
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

12-1991

The Fast Fourier Transform The Fast Fourier Transform

Per Brinch Hansen
Syracuse University, School of Computer and Information Science, pbh@top.cis.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hansen, Per Brinch, "The Fast Fourier Transform" (1991). Electrical Engineering and Computer Science -
Technical Reports. 130.
https://surface.syr.edu/eecs_techreports/130

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/130?utm_source=surface.syr.edu%2Feecs_techreports%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

THE FAST FOURIER TRANSFORM

PER BRINCH HANSEN

December 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

SU-CIS-91-46

The Fast Fourier Transform 1

PER BRINCH HANSEN

Syracuse University, Syracuse, New York 13244

December 1991

This tutorial discusses the fast Fourier transform, which has numerous applications
in signal and image processing. The FFT computes the frequency components of a
signal that has been sampled at n points in 0(n log n) time. We explain the FFT
and illustrate it by examples and Pascal algorithms. We assume that you are familiar
with elementary calculus.

Categories and Subject Descriptors: F.2.1 [Numerical Algorithms and Prob­
lems]: Computation of transforms

General Terms: Algorithms, Theory

Additional Key \Vords and Phrases: Fast Fourier transform, Pascal algorithms

CONTENTS

INTRODUCTION
1. MATHEMATICAL BACKGROUND

1.1 Fourier Series
1.2 Fourier Transform

2. DISCRETE FOURIER TRANSFORM
2.1 Definition
2.2 Iterative DFT

3. FAST FOURIER TRANSFORM
3.1 Definition
3.2 In-Place Computation
3.3 Recursive FFT
3.4 Initial Permutation
3.5 Fast Permutation
3.6 Iterative FFT

4. SUMMARY
ACKNOWLEDGEMENTS
REFERENCES

1Copyright©1991 Per Brinch Hansen

Per Brinch Hansen: The Fast Fourier Transform 2

INTRODUCTION

This tutorial discusses one of the most important algorithms in science and technol­
ogy: the discrete Fourier transform (DFT), which has numerous applications in signal
and image processing.

After a brief summary of the continuous Fourier transform we define the DFT. A
straightforward DFT computation for n sampled points takes O(n2) time. The DFT
is illustrated by examples and a Pascal algorithm.

The fast Fourier transform (FFT) computes the DFT in 0(n log n) time using
the divide-and-conquer paradigm. We explain the FFT and develop recursive and
iterative FFT algorithms in Pascal.

The FFT has a long history [Cooley et al. 1967]. It became widely known when
James Cooley and John Tukey rediscovered it in 1965. The vast literature on the
FFT and its applications include Brigham [1974], Macnaghten and Hoare [1977], and
Press et al. [1989].

We assume that you are familiar with elementary calculus.

1. MATHEMATICAL BACKGROUND

We begin by summarizing the theory of the Fourier transform but will only attempt
to make the results plausible. You will find a rigorous analysis in [Courant and John,
1989].

1.1 Fourier Series

We consider a physical process that can be described as a continuous function of time.
We will call this function a signal.

A periodic signal a(t) repeats itself after a period T

a(t + T) = a(t) for all t

as illustrated by Fig. 1.

T

Fig. 1. A periodic signal

Per Brinch Hansen: The Fast Fourier Transform 3

Any periodic signal a(t) that we ordinarily encounter in physics or engineering
can be written as a Fourier series--the sum of an infinite number of cosine and sine
waves.

Since the algebra of complex exponentials is much simpler than that of cosines
and sines we will express the Fourier series as the sum of complex harmonics

00

a(t) = L Cke-i27rfl,t (1)
k=-oo

where
e±i27rfl,t = cos(27r fkt) ± i sin(27r fkt)

Here e = 2. 71828 . . . is the base of the natural logarithm, and " - yCI is the
imaginary unit.

