Syracuse University
SURFACE

Electrical Engineering and Computer Science -
Technical Reports

6-1991

A Variable-Free Logic for Mass Terms

William C. Purdy

Syracuse University, wcpurdy@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports
Part of the Computer Sciences Commons

Recommended Citation
Purdy, William C., "A Variable-Free Logic for Mass Terms" (1991). Electrical Engineering and Computer Science-Technical Reports. 124.
https://surface.syr.edu/eecs_techreports/124

This Report is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

SU-CIS-91-04

A Variable-Free Logic for Mass Terms

William C. Purdy
February 1991
Revised June 1991

School of Computer and Information Science Syracuse University
Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

A Variable-Free Logic for Mass Terms

William C. Purdy*

February 1991
Revised June 1991
*School of Computer and Information Science, Syracuse University

Abstract

This paper presents a logic appropriate for mass terms, that is, a logic that does not presuppose interpretation in discrete models. Models may range from atomistic to atomless. This logic is a generalization of the author's work on natural language reasoning. The following claims are made for this logic. First, absence of variables makes it simpler than more conventional formalizations based on predicate logic. Second, capability to deal effectively with discrete terms, and in particular with singular terms, can be added to the logic, making it possible to reason about discrete entities and mass entities in a uniform manner. Third, this logic is similar to surface English, in that the formal language and English are "well-translatable," making it particularly suitable for natural language applications. Fourth, deduction performed in this logic is similar to syllogistic, and therefore captures an essential characteristic of human reasoning.

1 Introduction This paper presents a logic appropriate for mass terms, that is, a logic that does not presuppose interpretation in discrete models. Models may range from atomistic to atomless. This logic is a generalization of the logic for reasoning in natural language presented in [5]. It is also related, in its objectives, to the generalization of first-order logic defined by Roeper [8].

Claims made for this logic are the following. First, absence of variables makes it simpler than more conventional predicate logics such as [8]. Second, capability to deal effectively with discrete terms, and in particular with singular terms, can be added to the logic, making it possible to reason about discrete entities and mass entities in a uniform manner. Third, this logic is similar to surface English, in that the formal language and English are "well-translatable" [3], making it particularly suitable for natural language applications. Fourth, deduction performed in this logic is similar to syllogistic, and therefore captures an essential characteristic of human reasoning.

The first claim is supported by the body of this paper. The definition of the language, its semantics, its axiomatization, and the proofs of soundness and completeness are simpler and more straightforward than the more conventional formulation given in [8]. Support for the second claim can be found in Section 4. The third and fourth claims are essentially those made for the discrete version of this logic. Support for these claims can be found in $[5,6]$. No claims are made for solving the many linguistic and philosophical problems related to mass terms.

2 Definition of the language The language described in this section is the same as \mathcal{L}_{N}, presented in [5], but without singular predicates. The semantics of \mathcal{L}_{N} is suitably generalized to permit nonatomic interpretations.
2.1 Syntax The alphabet of \mathcal{L}_{N} consists of the following. (Define $\omega_{+}:=\omega-$ \{0\}.)

1. Predicate symbols $\mathcal{R}=\bigcup_{j \in \omega_{+}} \mathcal{R}_{j}$, where $\mathcal{R}_{j}=\left\{R_{i}^{j}: i \in \omega\right\}$.
2. Selection operators $\left\{\left\langle k_{1}, \ldots, k_{n}\right\rangle: n \in \omega_{+}, k_{i} \in \omega_{+}, 1 \leq i \leq n\right\}$.
3. Boolean operators \cap and $^{-}$.
4. Parentheses (and).
\mathcal{L}_{N} is partitioned into sets of n-ary expressions for $n \in \omega$. These sets are defined to be the smallest satisfying the following conditions.
5. For each $n \in \omega_{+}$, each $R_{i}^{n} \in \mathcal{R}_{n}$ is a n-ary expression.
6. For each $m \in \omega_{+}$, for each $R_{i}^{m} \in \mathcal{R}_{m},\left\langle k_{1}, \ldots, k_{m}\right\rangle R_{i}^{m}$ is a n-ary expression where $n=\max \left(k_{i}\right)_{1 \leq i \leq m}$.
7. If X is a n-ary expression then $\overline{(X)}$ is a n-ary expression.
8. If X is a m-ary expression and Y is a l-ary expression then $(X \cap Y)$ is a n-ary expression where $n=\max (l, m)$.
9. If X is a unary expression and Y is a $(n+1)$-ary expression then $(X Y)$ is a n-ary expression.

