
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

1-1991

Optimal Parallel Lexicographic Sorting using a Fine-Grained Optimal Parallel Lexicographic Sorting using a Fine-Grained

Decomposition Decomposition

Ramachandran Vaidyanathan

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Pramod Varshney
Syracuse University, varshney@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vaidyanathan, Ramachandran; Hartmann, Carlos R.P.; and Varshney, Pramod, "Optimal Parallel
Lexicographic Sorting using a Fine-Grained Decomposition" (1991). Electrical Engineering and Computer
Science - Technical Reports. 127.
https://surface.syr.edu/eecs_techreports/127

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/127?utm_source=surface.syr.edu%2Feecs_techreports%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-01

Optimal Parallel Lexicographic Sorting
using a Fine-Grained Decomposition

Ramachandran Vaidyanathan, Carlos R.P. Hartmann, and Pramod K. Varshney

January 1991

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

Optimal Parallel Lexicographic Sorting

using a Fine-Grained Decomposition1

Ramachandran Vaidyanathan2

Carlos R. P. Hartmann3

Pramod K. Varshney4

1This work was partially supported by The Northeast Parallel Architectures Center (NPAC) at

Syracuse University, Syracuse, NY 13244 and The Rome Air Development Center, under contract

F30602-88-D-0027.
2 R. Vaidyanathan is with the Department of Electrical and Computer Engineering at Louisiana

State University, Baton Rouge, LA 70803-5901. e-mail: vaidy@max.ee.lsu.edu
3 C. R. P. Hartmann is with the School of Computer and Information Science at Syracuse Uni-

versity, Syracuse, NY 13244-4100. e-mail: hartmann@top.cis.syr.edu
4 P. K. Varshney is with the Department of Electrical and Computer Engineering at Syracuse

University, Syracuse, NY 13244-1240. e-mail: varshney@sunrise.acs.syr.edu

Abstract: Though non-comparison based sorting techniques like radix sorting can

be done with less "work" than conventional comparison-based methods, they are not

used for long keys. This is because even though parallel radix sorting algorithms

process the keys in parallel, the symbols in the keys are processed sequentially. In

this report, we give an optimal algorithm for lexicographic sorting that can be used

to sort n m-bit keys on an EREW model in 8(log n log m) time with 8(mn) "work".

This algorithm is not only as fast as any optimal non-comparison based algorithm,

but can also be executed with less work. We also use the proposed algorithm to

show that if n 8(log n) unsigned binary numbers can be sorted optimally on an

EREW PRAM than n unsigned binary numbers of unrestricted length can be sorted

optimally on an EREW PRAM.

Keywords: ISR-PRAM, Lexicographic Sorting, Parallel Algorithms, Parallel Pro

cessing, PRAM, R-PRAM, Sorting.

Contents

1 Introduction

2 Fine-Grained Problem Decomposition

3 The Model of Computation

4 Preliminaries

5 The Sorting Algorithm

5.1 A Brief Outline of the Sorting Algorithm

5.2 The Leader Finding Problem.

5.3 An Example

5.4 Complexity Analysis of the Sorting Algorithm

6 Sorting on an EREW PRAM

7 Concluding Remarks

Acknowledgment

References

Appendices

A Solution to the Leader Finding Problem

B An Illustration of the Leader Finding Problem Algorithm

11

1

5

9

11

13

13

15

16

21

25

27

28

29

31

31

37

List of Tables

1 The input bits for the example of lexicographic sorting 38

2 Input to Step 1 of the lexicographic sorting Algorithm . 38

3 The input to the leader finding problem example 39

4 Leader finding problem algorithm Step 1; Initialization 39

5 Leader finding problem algorithm Step 1; Iteration 0 40

6 Leader finding problem algorithm Step 1; Iteration 1 40

7 Leader finding problem algorithm Step 1; Iteration 2 41

8 Leader finding problem algorithm Step 1; Iteration 3 41

9 Leader finding problem algorithm Step 1; Iteration 4 42

10 Leader finding problem algorithm Step 1; Iteration 5 42

11 Leader finding problem algorithm Step 1; Iteration 6 43

12 Leader finding problem algorithm Step 1; Iteration 7 43

13 Leader finding problem algorithm Step 1; KLFlag(i) and U_Flag(i) 44

14 Result of Step 1 of the leader finding problem algorithm 44

15 Leader finding problem algorithm Step 2; Initialization 45

16 Leader finding problem algorithm Step 2; Iteration 0 45

17 Leader finding problem algorithm Step 2; Iteration 1 46

18 Leader finding problem algorithm Step 2; Iteration 2 46

19 Leader finding problem algorithm Step 3; Initialization 47

20 Leader finding problem algorithm Step 3; Iteration 0 47

21 Leader finding problem algorithm Step 3; Iteration 1 48

22 Leader finding problem algorithm Step 3; Iteration 2 48

23 Leader finding problem algorithm Step 3; Iteration 3 49

24 Leader finding problem algorithm Step 3; Iteration 4 49

25 Leader finding problem algorithm Step 3; Iteration 5 50

26 Leader finding problem algorithm Step 3; Iteration 6 50

27 Leader finding problem algorithm Step 3; Iteration 7 51

lll

28 Output of the leader finding problem algorithm 51

List of Figures

1 p {0,1,2} ..• 52

2 p {0,1,2,3,4,5} • 53

3 p {6,7,8,9,10,11} • 54

4 Phases 1 and 2 55

5 Phases 3 and 4 56

IV

1 Introduction

For years, sorting has drawn the interest of researchers, due both to the theoretical

challenges that it poses and its practical applications. With the advent of parallel

processing, this interest has been considerably enhanced. Several sorting algorithms

have been proposed, one of the most important of which is the work of Ajtai, Koml6s

and Szemen§di (the AKS sorting network) [2]. This method led to the first algorithm

that sorts n keys in 8(log n) comparison time with n processors. More recently,

Cole [6] has developed an algorithm that also sorts n keys in 8(log n) time on an

EREW PRAM with n processors. Several other sorting algorithms have also been

proposed that sort n keys with a processor-time product of 8(nlogn), but with a

time that is a strictly higher order than log n.

It is well known that the order of the processor-time product for any comparison

based algorithm for sorting n keys is lower bounded by 8(nlogn) [9]. The atomic

operation for comparison-based sorting is comparison. To compare two m-bit numbers

with 8(1) "gates", one needs 8(m) time. Indeed, this is the best that can be done with

8(1) gates, as it takes 8(m) time to even scan them-bit numbers. One could measure

the efficiency of the comparison by the "Gate-Time Product" (GTP), a measure

similar to the processor-time product. The idea of the GTP has been discussed further

in§ 2. For the comparison of two m-bit numbers the GTP is lower bounded by 8(m).

In fact, the most common parallel method of comparison, employed for comparing

two m-bit numbers with a constant fan-in, constant fan-out circuit requires 8(log m)

time (the information is fanned-in in a binary tree fashion). This method can be

modified using Brent's theorem [5], so that two m-bit numbers can be compared in

8(logm) time, with 8(1o;m) gates. On the other hand if a processor of "size m bits"

is used (the idea of a processor of size b bits has been defined in § 2), the above

comparison could possibly be done faster by using a look-up table. It turns out that

if m is upper bounded by 8(logn) (where n is the size of the problem in which the

m-bit comparison is being used) then the above comparison can be done in 8(1) time,

1

otherwise S(log m) time is required. These ideas have been explained in more detail

in § 2. For reasons explained later in this section, we will consider in this report, the

problem of sorting n m-bit unsigned binary numbers (keys), where m is a strictly

higher order than 8 (log n). In the light of the above discussions one could say that

the GTP for sorting n m-bit keys using a comparison-based sorting method is lower

bounded by e(mnlogn), and the fastest algorithms [2, 6] that achieve this lower

bound on the GTP, take a time of S(lognlogm), when m is a strictly higher order

than e (log n). It should also be mentioned here that Azar and Vishkin [4] have shown

that the lower bound on the time (measured in terms of comparison times) for any

comparison-based sorting algorithm that performs a total of 8(n log n) comparisons is

8(1ogn). Restated in terms of the GTP, any comparison-based sorting algorithm for

an EREW model that has a GTP of S(mnlogn) requires at least S(log nlogm) time,

if m is a strictly higher order than 8(logn). This in effect shows that the algorithms

in [2, 6] are the fastest possible comparison-based EREW sorting algorithms that

have a GTP of 8(mnlogn).

One of the most common non-comparison based sorting techniques is called radix

or distribution sorting [1, 9]. Methods based on this technique have keys that are

represented by a q-tuple <so, s17 ••• , Sq-1> where Si (0 :5 i < q) is a section of

the key. Each section Si is drawn from a set S, whose elements (the sections) are

totally ordered by a relation ::5 . Consider two keys kx = <s5, sf, ... , s:_1> and ky =
<s~, sr, ... , s~_ 1 >. We say that kx C ky if and only if 3i E {0, 1, ... , q-1} 3 sf ::5 sf

and Vi', 0 :5 i' < i, s~ = sf,. The above ordering relation ~ on the set of keys is

called a lexicographic ordering and a sorting of the keys based on this ordering is

called lexicographic sorting.

The lexicographic sorting method given in [1] is for sorting n keys; each key

being an ordered sequence of q sections, where each section is drawn from the set

{ 0, 1, ... , r- 1}. This algorithm requires 8(q(n + r)) time, if one processor is used. If

each key is viewed as an m-bit number, where m = q llog2r l, then the time required

2

is 8((1o~r)(n + r)). However, it is assumed in the above algorithm that a pointer to

a key's index can be accessed by the processor in constant time. Since the pointer

is log n bits long, the processor used must at least of size log n bits. Thus, the GTP

for the algorithm is at least 8((1o~r)(n + r) log n). If we group them bits (where the

order of m is at least 8(log n)) in the keys to form groups of at most log n contiguous

bits (i.e. r = n), then the above algorithm could be used to sort the numbers in

8(1:nn) time with one processor of size logn bits; the GTP is 8(mn). Thus, an

upper bound on the GTP for a non-comparison based sorting technique for n m-bit

keys is 8(mn). Since the number of bits in the input is mn, a lower bound on the

GTP for the above problem is also 8(mn). Thus the algorithm in [1] is optimal with

respect to the GTP.

Even though radix sorting can be done with a lower order of GTP than conven

tional comparison-based sorting algorithms, it is not used for long keys as the time

required grows linearly with the length of the keys. A natural question therefore is,

"can n m-bit numbers be sorted on an EREW model in 8(lognlogm) time and a

GTP of 8(mn) ?"

