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Abstract: We extend the results of our previous paper [8] to the nonlinear case: The 
Lloyd polynomial of the covering has at least R distinct roots among 1, ... , n, where R 
is the covering radius. We investigate PWCwith diameter 1, finding a partial character­
ization. We complete an investigation begun in [8] on linear PMC with distance 1 and 
diameter 2. 

1This paper was presented at the French-Soviet Workshop in Algebraic Coding, ENST, Paris, 22-24 
July 1991. It will appear in the Proceedings, to be published by Springer in the LNCS series. 



1 Introduction 

Much attention has been devoted to the problem of classifying perfect codes (See [13, 15]). 
Further generalizations of perfectness were introduced in [10, 2, 11, 14]. For all these codes 
the diameter of the covering spheres equals the covering radius of the code which by use 
of Delsarte's results leads to a very rigid set of possible parameters. This framework was 
broadened by introducing new types of perfect configurations [5, 6, 12, 16]. All these 
extensions fall under the concept of perfect weighted coverings (PWC) first considered in 
[8). Although general, these definitions leave hope for a complete classification, at least 
for small diameter. The linear case with diameter at most 2 was considered in [8), where 
some motivation related to list decoding was given. 

We are pleased to acknowledge that this problem arose in discussions with I. Honkala 
in Veldhoven in June, 1990. 

2 Notations and known results 

We denote by Fn the vector space of binary n-tuples, by d(·, ·) the Hamming distance, 
by C ( n, K, d)R a code C with length n, size K, minimum distance d = d( C) and covering 
radius R [9], [7). When C is linear, we write C[n, k, d)R, where k is the binary log of K. 
We denote the Hamming weight of x E Fn by lxl. 

For X eFn' A( X) = ( Ao( X)' Al (X) ... An (X)) will stand for the distance distribution of 
C with respect to x; thus 

Ai(x) := l{c E C: d(c,x) = i}l. 

For any (n + 1)-tuple M = (mo, m11 •.• , mn) of weights, i.e., rational numbers, we 
define the M- density of C at x as 

n 

(2.1) O(x) := L: mi ~(x) = <M,A(x)>. 
i=O 

We consider only coverings, i.e., codes C such that O(x) 2:::: 1 for all x. 

(2.2) C is a perfect M -covering if 0( x) = 1 for all x. 

We define the diameter of an M -covering as 

8 := max{i: mi =f. 0}. 

To avoid trivial cases, we usually assume that mi = 0 fori~ n/2, i.e., 8 < n/2. 
Here are the known special cases. 

(2.3) Classical perfect codes: mi = 1 for i = 0, 1, ... 8. 

(2.4) Perfect multiple coverings (PMC): mi = 1/j fori= 0, 1, ... 8 
where j is a positive integer. See [16] and [5]. 



(2.5) Perfect L-codes: mi = 1 fori E L ~ {0, 1, ... Ln/2J}. See [12] and [6]. 

(2.6) Strongly uniformly packed codes: 

mi = 1 fori= 0, 1, ... , e- 1 
me= me+l = 1/r for some integer r. See [14]. 

(2.7) Uniformly packed codes (2, 11]. For these codes 8(M) = R(C), and the 

mi's are uniquely determined. 

The following necessary and sufficient condition was already in [8] in the linear case. 
For a perfect M-covering Cone gets from the definition: 

n 

L mi Ai(x) = 1 for all x. 
i=O 

Summing over all x in Fn and permuting sums, we get 

n 

L mi L Ai(x) = 2n. 
i=O xEF" 

Fori= 0, the second sum is ICI = K, fori= 1 it is Kn, and so on. For the converse we 
use the condition O(x) ~ 1. Hence we get the following analog of the Hamming condition. 

Proposition 2.1 A covering C is a perfect M -covering if and only if 

(2.8) 

0 

3 A Lloyd theorem 

In this section we prove 

Theorem 3.1 Let C be a perfect weighted covering with M = (m0 , m17 ••• , m 5). Then 
the Lloyd polynomial of this covering, 

L(x) := L mi Pn,i(x) 
0:5i:55 

has at least R distinct integral roots among 1, 2, ... , n. 