The discrete frequencies

fk = k/T for k = 0,±1,±2

are multiples of the lowest frequency 1/T.
The Fourier coefficients Ck are generally complex numbers. To find a particular

coefficient Cj we multiply both sides of Eq. (1) by

and average both sides over one period.
The right side is the sum of averages of the form

llT/2 - ckei21r{!;-l~c)tdt
T -T/2

For k = j the exponential is 1 and the corresponding term has the value Cj.

any other k the average value of a harmonic wave over j - k periods is zero.
Consequently

1.2 Fourier Transform

A pulse is a signal of finite duration as shown in Fig. 2.

For

(2)

Per Brinch Hansen: The Fast Fourier Transform 4

Fig. 2. A nonperiodic signal.

How do we handle such a nonperiodic signal? The trick is to pretend that a pulse
is periodic as shown in Fig. 1 and then let the period T approach infinity without
changing the shape and width of the pulse.

For a periodic signal the frequency increment is

~f= 1/T

As T--+ oo and ~f--+ 0 we obtain a continuous spectrum of frequencies f.
To help in making the transition towards infinity, we will use Eq. (2) to express

a Fourier coefficient Ck as the product of a function value b(fk) and the frequency
increment ~f

Ck = b(jk)~f

b(fk) is the value of a function b(f) for the discrete frequency f = fk·
From Eq. (2) it follows that the appropriate function is

l T/2
b(f) = a(t)ei21rftdt

-T/2

The Fourier series (1) can now be expressed as

00

a(t) = L b(fk)e-i27rfl,t ~f
k=-oo

As T --+ oo we obtain the Fourier transform

which defines the frequency spectrum b(f) of the signal a(t).
The inverse transform

a(t) = j_: b(f)e-i21r/tdf

defines the signal a(t) as a function of its spectrum [Press et al. 1989).

(3)

(4)

Per Brinch Hansen: The Fast Fourier Transform 5

2. DISCRETE FOURIER TRANSFORM

The Fourier transform defines the frequency components of a continuous signal. When
a signal is sampled and analyzed on a computer we must use the corresponding discrete
Fourier transform (DFT).

2.1 Definition

Figure 3 shows a signal that is sampled at n discrete intervals of fixed length 6t.
We assume that the signal has been sampled competently, as explained by Brigham
[1974].

...

Fig. 3. A sampled signal.

The n sampled points are kept in an array

where
ak = a(tk) and tk = k6t fork= O .. n-1

We will use the sampled points to compute an approximation to the Fourier trans­
form b(f) at n discrete points. The discrete Fourier transform will be stored in another
array

where

bi = b(fi) and fi = n~t for j = O .. n-1

Each discrete frequency fi is a multiple of /t, the inverse of the total sampling
time n6t.

The remaining step is to approximate the integral in (3) by a discrete sum

n-1

bi = E a(tk)ei27r/jt~: 6t
k=O

Without loss of generality we assume !:::.t = 1 and rewrite the sum as

n-1
bj = E akei21fjkfn

k=O
(5)

Per Brinch Hansen: The Fast Fourier Transform 6

We can simplify this equation by introducing the complex number

w(n) = ei21r/n = cos(27r/n) + isin(27r/n) (6)

This number is an nth root of unity in the complex plane, since

When the value of n is obvious from the context, we will write w instead of w(n).

Examples
w(1)
w(2)
w(4)

-
-
-

ei21r

ei'Tr

ei1r!2

Using w(n) we can express Eq. (5) as

n-1

- 1
- -1

- t

b; = L akw(n)ik for j = O .. n-1
k=O

[Press et al. 1989].
This formula shows that the DFT of n points is the product

b = F(n)aT

of a matrix F(n) and a transposed vector aT.
The elements of the Fourier matrix F(n) are powers of w(n)

1 1 1 1
1 w w2 wn-1

F(n) = 1 w2 w4 w2(n-1)

1 wn-1 w2(n-1) w<n-1)2

The elements of the signal vector are the signal points

(7)

Per Brinch Hansen: The Fast Fourier Transform 7

Example

F(1) = [1]

a= [ao]

b = [ao]

Example

F(2) = [1 1 l
1 -1

Example

[t
1 1

-~ l F(4) =
l -1

-1 1 -1
-l -1 l

a = [ao a1 a2 aa]

The pairwise similarity of DFT points is no coincidence. It is the main idea behind
the fast Fourier transform, which will be discussed later.