Consider an algorithm to sort n m-bit numbers. If this algorithm is comparison

based then as mentioned earlier, the GTP is lower bounded by 8(mnlogn). There

fore, any algorithm that achieves a time of 8(log n log m) and a GTP of 8(mn) on an

EREW model must be a non-comparison based algorithm. One possibility is to use a

lexicographic sorting algorithm in which the keys are assumed to be unsigned binary

numbers. Unlike comparison-based algorithms which view the input as n indivisible

objects, we will view the input as an n x m matrix of bits (henceforth referred to as

the input matrix). The rows in the input matrix correspond to the keys. In order to

sort this input fast and efficiently, one must use a model of computation that can ma

nipulate the input elements with a certain amount of independence. In other words,

the processors in this model must be able to access and manipulate the bits in the

input matrix autonomously. For this purpose, we use a model of computation called

3

the Reconfigurable PRAM (R-PRAM), that permits the use of "small processors".

The R-PRAM is a variant of the PRAM that allows the problem to be decomposed

very finely. More details of the R-PRAM appear in§ 3 and in [12].

In this report, we propose a parallel lexicographic sorting algorithm for an EREW

R-PRAM that sorts n m-bit numbers (where m is a strictly higher order than

E>(logn)), in E>(log n log m) time with a GTP of E>(mn) and a memory that is polyno

mial in mn. We note here that the above time complexity is the same as that of the

fastest possible comparison-based parallel sorting algorithms. Moreover, this time is

achieved with the lowest possible GTP. It has been shown in [7] that the lower bound

for sorting n keys (by any method) on any CREW model is E>(logn). This result

holds for both comparison-based and non-comparison based sorting algorithms. It

has also been shown in [7] that the lower bound on finding the bitwise OR of an

m-bit number on any CREW model is E>(logm). Since the bitwise OR of an m-bit

number can be determined by comparing the number with an m-bit zero (i.e. m-bit

number with all bits set to 0), the lower bound on comparing two m-bit numbers on

any CREW model is E>(logm). Thus, we can conclude that our algorithm cannot be

speeded up by more than a constant factor. It should be mentioned here that when

m is E>(logn), the sorting can be done optimally on an EREW R-PRAM in E>(logn)

time and with a GTP of E>(nlogn) [11].

The contribution of this work is twofold:

- It gives an optimal EREW algorithm for sorting n m-bit numbers (where m is

a strictly higher order than E>(logn)) that has the speed of the fastest comparison

based sorting algorithms and the efficiency of the most efficient non-comparison based

sorting algorithms. This efficiency cannot be achieved by any comparison-based al

gorithm.

-It proves that if n E>(logn)-bit unsigned binary numbers can be sorted optimally

on an EREW PRAM, then so can n unsigned binary numbers of unrestricted length.

More details appear in § 6.

4

Before we proceed, we would like to explain some of the notation used in this

report. Let f(n) and g(n) be two non-decreasing functions of a variable n. We say

- f(n) is 8(g(n)) iff f(n) and g(n) have the same order of complexity.

- f(n) is O(g(n)) iff the complexity of f(n) is the same as or lower than

that of g(n).

- f(n) is O(g(n)) iff g(n) is O(f(n)).

- f(n) is o(g(n)) iff f(n) is O(g(n)) and f(n) is not 8(g(n)).

- f(n) is w(g(n)) iff g(n) is o(f(n)).

Barring the "w" notation, the rest of the above complexity notation is commonly

used in the literature. For any real number r, r r l denotes the smallest integer i such

that i :2: r. For any positive integer i, N(i) is defined to be the set {0, 1, · · ·, i- 1}.

For any set S, lSI denotes its cardinality. All logarithms used are to the base 2.

In the next section we briefly describe the idea of a fine-grained problem decom

position which is necessary before we describe our model of computation in§ 3. In§ 4

we discuss a few preliminaries and give a formal description of the sorting problem.

§ 5 is devoted to the description of our sorting algorithm and its complexity analysis.

In § 6 we discuss how the proposed algorithm could be extended to the conventional

PRAM model. Finally in § 7 we summarize our results and make some concluding

remarks.

2 Fine-Grained Problem Decomposition

Any computational problem can be viewed as a computable function f : A --t B

where A and Bare the sets representing the input and the output domains. If nothing

more is specified about the sets A and B, one has to work at a level of abstraction in

which any input a E A and f(a) E Bare treated as atomic entities and one cannot say

much about how the computation is performed. We will therefore not consider this

representation of the problem instance, any further. Usually, the input and the output

5

are assumed to consist of several smaller entities and A and E may be expressed as

A1 x A2 x · · · x AN and E 1 x E 2 x · · · x EM, respectively. A slightly lower level of

abstraction views the input and output as N and M atomic entities, respectively. At

this level of abstraction, one could conceivably parallelize the problem, as there is

more than one entity to manipulate. Proceeding in a similar fashion one could view

the input as a sequence of n bits and the output as a sequence of m bits, each of

which can be processed individually. At this level of abstraction the problem may

be highly parallelizable. Any level of abstraction that views the input and output as

entities that are smaller than the elements of At, A 2 , ••• , AN and E1, E 2 , ••• , EM, will

be referred to as a fine-grained decomposition. The granularity of the decomposition

is intimately associated with the size of the objects that a processor considers atomic,

i.e. the "word-size" of the processor. More details appear in [12]. Before we outline

the R-PRAM, a few relevant details are discussed below.

Any computable function f: {0,1}n---+ {0,1}m (that represents a problem of

size n) can be computed trivially in 0(1) time using a look-up table with 2n m-bit

entries. The address decoding time has been ignored as is the case for the rest of

the discussion in this report. We will therefore assume that the memory used to

solve a computational problem of size n is O(n9 (1)) bits; i.e. memory is polynomially

upper-bounded in the size of the input. Similarly, we will also assume that the total

number of processors used and their word-size are O(n9 (1)) bits.

For most non-trivial computational problems of size n, each processor used in

its solution has an address space that is f!(n) bits (and O(n9 (1))) bits as discussed

earlier). Therefore, the length of an address is 8(log n) bits. This makes it necessary

for the processors to be of size f!(log n) bits, if memory addressing is not ignored and

is required to take 0(1) time. This lower-bounds the size of the processors and hence

limits the granularity of the problem decomposition.

The R-PRAM is a variant of the PRAM. Like the PRAM, the model will abstract

the solution to a problem from the communication and synchronization details. It

6

is also generally assumed that the PRAM can execute any instruction from its in

struction set in 8(1) time. To make this assumption reasonable, the instruction set

is restricted to include only "simple" operations. One such restricted class of instruc

tions (called the minimal instruction set in [10]) includes data movement, addition,

subtraction, and shifting by one bit. One could also include comparison and bitwise

and global logical operations in this instruction set. Consider now the addition of

two b-bit numbers using a processor of "size b bits" (the idea of a processor of size b

bits is formalized later in this section). The above addition cannot be done in time

independent of b, without a table look-up. Even though some of the instructions in

the minimal instruction set can be executed in 8(1) time without a table look-up,

for uniformity we will assume that all instructions are executed with a table look-up.

The total size of the look-up tables for each processor is 8(26 (t)b) b-bit words, which

by our earlier assumption is O(n9 (1)); thus, b is O(logn). In fact, if b is 8(logn),

then any instruction that has O(log n)-bit operand(s) can be executed in 8(1) time

by a "processor of size b bits." Therefore any step in a computation may be viewed

as a set of concurrent memory accesses. This motivates the following definition.

Definition: A processor is of size b bits iff the largest number of contiguous memory

bits that it can access in unit time is b, where unit time is defined to be the time

required by a processor of any size to access a single bit of the memory.

In the above definition it is assumed that no other processor is making an access

and that the address for the memory access is known. These assumptions are only

for the purpose of a precise definition and do not reflect on the capabilities of the

model. More details appear in [12]. The above definition is consistent with the

assumption that the instructions from the instruction set of a processor of size b bits

(b is O(log n)) can be executed in constant time. We also note that since the size of a

processor has been defined in terms of its memory accessing capability and to access

b bits of memory in constant time one needs 8(b) bits of hardware (not counting the

7

memory, the memory port etc.), we will say that a processor of size b bits has E>(b)

bits of computing hardware. Conversely, E>(b) bits of computing hardware is sufficient

to construct p :5 b processors, each of size 8(~) bits. Other hardware necessary in a

practical processor, like the memory and its ports, are not counted in our definition

of computing hardware.

As mentioned in § 1, the comparison of two m bit numbers on an EREW model

needs E>(l) time, if m is O(log n) and E>(log n) time, otherwise. Consider the case

where misE>((log n)(l+lo:f;J n>). Substituting this value of min 2m, the size of the look

up table turns out to be E>(n9 (1)) bits. We note that for an asymptotically large value

of n, (log n)(l+lo:f;Jn> is E>(log n). Thus if m is O(log n), then 2m is O(n9 (1)) and the

comparison time is E>(l). If m is E>((log n)(l+()) (where, Eisa constant greater than 0),

then the size of the look-up table is E>(n9 ((logn)•)), which is not polynomially bounded

in mn. This, as mentioned earlier in this section, is not permitted. Therefore, if m is

w(log n), we will only be able to use processors of size E>(log n) bits. Let us assume

that we have an unbounded number of such processors. If an EREW model is used,

then we will require E>(log(1o~n)) time to perform the comparison. Them bits in each

of the input numbers are divided into r lo~n l sections, each at most log n bits long.

Each section of the two numbers can be compared by a processor of size log n bits

in E>(l) time. Next, the rlo~n l partial results can be fanned in, in E>(log(1o~n)) time.

The same order of time can be achieved with E>(1o~n/ log(1o~n)) processors.

Let m be E>((logn)l+f(n)), where f(n) is any positive non-decreasing function

of n. The time required for the comparison is E>(J(n)loglogn) which is E>(logm).

Since log(1o~n) is E>(log m), the number of processors of size log n that are are used

is logn7ogm; the resulting GTP is e(m), which is optimal.

The use of a table look-up by a processor of size log n bits, to execute instructions

in constant time, involves the use of E>(n 2 log n) bits of memory for operations like

log n-bit addition. For an EREW model with p processors, each of size log n bits, the

total size of the look-up tables is E>(pn2 log n). As mentioned earlier, the R-PRAM

8

models a fine-grained decomposition. At this level of abstraction, it is necessary to

count the look-up table space when calculating the space complexity of an algorithm.

Without the look-up tables, the operations cannot be done in 8(1) time. On the

other hand, in the conventional PRAM, the look-up tables may be disregarded as

at this level of abstraction, each operation, by definition, can be performed in 8(1)

time. However, the processors in the PRAM will be assumed to be of size 8 (log n)

bits.

If p processors c0 , Ct, ... , Cp-b with processor Ci of size Si bits, are used to solve

a problem of size n in time T(n), then under the assumptions made earlier we say
p-1

that the problem can be solved in time T(n) with LSi bits of computing hardware.
i=O

We measure the efficiency of this solution by the quantity Gate Time Product (GTP)

which is the product of the bits of computing hardware used and the time taken.