Proof. (Adapted from [1], Chapter II, Section 1, which records A. M. Gleason's proof 
of the classical Lloyd theorem.) The first part of the proof is identical to that of [8, Thm. 
4.1]. 



We use the group algebra A of all formal polynomials 

with "'a. E Q, the field of rational numbers. 
Define 

(3.1) s := 2: mi 2: xa.. 
O~i~6 la.l=i 

We let the symbol C for our code also stand for the corresponding element in A, namely, 

(3.2) 

Then we find that 
(3.3) 

Characters on Fn are group homomorphisms of (Fn,+) into {1,-1}, the group of 
order 2 in qx. All characters have the form Xu for u E Fn, where Xu is defined as 

Xu(v) = (-1)u·v for u,v E Fn. 

We use linearity to extend Xu to a linear functional defined on A: 
For allY E A if Y = Ea.eF" "fa.Xa., then Xu(Y) := E"'a.Xu(a). 
It follows that 

Xu(YZ) = Xu(Y)xu(Z) for allY, Z EA. 

It is known [1, 9] that for any u E Fn, if lui = w, then 

(3.4) 

It follows that 
(3.5) 

Xu (E xa.) = Pn,i(w). 
la.l=i 

Xu(S) - L(w). 

From (3.3), furthermore, we see that 

Xu(SC) = Xu(S)xu(C) - 0 

for all u =f:. 0. 
Let uo, Ut, ••• , UR be translate-leaders for C such that lui I = i. Define 

ci :=xu· c. 

Then 
(3.6) 

Define the symmetric subring A of A as the set of all elements Y of A in which the 
coefficient of xa depends only on the weight of a: 

(3. 7) y = L /a xa E A iff Va, bE F\ Ia I = lbl -+ /a = /b· 
aeFn 



The mapping T : A ~ A defined by 

1 
T(Y) := I L cp(Y), 

n. cp 

where cp runs over all n! permutations of the n coordinates of pn, maps A onto A. 
Furthermore, as the reader may easily verify, 

(3.8) VY E A, VZ E A, T(YZ) = YT(Z). 

Define Ci := T(Ci)· Applying (3.8) to (3.6), we see that 

SCi= Fn 

since, of course, S E A. Define also 

(3.9) K := { Z; Z E A, S Z = 0}. 

Thus K is the kernel of the linear mapping from A to A defined by Y ~ SY for all 
YEA. 

It follows from (3.8) that for any character Xu. such that Xu.(S) -=/= 0, 

VZ E K, Xu.(Z) = 0. 

Since A has dimension n + 1, its space of linear functionals also has dimension n + 1. 
Since every linear functional on A can be extended to one on A, then+ 1linear functionals 
on A obtained by restricting the Xu. to A, as 

Xu.h =: Xw for lui = w 

w = 0,1, ... ,n, 

are linearly independent. 
Suppose that pis the exact number of values of w E {0, 1, ... , n} for which 

Xw(S) -=/= 0. 

Since Xw(S)xw(K) = 0 for all w, it follows that Xw(K) = 0 for p values of w. Since 
SCi= Fn fori= 0, 1, ... , R, we see that 

S ( C i - C 0 ) = 0 for i = 1, ... , R. 

The elements Ci- C0 are linearly independent because Ci contains elements of weight i 
but of no smaller weight. We find that 

R ~ dimq K < n + 1 - p, 

since K is included in the intersection of the t kernels of the Xw mentioned above. But 
n + 1 - p is the number of Xw's which vanish on S; therefore Xw(S) = 0 for at least R 
values of w. 

Notice now that 
Xw(S) - L mi Pn,i(w). 

O~i$6 

This finishes the proof. 0 



4 A construction 

Definition 4o1 Let C(n, K, d)R and C'(n', K', d')R' be two codes. Set 

{ 0 ifxEC 
Xc( X) = 1 otherwise. 

We extend xc to a mapping x :F"'"'' -+F"'' by setting 

where the Xi 's are in F"', for 1 < i < n', and x = ( x1 , x2, . o ox,,) is their concatenation. 
We are now ready to define C ® C' as follows: 

C ® C' = { z E F"'"'': x(z) E C'} o 

Proposition 4o1 C®C' has length nn', minimum distance min{ d, d'} and covering radius 
RR'. 