A numerical example may be helpful. The DFT of the four points

a = [0.07 0.91 0.32 0.29]

lS

b = [1.59, -0.25 + i0.62, -0.81, -0.25 - i0.62]

2.2 Iterative DFT

Algorithm 1 defines an iterative DFT based on Eq. (7). It is written in Pascal, which
does not support complex arithmetic.

Per Brinch Hansen: The Fast Fourier Transform

type
complex = record re, im: real end;
table = array [O .. n-1] of complex;

procedure DFT(var a, b: table);
const pi = 3.14159265358979;
var j, k: integer; v: real;

ak, bj, wj, wjk, x: complex;
begin

for j := 0 to n - 1 do
begin

v := 2.0*pi*j/n;
wj.re := cos(v); wj.im := sin(v);
wjk.re := 1.0; wjk.im := 0.0;
bj.re := 0.0; bj.im := 0.0;
for k := 0 to n - 1 do
begin

{ bj := bj + ak*wjk }
ak := a[k);
bj.re := bj.re +

ak * "k ak . * "k . . re WJ .re - .1m WJ .1m;
bj.im := bj.im +

k * "k . ak . * "k a .re WJ .1m + .1m WJ .re;
{ wjk := wjk*wj }
x.re :=

"k * . "k. * .. WJ .re WJ.re- WJ .1m WJ.Im;
X.Im:=

wjk.re*wj.im + wjk.im*wj.re;
wjk := x

end;
bUJ := bj

end
end

Algorithm 1

The local variables include

v denoting 27r j / n
WJ denoting wi = cos(v) + i sin(v)
wjk denoting wik = (wi)k

8

Per Brinch Hansen: The Fast Fourier Transform 9

The computation of powers of Wj by complex multiplication may accumulate
rounding errors. So it is a good idea to use double-precision arithmetic for the DFT.

The run time of the DFT is O(n2).

3. FAST FOURIER TRANSFORM

If n is a power of two, the DFT can be computed by a much faster algorithm called
the fast Fourier Transform (FFT). The FFT runs in 0(n log n) time.

3.1 Definition

We split the n sampled points into even and odd numbered points

a" = [ao a2 ... an-2]
a' = [at a3 ... an-1]

The DFTs of a' and a11 can be computed separately using the n/2th root of unity

w(n/2) = ei4Tr/n = (ei2Tr/n) 2 = w(n)2

The equations will look less cluttered if we use the abbreviations

m = n/2 u = w(n/2) w = w(n)

According to Eq. (7) the DFT of a' is

1 · 2 · (m-1)" bi = a1 + a3u3 + asu 3 + · · · + an-1 u 3

which can be rewritten as

for j = o .. m- 1.
Similarly, the DFT of a11 is

for j = o .. m - 1.
The DFT of all n points is

(8)

(9)

(10)

for j = O •• n- 1. We have rearranged the terms by writing the even ones on the first
line and the odd ones below.

Combining Eqs. (8)-(10) we obtain a method of computing the first n/2 points
of the complete DFT from the DFTs of the odd and even points

bj = b'j + wibj for j = O .. m-1 (11)

Per Brinch Hansen: The Fast Fourier Transform

To compute the other half of the DFT we start by observing that

Consequently
wk(j+m) = (_1)kwkj

If we replace j by j + m in Eq. (10) and use Eq. (12) we get

In short
b. - b" ib' J+m- j- W j

+ · · · + an-2W(n-2)j
(n-l)J.

- ••• - an-IW

for j = O .. m-1

10

(12)

(13)

The computational idea behind the FFT is the combination of Eqs. (11) and (13)

b'~ + wi b'· £ · 0 1 3 3 or J = .. m-

- b'~- wib'·
J J

where m = n/2 (14)

Since n/2 is also a power of two, we can use the same formula to compute b'j and
bj. The FFT applies this rule recursively until it reaches a level that involves the
transforms of single points only.