The GTP is a measure of computational efficiency, analogous to the commonly used

processor time product.

3 The Model of Computation

As mentioned earlier, the model used in this report is the Reconfigurable Parallel

Random Access Machine (R-PRAM). This model captures the idea of a fine-grained

problem decomposition and like the PRAM, abstracts the solution from some aspects

of communication and address decoding. In addition, the R-PRAM also abstracts

the solution from some aspects of address generation and loop management. More

details of these issues appear later in this section and in [12}.

The R-PRAM consists of 1-{ bits of computing hardware that may be configured

as 8(p) processors, each of size 8(li) bits, for any p that is 0(1), such that 'li is a non-
P P

decreasing function. For each value of p we have a different processor configuration

of the 1-l bits of computing hardware, hence the name Reconfigurable PRAM. The

reconfiguration is static; i.e. given the size of the problem, it can be decided a priori,

9

which configuration the R-PRAM will assume at any point in the execution of the

algorithm. We assume that the R-PRAM can be reconfigured in constant time. We

also assume that each processor in any configuration of the R-PRAM that has p

processors, each of size b bits, has n (the problem size), b (the processor size) and its

index (a unique number between 0 and p - 1) available to it. Like the PRAM, the

R-PRAM has M bits of global memory that could be accessed by all the processors

in a given configuration. If a configuration has 8(?f) processors, each of size b bits,

then each processor views the global memory as 8(~) words, each of which consists

of b contiguous bits. We note here that a processor of size b bits can only access

one b-bit memory word at a time. If a processor of size b bits accesses C contiguous

bits of the memory, then it is assumed to require 8(r~l) time. As mentioned earlier,

the R-PRAM can be configured as 8(?f) processors each of size b bits (where b is

O(log n)). In order to ensure that at least 8(1) processors, each of size O(log n)

bits is available, we will assume 1{ to be O(log n). This is similar to assuming that

a PRAM at least 8(1) processors. Like the PRAM, the R-PRAM can be EREW,

CREW or CRCW. In this report, we use the EREW R-PRAM.

Since the address of the memory is 8(log n) bits long whereas the processors in

the R-PRAM could be of size o(log n) bits, the address generation mechanism of the

R-PRAM needs further elaboration. For this purpose, it is convenient to divide the

variables used in an R-PRAM algorithm into two broad classes; local variables and

shared variables. As the name indicates, the local variables are local to a processor.

Since there are a constant number of them, they may be addressed by a processor

of size 8(1) bits in constant time. On the other hand, a shared variable in general

could have the form Array(x1)(x2) • • • (xc), where cis a constant. These variables are

addressed with an additional level of indirection. The indices X1, x 2 , • • • Xc of the array

are treated as the contents of the index registers R1 , R 2 , • • • Rc. These index registers

are treated as local variables. Addressing the above array involves first accessing the

index registers and setting their values appropriately and the using these values as

10

the address of the array. Thus the above address generation takes as much time as

is needed to set the index registers. This enables us to generate the address of a

variable by accessing one or more bits in one or more index registers. In other words,

all 8(log n) bits of the address need not be explicitly set every time a memory access

is made.

As mentioned earlier, the R-PRAM assumes that a processor of size b bits can

access l contiguous bits of the memory in 8(ffl) time. In other words, the processor

executes 8(ffl) iterations, accessing 8(b) bits at a time. The overheads in managing

the above iterations are ignored (i.e. incrementing the loop variable and deciding

when to exit the loop). A weaker variant of the R-PRAM called the ISR-PRAM

accounts for all these overheads. More details appear in § 5.4 and in [12].

4 Preliminaries

Throughout this report, we will assume that there are n m-bit keys (unsigned binary

numbers) to be sorted and that the sorting is to be done with respect to:::;. Before we

proceed to the the sorting algorithm, a few definitions and terminology are necessary

for the formal description of the sorting problem.

We denote by K = {ko, k1, ... , kn-d the set of keys and for all i,j E N(n),

ki = ai,oai,l ... ai,m-t, where ai,j E {0, 1}. In other words, the value of the number
m-1

that ki represents is L ai,j·2m-l-j. The input to the sorting algorithm is then x m
j=O

input matrix [ai,j]. Let for some q E N(n), P' = {B0 , B1 , ••• , Bq} be the partition of

K with respect to equality (of the keys). B0 , B1 , ... , Bq are the blocks of P', each of

which contain keys that are equal in value. By imposing two relations a and f3 on

the blocks of P' and on the elements of any block of P', respectively, we define an

ordered partition P of K. We define a and (3 as follows:

11

(ii) Let kt1 and kt2 be two distinct keys in some block Bi of P'.

kt1 f3kt2 if and only if £1 < £2•

It is not difficult to see that the keys can be sorted by determining a. If /3 is also

determined, then the sorting is stable [9) 5. Thus, the problem of sorting the elements

of K stably, is the same as finding the ordered partition P of K.

Let A= {at, a2 , ... , ap} s; N(m). Given any key ki E K and the set A, we define

the section of ki with respect to A to be a quantity whose value is the p-bit number

formed by the bits of ki with indices in A. These bits are arranged in increasing

order of their indices. We denote the section of ki with respect to A by ki(A). For

instance, if m = 8, A = {0, 3, 7} and ki = 10110100 (in binary representation), then

the value of ki(A) = 110 (also in binary representation). In a similar fashion, we

define KA = {ki(A) : ki E K}, the set of sections of all the keys of K with respect

to A. We now extend the idea of an ordered partition P of K to that of an ordered

partition P A of K with respect to a set A s; N(m). Let PA = { B~, Bf, .. . , B:}

be an unordered partition of K with respect to equality of the elements of KA. We

define the relations a A and f3 A as follows:

(ii) Let kt1 and kt2 be two distinct elements of some block Bf of PA.
kt1 /3 A kt2 if and only if £1 < £2.

It should be noted that the ordered partition P A is a partition of K and not of

KA. Even though the definition of a ordered partition P A implies the existence of

the relation f3A, we will often use the term stable ordered partition to emphasize this

fact.

5 <k1, k2, ... , kn-1> is sorted stably to form the list <kiu kh, ... , kj,._ 1 > if and only if

Vjq,js E N(n), (q < s) ==} (kj. < kj.) or (ki. = kj. and jq < j,)

12

5 The Sorting Algorithm

In this section, we propose a sorting algorithm for an EREW R-PRAM that can sort

n m-bit numbers with a G TP of E> (mn) in E> (log n log m) time. The basic idea of

the algorithm is to construct an initial set of ordered partitions, based on disjoint

sections of the keys, and successively refine them to obtain PN(m), the solution to the

sorting problem. In§ 5.1 we outline the algorithm and a few of its essential features.

In § 5.2 we discuss the leader finding problem which will be used subsequently in

the description of the sorting algorithm. We describe the sorting algorithm with

an example in § 5.3, and finally in § 5.4 we perform a complexity analysis of our

algorithm.

5.1 A Brief Outline of the Sorting Algorithm

The sorting algorithm may be written as the following 3-step procedure:

Step 1: In this step we divide the m bits in the keys into rlo~n l sections, each

section containing at most rlog n l bits. Thus, each section may be considered

to be a set of n flognl-bit numbers. In this step, we form rlo~n l ordered

partitions based on the above sections. Recall that m is w(log n).

Step 2: The above ordered partitions are merged in a binary tree fashion m

rlog (rlo~n l) l merge steps to construct PN(m), the final ordered partition.

Step 3: The keys are relocated according to their order in PN(m)·

The variables used in the proposed algorithm will be termed parallel variables.

A parallel variable is defined with respect to an index set S. It has lSI components,

one for each element of S. For example, a parallel variable named "Order" defined

with respect to the set N(n) = {0,1, ... ,n -1} of indices of the keys, will have a

component Order(i) for each ki E K. Each component of a parallel variable could be

13

a bit or even an array of bits. Normally, S = N(n); however in Appendix A, we use

parallel variables defined with respect to the set of processor indices.

Before we can understand Step 1 it is necessary for us to know how an ordered

partition is represented. It is easy to see that an ordered partition of K can be

uniquely specified by specifying for each key, the block to which it belongs and by

specifying the order of the keys in the ordered partition. We do this by means of two

parallel variables, Block and Order. Block and Order are both parallel variables of

pointers to the keys.

Let P J be a stable ordered partition based on the set J. We will use the com

ponents of Block and Order to represent P J. Let these n components be Block(i, J)

and Order(i, J); i E N(n).

Consider a block B of P J. Let ki E B be the key with the lowest index i among

all the keys in B. Since P J is stable, k; must be the first element of the block B of P J

in the order imposed by the relation fh. For this reason, k; is called the head of the

block B. For any block BE P J and any key k; E B, Block(i, J) points to the head

of B. Order(i, J) is used to form a list of the keys in the order in which they occur

in the ordered partition P J· Fig. 1 shows the representation of the ordered partition

{{ ko, k3 , k5 , k1}, { kt, k2 , k4}, { k6 }}. In Step 1 of the sorting algorithm we represent

each of the r Io~n l sorted sections by the parallel variables Block and Order, as detailed

above. Step 1 needs S('~n time and 9{1tn2) space on an EREW R-PRAM with 1t

bits of computing hardware, where 1t is !l(logn) and 0(1::). Further details of

Step 1 are discussed in § 5.3.

The most important part of the sorting algorithm is the merge procedure in Step 2.

Given two ordered partitions Px and Py based on the disjoint sets X, Y ~ N(m),

a step in the merge procedure (a merge step) constructs the ordered partition P xuv

based on the set of XU Y. The sets X andY are such that Vx EX, Vy E Y, x < y.

Thus, for any key ki E K, k;(X), the section of ki based on X, has higher weight than

ki(Y), the section of ki based on Y, as the keys are assumed to be unsigned binary

14

numbers. Therefore for any two keys ki1 , ki2 E K.

ki1 (XUY) < ki2 (XUY) {:==;> (ki1 (X) < ki2 (X)) or

((ki1 (X) - ki2 (X)) and (ki1 (Y) < ki2 (Y)))

The above observations are the essence of the merge step.

Each merge step can be completed in 0(nl~gn) time on an EREW R-PRAM with

H bits of computing hardware (where, His !1(logn) and O(n)) and 0(Hn2) bits of

space. We show in§ 5.4 that Step 2 needs e(r;;) time and 0(Hn2) bits of space on

an EREW R-PRAM with H bits of computing hardware, where His !1(logn) and

0(mn) lognlogm ·

Step 3, the relocation of the keys, can be done in 0(log n +";in) time and 0(mn +
Hn 2) bits of space on an EREW R-PRAM with H bits of computing hardware, where

His !1(logn) and O(mn).