The proof is immediate. 0 

Proposition 4o2 Let x and x' be such that d(x,C) = R,d(x',C') = R'. Suppose that 
AR(x) and Ak,(x') are independent of x. Then for C ® C' the coefficient ARR'(z) is the 
same for any z such that d(z, C ® C') = RR' and one has 

0 

5 PWC with diameter 1 

Let us denote such a PWCby (n,m0 ,m1). From (2.2), A1(x) = 1/m1 for any x not in C. 
Hence m1 = 1/p, where pis an integer. This means that every two noncodewords have 
the same number of codewords at distance 1. 

ForcE C, we get: m0 + A1(c)jp = 1, hence 

A1(c) = p (1- mo) 

is a constant independent of c. Since A1(c) is an integer, so is m0p. 
Now the Hamming analogue (2.9) gives 

K (pm0 + n) = p 2"', 

which implies 
(5.1) n = p' 2i- mop, with p' I p. 

The case m0 = 1/p corresponds to the PMC mentioned in (2.4); it is solved in [16] 
and [8]. 

Let us give a few general constructions. 



Proposition 5.1 If there exists a PWC C(n, mo, mt), then for any l ~ 0 there exists a 
PWC C'(n + l, m0 -lmt, mt)· 

Proof. Let us define C' as the set of vectors ( c, f) in Fn+l, where c E C and f EF1• 

Let A be the distance distribution for C1 and A' that for C'. There are two possibilities 
for an arbitrary (x, f) EFn+l: 

(a) x E C. Then A~((x,f)) = A1 (x) + l. Evidently A~((x,f)) = 1. 

(b) x rt C. Then A~((x, f))= 0 by construction and A~((x, f))= At(x). 0 

Proposition 5.2 If there exists a PWC C(n, m0 , mt), then there exists a PWC 
C'(ns, mo, mtfs). 

Proof. Apply construction® (Def. 4.1) with outer code C(n, mo, mt) and inner code 
the [s, s- 1] parity code. 0 

Proposition 5.3 If there exists a PWCC(n,m0,m1 ), then there exists a PWC 
C'(n, m 0 /i, m 1 /i), fori a positive integer. 

Proof. Take the union of i cyclic shifts of code C. 0 

Let us now turn to the special case when mo = 1. 

Proposition 5.4 A PWC with 8 = m 0 = 1 exists for n = p(2i- 1), m1 = 1/p. It can be 
achieved by a linear code. 0 

See [8] for a proof of this result. In contrast to the linear case, [8, Prop. 5.4], we cannot 
characterize PWC with 8 = m0 = 1 here. However, we have a partial characterization: 

Proposition 5.5 A PWC(n,1,2-q) exists if and only if for some i n = 2q(2i-1). Such 
a PWC can be achieved by a linear code. 

Proof. If m1 = 2-q, then p' = 2q',q' ~ q, and (5.1) gives n = 2q(2i+q'-q- 1). The 
converse stems from Proposition 5.4. 0 

We would like to point out that for some parameters satisfying {5.1) there is no 
corresponding code. 

Consider the case m0 = 1, m1 = 1/3. Proposition 5.4 gives the sequence of lengths 
n = 3 · 2i- 3. The other possibility is n = 2i- 3. The first code in this sequence would 
be a PWC with n = 5 and K = 12. Let us show its nonexistence. 

Proposition 5.6 A (5, 1, 1/3) PWC does not exist. 

Proof. We may assume the code contains the zero vector. Furthermore, it does not 
contain vectors of weight 1, since the minimum distance is 2 for m0 = 1. Every vector 
of weight 1 has to be covered by exactly two codewords of weight 2. There are exactly 
5 codewords of weight 2, because if we consider the matrix of all such codewords, we see 
that each column has sum 2 (by the "coverage" condition just mentioned). Let x be any 
vector in F5 of weight 3. Each "1" in x is covered by two codewords of weight 2. That 
makes six codewords of weight 2. By the pigeonhole principle, two are equal, say to c E C. 
Then x is at distance 1 from c. 