Consider the FFT of four points. First, we split the samples into two halves
consisting of the even and odd numbered points, respectively. Each half is then split
into two samples of one point each. Figure 4 illustrates the recursive splitting of the
computation into smaller and smaller FFTs.

FFT([a0]) FFT([a2])

""'-/'
FFT([ao a2])

'

FFT([a1]) FFT([a3])

""'-/'
FFT([a1 a3])

/'

Fig. 4 Splitting the samples

Since the transform of a single point is the point itself, the recursion stops when
the FTTs are of length 1. The computation then combines four FFTs of length 1 into
two FFTs of length 2 and, finally, two FFTs of length 2 into a single one of length 4.
Figure 5 illustrates the recursive combination of FFTs.

Per Brinch Hansen: The Fast Fourier Transform

"\./

[ao + a2+ ao - a2+
(a1 + a3) i(a1- a3)

ao + a2- ao - a2-]
(a1 + a3) i(a1- a3)

Fig. 5 Combining the transforms

Before writing an FFT algorithm we will discuss several refinements.

3.2 In-Place Computation

11

It is possible to compute the FFT in place in a single array. The computation replaces
the signal points by the corresponding transform.

The trick is to let the FFT computation operate on smaller and smaller slices of
the same array. An array slice is split into two halves by moving the even and odd
numbered points to the left and right halves, respectively (Fig. 6).

[ao a2 a1 a3]

"-./ "-./
[ao a2 a1 a3]

"-./
[ao al a2 a4]

Fig. 6 In-place splitting

The transforms are then combined in place as illustrated by Fig. 7.

[ao

"\. / "\. /

"\./

[ao + a2+ ao - a2+
(a1 + a3) i(a1- a3)

ao + a2- ao - a2-]
(a1 + a3) i(a1- a3)

Fig. 7 In-place combination

Per Brinch Hansen: The Fast Fourier Transform 12

After this example, we will prove by induction that in-place computation is always
possible:

Base step: The FFT of a single point can be done in place by leaving the point
unchanged.

Induction step: Without loss of generality we consider a slice of n elements with
indices from 0 to n-1. After splitting the slice into two halves we assume that it is
possible to compute the two FFTs in place. We must now show that this hypothesis
also makes it possible to compute the combined FFT in place.

Figure 8 shows the Ph elements bj and bj of the left and right FFTs. Their indices
are j and j+m, respectively. According to Eq. (14) b'J and bj are used once only to
compute elements bj and bj+m of the combined FFT. Since the two "output" elements
have the same indices as the two "input" elements, they can replace them in the array.

QED

b'!
J

b'.
J

I b· 3 bj+m
0 J j+m n-1

Fig. 8 FFT elements

3.3 Recursive FFT

Algorithm 2 defines a recursive, in-place computation of the FFT in a single array a.

procedure FFT(var a: table; first,
last: integer);

var middle: integer;
begin

if first < last then
begin

split(a, first, last, middle);
FFT(a, first, middle);
FFT(a, middle+ 1, last);
combine(a, first, last, middle)

end
end

Algorithm 2

Each activation of the procedure computes the FFT of a slice of the array a. The
slice is defined by the indices of its first and last elements, where

0 ~ first < last < n - 1

Per Brinch Hansen: The Fast Fourier Transform

The procedure activation
FFT(a, 0, n- 1)

computes the transform of all n points.

13

If an array slice holds one point only, it is left unchanged since the point is its own
transform. Otherwise, the computation splits the array into two halves, computes the
FFT of each half separately, and combines them into a single FFT. The two halves
have indices in the ranges first .. middle and middle+ I. .last, respectively.