On the whole, the proposed sorting algorithm requires 0("-;tn) time and 0(mn +
Hn 2) bits of space on an EREW R-PRAM with H bits of computing hardware, where

His !1(log n) and 0(1ag:t:gm). The GTP of the above algorithm is therefore 0(mn),

which is optimal.

5.2 The Leader Finding Problem

In order to make the description of our sorting algorithm easier, we discuss in this

section the leader finding problem. This problem is used in our sorting algorithm

to avoid concurrent reads in Step 1 and Step 2. The leader finding problem can be

described formally as follows:

Let N(n) = {0, 1, ... , n- 1} be a set of n indices and let p : N(n) ~ N(n)

be the color function that gives p(i), the color (a number from N(n)) of the element

with index i. This function satisfies the following condition:

Vi1, iz E N(n), p(i1) = p(iz) =::} Vi3 E N(n) 3 i1 < i3 < iz, p(i1) = p(i2) = p(i3)

(1)

15

In other words, there is no interleaving of the colors.

For any color x E N(n) that has at least one element i1 E N(n) for which p(i1) = x,

we define i1 to be the leader of x if and only if p(i1) = x and Vi2 E N(n) ((p(i2) =

x) ===? (i 1 ::; i 2)). If the color x has no index i E N (n) such that p(i) = x, then

the leader of x is undefined. Thus we can associate a leader with each i E N(n).

It was mentioned earlier that the leader finding problem is used to avoid concurrent

reads in our sorting algorithm. We denote by Info(i) the component of the parallel

variable Info whose value is to be read by several other processors. More specifically,

if i E N(n) is the leader of p(i) then Info(i) is to be read by all the processors

associated with elements of color p(i).

The solution to the leader finding problem is finding for each index i E N(n), such

that i' E N(n) is the leader of p(i), the information in Info(i'). This information

is to be stored in the parallel variable DstJnfo(i). In all instances of the leader

finding problem used in the proposed sorting algorithm, Info(i) and DsLinfo(i) are

8(log n) bits long. In Appendix A, we show that the leader finding problem can be

solved in 8(nl~n) time and 8(Hn2) bits of space on an EREW R-PRAM with 1{ bits

of computing hardware. If an EREW PRAM is used, the space required is 8(n log n)

(as we need not count the look-up tables). For both models 1{ is n(log n) and 0(n).

An Example of the leader finding problem is shown in Appendix B.

5.3 An Example

In this section we describe the sorting algorithm with the aid of an example. Consider

the following instance of a sorting problem where n = 8, m = 12, and k0 = 12, k1 =
796, k2 = 1018, k3 = 12, k4 = 796, k5 = 12, k6 = 3892, k7 = 3. The nm-bit input

is shown in Table 1.

Step 1: In this step, we first divide the bits in the keys into sections, each containing

flognl (3 in our example) contiguous bits (see Table 2). This results in f 1o~n l (4 for

16

our example) independent problems of determining the ordered partitions of the above

sections. For our example, the 4 ordered partitions turn out to be

P {0,1,2} = {{ ko, ka, ks, k1 }, { kt, k2, k4}, { ka}};

P{3,4,s} = {{ko,ka,ks,k7}, {kt,k4,ka}, {k2}};

P {6,7,8} = {{ k1 }, { ko, ka, ks}, { kt, k4}, { ka}, { k2}};

and P{9,10,ll} = {{k2}, {kr}, {ko,kt,k3,k4,ks,ka}};

Before we proceed to discuss the details of Step 1, a brief overview of the integer

sorting algorithm in [11] is necessary. This algorithm is for keys that are 8(1og n)

bits long and is based on Hagerup's method [8). The integer sorting algorithm can

be described as the following 4-step procedure.

(i) For each value v E N(n), find a list of all the keys with value v in ascending order

of their indices. The beginning and end of each list is also known at the end of

this step. Thus, for each v E N(n), there is a list of key indices. Some of these

lists may be empty.

(ii) Concatenate the lists resulting from (i) in ascending order of the value v associ

ated with each list.

(iii) Rank the concatenated list.

(iv) Relocate the keys according to their ranks.

The above algorithm requires E>(log n) time and 9(n3) bits of space on an EREW

R-PRAM with n bits of computing hardware [11]. If an EREW R-PRAM with 1-l

bits of computing hardware (where 1-l is O(logn) and O(n)) is used, 8(nl~sn) time

and 8(Hn2) bits of space is needed. The ranking in step (iii) uses the method due to

Anderson and Miller [3], which is an EREW PRAM list ranking algorithm that uses

Io:n processors to achieve a time of E>(log n). This algorithm is used at other portions

of the proposed sorting algorithm and therefore a few words on its modification for

the EREW R-PRAM are due. If an EREW R-PRAM with H bits of computing

17

hardware (where 1-l is O(logn) and O(n)) is used, the time needed is 8(nl~n) and

the space needed is 8(?-ln2) (the look-up table space for lo~n processors, each of size

log n bits, has been counted here).

We will use the steps of the integer sorting algorithm in [11] to determine P J the

ordered partition based on a flog n l element set J. We apply this method, in parallel,

on the rlo~n l sections to obtain the ordered partitions based on them.

Consider an ordered partition P J with IJI = flog n l, for which we need to deter

mine Block(i, J) and Order(i, J). This is easy if we use the integer sorting algorithm

outlined above. Each non-empty list in step (i) of the above algorithm corresponds

to a block of the ordered partition. The output of step (ii) is Order. To find Block

we proceed to step (iv) and relocate the sections after having ranked them. We now

apply the leader finding problem algorithm. The relocated indices are used as indices

for the leader finding problem, with the value of the section being the color of the

associated index. For each i E N (n), that is the leader of a color (head of a block),

lnfo(i) = i. The parallel variable DsLinfo in this case, is the same as Block. It is

clear that condition (1) of § 5.2 is satisfied. Step 1 needs 8(~n) time and 8(?-ln2)

bits of space on an EREW R-PRAM with 1-l bits of computing hardware, where 1-l

is O(logn) and 0(1:nn). A detailed analysis appears in§ 5.4. In Fig. 1, we illustrate

the result of Step 1 of our algorithm for P {o,1,2} of our example.

Step 2: Here we first merge P {o,1,2}, P {3,4,5}, to form P {0,1,2,3,4,5} and P {6,7,8}, P {9,10,11}

to form P {6,7,8,9,10,11}· Both these merges may be performed concurrently. It may be

verified that P {0,1,2,3,4,5} = {{ ko, k3, k5, k1 }, { kt, k4}, { k2}, { k6}} and P {6,1,8,9,10,11} =
{{ k1 }, { ko, k3, k5}, { kt, k4}, { k6}, { k2} }. In the next and final merge step P {o,1,2,3,4,5}

andP{6,7,8,9,1o,n}aremergedtoformP{o,1, ... ,n} = PN(m) = {{k7}, {ko,k3,k5}, {kt,k4}

{ k2}, { k6}}, the solution to the sorting problem. We discuss below the details of a

merge step and use the merge of P {o,1,2,3,4,5} and P {6,7,8 ,9,10,11} for our illustration.

The input to the merge step is P x = P {o,1,2,3,4,s} represented by Block(i, X) and

18

Order(i,X); and Py = P{6 ,7,8 ,9 ,1o,n} represented by Block(i, Y) and Order(i, Y).

(See Figs. 2, 3). The output of the merge step is PxuY represented by Block(i, XUY)

and Order(i,X U Y). The merge step will be done on an EREW R-PRAM with 1i

bits of computing hardware, where 1{ is f!(log n) and 0(n). Each merge step consists

of four phases, which we describe below.

Phase 1: For any ordered partition P J, we define Block_Order(J) as a paral

lel variable that represents a list of the heads of the blocks of P J in the order in

which they appear in P J. In this phase we determine for P x and Py the compo

nents of Block_Order(X) and Block_Order(Y) respectively. This can be done as

follows. First the list given by Order(i, J) (J E {X, Y}) is reversed to form the list

Rev_Order(i, J). This can be done in 0(nl~gn) time and 0(n log n) bits of space.

Next, the processor that is associated with ki checks Block(Rev_Order(i, J), J) (if

Rev_Order(i, J) is not NIL). If Block(i, J) =I Block(Rev_Order(i, J), J) then ki is

a head of a block of P J and the head preceding it is Block(Rev_Order(i, J), J). It

is clear that this phase needs 8 (n 1~g n) time and 0 (n log n) space. Fig. 4 shows the

output of this phase, for our example.

Phase 2: Here we rank the elements of Block_Order(X) and Block_Order(Y). We

denote these ranks by Block_no(i, J) (J E {X, Y}). We now need to make Block_no

known to all the elements of the blocks of P J. For this purpose we first rank the

list given by Order(i, J) and temporarily reorder the keys according to this rank. If

we consider Block(i, J) to be the color of ki, then broadcasting Block_no from the

head of a block to all the processors within a block, becomes an instance of the leader

finding problem in which Info and DsLinfo are Block_no. Since Px and Py are

stable ordered partitions, condition (1) of § 5.2 is satisfied. Phase 2 can therefore be

done in 0(n 1;_rn) time and 0(1in2) space. Fig. 4 illustrates the Block_no(i,X) and

Block_no(i, Y), for our example.

19

Phase 3: At this point, for each ki E K, we have Block_no(i, J) (J E {X, Y}) that

have the following properties.

For any ki1 , ki2 E K,

ki1 (J) ki2 (J) {::::::} Block_no(il,J) Block_no(i2,J)

ki1 (J) < ki2(J) {::::::} Block_no(it, J) < Block_no(i2, J)

In other words, for any key ki, ki(X) and ki(Y) (which may be w(logn) bits long)

have been converted to Block_no(i, X) and Block..no(i, Y), that reflect the order of

the elements of Kx and Ky. Block_no(i,X) and Block_no(i, Y) are each logn bits

long.

Let Ki(X U Y) be the 2log n-bit number formed by concatenating Block_no(i, X)

and Block_no(i, Y), in that order. Since the section X is of a higher weight than the

section Y. For any ki1 , ki2 E K,

kil (X u Y) < ki2 (X u Y) ~ Kil (X u Y) < Ki2 (X u Y)

Thus, K(X U Y) can be sorted by sorting {Ki(X U Y): i EX U Y}. We use the

stable integer sorting algorithm in [11] for this purpose. It should be noted that since

Px and Py are stable, so is PxuY· The order of the elements of Ki(X U Y) gives

Order(i, XU Y). This phase requires e(nl~gn) time and 8('Hn2) space. Fig. 5 shows

the result of this phase for our example.

Phase 4: Here we obtain Block(i,X U Y). This can be done by first determining

the heads of the blocks of PxuY as in phase 1. Next we proceed as in Step 1 and

obtain Order(i, XU Y), by first ranking Order(i, XU Y) and then applying the leader

finding problem algorithm. Phase 4 needs e(nl~gn) time and 8('Hn2) space. Fig. 5

shows the result of this phase for our example.