In the sequel, superscripts and parentheses are dropped whenever no confusion can result. Metavariables are used as follows: R^{n} ranges over $\mathcal{R}_{n} ; R$ ranges over \mathcal{R}_{1}; X, Y, Z, W, V range over \mathcal{L}_{N}; and $X^{n}, Y^{n}, Z^{n}, W^{n}, V^{n}$ range over n-ary expressions of \mathcal{L}_{N}. Applying subscripts to these symbols does not change their ranges.
2.2 Semantics An interpretation of \mathcal{L}_{N} is a pair $\mathcal{I}=\langle\mathcal{A}, \mathcal{F}\rangle$ where $\mathcal{A}=\langle A, \subseteq\rangle$ is a nonempty set partially ordered by inclusion, possibly having a least element 0 , and \mathcal{F} is a mapping defined on \mathcal{R}. For each $R^{n} \in \mathcal{R}_{n}, \mathcal{F}\left(R^{n}\right) \subseteq A^{n}$ and satisfies:

1. if $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \mathcal{F}\left(R^{n}\right)$, then $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is a nonzero element of A^{n}
2. if $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \mathcal{F}\left(R^{n}\right)$ then for all nonzero $\left\langle b_{1}, \ldots, b_{n}\right\rangle \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle:\left\langle b_{1}, \ldots, b_{n}\right\rangle \in$ $\mathcal{F}\left(R^{n}\right)$
3. if for all $\left\langle b_{1}, \ldots, b_{n}\right\rangle \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle$, there exists $\left\langle c_{1}, \ldots, c_{n}\right\rangle \subseteq\left\langle b_{1}, \ldots, b_{n}\right\rangle$ such that $\left\langle c_{1}, \ldots, c_{n}\right\rangle \in \mathcal{F}\left(R^{n}\right)$, then $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \mathcal{F}\left(R^{n}\right)$

Here $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is nonzero $: \Leftrightarrow$ for $1 \leq i \leq n: a_{i} \neq 0$, and $\left\langle b_{1}, \ldots, b_{n}\right\rangle \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle: \Leftrightarrow$ for $1 \leq i \leq n: b_{i} \subseteq a_{i}$.

If $\alpha=\left\langle a_{1}, a_{2}, \ldots\right\rangle \in A^{\omega}$, then α is nonzero if for all $n \in \omega_{+},\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is nonzero. If $\beta=\left\langle b_{1}, b_{2}, \ldots\right\rangle \in A^{\omega}$ also, then $\beta \subseteq \alpha$ if for all $n \in \omega_{+},\left\langle b_{1}, \ldots, b_{n}\right\rangle \subseteq\left\langle a_{1}, \ldots, a_{n}\right\rangle$.

Let $\alpha=\left\langle a_{1}, a_{2}, \ldots\right\rangle \in A^{\omega}$ be a sequence of elements of A. Then $X \in \mathcal{L}_{N}$ is satisfied
by α in \mathcal{I} (written $\mathcal{I} \models_{\alpha} X$) iff α is nonzero and one of the following holds:

1. $X=R^{n}$ and $\left\langle a_{1}, \ldots, a_{n}\right\rangle \in \mathcal{F}(X)$
2. $X=\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}$ and for all nonzero $\beta \subseteq \alpha$, there exists nonzero $\gamma \subseteq \beta$:

$$
\left\langle c_{k_{1}}, \ldots, c_{k_{m}}\right\rangle \models_{\gamma} R^{m}
$$

3. $X=\bar{Y}$ and for all nonzero $\beta \subseteq \alpha: \mathcal{I} \not \not{ }_{\beta} Y$
4. $X=Y \cap Z$ and $\mathcal{I} \models_{\alpha} Y$ and $\mathcal{I} \models_{\alpha} Z$
5. $X=Y^{1} Z^{n+1}$ and for some nonzero $a \in A:\langle a\rangle \models_{\alpha} Y^{1}$ and $\langle a\rangle \models_{\alpha} Z^{n+1}$

