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This tutorial discusses the fast Fourier transform, which has numerous applications 
in signal and image processing. The FFT computes the frequency components of a 
signal that has been sampled at n points in 0( n log n) time. We explain the FFT 
and illustrate it by examples and Pascal algorithms. We assume that you are familiar 
with elementary calculus. 
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INTRODUCTION 

This tutorial discusses one of the most important algorithms in science and technol­
ogy: the discrete Fourier transform (DFT), which has numerous applications in signal 
and image processing. 

After a brief summary of the continuous Fourier transform we define the DFT. A 
straightforward DFT computation for n sampled points takes O(n2 ) time. The DFT 
is illustrated by examples and a Pascal algorithm. 

The fast Fourier transform (FFT) computes the DFT in 0( n log n) time using 
the divide-and-conquer paradigm. We explain the FFT and develop recursive and 
iterative FFT algorithms in Pascal. 

The FFT has a long history [Cooley et al. 1967]. It became widely known when 
James Cooley and John Tukey rediscovered it in 1965. The vast literature on the 
FFT and its applications include Brigham [1974], Macnaghten and Hoare [1977], and 
Press et al. [1989]. 

We assume that you are familiar with elementary calculus. 

1. MATHEMATICAL BACKGROUND 

We begin by summarizing the theory of the Fourier transform but will only attempt 
to make the results plausible. You will find a rigorous analysis in [Courant and John, 
1989]. 

1.1 Fourier Series 

We consider a physical process that can be described as a continuous function of time. 
We will call this function a signal. 

A periodic signal a(t) repeats itself after a period T 

a(t + T) = a(t) for all t 

as illustrated by Fig. 1. 

T 

Fig. 1. A periodic signal 
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Any periodic signal a(t) that we ordinarily encounter in physics or engineering 
can be written as a Fourier series--the sum of an infinite number of cosine and sine 
waves. 

Since the algebra of complex exponentials is much simpler than that of cosines 
and sines we will express the Fourier series as the sum of complex harmonics 

00 

a(t) = L Cke-i27rfl,t (1) 
k=-oo 

where 
e±i27rfl,t = cos(27r fkt) ± i sin(27r fkt) 

Here e = 2. 71828 . . . is the base of the natural logarithm, and " - yCI is the 
imaginary unit. 

The discrete frequencies 

fk = k/T for k = 0,±1,±2 .... 

are multiples of the lowest frequency 1/T. 
The Fourier coefficients Ck are generally complex numbers. To find a particular 

coefficient Cj we multiply both sides of Eq. (1) by 

and average both sides over one period. 
The right side is the sum of averages of the form 

llT/2 - ckei21r{!;-l~c)tdt 
T -T/2 

For k = j the exponential is 1 and the corresponding term has the value Cj. 

any other k the average value of a harmonic wave over j - k periods is zero. 
Consequently 

1.2 Fourier Transform 

A pulse is a signal of finite duration as shown in Fig. 2. 

For 

(2) 
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Fig. 2. A nonperiodic signal. 

How do we handle such a nonperiodic signal? The trick is to pretend that a pulse 
is periodic as shown in Fig. 1 and then let the period T approach infinity without 
changing the shape and width of the pulse. 

For a periodic signal the frequency increment is 

~f= 1/T 

As T--+ oo and ~f--+ 0 we obtain a continuous spectrum of frequencies f. 
To help in making the transition towards infinity, we will use Eq. (2) to express 

a Fourier coefficient Ck as the product of a function value b(fk) and the frequency 
increment ~f 

Ck = b(jk)~f 

b(fk) is the value of a function b(f) for the discrete frequency f = fk· 
From Eq. (2) it follows that the appropriate function is 

l T/2 
b(f) = a(t)ei21rftdt 

-T/2 

The Fourier series ( 1) can now be expressed as 

00 

a(t) = L b(fk)e-i27rfl,t ~f 
k=-oo 

As T --+ oo we obtain the Fourier transform 

which defines the frequency spectrum b(f) of the signal a(t). 
The inverse transform 

a(t) = j_: b(f)e-i21r/tdf 

defines the signal a(t) as a function of its spectrum [Press et al. 1989). 