By means of the 4 phases described above, we have been able to obtain P xuY

(represented by Block(i,X U Y) and Order(i,X U Y)) from the ordered partitions

P x and Py. The main result of this section is summarized by the following lemma.

20

Lemma 1 : Given two stable ordered partitions, P x and Py of a set of n keys such

that- \1 x E X, \ly E Y x < y, the stable ordered partition P xuY can be obtained on an

EREW R-PRAM with 1{ bits of computing hardware (where 1{ is n(log n) and 0(n))

in 8(nl~n) time and 8(1in2) bits of space.

We show in § 5.4 that Step 2 requires 8(~n) time and 8(1in2) bits of space on

an EREW R-PRAM with 1{ bits of computing hardware, where 1{ is !1(1ogn) and

0(mn) lognlogm ·

Step 3: The rank of each key can be obtained from the parallel variable Order of

the stable ordered partition PN(m)· This requires e(nl~n) time and 8(1in2) space.

Once the ranks are obtained, the keys can be relocated in 8(~n) time and 8(mn)

bits of space, using 1{ bits of computing hardware. Therefore the time required for

this step on an EREW R-PRAM with 1{ bits of computing hardware is 8(1ogn+ ~)

and the space required is 8(mn + 1in2) bits; 1i is !1(1og n) and O(mn)

5.4 Complexity Analysis of the Sorting Algorithm

In this section we will determine the time and space complexities of the three steps

in the proposed sorting algorithm. We will use an EREW R-PRAM with 1{ bits of

computing hardware, where 1i is !1(1og n) and 0(1og;::rogn).

Step 1: As mentioned earlier, in this step we divide the keys into I flo';nll groups each

of which are integer sorted and converted to stable ordered partitions. Recall that m

is w(log n) and therefore flo';nl is w(l). As explained in § 5.3, this step also uses the

leader finding problem algorithm. We show in Appendix A that the leader finding

problem can be solved on an EREW R-PRAM with 1{ bits of computing hardware

(where 1i is !1(logn) and O(n)) in 8(nl~gn) time and 8(1in2) space. These figures

are the same as those for the integer sorting algorithm (see § 5.3). To analyze the

complexity of Step 1 we consider two cases:

21

Case 1: Here 1{ is O(m). To ensure that !1(logn) bits of computing hardware is avail

able for each group of flog n l bits of the keys, we will process only lo~n groups in paral

lel. We say that lo~n processor columns, each column having 8(1og n) bits of comput

ing hardware are used. Therefore, each column sequentially processes 8(~) groups.

This requires 8(~~~~gnn), which is 8('~t) time. The space needed is 8(1o~nn2 logn)

which is 0('Hn2) bits.

Case II: Here 'H is !1(m). We can now have lo;n processor columns, each having

8(H~gn) (which is O(n) as 'His 0(1og:l~gm)) bits of computing hardware. Once

again the time required is 8(nlogn/7-t~gn), which is 8('~n). The space required is

8((1o;n)(7-t~gn)n2) which is 8('Hn2) bits.

On the whole, the time required for Step 1 is 8(~n) and the space required is 8('Hn2).

Step 2: In this step we merge the f no;nl l ordered partitions obtained in Step 1 in a

binary tree. As shown in§ 5.3, each merge requires 8(nl:n) time and 8('Hn2) bits of

space on an EREW R-PRAM with 'H bits of computing hardware where 'His !1(log n)

and O(n). Before we proceed, we will define an operation called Max_Order as

follows. For any set A of non-decreasing functions, M ax_Order(A) is 8(!) iff 'V /I E

A, f is !1(/I) and 3h E A 3 h is 8(!). That is, M ax_Order(A) gives the order

of the element(s) of A that have the highest complexity. We consider four cases for

Step 2:

Case 1: Here 'His O(m) and O(n). As in Case I of Step 1, initially there are lo~n

columns of processors, each having 8(log n) bits of computing hardware. Each column

of processors handles 8(~) merges, in 8(~n) time. Let this take s1 merge steps. At

merge step St + i (0 :::; i < log(1o~n)), there are 2,+ 1~ogn merges to be performed.

Thus, each merge in merge step s 1 + i is done with 8(2i+llog n) bits of computing

hardware. It is easy to see that 2i+llogn :::; 'H, which is O(n). We also note that

22

the time required for merge step St + i is 9(2,~~01~;n), which is 9(2.~1). Therefore the

time for Step 2 is

(
log(...lL)-t) mn losn n

e 1-l + ?: 2i+l ,
1=0

which is 9(';; + n). Since 1-l is O(m), n is 0(';;). Therefore the time for Step 2 is

9(';t)·

The space required for Step 2 is Max_Order({1:nn2log n, 2,+lfogn(2i+tlogn)n2

: 0 < i < log(1o;n)}) which is 9(?-ln2).

Case II: Here 1-l is n(n) and O(m). This case is similar to Case I except that the

merge step St + i now requires 9(f 2•+1~ogn llog n) time. Let 2i1 < lo;n < 2i1+1. Upto

step St +it (where St is as defined in Case I) the time will be 9(2.~ 1). Beyond this

point there will be n(n) bits of computing hardware available for each merge, which

is more than what can be used. Therefore the time here will be 9(1ogn). Thus the

time for Step 2 is

which is O(~n +n+log(1o;n) log n). As in Case I, n is O(~n). Since 1-l is O(log=~ogn),

~n is n(lognlogm) and log(1o;n)logn is O(logmlogn) (as 1-l is O(m)). Therefore

the time required for Step 2 is 8(';;).

The space required for Step 2 is Max_Order({ 1o;nn2 logn, 2,+lfogn2i+ln2logn,

2,+1~ogn n3 : 0 < i :5 it < j < log(1o;n)}), which is 9(1-ln2).

Case III: Here 1-l is n(m) and O(n). For this case, merge steps (0 :5 s < log(1o~n))

has 2.+~ogn merges with 7i2•+~Iogn (which is O(n)) bits of computing hardware per

merge. Proceeding as in Case I, we get the time for Step 2 to be

(
log(-1 rn)-1) osn mn

9 L: ?t2s+1 '
s=O

23

which is 8('~t)· The space required is Max_Order({ 2.+~ogn 712'+~Iognn2 : 0 ~ s <

log(1o~n)}), which is 8('Hn2).

Case IV: Here 1i is O(m) and O(n). As in Case III, merge steps has 2.+~ogn merges,

each done with 712•+1Iosn bits of computing hardware. In fact, merge step s requires
m

8(r mn llog n) time. Let 282 < _!!ill_ < 282+1 . Proceeding as in Case II the ?-{2•+llogn 71logn - '

time for Step 2 is

which is 8(~n + log(1o;n)logn). As noted earlier, ";:; is O(lognlogm) whereas

log(lo;n) log n is O(log n log m). Therefore the time for Step 2 is 8(~n).

The space needed for Step 2 is Max_Order({ 2.+~ogn 712·+~lognn2 , 2J+~ognn3 :

0 ~ s ~ s2 < j < log(1o;n)}) which is 8('Hn2).

On the whole, the time required for Step 2 is 8(~n) and the space needed is 8('Hn2)

bits.

Step 3: As explained in§ 5.3, Step 3 needs 8(logn +";:;)time, which is 8(~n) as

1i is O(log~:gm). The space needed is 8(mn + 1in2) bits.

The following theorem summarizes the results of this section.

Theorem 1 Given an EREW R-PRAM with 1i bits of computing hardware (where

1i is O(logn) and 0(1og:l:gm)), n m-bit unsigned binary numbers (where m is

w(logn)) can be sorted in 8(~n) time and 8(mn + 1in2) bits of space. The GTP of

the above method is 8(mn), which is optimal.

Corollary 1 Given and EREW R-PRAM with 8(1os:i:gm) bits of computing hard

ware, n m-bit unsigned binary numbers (where m is w(log n)) can be sorted optimally

in 8(1og m log n) time and 8(mn + log:'~gm) bits of space.

24

Before we close this section we briefly discuss how a weaker variant of the R-PRAM

called the Iteration Sensitive R-PRAM (ISR-PRAM) can also be used for our lexico

graphic sorting algorithm. As mentioned in§ 3, the R-PRAM abstracts the solution

to a computational problem from some details of loop management. The ISR-PRAM

accounts for these overheads. It has been shown in [12] that a loop whose loop vari

able goes from 0 to Y- 1 has an overhead of O(log logY) in the bits of computing

hardware, when executed on an ISR-PRAM. There is no overhead in time for the

above loop. Since there are a total of 8(log n log m) iterations in our algorithm When

an EREW R-PRAM with 1 mt bits of computing hardware are used, the degra-ogn ogm

dation in the GTP for an EREW ISR-PRAM is only O(log(loglogn + loglogm)).

We generalize this in the following theorem.

Theorem 2 Given an EREW ISR-PRAM with 'H(log(loglogn + loglogm)) bits of

computing hardware (where 1{ is O(log n) and O(log;;l~gm)), n m-bit unsigned binary

numbers (where m is w(logn)) can be sorted in 9(".;n time and 9(mn + 'Hn2) bits

of space.

6 Sorting on an EREW PRAM

In this section we show how our sorting algorithm can be extended to the conventional

PRAM model. Since our R-PRAM algorithm uses processors of size 9(1) bits, we

can easily simulate it with an overhead of 9(log n) in the bits of computing hardware

on an EREW PRAM with processors of size 9(log n) bits. The resulting algorithm

requires 8(lognlogm) time and has a GTP of 8(mnlogn) which is as good as the

best comparison-based sorting algorithms. It should be mentioned here that this is

the first non-comparison based EREW PRAM sorting algorithm to achieve the above

speed and GTP. However its space requirement is 9(mn + 1 mf2
). This is because ogn ogm

the integer sorting algorithm in [11], when converted to a PRAM algorithm, requires

8(n2) bits of space, even when the look-up tables are not counted. In the above

25

PRAM sorting algorithm we have assumed that log log m is O(log n). This is because

our algorithm involves an iteration of size 8(1ogm). In order to manage the iteration

variable for this iteration one needs the processors to be of size O(log log m) bits. The

above assumption amounts to assuming that m is 0(2ne(t)), which is not a serious

restriction, for if log m is w(n9 (1)) the time required for the best algorithm would

itself be exponential and a sequential algorithm would not be much slower.