Here $\mathcal{I} \not \models_{\alpha} Y$ is an abbreviation for not $\left(\mathcal{I} \models_{\alpha} Y\right)$, and $\left\langle b_{1}, \ldots, b_{n}\right\rangle \vDash_{\alpha} Y$ (or $\left\langle b_{1}, \ldots, b_{n}\right\rangle \vDash Y$ when there is no possibility of confusion) is an abbreviation for $\mathcal{I} \models_{\left\langle b_{1}, \ldots, b_{n}, a_{1}, a_{2}, \ldots\right\rangle} Y$.
X is true in \mathcal{I} (written $\mathcal{I} \vDash X$) iff $\mathcal{I} \vDash{ }_{\alpha} X$ for every nonzero $\alpha \in A^{\omega} . X$ is valid (written $\vDash X$) iff X is true in every interpretation of \mathcal{L}_{N}. A 0 -ary expression of \mathcal{L}_{N} is called a sentence. A set Γ of sentences is satisfied in \mathcal{I} iff each $X \in \Gamma$ is true in \mathcal{I}.

The intuitive notion is that $X \in \mathcal{L}_{N}$ is satisfied by α in \mathcal{I} if and only if $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is nonzero and is included in the denotation of X. This notion implies certain properties of mass terms, which in turn motivate the semantics. First, if $\mathcal{I} \models_{\alpha} X$ then $\mathcal{I} \models_{\beta} X$ for any nonzero $\beta \subseteq \alpha$. Second, while it is possible that $\mathcal{I} \models_{\alpha} X$ and $\mathcal{I} \not \models_{\alpha} \bar{X}$, or that $\mathcal{I} \models_{\alpha} \bar{X}$ and $\mathcal{I} \not \models_{\alpha} X$, or that $\mathcal{I} \not \models_{\alpha} X$ and $\mathcal{I} \not \models_{\alpha} \bar{X}$, it is not possible that $\mathcal{I} \models_{\alpha} X$ and $\mathcal{I} \models_{\alpha} \bar{X}$. Third, $\mathcal{I} \models_{\alpha} X$ iff $\mathcal{I} \models_{\alpha} \overline{\bar{X}}$.

The first property is known as the distributive property of mass terms [2, 7]. It is imposed on basic expressions by the second restriction on the denotation function \mathcal{F}. The first and second properties together motivate the definition of satisfaction for $X=\bar{Y}$. As a consequence of the definition of satisfaction for $X=\bar{Y}, \mathcal{I} \models_{\alpha} \overline{\bar{X}}$ iff $\forall \beta \subseteq \alpha: \mathcal{I} \not \models_{\beta} \bar{X}$ iff $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \mathcal{I} \models_{\gamma} X$. This together with the third property motivates the so-called cumulative property of mass terms $[2,7]$, which is assured for basic expressions by the third restriction on the denotation function \mathcal{F}. For more on mass terms, see [2, 7]. Roeper [7] gives a clear and concise presentation of the necessary background for a logic of mass terms. Bunt [2] provides a comprehensive review of the linguistic and philosophical issues as well as a logic of mass terms.

The following lemma and corollary establish the distributive, cumulative, and complement properties in the general case.
lemma 1 (schema) (i) if $\mathcal{I} \models_{\alpha} X$ then \forall nonzero $\beta \subseteq \alpha: \mathcal{I} \models_{\beta} X$; (ii) if $\forall \beta \subseteq \alpha$: $\exists \gamma \subseteq \beta: \mathcal{I} \models_{\gamma} X$ then $\mathcal{I} \models_{\alpha} X$.
proof: Proof is by induction on the structure of X. The basis follows directly from the definition of satisfaction and the definition of \mathcal{F}. The induction step involves four cases.

Case 1. $X=\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}$.
(i) and (ii) follow directly from the definition of satisfaction (2) and the transitivity of inclusion.

