1,4,1] 0 [4,2,4] [1,4,1] 5.8
[1,5,1] [4,1,4] [1,0,1] 0 [4,2,4] [1,5,1] 4.4
[1,6,1] [4,1,4] [1,0,1] 0 [8,1,4] ([4,1,8]) [1,0,1] 5.6

Table 1: Comparison of w2 for I t 3 = n x n x n

partition [HA90] is achieved when the ratio of the block faces are 2 : 1, 1 : 2 resp.

It should be noted that communication vectors, say, [2, 1] and [4, 2], have identical

ratios, and produce identical partitions. Their difference reflects the quantity of data

to be communicated across each face. This is a separate topic and is outside the scope

of this paper.

7.2 Zero-Weighted Communication

Appendix A presents the proof for communication weights which include zero-valued

weights. Lemma A proves there are two situations in which a communication weight,

wi, is zero:

1. wi = 0 by definition.

2. The minimization determines that di = Di, so that no communication occurs

along component i, and results in a computed communication weight wi = 0.

Table 7.1 demonstrates this Lemma. The first row shows a weight whose second

component is zero by definition. In the resulting partition, the second component is

1, showing that the processor boundary is the iteration space boundary. The following

rows demonstrate the effect of increasing the weight along component two: there is

19

a point at which the magnitude of the communication along component becomes so

large that the algorithm reduces the number of dimensions for communication from

three to two.

7.3 Iteration Subspaces

As discussed in Section 6.3, the unique aspect of em is the ability to determine

communication weights for subspaces of the iteration space.

Consider a 3-dimensional iteration space whose components are denoted, respectively,

as (x, y, z). Next, consider a procedure, P(a, b), which executes over all of x andy at

z = 1. The code for the correct execution of this procedure requires the conditional

execution of P. The conditional execution of Pis an example of control dependence.

This code may be written in several ways. For example, a programmer may write the

code with the loop nest either enclosed within the conditional statement, or enclosing

the conditional statement. This is shown in Figure 5.

An optimizing compiler may or may not be able to detect control dependence, depend

ing on the way in which the code is written. This is especially true for interprocedural

analysis.

The em language overcomes these difficulties:

1. em enforces a standardized calling sequence for procedures.

2. The procedure summary of em encodes control dependence as array access

vectors.

Specifically, any access vector component which is not an offset address specifies

a control dependence. The combination of the procedure summary and standard

do x = x1, xn

do y = y1, yn

do z = z1, zn

if (z .eq. 1) then

call P(a,b)

endif

end do

end do

end do

do x = x1, xn

do y = y1, yn

do z = z1, zn

call P{a,b)

end do

end do

end do

and,

Subroutine P(a,b)

if (z .eq. 1) then

endif

Figure 5: Coding Styles for the Conditional Execution of Procedure P(a, b)

20

21

water soiLstrudure ... [2, 2, 10] (4, 8, 0] w - (2, 2, 10] (0.5)(4, 8, 0] wsl

Table 2: w and w-;l for water and soil..strudure

I t3 = n x n x n, nproc = 64
Casel Case2 Case3

w (2, 2, 10) (6, 10, 10] (4, 6, 10]
partition (8, 8, 1] (4, 4, 4) (8, 4, 2]

Table 3: Partitions for Three Cases in Conditional Array Assignment

procedure interface makes the job for the £m compiler very easy. It is so easy that

£m generates the code for the loop nest and conditional execution of procedures.

7.3.1 Conditional Execution: An Example

The following example illustrates the effect of conditional array assignment on the

calculated data partition.

Consider the variables, soil..strudure, and water, which span a cubic iteration space.

The data structures for soil..strudure and water span the entire space. Communi

cation for water and soiLstrudure occur across all f acei of the space. However,

the communication for soil..strudure across face3 is required over only one-half the

space, and this communication is uniformly distributed.

Table 7.3 displays the result of calculating the unsliced, w, and sliced, wsl, com

munication weights for these variables from their sets of access vectors. The choice

for any compiler is whether or not to include the conditional execution of an array

assignment. To demonstrate the effect, three cases are tested:

22

Case 1: A conditional array assignment is ignored.

The communication weight only for water is considered.

w = w(water) = [2, 2, 10]

Case 2: A conditional array assignment is treated as an unconditional assignment.

The communication weight is calculated using both variables as the sum of the

w of variables soiLstructure and water.

w - w(soiLstructure) + w(water)

- [4, 8, OJ + [2, 2, 10]

- [6, 10, 10]

Case 3: A conditional array assignment is treated as a a conditional assignment;

sliced communication weights are used.

The sliced communication weight is the sum of the sliced communication weights

of variables water and soiLstructure. Note that w(water) = w-;l(water).

w-;l - w-;l(soiLstructure) + w-;l(water)

- [2, 2, 10] + (0.5)[4, 8, OJ

- [4, 6, 10]

The results are listed in Table 7.3. This example assumed a uniform distribution

of communication across f ace3 • However, this need not be the case: array accesses

may not be uniformly distributed across the subspace. In this situation there may be

an imbalance of communication: the subspace requiring communication may be, say,

23

defined as the "upper half" of face3 . Then it would be reasonable to assume a worst

case communication strategy and calculate the data partition using the assumption

of Case 2.