We now show how an optimal integer sorting algorithm can be used to get an op

timal sorting algorithm for unsigned binary numbers of length m (where log log m is

O(log n)) that requires 8(mn) bits of space. Suppose there is an EREW PRAM inte

ger sorting algorithm that sorts n 8(log n)-bit unsigned binary numbers in 8(1og n)

time with 1o;n processors and 8(n log n) bits of space. Such an algorithm is theo

retically possible. Before we proceed, we note that both list ranking and the leader

finding problem can be solved in 8(log n) time on an EREW PRAM with 1o;n pro

cessors and 8(n log n) bits of space. We also note that each merge step can be done in

8(logn) time on an EREW PRAM with 1o;n processors and 8(nlogn) bits of space

(assuming that the above integer sorting algorithm exists). We now show that our

lexicographic sorting algorithm can be used to sort n m-bit unsigned binary numbers

(where m is w(log n) and log log m is O(log n)) in 8(log n log m) time on an EREW

PRAM with 1o?':~ogm processors and 8(mn) bits of space.

In Step 1, each of the 8(1o;n) groups is assigned 1ogn~ogm processors. Thus Step 1

requires 8(lognlogm) time and e(lo~nnlogn) which is 9(mn) bits of space. It is

also clear that Step 3 can be done in 8(lognlogm) time and 8(mn) bits of space.

We now consider Step 2. As discussed in§ 5.4, step 8 (0 ~ 8 < log(1o;n)) has

2-+fi merges. Therefore each of the above merges can use 1 2m~ 2"+11osn = ogn og n ogm m
n2•+t processors. Let 1 n 2•: +t < n < ns•t +2 Th £ t'll t th t' 1ognlogm ogn ogm 1ogn - logn1ogm. ere ore, 1 S ep 81 e Ime

needed for a merge is 8(logn(_!!_)(10gnlogm)) which is 8(Iognlogm). Beyond step 1ogn n2•+1 ' 2•+1

8 1 there are more processors per merge than can be used. The time for this case is

therefore 8(log n). The time for Step 2 is therefore

26

(
log(-!!L.)-1)

SJ log n log m log n

e E 2s+l + E log n ,
s=O s=s1

which is S(lognlogm). The space required is Max_Order({ 2.+~ognnlogn: 0 < s <

log(10~n)}, which is S(mn).

Theorem 3 If n S(logn)-bit unsigned binary numbers can be stably sorted in

8(log n) time on an EREW PRAM with Io;n processors and 8(n log n) bits of space,

then n m-bit unsigned binary numbers (where m is w(log n) and log log m is O(log n))

can be sorted in S(lognlogm) time on an EREW PRAM with log2':~ogm processors

and S(mn) bits of space.

Theorem 3 has very important implications. If the integer sorting algorithm re

ferred to in the above theorem exists then there is a more efficient and as fast a method

for sorting n m-bit unsigned binary numbers than the best conventional comparison

based algorithms. However, we have conjectured in [11] that such an integer sorting

algorithm does not exist. Nevertheless, this does not preclude the possibility of an

optimal lexicographic sorting algorithm.

7 Concluding Remarks

We have shown in this report that n m-bit unsigned binary numbers can be sorted

lexicographically in S(lognlogm) time on an EREW R-PRAM with Iog:I:gm bits of

computing hardware This algorithm is not only as fast (asymptotically) as the best

conventional comparison-based sorting algorithms, but also has the lowest possible

order of GTP. If a weaker variant of the R-PRAM called the ISR-PRAM is used,

the degradation in the efficiency (GTP) is very small (a factor of E>(log(loglogn +
log log m))). The speed of the algorithm is unaffected.

We have also shown how the proposed lexicographic sorting algorithm could be

extended to the conventional PRAM model. An important result here is that if integer

27

sorting can be solved optimally on an EREW PRAM then so can keys of unrestricted

length.

Acknowledgment

The authors would like to thank Elaine Weinman and Margaret Brewer for their

invaluable help in the preparation of this manuscript. Thanks are also due to Prof.

Sanjay Ranka for his useful suggestions.

28

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley Publishing Company, 1974.

[2] M. Ajtai, J. K6mlos and E. Szemeredi, "An 0(n log n) Sorting Network", in

Proc. 15th ACM Symp. on Theory of Computation, 1983, pp. 1-9.

"Sorting in clog n parallel steps", Combinatorica 3(1), 1983, pp. 1-19.

[3] R. J. Anderson and G. L. Miller, "Deterministic Parallel List Ranking", in

Proc. 3rd Aegean Workshop on Computing, Springer-Verlag Lecture Notes in

Computer Science, Vol. 319, 1988, pp. 81-90.

[4] Y. Azar and U. Vishkin, "Tight Bounds on the Complexity of Parallel Sort

ing", SIAM J. of Comput., Vol. 16, No. 3, June 1987, pp. 458-464.

[5] R. P. Brent, "The Parallel Evaluation of General Arithmetic Expressions",

JACM, Vol. 21, 1974, pp. 201-208.

[6] R. Cole, "Parallel Merge Sort", SIAM J. Comput., Vol. 17, No.4, Aug. 1988,

pp. 770-785.

[7] S. Cook, C. Dwork and R. Reischuk, "Upper and Lower Time Bounds for

Parallel Random Access Machines without Simultaneous Writes", SIAM J.

Comput., Vol. 15, No. 1, Feb. 1986, pp. 87-97.

[8] T. Hagerup, "Towards Optimal Parallel Bucket Sorting", Info. and Comput.,

75, 1987, pp. 39-51.

[9] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Search

ing, Addison-Wesley Publishing Company, Massachusetts, 1973.

[10) I. Parberry, Parallel Complexity Theory, John Wiley and Sons, Inc., New York,

1987.

29

[11] R. Vaidyanathan, C. R. P. Hartmann and P. K. Varshney, "Optimal Parallel

Solutions to the Neighbor Localization Problem and Integer Sorting: A Fine

Grained Approach", Technical Report CIS 89-11, School of Computer and In

formation Science, Syracuse University, Syracuse, NY 13244-4100, Oct. 1989.

[12] R. Vaidyanathan, C. R. P. Hartmann and P. K. Varshney, "The Effect of

Processor and Memory Granularity on the Complexity of Parallel Algorithms",

in preparation.

30

A Solution to the Leader Finding Problem

Here we present a solution to the leader finding problem (described in § 5.2) that

requires e(nl~n) time and 8(?-ln2) bits of space on an EREW model (R-PRAM or

PRAM) with 1-l bits of computing hardware, where 1-l is n(logn) and O(n). This

solution is used to avoid concurrent reads in Step 1 and phases 2 and 4 of the merge

steps in Step 2 of our sorting algorithm, described in § 5.1. We also illustrate our

solution to the leader finding problem with an example in Appendix B.

The solution to the leader finding problem given in this appendix, uses an EREW

model with I Io;n 1 processors each of size flog n 1 bits. The solution can be scaled

for a model with 1-l bits of computing hardware. We denote the processors by c;

(0 ~ i < f1o;n 1). The n elements are divided as equally as possible among the

processors, so that each processor has at most pog n 1 elements. The elements assigned

to processor c; are collectively called group i. For convenience, we will assume log n

and Io;n to be integers. Before we proceed, a few definitions are necessary.

Definitions: For any color x E N(n), the element i 1 E N(n) is called the trailer of

x iff p(i1) = x and Vi2 E N(n) p(i2) = x ===> i2 ~ i1. Recall that p(i) is the color

of i .. The longest sequence of contiguous indices in a group that have the same color

x E N(n) is called a run of x. For a given run n:r: of x, if the group containing it

has the leader (defined in§ 5.2) of x then n:r: is called a known run of x. If this run

also has the trailer of x then it is called a known complete run of x or simply a](C

run of x. If a known run of x does not have the trailer of x within the group then it

is called a known incomplete run of x or simply a](I run of x. If n:r: does not have

the leader of x in the group then it is called an unknown run of x or simply a U run

of x.

Observation: A given group can have at most one U run and at most one KI run.

It may have more than one KC run.

31

Our leader finding problem algorithm has three steps, each of which reqmre

E>(log n) time. In other words the leader finding problem can be solved on an EREW

model with 1i bits of computing hardware (where 1i is U(log n) and O(n)) in E>(nl~n)

time. The space required will be shown to be 8(1in2) for the EREW R-PRAM and

0(n log n) for the EREW PRAM. We note here that barring the parallel variables

Info, DstJnfo and Leader, that are defined with respect to the set N(n), all paral

lel variables used in the the leader finding problem algorithm are defined with respect

to the set of processor indices.

In Step 1, each processor Ci scans group i and determines the KI, KC and U runs (if

they exist). As observed earlier a group may have at most one U run and one KI run.

If they exist, the parallel variables U _Flag(i) and !{I _Flag(i) are set. In addition,

for each element l of group i, that belongs to a KI run or a KC run, DstJnfo(l) is

set to the value of Info(l'), where l' is the leader of p(l).

In Step 2, the processors Ci that have a KI run with leader l, send the value of

Info(l) (directly or via other processors) to the processors Ci' that have aU run of

the same color. This information is saved in the parallel variable Cur Jnfo(i').

In Step 3 the processors Ci that have a U run, set DstJnfo(l) to the value in

Cur Jnfo(i) (obtained in Step 2), for each element l that belongs to the above U run.

We provide below a pseudo code for the above three steps. Comments are provided

wherever possible. In the following pseudo code for Step 1, Step 2 and Step 3, the

actual code is in boldface, whereas the comments are in plain text. An example

illustrating the pseudo code appears in Appendix B.