(3) 

(4) 
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2. DISCRETE FOURIER TRANSFORM 

The Fourier transform defines the frequency components of a continuous signal. When 
a signal is sampled and analyzed on a computer we must use the corresponding discrete 
Fourier transform (DFT). 

2.1 Definition 

Figure 3 shows a signal that is sampled at n discrete intervals of fixed length 6t. 
We assume that the signal has been sampled competently, as explained by Brigham 
[1974]. 

... 

Fig. 3. A sampled signal. 

The n sampled points are kept in an array 

where 
ak = a(tk) and tk = k6t fork= O .. n-1 

We will use the sampled points to compute an approximation to the Fourier trans­
form b(f) at n discrete points. The discrete Fourier transform will be stored in another 
array 

where 

bi = b(fi) and fi = n~t for j = O .. n-1 

Each discrete frequency fi is a multiple of /t, the inverse of the total sampling 
time n6t. 

The remaining step is to approximate the integral in (3) by a discrete sum 

n-1 

bi = E a(tk)ei27r/jt~: 6t 
k=O 

Without loss of generality we assume !:::.t = 1 and rewrite the sum as 

n-1 
bj = E akei21fjkfn 

k=O 
(5) 
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We can simplify this equation by introducing the complex number 

w(n) = ei21r/n = cos(27r/n) + isin(27r/n) (6) 

This number is an nth root of unity in the complex plane, since 

When the value of n is obvious from the context, we will write w instead of w(n). 

Examples 
w(1) 
w(2) 
w(4) 

-
-
-

ei21r 

ei'Tr 

ei1r!2 

Using w(n) we can express Eq. (5) as 

n-1 

- 1 
- -1 

- t 

b; = L akw(n)ik for j = O .. n-1 
k=O 

[Press et al. 1989]. 
This formula shows that the DFT of n points is the product 

b = F(n)aT 

of a matrix F(n) and a transposed vector aT. 
The elements of the Fourier matrix F(n) are powers of w(n) 

1 1 1 1 
1 w w2 wn-1 

F(n) = 1 w2 w4 w2(n-1) 

1 wn-1 w2(n-1) w<n-1)2 

The elements of the signal vector are the signal points 

(7) 
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Example 

F(1) = [1] 

a= [ao] 

b = [ao] 

Example 

F(2) = [ 1 1 l 
1 -1 

Example 

[ t 
1 1 

-~ l F(4) = 
l -1 

-1 1 -1 
-l -1 l 

a = [ao a1 a2 aa] 

The pairwise similarity of DFT points is no coincidence. It is the main idea behind 
the fast Fourier transform, which will be discussed later. 

A numerical example may be helpful. The DFT of the four points 

a = [0.07 0.91 0.32 0.29] 

lS 

b = [1.59, -0.25 + i0.62, -0.81, -0.25 - i0.62] 

2.2 Iterative DFT 

Algorithm 1 defines an iterative DFT based on Eq. (7). It is written in Pascal, which 
does not support complex arithmetic. 
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type 
complex = record re, im: real end; 
table = array [O .. n-1] of complex; 

procedure DFT(var a, b: table); 
const pi = 3.14159265358979; 
var j, k: integer; v: real; 

ak, bj, wj, wjk, x: complex; 
begin 

for j := 0 to n - 1 do 
begin 

v := 2.0*pi*j/n; 
wj.re := cos(v); wj.im := sin(v); 
wjk.re := 1.0; wjk.im := 0.0; 
bj.re := 0.0; bj.im := 0.0; 
for k := 0 to n - 1 do 
begin 

{ bj := bj + ak*wjk } 
ak := a[k); 
bj.re := bj.re + 

ak * "k ak . * "k . . re WJ .re - .1m WJ .1m; 
bj.im := bj.im + 

k * "k . ak . * "k a .re WJ .1m + .1m WJ .re; 
{ wjk := wjk*wj } 
x.re := 

"k * . "k. * .. WJ .re WJ.re- WJ .1m WJ.Im; 
X.Im:= 

wjk.re*wj.im + wjk.im*wj.re; 
wjk := x 

end; 
bUJ := bj 

end 
end 

Algorithm 1 

The local variables include 

v denoting 27r j / n 
WJ denoting wi = cos( v) + i sin( v) 
wjk denoting wik = ( wi)k 

8 
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The computation of powers of Wj by complex multiplication may accumulate 
rounding errors. So it is a good idea to use double-precision arithmetic for the DFT. 