8 Conclusion

The data partitioning algorithm is implemented in Prolog [Wie94] as part of the £m

compiler. It may also be invoked separately, and interactively, to provide only data

partitioning results. Run separately, the user need specify only three data:

1. iteration space bounds

2. number of processors

3. communication weight vector

The £m compiler not only performs automatic data partitioning, but also automati

cally deduces array bounds, which are used to write array declarations. Should the £m

program be changed by the programmer to, say, incorporate an additional (or merely

modified) set of procedures which access different portions of array variables, or new

array variables, the compiler automatically adjusts the array declarations and data

partition. This eliminates the need for the programmer to modify, often erroneously,

the program.

The £m compiler not only uses the access vectors containing slices to compute the

sliced communication weight, but also to write the source code for the conditional

execution of the procedure. This eliminates the need for the programmer to write

conditional statements for bounds checking. An example of the source code generated

may be found in [WB94].

24

The general partitioning algorithm, presented in the Appendix, naturally accommo

dates arrays of dimension < n. As stated above, the em compiler determines the array

declaration, and hence the array dimensions. As shown in the Appendix, a commu

nication weight Wi = 0 implies no communication across facei, which is semantically

identical to an array of dimension k < n.

The most general programming model supports multiple programs executing on dif

ferent processors with different data sets. In this case, both the programs and/or

the data are partitioned across processors, and is difficult to optimize. This model

is beyond the scope of Em which is designed to support the SPMD (Single Program

Multiple Data) Model. However, the procedure summary information specifies array

access as a function of variable and procedure name. It is a simple compiler task to

map the procedure summary data into communication weight defined as a function

of variable name, array access, and procedure invocation. Weights defined as such

may be used as input to algorithms which partition not only data, but also proce

dures, across multiple processors. In this case, the problems solved would still remain

restricted to access data within a statically-defined local neighborhood.

25

References

[F JL +88] Geoffrey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto,
John K. Salmon, and David W. Walker. Solving Problems on Concurrent
Processors, Volume I. Prentice-Hall, Englewood Cliffs, NJ, 1988.

[HA90]

[RAP87]

[SR58]

[WB94]

[Wie94]

[ZC91]

David E. Hudak and Santosh G. Abraham. Compiler techniques for data
partitioning of sequentially iterated parallel loops. In Proceedings of the
1990 International Conference on Supercomputing, pages 187-200, Amster
dam, The Netherlands, June 11-15, 1990. Published as ACM SIGARCH
Computer Architecture News 18(3).

Daniel A. Reed, Loyce M. Adams, and Merrell L. Patrick. Stencils and
problem partitionings: Their influence on the performance of multiple pro
cessor systems. IEEE Transactions on Computers, C-36(7):845-858, July
1987.

I.S. Sokolnikoff and R.M. Redheffer. Mathematics of Physics and Modem
Engineering. McGraw-Hill, New York, NY, 1958.

Elaine Wenderholm and Micah Beck. A domain-specific parallel program
ming system. I. Design and application to ecological modelling. Technical
Report SCCS-640, Syracuse Center for Computational Science, Syracuse
University, September 1994.

Jan Wielemaker. SWI-Prolog, Version 1.9.0. University of Amsterdam,
The Netherlands, June 1994. (Quintus compatible).

Hans Zima and Barbara Chapman. Supercompilers for Parallel and Vector
Computers. ACM Press, New York, NY, 1991.

A Appendix

Lemma A

The weighted surface area of facei = 0 only if Wi = 0.

Proof

26

By definition of block, •31$7:5nd; = 0. Therefore it must be that Wi = 0. There are

two cases in which Wi = 0:

case 1 Wi = 0 is defined by the stencil.

case 2 The minimization determines that di = Di. Then component i of the iteration

space is not decomposed. The processor boundary on the i-th component is the

iteration space boundary. Thus, no communication occurs along component i,

which results in a computed communication weight Wi = 0.

D

Problem

Given a n-dimensional space D1 x D2 x ... x Dn partitioned into P blocks of equal

volume V = (D1 · ... · Dn) + P = d1 · ... · dn > 1, and communications weights

w1, w2 , ••• , Wn, minimize the weighted sudace area per block

constrained by r.p = (TI1:5;:5n d;) - V = 0.

Claim 1

Minimization of the weighted surface area per block is achieved by satisfying ratio

equations

WJ(l+l) = dl(l+l) (O ::'S: l < k)
WJ(l) dl(l)

(1)

27

where,

I = { i : Wi =f=. 0 and (1:$i:$n)} is the ordered index set of weights wi, I(i) denotes the

(i + 1)st element of I, k is the length of I, and (l + 1) is evaluated mod k.

Proof

Sb may be written as a sum of products.