An array slice can be split into two halves using a local array b to rearrange the
samples into even and odd numbered points (Algorithm 3).

procedure split(var a: table; first,
last: integer; var middle: integer);

var even, half, size: integer;
b: table;

begin
middle := (first + last) div 2;
size := last - first + 1 ;
half := size div 2;
for j := 0 to half - 1 do
begin

even := first + 2*j;
b[i] := a[even];
b[j + half] := a[even + 1]

end;
for j := 0 to size- 1 do

a[first + j] := b[j]
end

Algorithm 3

Since Pascal does not support dynamic arrays, every local array must be of length n
to be able to hold all n signal points. Altogether, the local arrays created by nested
activations of the FFT and split procedures will occupy a memory space of 0(n log n).

A single array b suffices if we are willing to pass it as a parameter to each call of
FFT and split. Rather than doing that, we prefer to eliminate the split procedure
completely. We will return to this problem later.

The combination of two FFTs into one based on Eqs. (6) and (14) is defined by
Algorithm 4.

Per Brinch Hansen: The Fast Fourier Transform

procedure combine (var a: table; first,
last: integer);

const pi = 3.14159265358979;
var even, half, odd, j: integer;

v: real; ae, ao, w, wj, x: complex;
begin

half:= (last - first + 1) div 2;
v := pi/half;
w.re := cos(v); w.im := sin(v);
wj.re := 1.0; wj.im := 0.0;
for j := 0 to half - 1 do
begin

even :=first + j;
odd := even + half;
ae := a[even]; ao := a[odd];
{ x = wj*a[odd] }

. * . . * . x.re := WJ.re ao.re- WJ.Im ao.1m;
. . * . . . * x.Im := WJ.re ao.Im + WJ.Im ao.re;

{ a[odd] := a[even] - x;
a[even] := a[even] + x }

ao.re := ae.re - x.re; . . .
ao.Im := ae.1m- x.1m;
ae.re := ae.re + x.re;
ae.im := ae.im + x.im;
a[even] := ae; a[odd] = ao;
{ wj :=wj*w}

. * . . * . x.re := WJ.re w.re- WJ.Im w.1m;
. . * . . . * x.Im := WJ.re w.1m + WJ.Im w.re;

WJ :=X
end

end

Algorithm 4

3.4 Initial Permutation

14

If you compare the top and bottom of Fig. 6, you will see that the net effect of
recursive splitting is to permute the sampled points before the FFTs are combined.
This suggests that splitting can be replaced by a single permutation of the array
before the FFT combinations begin (Algorithm 5).

Per Brinch Hansen: The Fast Fourier Transform

type
complex = record re, im: real end;
table = array [O .. n-1] of complex;

procedure DFT(var a: table);
begin
permute(a);
FFT(a, 0, n- 1)

end

Algorithm 5

Algorithm 6 defines the simplified FFT.

procedure FFT(var a: table; first,
last: integer);

var middle: integer;
begin

if first < last then
begin

middle:= (first + last) div 2;
FFT(a, first, middle);
FFT(a, middle+ 1, last);
combine(a, first, last)

end
end

Algorithm 6

15

How should we permute the array? We can get a hint from Fig. 9, which shows the
end result of splitting eight sampled points in place.

0 1 2 3 4 5 6 7

Fig. 9. A permuted array

In an array of n sampled points the initial index of point aj is j. The final index
of aj after the permutation is denoted

index(j ,n) for j =O .. n -1

Table 1 shows the initial and final indices of eight points in decimal (and binary)
form.

Per Brinch Hansen: The Fast Fourier Transform 16

Table 1

J index(j,8)
0 (000) 0 {000)
1 (001) 4 (100)
2 (010) 2 (010)
3 (011) 6 {110)
4 {100) 1 {001)
5 (101) 5 (101)
6 (110) 3 (011)
7 (111) 7 {111)

The table suggests that the final index of a sampled point is obtained by reversing
the order of the bits in the initial index

index(j,n) = reverse(j,n) for j=O .. n-1 (15)

The reverse of a binary number consists of the last bit followed by the rest of the
bits (if any) in reverse order

reverse(0,1) = 0

reverse(2k,n) = reverse(k,n/2)

reverse(2k+1,n) = n/2 + reverse(k,n/2)

These rules define a recursive function (Algorithm 7)

function reverse(j, n: integer)
: integer;

var half: integer;
begin

if n = 1 then reverse:= j else
begin

half := n div 2;
reverse := (j mod 2)*half +

reverse(j div 2, half)
end

end

Algorithm 7

We will prove Eq. (15) by induction.