So the code does not contain vectors of weight 1 and 3, and we cannot cover vectors 
of weight 2. 0 



6 Linear PMC with diameter 2 (mo = m1 = m2 1/j) 
The purpose of this section is to summarize and extend results from [8]. 

6.1 The case s = 1 

Proposition 6.1 [8] The only PMC with s -
j = 2. 

1, d - 2 is the [2, 1, 2] code with 
0 

We assume now that d is equal to 1. To set the stage, we repeat some material from 
[8]: 

We find that the only possibility for the check matrix is the t-fold repetition 
of g(Si) (generator matrix of a simplex code of length 2i - 1) with l zero­
columns appended, yielding n = t(2i - 1) + l. It amounts to appending all 
possible tails of length l to codewords described in Proposition 5.2. It is easy to 
check that there are 2 kinds of covering equalities (namely, vectors coinciding 
with, or being at distance 1 from, codewords on the first t(2i- 1) coordinates): 

This implies 
(6.1) 

mo + lm1 + G) (2i - 1 )m2 + (~) m 2 = 1 
tm1 + (2i-l - 1) t 2m 2 + tlm2 = 1. 

t 2 - t(2i + 1 + 2/) + ( 12 + l + 2) = 0 

which has discriminant 

(6.2) 

We get a PMCiff D = x 2 has integer solutions. For example, the values i = 3, l = 3, t = 
14 yield the PMC [101, 98] with j = 644. Of course, for i = t we get 81 + 1 = x 2 having 
all odd x as solutions. 

Now we can characterize the solutions of D = x 2 • We need the following result: 

Proposition 6.2 (2i+1 - 7) is a square mod 2i+2 • 

Proof. Proof by induction on i. If x is a solution for some i, i.e., for a E N, 
x 2 =a 2i+2 + 2i+l - 7, then for any f3 E N to be chosen later on, and i 2:: 3: 

(x + 2i+1 f3 + 2i)2 = x2 + 2i+2 (x,8 +a)+ 2i+lx + 2i+l - 7 + 22i(1 + 4,82 + 4,8) 
= 2i+2 (xf3 +a+ x;l) + 2i+2- 7 mod 2i+3. 

Since x is odd, we can certainly find f3 to make x/3 +a+ x;l even. Then x + 2i+1 ,8 + 2i 
is a solution for i + 1. For i ::::; 2, the proposition is easily checked. 0 

The first proof of this proposition was given by I. Shparlinski during the present 
Workshop. 

Obviously, the congruence 



has 4 roots. Denoting by a the one which lies in [0,2i+l], they are 

Now direct calculations lead to the solution of (6.2), giving the possible l. Then t is 
derived from (6.1). 

Theorem 6.1 Linear PMC with m 0 = m 1 = m 2 = 1/ j, d = 1 exist only for the following 
sets of parameters: 

1 = (1222i+2 ± 2i+2/a + a2 _ 2i+l + 7 _ 22i)/2i+2 

t = (2i + 1 + 21 ± J(2i + 1)2 + 2i+2l- 8)/2 
n = t(2i - 1) + l 
k = n -i 
j = (2i-l- 1)t2 + t(1 + 1), 

for 1 E Z, provided lEN. 0 

6.2 The case s = 2 

We have found the following PMC codes C in this case (d = s = h = 2); see [8] for 
constructions. 

c 
[5, 1; 5] 
[5, 2, 2] 
[5, 3, 2] 
[10, 7, 2] 
(37, 32, 2] 
(8282, 8269, 2] 

j=1 
j=2 
j=4 
j=7 
j = 22 
j = 4187 

c.L 
[5,4; 2, 4] 
[5, 3; 2, 4] 
[5, 2; 2, 4] 
[10, 3; 4, 7] 
(37, 5; 16, 22] 
[8282, 13; 4096, 4187] 

The first is a classical perfect code. The notation [n, k; Wt, w 2 , .. . ] stands for an [n, k] 
code in which all nonzero weights are among Wt, w2 , ... . In the above codes C.L, since 
s = 2, both weights are present. All the above codes Care PMC codes. 

Conjecture 6.1 We conjecture the nonexistence of PMC with d = s = h = 2 other than 
those in the table. 
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