The run time of the DFT is O(n2 ). 

3. FAST FOURIER TRANSFORM 

If n is a power of two, the DFT can be computed by a much faster algorithm called 
the fast Fourier Transform (FFT). The FFT runs in 0( n log n) time. 

3.1 Definition 

We split the n sampled points into even and odd numbered points 

a" = [ao a2 ... an-2] 
a' = [at a3 ... an-1] 

The DFTs of a' and a11 can be computed separately using the n/2th root of unity 

w(n/2) = ei4Tr/n = (ei2Tr/n) 2 = w(n)2 

The equations will look less cluttered if we use the abbreviations 

m = n/2 u = w(n/2) w = w(n) 

According to Eq. (7) the DFT of a' is 

1 · 2 · (m-1)" bi = a1 + a3u3 + asu 3 + · · · + an-1 u 3 

which can be rewritten as 

for j = o .. m- 1. 
Similarly, the DFT of a11 is 

for j = o .. m - 1. 
The DFT of all n points is 

(8) 

(9) 

(10) 

for j = O •• n- 1. We have rearranged the terms by writing the even ones on the first 
line and the odd ones below. 

Combining Eqs. (8)-(10) we obtain a method of computing the first n/2 points 
of the complete DFT from the DFTs of the odd and even points 

bj = b'j + wibj for j = O .. m-1 (11) 
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To compute the other half of the DFT we start by observing that 

Consequently 
wk(j+m) = ( _1 )kwkj 

If we replace j by j + m in Eq. (10) and use Eq. (12) we get 

In short 
b. - b" ib' J+m- j- W j 

+ · · · + an-2W(n-2)j 
(n-l)J. 

- ••• - an-IW 

for j = O .. m-1 

10 

(12) 

(13) 

The computational idea behind the FFT is the combination of Eqs. (11) and (13) 

b'~ + wi b'· £ · 0 1 3 3 or J = .. m-

- b'~- wib'· 
J J 

where m = n/2 (14) 

Since n/2 is also a power of two, we can use the same formula to compute b'j and 
bj. The FFT applies this rule recursively until it reaches a level that involves the 
transforms of single points only. 

Consider the FFT of four points. First, we split the samples into two halves 
consisting of the even and odd numbered points, respectively. Each half is then split 
into two samples of one point each. Figure 4 illustrates the recursive splitting of the 
computation into smaller and smaller FFTs. 

FFT([a0]) FFT([a2]) 

""'-/' 
FFT([ao a2]) 

' 

FFT([a1]) FFT([a3]) 

""'-/' 
FFT([a1 a3]) 

/' 

Fig. 4 Splitting the samples 

Since the transform of a single point is the point itself, the recursion stops when 
the FTTs are of length 1. The computation then combines four FFTs of length 1 into 
two FFTs of length 2 and, finally, two FFTs of length 2 into a single one of length 4. 
Figure 5 illustrates the recursive combination of FFTs. 
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"\./ 

[ ao + a2+ ao - a2+ 
(a1 + a3) i(a1- a3) 

ao + a2- ao - a2-] 
(a1 + a3) i(a1- a3) 

Fig. 5 Combining the transforms 

Before writing an FFT algorithm we will discuss several refinements. 

3.2 In-Place Computation 

11 

It is possible to compute the FFT in place in a single array. The computation replaces 
the signal points by the corresponding transform. 

The trick is to let the FFT computation operate on smaller and smaller slices of 
the same array. An array slice is split into two halves by moving the even and odd 
numbered points to the left and right halves, respectively (Fig. 6). 