Per Brinch Hansen: The Fast Fourier Transform 17

Base step: In an array of size 1 the single point with index 0 is already correctly
placed

index(O,l) = 0 = reverse(O,l)

Induction step: We assume that Eq. (15) holds for arrays of size n/2 and will
prove that it also holds for arrays of size n.

Consider a sampled point ai when an array of size n is split into two halves. If
j is even, say j = 2k, aj is placed in the left half with index k. The left half is then
split into half. In formal terms

index(2k, n) index(k, n/2)
reverse(k, n/2)
reverse(2k, n)

If j is odd, say j = 2k + 1, ai is placed in the right half with index n/2 + k. The
right half is then split again. Consequently

index(2k+l, n) n/2 + index(k, n/2)
n/2 + reverse(k, n/2)
reverse(2k+l, n)

Bit reversal is obviously symmetric: if j = reverse(k, n), then k = reverse(j, n),
and vice versa. So the recursive splitting interchanges a[j] and a[k]. This insight
leads to Algorithm 8.

procedure permute(var a: table;
n: integer);

var j, k: integer; aj: complex;
begin

for j := 0 ton- 1 do
begin

k := reverse(j,n);
if j < k then
begin { swap(aU],a[k]) }

aj := a[j]; ali] := a[k];
a[k] := aj

end;
end

end

Algorithm 8

The condition j < k prevents a pair of points from being swapped twice. It also
eliminates superfluous swapping when an index and its reverse are the same.

Per Brinch Hansen: The Fast Fourier Transform 18

Since every index is reversed in time O(log n), the permutation takes 0(n log n)
time.

The recursive FFT is the combination of Algorithms 4-8.

3.5 Fast Permutation

The divide-and-conquer nature of the FFT makes it well-suited for parallel computa­
tion [Brinch Hansen 1991; Fox et al. 1988]. However, if a parallel FFT is preceded by
a sequential 0(n log n) permutation, the combination is still an 0(n log n) algorithm.

Fortunately, it is possible to permute n points in 0(n) time. A fast permutation
begins by constructing a map of size n that holds the bit-reversed values of the indices
O .. n-1.

We will illustrate the computational pattern for an array of eight points (see Table
1):

The first element of the permutation map is

The next element is

The next two elements are

The last four elements are

revo = 0

rev1 = rev0 + 4 = 4

rev2 = rev0 + 2 = 2
rev3 = rev1 + 2 = 6

rev 4 = rev0 + 1 = 1
rev 5 = rev 1 + 1 = 5
rev 6 = rev2 + 1 = 3
rev7 = rev3 + 1 = 7

In each step the map is doubled by adding a power of two to each of the previous
elements. The increment is halved after each step. This method was suggested by
Tapas Som.

The formal basis of the method is the rule

reverse(j+2k, n) = reverse(j, n) + n/2k+1

fork= O .. logn-1 and j = 0 .. 2k-l. The proof of this rule is left as an exercise for
you.

The fast permutation constructs a map according to this rule and uses it to swap
pairs of points in a signal array of size n (Algorithm 9).

Per Brinch Hansen: The Fast Fourier Transform

procedure permute(var a: table);
type map = array [O .. n-1] of integer;
var rev: map; aj: complex;
incr, size, j, k: integer;

begin
rev[O] := 0; size := 1;
while size < n do
begin

incr := n div (2*size);
for j := 0 to size - 1 do

revU + size] := revUJ + incr;
size := 2*size

end;
for j := 0 to n - 1 do
begin

k := revUJ;
if j < k then
begin { swap(aUJ, a[k]) }

aj := aU]; aU] := a[k];
a[k] := aj

end
end

end

Algorithm 9

19

If a complex number is represented by two 64-bit reals and an index by a 32-bit
integer, the permutation map increases the memory requirement by 25%.