Substituting Di for di for those i : Wi = 0, (I:Si:Sn), gives

sb = IJwi)(II dj)(II Dq)·
iEJ j#i 1:5q:5n

jE/ q~l

Similarly, <p may be written

<p = (II dj)(II Dq)- v = 0
jE/ 1:5q:5n

qfll

Using the method of Lagrange multipliers, the set of partial differential equations for

l E I, (O:Sl<k) is 6

Multiplying the l-th partial differential equation by d1,

i#l
iEI

j#i
jEI

jEI

This produces a set of equations Ek, such that upon subtraction of Em - Em+b

(0 ~ m < k, m + 1 evaluated mod k), all summands except those two containing

WJ(m)' WJ(m+l) in the product are identical.

6The constant product II (Dq) occurs in each summand of Sb and in <p. Both sides of the
l~q~ ..
qftl

equation are divided by this product.

The result of this subtraction is the set of equations

which simplifies to

i#l
iE/

i#i
jEI

I(i)#(l+l)
iE/

i#i
jEI

WJ(l+l) II dj = WJ(l) II dj.
j:f:I(l+l) j:f:I(l)

28

Upon further simplification, the di (j#(l),I(l+I)) cancel and the resulting equations are

WJ(l+l)di(l) = WJ(l)di(l+l), (0 ~ l < k and (l + 1) evaluated mod k)

or, rewritten as ratios,
WJ(l+l) _ dl(l+l)

WJ(l) dl(l) .

0

Claim 2

The block dimensions are

log2 d; = { (2)
otherwise

where 1 ~ i ~ n.

Proof

Let 1 ~ i ~ n, i,j, l, (j + 1), (l + 1) E I, j' (j. I, and (l + 1), (j + 1) be evaluated mod

k.

In order to solve for di, i E I, take the ratio equation 1

and solve for di(l)·

dl(l) _ WJ(l)

dl(l+l) - WJ(l+l)

WJ(l)
dl(l) = dl(l+l)

WJ(I+l)
(3)

Substituting for those di = Di the volume equation becomes

Next, rewrite TI;ei d; as

(di(I))(di(I+l))(II d;) = TI;ei D;
iEl p

Solving for di(I+l)

and substituting into 3 gives

#1,1+1

d _ TI;eiD;
J(l+l) - Pd II d

I(l) j
jEi

#1,1+1

WJ(I) TI;ei D;
WJ(I+l) Pdl(l) II d;

jEi
#1,1+1

WJ(I) TI;ei Dj

w 1(1+1) p II d;
jEi

#l,l+l

29

Using the remaining k- 1 ratio equations to substitute weights for dimensions, and

by Lemma A the resulting solution for di is

(4)

log di(I) (5)

Consider di, (l:Si:Sn).

30

1. di > 0.

All factors of the quotient on the RHS of Equation 4 are positive, and so the

quotient is positive. The k-th root of di is therefore positive.

2. i ft I.

Then by Lemma A Wi = 0 and di = Di.

3. Suppose di > Di.

The equations in the problem statement specify a family of problems since they

reflect the volume of the iteration space, but are indifferent to the shape of the

iteration space. Therefore, it is possible to get spurious solutions, i.e., solutions

that satisfy the equations but not the intended shape of the iteration space. A

spurious solution is indicated when the computed di exceeds the iteration space

dimension Di·

Intuitively, these equations represent a worst-case solution: the constraint on

communication assumes there exists at least one block which is internal to the

iteration space, viz., completely surrounded by other blocks.

By setting di := Di, and Lemma A, the problem is refined by reducing the

dimension for communication to k' := k -1. This is equivalent to setting wi := 0

and recomputing the index set I. Therefore, di is defined by Equation 2.

The computation of di is iterative, and guaranteed to terminate. Iteration over d1::;k:=;n

is required only if di > Di. In this case, wi := 0 and di := Di. Each iteration reduces

the number of undefined block dimensions by at least one. The algorithm terminates

when all di are defined.

D.

	A Domain-Specific Parallel Programming System II. Automatic Data Partitioning
	Recommended Citation

	SU-CIS-95-02_001c
	SU-CIS-95-02_002c
	SU-CIS-95-02_003c
	SU-CIS-95-02_004c
	SU-CIS-95-02_005c
	SU-CIS-95-02_006c
	SU-CIS-95-02_007c
	SU-CIS-95-02_008c
	SU-CIS-95-02_009c
	SU-CIS-95-02_010c
	SU-CIS-95-02_011c
	SU-CIS-95-02_012c
	SU-CIS-95-02_013c
	SU-CIS-95-02_014c
	SU-CIS-95-02_015c
	SU-CIS-95-02_016c
	SU-CIS-95-02_017c
	SU-CIS-95-02_018c
	SU-CIS-95-02_019c
	SU-CIS-95-02_020c
	SU-CIS-95-02_021c
	SU-CIS-95-02_022c
	SU-CIS-95-02_023c
	SU-CIS-95-02_024c
	SU-CIS-95-02_025c
	SU-CIS-95-02_026c
	SU-CIS-95-02_027c
	SU-CIS-95-02_028c
	SU-CIS-95-02_029c
	SU-CIS-95-02_030c
	SU-CIS-95-02_031c
	SU-CIS-95-02_032c