[ao a2 a1 a3] 

"-./ "-./ 
[ao a2 a1 a3] 

"-./ 
[ao al a2 a4] 

Fig. 6 In-place splitting 

The transforms are then combined in place as illustrated by Fig. 7. 

[ao 

"\. / "\. / 

"\./ 

[ ao + a2+ ao - a2+ 
(a1 + a3) i(a1- a3) 

ao + a2- ao - a2-] 
(a1 + a3) i(a1- a3) 

Fig. 7 In-place combination 
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After this example, we will prove by induction that in-place computation is always 
possible: 

Base step: The FFT of a single point can be done in place by leaving the point 
unchanged. 

Induction step: Without loss of generality we consider a slice of n elements with 
indices from 0 to n-1. After splitting the slice into two halves we assume that it is 
possible to compute the two FFTs in place. We must now show that this hypothesis 
also makes it possible to compute the combined FFT in place. 

Figure 8 shows the Ph elements bj and bj of the left and right FFTs. Their indices 
are j and j+m, respectively. According to Eq. (14) b'J and bj are used once only to 
compute elements bj and bj+m of the combined FFT. Since the two "output" elements 
have the same indices as the two "input" elements, they can replace them in the array. 

QED 

b'! 
J 

b'. 
J 

I b· 3 bj+m 
0 J j+m n-1 

Fig. 8 FFT elements 

3.3 Recursive FFT 

Algorithm 2 defines a recursive, in-place computation of the FFT in a single array a. 

procedure FFT(var a: table; first, 
last: integer); 

var middle: integer; 
begin 

if first < last then 
begin 

split(a, first, last, middle); 
FFT(a, first, middle); 
FFT(a, middle+ 1, last); 
combine(a, first, last, middle) 

end 
end 

Algorithm 2 

Each activation of the procedure computes the FFT of a slice of the array a. The 
slice is defined by the indices of its first and last elements, where 

0 ~ first < last < n - 1 
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The procedure activation 
FFT(a, 0, n- 1) 

computes the transform of all n points. 

13 

If an array slice holds one point only, it is left unchanged since the point is its own 
transform. Otherwise, the computation splits the array into two halves, computes the 
FFT of each half separately, and combines them into a single FFT. The two halves 
have indices in the ranges first .. middle and middle+ I. .last, respectively. 

An array slice can be split into two halves using a local array b to rearrange the 
samples into even and odd numbered points (Algorithm 3). 

procedure split(var a: table; first, 
last: integer; var middle: integer); 

var even, half, size: integer; 
b: table; 

begin 
middle := (first + last) div 2; 
size := last - first + 1 ; 
half := size div 2; 
for j := 0 to half - 1 do 
begin 

even := first + 2*j; 
b[i] := a[even]; 
b[j + half] := a[even + 1] 

end; 
for j := 0 to size- 1 do 

a[first + j] := b[j] 
end 

Algorithm 3 

Since Pascal does not support dynamic arrays, every local array must be of length n 
to be able to hold all n signal points. Altogether, the local arrays created by nested 
activations of the FFT and split procedures will occupy a memory space of 0( n log n). 

A single array b suffices if we are willing to pass it as a parameter to each call of 
FFT and split. Rather than doing that, we prefer to eliminate the split procedure 
completely. We will return to this problem later. 

The combination of two FFTs into one based on Eqs. (6) and (14) is defined by 
Algorithm 4. 
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procedure combine (var a: table; first, 
last: integer); 

const pi = 3.14159265358979; 
var even, half, odd, j: integer; 

v: real; ae, ao, w, wj, x: complex; 
begin 

half:= (last - first + 1) div 2; 
v := pi/half; 
w.re := cos(v); w.im := sin(v); 
wj.re := 1.0; wj.im := 0.0; 
for j := 0 to half - 1 do 
begin 

even :=first + j; 
odd := even + half; 
ae := a[even]; ao := a[odd]; 
{ x = wj*a[odd] } 

. * . . * . x.re := WJ.re ao.re- WJ.Im ao.1m; 
. . * . . . * x.Im := WJ.re ao.Im + WJ.Im ao.re; 