Case 2. $X=\bar{Y}$.
(i) follows directly from the definition of satisfaction (3) and the transitivity of inclusion.
(ii) $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \mathcal{I} \models_{\gamma} X$ implies $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \forall \delta \subseteq \gamma: \mathcal{I} \not \models_{\delta} Y$ (definition of satisfaction (3)). Now suppose $\mathcal{I} \not \models_{\alpha} X$. This implies \exists nonzero $\beta^{\prime} \subseteq \alpha: \mathcal{I} \models \beta^{\prime} Y$ (definition of satisfaction (3)), which implies \exists nonzero $\beta^{\prime} \subseteq \alpha: \forall$ nonzero $\gamma^{\prime} \subseteq \beta^{\prime}$: $\mathcal{I} \models_{\gamma^{\prime}} Y$ (induction hypothesis (i)). But this contradicts the preceding result. Hence $\mathcal{I} \vDash{ }_{\alpha} X$.

Case 3. $X=Y \cap Z$.
(i) and (ii) follow directly from the definition of satisfaction (4) and the induction hypothesis.

Case 4. $X=Y Z$.
(i) follows directly from the definition of satisfaction (5) and the induction hypothesis.
(ii) $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \mathcal{I} \models_{\gamma} X$ implies $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \exists c \in A:\langle c\rangle \models_{\gamma} Y$ and $\langle c\rangle \models_{\gamma} Z$ (definition of satisfaction (5)). This implies $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \exists c \in A$: \forall nonzero $\delta \subseteq \gamma: \forall$ nonzero $d \subseteq c:\langle d\rangle \models_{\delta} Y$ and $\langle d\rangle \models_{\delta} Z$ (induction hypothesis (i)). Hence $\forall \beta \subseteq \alpha: \forall d \subseteq c: \exists \delta \subseteq \beta: \exists d \subseteq d:\langle d\rangle \models_{\delta} Y$ and $\langle d\rangle \models_{\delta} Z$. This implies $\langle c\rangle \models_{\alpha} Y$ and $\langle c\rangle \models_{\alpha} Z$ (induction hypothesis (ii)), which implies $\mathcal{I} \models_{\alpha} Y Z$ (definition of satisfaction (5)).

COROLLARY 2 (schema) $\mathcal{I} \models_{\alpha} \overline{\bar{X}}$ iff $\mathcal{I} \models{ }_{\alpha} X$.

2.3 A Boolean structure The semantics of the previous subsection defines a

 Boolean structure for \mathcal{L}_{N}. Use of this structure simplifies the soundness argumentto be presented in the next section. Define $|X|:=\left\{\alpha: \mathcal{I} \models_{\alpha} X\right\}$. Then $|X \cap Y|=$ $|X| \Pi|Y|$, where Π is set intersection. Further define $|X|^{*}:=\left\{\alpha: \forall \beta \subseteq \alpha\left(\mathcal{I} \not \mathcal{F}_{\beta} X\right)\right\}$. Then $|X|^{*}=|\bar{X}|$. Now let \mathbf{L} be the image of \mathcal{L}_{N} under $|\cdot|$. It is straightforward to verify that \mathbf{L} is a pseudocomplemented meet-semilattice with lower bound \emptyset. It follows from lattice theory (see [4], Thm. I.6.4) that $S(\mathbf{L})=\left\{|X|^{*}:|X| \in \mathbf{L}\right\}$, the so-called "skeleton" of \mathbf{L}, is a Boolean lattice with meet Π, complement *, and join \sqcup, defined $|X| \sqcup|Y|:=\left(|X|^{*} \sqcap|Y|^{*}\right)^{*}$. But by Corollary $2,|\overline{\bar{X}}|=|X|$. Hence $|X|^{* *}=|X|$ and so $S(\mathbf{L})=\mathbf{L}$. Thus \mathbf{L} is itself a Boolean lattice.

The following abbreviations in \mathcal{L}_{N} are motivated by this Boolean structure.