32

Procedure Step_1

I* Executed in parallel by processors Ci {0 ~ i < lo;n) *I

First(i) ~ 1 I* Flags the first iteration *I
Cur _K(i) ~ 0 I* set to 1 iff current element i belongs to a known run *I
for j ~ 0 to {logn)-1 do

I.(i) ~ i log n + j I* index of the current element *I
Leader(i.(i)) ~ (i.(i) = 0) or (p(i.(i)) =J p(i.(i)-1))

I* set to 1 iff element l(i) is the leader of p(l(i)) *I
if First(i) = 1 then

if Leader(i.(i)) = 1 then

CurJnfo(i) ~ Info(i.(i))

I* Cur Jnfo contains the information to be written on DstJnfo of the

currently processed known run *I
DstJnfo(i.(i)) ~ CurJnfo(i)

CurJ<(i) ~ 1

end

First(i) ~ 0

else

if Leader(i.(i)) = 1 then

CurJnfo(i) ~ Info(i.(i))

DstJnfo(i.(i)) ~ CurJnfo(i)

CurJ<(i) ~ 1

else

if CurJ<(i) = 1 then

DstJnfo(i.(i)) ~ CurJnfo(i)

end

end

end

33

end

f* We now set]{ I _Flag(i) and U _Flag(i) that indicate whether group i has a

Kl run or a U run in it *I
£, (i) +--- (i+ 1) log n-1 I* the last element of group i *I
KI_Flag(i) +--- (i.,(i) < n-1) and (Cur__K(i) = 1)

and (p(i., (i)) = p(i., (i)+ 1))

£2(i) +--- i log n I* the first element of group i *I
U _Flag(i) +--- (i.2(i) =I 0) and p(£2(i)) = p(£2(i)-1))

/* End Step 1 *I

Procedure Step_2

I* Executed in parallel by processors Ci (0 ~ i < lo;n) *I

ifi = -1 n -1 then
ogn

Link(i) +---NIL

else

Link(i) +--- i+1

end

I* The above lines form a list of the processors in the order of their indices. The

pointers Link(i) will be used subsequently to communicate information to processors

whose groups have a U run *I

for j +--- 0 to flog(1o;n)l-1 do

if Link(i) =I NIL then

if K I _Flag(i) = 1 and U _Flag(Link(i)) = 1 then

£1 (i) +--- (i+ 1) log n -1 /* the last element of group i *I
i.2(i) +--- Link(i)logn /*the first element of group Link(i) *I
if p(£1 (i)) = p(£2 (i)) then

34

I* Group Link(i) has aU run of color p(f1 (i)) *I
CuT_lnfo(Link(i)) +--- DstJnfo(£1(i))

Link(i) +--- Link(Link(i))

else

Link(i) +--- NIL

/* Note: The else part of an if-then-else statement is executed only after

the if part *I
end

else

Link(i) +--- NIL

end

end

end

I* End Step 2 *I

We note here that during any iteration j (0 ~ j < flog(1o;n)l) and for any two

processors Ci and Ci' (0 ~ i, i' < lo;n) Link(i) = Link(i') ~ Link(i) = Link(i') =

NIL.

This ensures that all reads and writes during iteration j are exclusive.

35

Procedure Step_3

I* Executed in parallel by all processors Ci (0 ~ i < lo;n) *I

Active(i) +----- U __Flag(i)

I* Active(i) is set to 1 till Ci has written the value of Cur Jnfo(i) on

DstJnfo(£), for all elements .e in the U run in group i *I
for j +----- 0 to logn-1 do

if Active(i) = 1 then

l(i) +----- i log n + j I* currently processed element *I
if (l(i) = i log n) or (p(l(i)) = p(l(i)-1)) then

I* Ci is still within the U run of group i *I
DstJnfo(l(i)) +----- CurJnfo(i)

end

Active(i) +----- 0

end

end

end

I* End Step 3 *I

Before we close this appendix we would like to point out that the memory require

ment of our leader finding problem algorithm is E>(n log n) bits under conventional

assumptions, where the look-up table space has been ignored. However, when a

fine-grained decomposition is considered, the memory requirement is E>(n3), for an

EREW R-PRAM with lo;n processors, each of which use a look-up table of size

E>(n2 log n) bits for log n-bit addition. In general, the memory needed for an EREW

R-PRAM with 1-l bits of computing hardware (where 1-l is !l(log n) and O(n)) is

E>(1-f.n2).

36

B An Illustration of the Leader Finding Problem

Algorithm

We illustrate in this appendix the leader finding problem algorithm with an example

of n = 64 elements. We use an EREW PRAM with 8 processors, each of size 8 bits.

Even though log 64 = 6, we use 8 processors, only for ease of illustration. Therefore,

the quantity log n in the pseudo code of Appendix A should be treated as 8 for this

example. Also, we denote by Tf. the value of Info(£), where l is the index of the

leader of color p(f).

Table 3 shows the input to our example. Tables 4- 12 show the contents of the

relevant parallel variables at the end of each of the 8 iterations of Step 1. The result

of Step 1 are illustrated in Tables 13 and 14. Tables 15 - 18 illustrate the contents

of the relevant parallel variables at the end of the 3 iterations of Step 2. Step 3 is

illustrated in Tables 19 - 27. Table 28 shows the final result of the example. In all of

the above tables an entry marked "-" denotes a don't care value.

37

i ki Binary representation

bit no.

0 1 2 3 4 5 6 7 8 9 10 11

0 12 0 0 0 0 0 0 0 0 1 1 0 0

1 796 0 0 1 1 0 0 0 1 1 1 0 0

2 1018 0 0 1 1 1 1 1 1 1 0 1 0

3 12 0 0 0 0 0 0 0 0 1 1 0 0

4 796 0 0 1 1 0 0 0 1 1 1 0 0

5 12 0 0 0 0 0 0 0 0 1 1 0 0

6 3892 1 1 1 1 0 0 1 1 0 1 0 0

7 3 0 0 0 0 0 0 0 0 0 0 1 1

Table 1: The input bits for the example of lexicographic sorting

index i Section {0, 1, 2} Section {3, 4, 5} Section {6, 7, 8} Section {9, 10, 11}

bits ki({0, 1, 2}) bits ki{ {3, 4, 5}) bits ki({6,7,8}) bits ki({9,0,11})

0 000 0 000 0 001 1 100 4

1 001 1 100 4 011 3 100 4

2 001 1 111 1 111 1 010 2

3 000 0 000 0 001 1 100 4

4 001 1 100 4 011 3 100 4

5 000 0 000 0 001 1 100 4

6 111 7 100 4 110 6 100 4

7 000 0 000 0 000 0 011 3

Table 2: Input to Step 1 of the lexicographic sorting Algorithm

38

i p(i) lnfo(i)

0 0 ro

1-7 0 -

8 1 rs

9-26 1 -
27 2 T27

28-31 2 -
32 3 T32

33 4 T33

34-44 4 -
45 5 T45

46 5 -
47 6 T47

48 7 T48

49-63 7 -

Table 3: The input to the leader finding problem example

Proc. index i First(i) CurJ<(i)

0 1 0

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

6 1 0

7 1 0

Table 4: Leader finding problem algorithm Step 1; Initialization

39

i First(i) Cur_K(i) £(i) Leader(i) CurJnfo(i) DsLinfo(f(i))

0 0 1 0 1 ro 'TO

1 0 1 8 1 7"8 7"8

2 0 0 16 0 - -

3 0 0 24 0 - -

4 0 1 32 1 'P.32 'P.32

5 0 0 40 0 - -
6 0 1 48 1 7"48 7"48

7 0 0 56 0 - -

Table 5: Leader finding problem algorithm Step 1; Iteration 0

i First(i) Cur_K(i) f(i) Leader(i) CurJnfo(i) DsLinfo(l(i))

0 0 1 1 0 To ro

1 0 1 9 0 7"8 7"8

2 0 0 17 0 - -
3 0 0 25 0 - -
4 0 1 33 1 7"33 7"33

5 0 0 41 0 - -
6 0 1 49 0 1"48 7"48

7 0 0 57 0 - -

Table 6: Leader finding problem algorithm Step 1; Iteration 1

40

i First(i) Cur.K(i) l(i) Leader(i) CurJnfo(i) DsLlnfo(l(i))

0 0 1 2 0 To To

1 0 1 10 0 Tg Tg

2 0 0 18 0 - -

3 0 0 26 0 - -

4 0 1 34 0 T33 T33

5 0 0 42 0 - -

6 0 1 50 0 T4s T48

7 0 0 58 0 - -

Table 7: Leader finding problem algorithm Step 1; Iteration 2

i First(i) Cur.K(i) l(i) Leader(i) CurJnfo(i) DsLinfo(l(i))

0 0 1 3 0 To To

1 0 1 11 0 Tg Tg

2 0 0 19 0 - -

3 0 1 27 1 T27 T27

4 0 1 35 0 T33 T33

5 0 0 43 0 - -

6 0 1 51 0 T4s T4g

7 0 0 59 0 - -

Table 8: Leader finding problem algorithm Step 1; Iteration 3

41

i First(i) CurJ<(i) l(i) Leader(i) CurJnfo(i) DsLI nfo(£(i))

0 0 1 4 0 To To

1 0 1 12 0 Ts Ts

2 0 0 20 0 - -

3 0 1 28 0 T21 T27

4 0 1 36 0 T33 T33

5 0 0 44 0 - -

6 0 1 52 0 T48 T48

7 0 0 60 0 - -

Table 9: Leader finding problem algorithm Step 1; Iteration 4

i First(i) CurJ<(i) f(i) Leader(i) CurJnfo(i) DsLlnfo(l(i))

0 0 1 5 0 To To

1 0 1 13 0 Ts Tg

2 0 0 21 0 - -

3 0 1 29 0 T27 T27

4 0 1 37 0 T33 Tss

5 0 1 45 1 T45 T45

6 0 1 53 0 T4s T48

7 0 0 61 0 - -

Table 10: Leader finding problem algorithm Step 1; Iteration 5

42

i First(i) CurJ((i) i(i) Leader(i) CurJnfo(i) DsLlnfo(i(i))

0 0 1 6 0 To To

1 0 1 14 0 Tg Ts

2 0 0 22 0 - -

3 0 1 30 0 T27 T27

4 0 1 38 0 T33 T33

5 0 1 46 0 T45 T45

6 0 1 54 0 T4g T48

7 0 0 62 0 - -

Table 11: Leader finding problem algorithm Step 1; Iteration 6

i First(i) CurJ<(i) i(i) Leader(i) CurJnfo(i) DsLlnfo(i(i))

0 0 1 7 0 To To

1 0 1 15 0 Tg Ts

2 0 0 23 0 - -

3 0 1 31 0 T27 T27

4 0 1 39 0 T33 Tgg

5 0 1 47 1 T47 T47

6 0 1 55 0 T4s T48

7 0 0 63 0 - -

Table 12: Leader finding problem algorithm Step 1; Iteration 7

43

i £1 (i) p(£1 (i)) p(£1(i) + 1) £2(i) p(£2(i)) p(£2(i)- 1) CurJ{(i) I<LFlag(i) U _Flag(i)

0 7 0 1 0 0 - 1 0 0

1 15 1 1 8 1 0 1 1 0

2 23 1 1 16 1 1 0 0 1

3 31 2 3 24 1 1 1 0 1

4 39 4 4 32 3 2 1 1 0

5 47 6 7 40 4 4 1 0 1

6 55 7 7 48 7 6 1 1 0

7 63 7 - 56 7 7 0 0 1

Table 13: Leader finding problem algorithm Step 1; KLFlag(i) and U_Flag(i)

Group i Element j of group i

0 1 2 3 4 5 6 7

0 To To To To To To To To

1 Tg Ts Ts Ts Ts Ts Ts Ts

2 - - - - - - - -

3 - - - T27 T27 T27 'i27 T27

4 T32 T33 T33 T33 T33 T33 T33 T33

5 - - - - - T45 T45 T47

6 T48 'i48 T48 T48 T48 T48 T48 T48

7 - - - - - - - -

Table 14: DsLinfo(ilogn + j) after Step 1 of the leader finding problem algorithm

44

i KLFlag(i) U _F/ag(i) Link(i)