{ a[odd] := a[even] - x; 
a[even] := a[even] + x } 

ao.re := ae.re - x.re; . . . 
ao.Im := ae.1m- x.1m; 
ae.re := ae.re + x.re; 
ae.im := ae.im + x.im; 
a[even] := ae; a[odd] = ao; 
{ wj :=wj*w} 

. * . . * . x.re := WJ.re w.re- WJ.Im w.1m; 
. . * . . . * x.Im := WJ.re w.1m + WJ.Im w.re; 

WJ :=X 
end 

end 

Algorithm 4 

3.4 Initial Permutation 

14 

If you compare the top and bottom of Fig. 6, you will see that the net effect of 
recursive splitting is to permute the sampled points before the FFTs are combined. 
This suggests that splitting can be replaced by a single permutation of the array 
before the FFT combinations begin (Algorithm 5). 
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type 
complex = record re, im: real end; 
table = array [O .. n-1] of complex; 

procedure DFT(var a: table); 
begin 
permute( a); 
FFT(a, 0, n- 1) 

end 

Algorithm 5 

Algorithm 6 defines the simplified FFT. 

procedure FFT(var a: table; first, 
last: integer); 

var middle: integer; 
begin 

if first < last then 
begin 

middle:= (first + last) div 2; 
FFT(a, first, middle); 
FFT(a, middle+ 1, last); 
combine( a, first, last) 

end 
end 

Algorithm 6 

15 

How should we permute the array? We can get a hint from Fig. 9, which shows the 
end result of splitting eight sampled points in place. 

0 1 2 3 4 5 6 7 

Fig. 9. A permuted array 

In an array of n sampled points the initial index of point aj is j. The final index 
of aj after the permutation is denoted 

index(j ,n) for j =O .. n -1 

Table 1 shows the initial and final indices of eight points in decimal (and binary) 
form. 
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Table 1 

J index(j,8) 
0 (000) 0 {000) 
1 (001) 4 (100) 
2 (010) 2 (010) 
3 (011) 6 {110) 
4 {100) 1 {001) 
5 (101) 5 (101) 
6 (110) 3 (011) 
7 (111) 7 {111) 

The table suggests that the final index of a sampled point is obtained by reversing 
the order of the bits in the initial index 

index(j,n) = reverse(j,n) for j=O .. n-1 (15) 

The reverse of a binary number consists of the last bit followed by the rest of the 
bits (if any) in reverse order 

reverse(0,1) = 0 

reverse(2k,n) = reverse(k,n/2) 

reverse(2k+1,n) = n/2 + reverse(k,n/2) 

These rules define a recursive function (Algorithm 7) 

function reverse(j, n: integer) 
: integer; 

var half: integer; 
begin 

if n = 1 then reverse:= j else 
begin 

half := n div 2; 
reverse := (j mod 2)*half + 

reverse(j div 2, half) 
end 

end 

Algorithm 7 

We will prove Eq. (15) by induction. 



Per Brinch Hansen: The Fast Fourier Transform 17 

Base step: In an array of size 1 the single point with index 0 is already correctly 
placed 

index(O,l) = 0 = reverse(O,l) 

Induction step: We assume that Eq. (15) holds for arrays of size n/2 and will 
prove that it also holds for arrays of size n. 

Consider a sampled point ai when an array of size n is split into two halves. If 
j is even, say j = 2k, aj is placed in the left half with index k. The left half is then 
split into half. In formal terms 

index(2k, n) index(k, n/2) 
reverse(k, n/2) 
reverse(2k, n) 

If j is odd, say j = 2k + 1, ai is placed in the right half with index n/2 + k. The 
right half is then split again. Consequently 

index(2k+l, n) n/2 + index(k, n/2) 
n/2 + reverse(k, n/2) 
reverse(2k+l, n) 

Bit reversal is obviously symmetric: if j = reverse( k, n), then k = reverse(j, n), 
and vice versa. So the recursive splitting interchanges a[j] and a[k]. This insight 
leads to Algorithm 8. 

procedure permute(var a: table; 
n: integer); 

var j, k: integer; aj: complex; 
begin 

for j := 0 ton- 1 do 
begin 

k := reverse(j,n); 
if j < k then 
begin { swap(aU],a[k]) } 

aj := a[j]; ali] := a[k]; 
a[k] := aj 

end; 
end 

end 

Algorithm 8 

The condition j < k prevents a pair of points from being swapped twice. It also 
eliminates superfluous swapping when an index and its reverse are the same. 
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Since every index is reversed in time O(log n), the permutation takes 0( n log n) 
time. 