1. $X \cup Y:=\overline{(\bar{X} \cap \bar{Y})}$
2. $X \subseteq Y:=\overline{X \cap \bar{Y}}$
3. $X \equiv Y:=(X \subseteq Y) \cap(Y \subseteq X)$
4. $T:=\left(R_{0}^{1} \subseteq R_{0}^{1}\right)$

The situation can be summarized as follows. L is a Boolean lattice with meet Π such that $|X| \cap|Y|=|X \cap Y|$, complement * such that $|X|^{*}=|\bar{X}|$, join \cup such that $|X| \sqcup|Y|=|X \cup Y|$, bounds $|T|$ and $|\bar{T}|$, and ordered by inclusion such that $|X| \subseteq|Y|$ iff $|X \subseteq Y|=|T|$. The expression $X Y$ has the Boolean property: $|X Y|=|\bar{T}|$ iff $|X| \subseteq|Y|^{*}$. It follows immediately that:

1. $\forall \alpha: \mathcal{I} \models_{\alpha} X \subseteq Y$ iff $\forall \alpha:\left(\mathcal{I} \models_{\alpha} X\right.$ implies $\left.\mathcal{I} \models_{\alpha} Y\right)$
2. $\forall \alpha: \mathcal{I} \models_{\alpha} X \equiv Y$ iff $\forall \alpha:\left(\mathcal{I} \models_{\alpha} X\right.$ iff $\left.\mathcal{I} \models_{\alpha} Y\right)$
3. $\forall \alpha: \mathcal{I} \models_{\alpha} \overline{X Y}$ iff $\forall \alpha: \mathcal{I} \models_{\alpha} X \subseteq \bar{Y}$
2.4 Additional abbreviations The following abbreviations are introduced to improve readability.
4. $\wedge X^{1} Y:=\overline{X^{1} \bar{Y}}$
5. $X_{n} X_{n-1} \cdots X_{1} Y:=\left(X_{n}\left(X_{n-1} \cdots\left(X_{1} Y\right) \cdots\right)\right.$
6. $\left.X^{1} Y_{n}^{2} \circ Y_{n-1}^{2} \circ \cdots \circ Y_{1}^{2}:=\left(\cdots\left(X^{1} Y_{n}^{2}\right) Y_{n-1}^{2}\right) \cdots Y_{1}^{2}\right)$
7. $\breve{R}^{n}:=\langle n, \ldots, 1\rangle R^{n}$

Using the previously stated results for \mathbf{L}, it is easy to see that:

1. $\mathcal{I} \models X_{n} \cdots X_{1} Y^{n}$ iff for some $\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left\langle d_{1}\right\rangle \vDash X_{1}$ and \cdots and $\left\langle d_{n}\right\rangle \vDash X_{n}$ and $\left\langle d_{1}, \ldots, d_{n}\right\rangle \vDash Y^{n}$
2. $\mathcal{I} \vDash \wedge X_{n} \cdots \wedge X_{1} Y^{n}$ iff for all $\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1}\right.$ and \cdots and $\left.\left\langle d_{n}\right\rangle \vDash X_{n}\right)$ implies $\left\langle d_{1}, \ldots, d_{n}\right\rangle \models Y^{n}$
3. $\mathcal{I} \models X_{2} X_{1} Y_{n}^{2} \circ \cdots \circ Y_{1}^{2}$ iff for some $\left\langle d_{0}, d_{1}, \ldots, d_{n}\right\rangle \in A^{n+1}:\left\langle d_{1}, d_{0}\right\rangle \models Y_{1}^{2}$ and $\left\langle d_{2}, d_{1}\right\rangle \vDash Y_{2}^{2}$ and \cdots and $\left\langle d_{n}, d_{n-1}\right\rangle \vDash Y_{n}^{2}$ and $\left\langle d_{n}\right\rangle \vDash X_{1}$ and $\left\langle d_{0}\right\rangle \vDash X_{2}$

Intuitively then, $Z X Y^{2}$ renders "some X is Y to some $Z ;$ " $\wedge Z \wedge X Y^{2}$ renders "all X is Y to all Z;" and $Z X Y_{2}^{2} \circ Y_{1}^{2}$ renders "some X is Y_{2}^{2} composed with Y_{1}^{2} to some Z."