This recursive FFT is defined by Algorithms 4-6 and 9.
There are FFT algorithms that work when n is not a power of two. However,

Press et al. [1989] recommend using the FFT only with n a power of two, if necessary
by padding the data with zeros up to the next power of two.

3.6 Iterative FFT

The FFT computation can also be defined by an iterative algorithm that transforms
the entire array log n times. The first transformation combines n slices of size 1 into
n/2 slices of size 2. The second transformation combines n/2 slices of size 2 into n/4
slices of size 4, and so on. The last transformation combines 2 slices of size n/2 into
a single slice of size n (Algorithm 10).

Per Brinch Hansen: The Fast Fourier Transform

procedure FFT(var a: table; first,
last: integer);

var size, k, m: integer;
begin

m :=last - first + 1;
size:= 2;
while size <= m do
begin

k :=first + size- 1;
while k <= last do
begin

combine (a, k - size + 1, k);
k := k +size

end;
size := 2*size

end
end

Algorithm 10

20

The iterative FFT is the combination of Algorithms 4, 5, 8, and 10. (Algorithm
8 may be replaced by the equivalent Algorithm 9.)

4. SUMMARY

We have explained the fast Fourier transform (FFT) and have illustrated the algo­
rithm by examples and Pascal algorithms. The FFT is yet another example of a
fundamental computation with a subtle theory and a short algorithm.

ACKNOWLEDGEMENTS

I thank Jonathan Greenfield and Erik Hemmingsen for valuable comments that im­
proved the paper.

REFERENCES

BRIGHAM, E. 0. 1974. The Fast Fourier Transform. Prentice-Hall, Englewood
Cliffs, NJ.

BRINCH HANSEN, P. 1991. Parallel divide and conquer. School of Computer and
Information Science, Syracuse University, Syracuse, NY.

COOLEY, J. W., and TUKEY, J. W. 1965. An algorithm for the machine calcula­
tion of complex Fourier series. Mathematics of Computation 19, 297-301.

Per Brinch Hansen: The Fast Fourier Transform 21

COOLEY, J. M., LEWIS, P. A., and WELSH, P. D. 1967. The history of the fast
Fourier transform. Proceedings of the IEEE 55, 1675-1679.

COURANT, R., and JOHN, F. 1989. Introduction to Calculus and Analysis. Vols.
I & II. Springer-Verlag, New York.

FOX, G. C., JOHNSON, M. A., LYZENGA, G. A., OTTO, S. W., SALMON, J.
K., and WALKER, D. W. 1988. Solving Problems on Concurrent Processors.
Vol. I. Prentice-Hall, Englewood Cliffs, NJ.

MACNAGHTEN, A. M., and HOARE, C. A. R. 1977. Fast Fourier transform.
Computer Journal 20, 1, 78-83.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., and VETTERLING,
W. T. 1989. Numerical Recipes in Pascal. The Art of Scientific Computing.
Cambridge University Press, New York.

	The Fast Fourier Transform
	Recommended Citation

	SU-CIS-91-46_001c
	SU-CIS-91-46_002c
	SU-CIS-91-46_003c
	SU-CIS-91-46_004c
	SU-CIS-91-46_005c
	SU-CIS-91-46_006c
	SU-CIS-91-46_007c
	SU-CIS-91-46_008c
	SU-CIS-91-46_009c
	SU-CIS-91-46_010c
	SU-CIS-91-46_011c
	SU-CIS-91-46_012c
	SU-CIS-91-46_013c
	SU-CIS-91-46_014c
	SU-CIS-91-46_015c
	SU-CIS-91-46_016c
	SU-CIS-91-46_017c
	SU-CIS-91-46_018c
	SU-CIS-91-46_019c
	SU-CIS-91-46_020c
	SU-CIS-91-46_021c
	SU-CIS-91-46_022c