The recursive FFT is the combination of Algorithms 4-8. 

3.5 Fast Permutation 

The divide-and-conquer nature of the FFT makes it well-suited for parallel computa­
tion [Brinch Hansen 1991; Fox et al. 1988]. However, if a parallel FFT is preceded by 
a sequential 0( n log n) permutation, the combination is still an 0( n log n) algorithm. 

Fortunately, it is possible to permute n points in 0( n) time. A fast permutation 
begins by constructing a map of size n that holds the bit-reversed values of the indices 
O .. n-1. 

We will illustrate the computational pattern for an array of eight points (see Table 
1 ): 

The first element of the permutation map is 

The next element is 

The next two elements are 

The last four elements are 

revo = 0 

rev1 = rev0 + 4 = 4 

rev2 = rev0 + 2 = 2 
rev3 = rev1 + 2 = 6 

rev 4 = rev0 + 1 = 1 
rev 5 = rev 1 + 1 = 5 
rev 6 = rev2 + 1 = 3 
rev7 = rev3 + 1 = 7 

In each step the map is doubled by adding a power of two to each of the previous 
elements. The increment is halved after each step. This method was suggested by 
Tapas Som. 

The formal basis of the method is the rule 

reverse(j+2k, n) = reverse(j, n) + n/2k+1 

fork= O .. logn-1 and j = 0 .. 2k-l. The proof of this rule is left as an exercise for 
you. 

The fast permutation constructs a map according to this rule and uses it to swap 
pairs of points in a signal array of size n (Algorithm 9). 
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procedure permute(var a: table); 
type map = array [O .. n-1] of integer; 
var rev: map; aj: complex; 
incr, size, j, k: integer; 

begin 
rev[O] := 0; size := 1; 
while size < n do 
begin 

incr := n div (2*size); 
for j := 0 to size - 1 do 

revU + size] := revUJ + incr; 
size := 2*size 

end; 
for j := 0 to n - 1 do 
begin 

k := revUJ; 
if j < k then 
begin { swap(aUJ, a[k]) } 

aj := aU]; aU] := a[k]; 
a[k] := aj 

end 
end 

end 

Algorithm 9 

19 

If a complex number is represented by two 64-bit reals and an index by a 32-bit 
integer, the permutation map increases the memory requirement by 25%. 

This recursive FFT is defined by Algorithms 4-6 and 9. 
There are FFT algorithms that work when n is not a power of two. However, 

Press et al. [1989] recommend using the FFT only with n a power of two, if necessary 
by padding the data with zeros up to the next power of two. 

3.6 Iterative FFT 

The FFT computation can also be defined by an iterative algorithm that transforms 
the entire array log n times. The first transformation combines n slices of size 1 into 
n/2 slices of size 2. The second transformation combines n/2 slices of size 2 into n/4 
slices of size 4, and so on. The last transformation combines 2 slices of size n/2 into 
a single slice of size n (Algorithm 10). 
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procedure FFT(var a: table; first, 
last: integer); 

var size, k, m: integer; 
begin 

m :=last - first + 1; 
size:= 2; 
while size <= m do 
begin 

k :=first + size- 1; 
while k <= last do 
begin 

combine (a, k - size + 1, k); 
k := k +size 

end; 
size := 2*size 

end 
end 

Algorithm 10 
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The iterative FFT is the combination of Algorithms 4, 5, 8, and 10. (Algorithm 
8 may be replaced by the equivalent Algorithm 9.) 

4. SUMMARY 

We have explained the fast Fourier transform (FFT) and have illustrated the algo­
rithm by examples and Pascal algorithms. The FFT is yet another example of a 
fundamental computation with a subtle theory and a short algorithm. 
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