3 Axiomatization of $\mathcal{L}_{N} \quad$ The universal closure of a n-ary expression $X \in \mathcal{L}_{N}$ is defined to be the nullary expression $(\wedge T)^{n} X$. The axiom schemas of \mathcal{L}_{N} are the following.

BT. The universal closure of every schema that can be obtained from a tautologous Boolean wff by uniform substitution of metavariables of \mathcal{L}_{N} for sentential variables, \cap for \wedge, and ${ }^{-}$for \neg

C1. $X_{n} \cdots X_{1}\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m} \subseteq X_{k_{m}} \cdots X_{k_{1}} R^{m}$ where $n=\max \left(k_{j}\right)_{1 \leq j \leq m}$

C2. $X_{n} \cdots X_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}} \subseteq X_{k_{m}} \cdots X_{k_{1}} \overline{R^{m}}$ where $n=\max \left(k_{j}\right)_{1 \leq j \leq m}$

EG. $\left(Z T \cap \wedge Z X \cap \wedge X_{n} \cdots \wedge X_{1 \wedge} Z Y^{n+1}\right) \subseteq \wedge X_{n} \cdots \wedge X_{1} X Y^{n+1}$

SS. $\left(\wedge Z X \cap \wedge X_{n} \cdots \wedge X_{1} \wedge X Y^{n+1}\right) \subseteq \wedge X_{n} \cdots \wedge X_{1} \wedge Z Y^{n+1}$

D1. $\left(X_{j} T \cap \cdots \cap X_{n} T \cap \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)\right) \subseteq\left(\wedge X_{m} \cdots \wedge X_{1} Y^{m} \cap \wedge X_{l} \cdots \wedge X_{1} Z^{l}\right)$ where $n=\max (l, m)$ and $j=\min (l, m)+1$

D2. $\left(\wedge X_{m} \cdots \wedge X_{1} Y^{m} \cap \wedge X_{l} \cdots \wedge X_{1} Z^{l}\right) \subseteq \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)$ where $n=\max (l, m)$
N. $\wedge X_{n} \cdots \wedge X_{1} \overline{Y^{n}} \equiv \overline{X_{n} \cdots X_{1} Y^{n}}$

The inference rules of \mathcal{L}_{N} are the following.

MP. From X^{0} and $X^{0} \subseteq Y^{0}$ infer Y^{0}

EI. From $\overline{\left(V^{0} \cap R T \cap \wedge R X \cap X_{n} \cdots X_{1 \wedge} R Y^{n+1}\right)}$, where $R \in \mathcal{R}_{1}$ does not occur in $X, X_{1}, \ldots, X_{n}, Y^{n+1}$, or V^{0}, infer $\overline{\left(V^{0} \cap X_{n} \cdots X_{1} X Y^{n+1}\right)}$

The restriction imposed on the unary predicate R by inference rule EI is abbreviated by the phrase R is fresh.

The set \mathcal{T} of theorems of \mathcal{L}_{N} is the smallest set containing the axioms and closed under MP and EI.