0 0 0 1

1 1 0 2

2 0 1 3

3 0 1 4

4 1 0 5

5 0 1 6

6 1 0 7

7 0 1 NIL

Table 15: Leader finding problem algorithm Step 2; Initialization

i lt(i) l2(i) p(lt (i)) p(l2(i)) U _F/ag(Link(i)) DsLinfo(lt(i)) CurJnfo(i) Link(i)

0 - - - - - - - NIL

1 15 16 1 1 1 rs - 3

2 - - - - - - rs NIL

3 - - - - - - - NIL

4 39 40 4 4 1 733 - 6

5 - - - - - - 7aa NIL

6 55 56 7 7 1 748 - NIL

7 - - - - - - 748 NIL

Table 16: Leader finding problem algorithm Step 2; Iteration 0

45

i ll(i) l2(i) p(ll(i)) p(l2(i)) U _Flag(Link(i)) DsLlnfo(ll (i)) CurJnfo(i) Link(i)

0 - - - - - - - NIL

1 15 24 1 1 1 rs - NIL

2 - - - - - - rs NIL

3 - - - - - - rs NIL

4 39 48 4 7 0 - - NIL

5 - - - - - - 1"33 NIL

6 - - - - - - - NIL

7 - - - - - - 1"48 NIL

Table 17: Leader finding problem algorithm Step 2; Iteration 1

i £1 (i) l2(i) p(ll (i)) p(l2(i)) U Ylag(Link(i)) DsLinfo(ll (i)) CurJnfo(i) Link(i)

0 - - - - - - - NIL

1 - - - - - - - NIL

2 - - - - - - Tg NIL

3 - - - - - - Tg NIL

4 - - - - - - - NIL

5 - - - - - - rss NIL

6 - - - - - - - NIL

7 - - - - - - T48 NIL

Table 18: Leader finding problem algorithm Step 2; Iteration 2

46

i U.J'lag(i) Active(i)

0 0 0

1 0 0

2 1 1

3 1 1

4 0 0

5 1 1

6 0 0

7 1 1

Table 19: Leader finding problem algorithm Step 3; Initialization

i l(i) ilogn p(l(i)) p(l(i)- 1) CurJnfo(i) DsLI nfo(l(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 16 16 - - Tg 1'8 1

3 24 24 - - Ts 1'8 1

4 - - - - - - 0

5 40 40 - - 1'33 1'33 1

6 - - - - - - 0

7 56 56 - - 1'48 1'48 1

Table 20: Leader finding problem algorithm Step 3; Iteration 0

47

i l(i) ilogn p(l(i)) p(l(i)- 1) CurJnfo(i) DsLinfo(l(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 17 16 1 1 Tg Tg 1

3 25 24 1 1 Tg Tg 1

4 - - - - - - 0

5 41 40 4 4 Tgg Tgg 1

6 - - - - - - 0

7 57 56 7 7 T4g T4g 1

Table 21: Leader finding problem algorithm Step 3; Iteration 1

i l(i) ilogn p(l(i)) p(l(i) - 1) CurJnfo(i) DsLinfo(l(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 18 16 1 1 Tg Tg 1

3 26 24 1 1 Tg Tg 1

4 - - - - - - 0

5 42 40 4 4 Tgg Tgg 1

6 - - - - - - 0

7 58 56 7 7 T4g T4g 1

Table 22: Leader finding problem algorithm Step 3; Iteration 2

48

i £(i) ilog n p(£(i)) p(£(i)- 1) CurJnfo(i) DsLinfo(f(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 19 16 1 1 Tg Tg 1

3 27 24 2 1 - - 0

4 - - - - - - 0

5 43 40 4 4 raa Taa 1

6 - - - - - - 0

7 59 56 7 7 T48 T48 1

Table 23: Leader finding problem algorithm Step 3; Iteration 3

i l(i) ilogn p(f(i)) p(f(i) - 1) CurJnfo(i) DsLlnfo(f(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 20 16 1 1 rs Ts 1

3 - - - - - - 0

4 - - - - - - 0

5 44 40 4 4 T33 rss 1

6 - - - - - - 0

7 60 56 7 7 T48 T48 1

Table 24: Leader finding problem algorithm Step 3; Iteration 4

49

i l(i) ilogn p(l(i)) p(l(i)- 1) CurJnfo(i) DsLinfo(l(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 21 16 1 1 Ts Tg 1

3 - - - - - - 0

4 - - - - - - 0

5 45 40 5 4 - - 0

6 - - - - - - 0

7 61 56 7 7 T4g T48 1

Table 25: Leader finding problem algorithm Step 3; Iteration 5

i l(i) ilogn p(l(i)) p(l(i) - 1) CurJnfo(i) DsLinfo(l(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 22 16 1 1 Ts Tg 1

3 - - - - - - 0

4 - - - - - - 0

5 - - - - - - 0

6 - - - - - - 0

7 62 56 7 7 T4g T48 1

Table 26: Leader finding problem algorithm Step 3; Iteration 6

50

i f(i) ilogn p(f(i)) p(f(i)- 1) CurJnfo(i) DsLI nfo(f(i)) Active(i)

0 - - - - - - 0

1 - - - - - - 0

2 23 16 1 1 rs Tg 1

3 - - - - - - 0

4 - - - - - - 0

5 - - - - - - 0

6 - - - - - - 0

7 63 56 7 7 T48 T48 1

Table 27: Leader finding problem algorithm Step 3; Iteration 7

I Group i ~~-0--r----.--E_I_e m_e_nt_J-.· _of_g_r_o-r-up_i---.---r------1

1 2 1 a 1 4 1 s 6 1

0 ro To To To To To To To

1 rs rs rs rs rs rs rs rs

2 78 78 T8 78 78 r8 T8 78

3 78 r8 T8 T27 T27 T27 T27 T27

4 T32 rss rss rss rss T33 T33 Tss

5 733 r33 733 733 733 T45 T45 T47

6 T48 T4s T48 T48 T4g T4g T48 T4s

7 748 T48 748 748 748 748 748 T48

Table 28: DsLinfo(ilogn + j) after Step 3 of the leader finding problem algorithm

The values set during Step 3 are shown in large

51

Block Order

Figure 1: P {o,t,2}

52

Block(i,X) Order(i,X)

. X =P Figure 2· p {0,1,2,3,4,5}

53

Block(i,Y) Order(i,Y)

Figure 3: Py = P {6,7,8,9,10,11}

54

Blocll_Order(i,X) Block_Order(i, Y)

Block_no(i,X) Block_no(i, YJ

0 1

1 2

2 4

8 0 8 1

0 1 0 2

8 0 8 1

~ 3 3

8 0 0

Figure 4: Phases 1 and 2

55

KJX UY) Order(i, X U Y) Block(i,X U Y)

23 .0+1=1

23 .1 +2 = 10

23 .2 +4 = 20

23 .0+1=1

23 .1 +2 = 10

23 .3 +3 = 27

23 .0 +0 = 0

Figure 5: Phases 3 and 4

56

Errata

Page 15, § 5.2, paragraph 2, lines 1 and 2:

Let for any integer i, N(i) = {0, 1, ... , i- 1} and let p: N(n) --+ N(n2) be

the color function that gives p(i), the color (a number from N(n 2)) •••

Page 16, line 2:

For any color x E N(n2) •••

Page 19, Phase 1, lines 7-11 should be replaced by

Next, the heads of PJ are detected using the following condition. A key ki is a head of

'PJ iff Block(i, J) = i. For each head ki of PJ, Block(Rev_Order(i, J), J) is the head

of PJ preceeding ki (if Rev_Order(i, J) "1- NIL). If Rev_Order(i, J) =NIL then ki is

the first head of PJ. It is clear that this phase needs G(nl~gn) time and G(nlogn)

space. Fig. 4 shows the output of this phase, for our example.

Page 20, Phase 4, lines 1-5 should be replaced by

Here we obtain Block(i,X U Y). This can be done by first determining the heads of

the blocks of PxuY as in phase 1, except that we use Ki(XUY) instead of Block(i, J).

Next, we proceed as in Step 1 and obtain Block(i, XUY), by first ranking Order(i, XU

Y) and then applying the leader finding problem algorithm with Ki(X U Y) as the

color of ki. Phase 4 needs G(nl~gn) time and 8('Hn2) space. Fig. 5 shows the result

of this phase for our example.

Page 31, Appendix A, paragraph 3, line 1:

... For any color x E N(n2) •••

	Optimal Parallel Lexicographic Sorting using a Fine-Grained Decomposition
	Recommended Citation

	SU-CIS-91-01_001c
	SU-CIS-91-01_002c
	SU-CIS-91-01_003c
	SU-CIS-91-01_004c
	SU-CIS-91-01_005c
	SU-CIS-91-01_006c
	SU-CIS-91-01_007c
	SU-CIS-91-01_008c
	SU-CIS-91-01_009c
	SU-CIS-91-01_010c
	SU-CIS-91-01_011c
	SU-CIS-91-01_012c
	SU-CIS-91-01_013c
	SU-CIS-91-01_014c
	SU-CIS-91-01_015c
	SU-CIS-91-01_016c
	SU-CIS-91-01_017c
	SU-CIS-91-01_018c
	SU-CIS-91-01_019c
	SU-CIS-91-01_020c
	SU-CIS-91-01_021c
	SU-CIS-91-01_022c
	SU-CIS-91-01_023c
	SU-CIS-91-01_024c
	SU-CIS-91-01_025c
	SU-CIS-91-01_026c
	SU-CIS-91-01_027c
	SU-CIS-91-01_028c
	SU-CIS-91-01_029c
	SU-CIS-91-01_030c
	SU-CIS-91-01_031c
	SU-CIS-91-01_032c
	SU-CIS-91-01_033c
	SU-CIS-91-01_034c
	SU-CIS-91-01_035c
	SU-CIS-91-01_036c
	SU-CIS-91-01_037c
	SU-CIS-91-01_038c
	SU-CIS-91-01_039c
	SU-CIS-91-01_040c
	SU-CIS-91-01_041c
	SU-CIS-91-01_042c
	SU-CIS-91-01_043c
	SU-CIS-91-01_044c
	SU-CIS-91-01_045c
	SU-CIS-91-01_046c
	SU-CIS-91-01_047c
	SU-CIS-91-01_048c
	SU-CIS-91-01_049c
	SU-CIS-91-01_050c
	SU-CIS-91-01_051c
	SU-CIS-91-01_052c
	SU-CIS-91-01_053c
	SU-CIS-91-01_054c
	SU-CIS-91-01_055c
	SU-CIS-91-01_056c
	SU-CIS-91-01_057c
	SU-CIS-91-01_058c
	SU-CIS-91-01_059c
	SU-CIS-91-01_060c
	SU-CIS-91-01_061c
	SU-CIS-91-01_062c
	SU-CIS-91-01_063c