THEOREM 3 (Soundness) $X \in \mathcal{T}$ only if $\vDash X$.
proof: It a suffices to prove that the axioms are valid and that validity is preserved by the inference rules. Proofs will be given for axioms C2 and D1, and inference rule EI. The others are similar.
(i) Axiom C2 is valid.
$\mathcal{I} \models X_{n} \cdots X_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}}$ iff $\exists\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{n}\right\rangle \vDash X_{n}\right)$ $\wedge\left\langle d_{1}, \ldots, d_{n}\right\rangle \vDash \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}}\left(\right.$ Section 2.4) iff $\exists\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge\right.$ $\left.\cdots \wedge\left\langle d_{n}\right\rangle \vDash X_{n}\right) \wedge \forall\left\langle e_{1}, \ldots, e_{n}\right\rangle \subseteq\left\langle d_{1}, \ldots, d_{n}\right\rangle:\left\langle e_{1}, \ldots, e_{n}\right\rangle \not \vDash\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}$ (definition of satisfaction (3)) iff $\exists\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{n}\right\rangle \vDash X_{n}\right)$ $\wedge \forall\left\langle e_{1}, \ldots, e_{n}\right\rangle \subseteq\left\langle d_{1}, \ldots, d_{n}\right\rangle: \exists$ nonzero $\left\langle f_{1}, \ldots, f_{n}\right\rangle \subseteq\left\langle e_{1}, \ldots, e_{n}\right\rangle: \forall$ nonzero $\left\langle g_{1}, \ldots, g_{n}\right\rangle \subseteq$ $\left\langle f_{1}, \ldots, f_{n}\right\rangle:\left\langle g_{k_{1}}, \ldots, g_{k_{m}}\right\rangle \not \vDash R^{m}$ (definition of satisfaction (2)) implies $\exists\left\langle d_{k_{1}}, \ldots, d_{k_{m}}\right\rangle \in$ $A^{m}:\left(\left\langle d_{k_{1}}\right\rangle \vDash X_{k_{1}} \wedge \cdots \wedge\left\langle d_{k_{m}}\right\rangle \vDash X_{k_{m}}\right) \wedge \forall\left\langle e_{k_{1}}, \ldots, e_{k_{m}}\right\rangle \subseteq\left\langle d_{k_{1}}, \ldots, d_{k_{m}}\right\rangle: \exists$ nonzero $\left\langle f_{k_{1}}, \ldots, f_{k_{m}}\right\rangle \subseteq\left\langle e_{k_{1}}, \ldots, e_{k_{m}}\right\rangle:\left\langle f_{k_{1}}, \ldots, f_{k_{m}}\right\rangle \vDash \overline{R^{m}}$ (definition of satisfaction (3)) implies $\exists\left\langle d_{k_{1}}, \ldots, d_{k_{m}}\right\rangle \in A^{m}:\left(\left\langle d_{k_{1}}\right\rangle \vDash X_{k_{1}} \wedge \cdots \wedge\left\langle d_{k_{m}}\right\rangle \vDash X_{k_{m}}\right) \wedge\left\langle d_{k_{1}}, \ldots, d_{k_{m}}\right\rangle \vDash$ $\overline{R^{m}}$ (Lemma 1) iff $\mathcal{I} \models X_{k_{m}} \cdots X_{k_{1}} \overline{R^{m}}$ (Section 2.4). Thus $\mathcal{I} \models X_{n} \cdots X_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}}$ implies $\mathcal{I} \vDash X_{k_{m}} \cdots X_{k_{1}} \overline{R^{m}}$ whence by Section $2.3, \mathcal{I} \vDash X_{n} \cdots X_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}}$ $\subseteq X_{k_{m}} \cdots X_{k_{1}} \overline{R^{m}}$. Since \mathcal{I} is arbitrary, axiom C 2 is valid.
(ii) Axiom D1 is valid.
$\mathcal{I} \models X_{j} T \cap \cdots \cap X_{n} T \cap \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)$ iff $\mathcal{I} \models X_{j} T \wedge \cdots \wedge \mathcal{I} \models X_{n} T \wedge$ $\mathcal{I} \models \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)$ (definition of satisfaction (4)). $\mathcal{I} \vDash \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)$ iff $\forall\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{n}\right\rangle \vDash X_{n}\right) \rightarrow\left\langle d_{1}, \ldots, d_{n}\right\rangle \vDash Y^{m} \cap Z^{l}$ (Section 2.4) iff $\forall\left\langle d_{1}, \ldots, d_{n}\right\rangle \in A^{n}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{n}\right\rangle \vDash X_{n}\right) \rightarrow\left(\left\langle d_{1}, \ldots, d_{m}\right\rangle \vDash\right.$ $Y^{m} \wedge\left\langle d_{1}, \ldots, d_{l}\right\rangle \models Z^{l}$) (definition of satisfaction (4)), which implies $\left(\forall\left\langle d_{1}, \ldots, d_{m}\right\rangle \in\right.$ $\left.A^{m}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{m}\right\rangle \vDash X_{m}\right) \rightarrow\left\langle d_{1}, \ldots, d_{m}\right\rangle \vDash Y^{m}\right) \wedge\left(\forall\left\langle d_{1}, \ldots, d_{l}\right\rangle \in\right.$ $\left.A^{l}:\left(\left\langle d_{1}\right\rangle \vDash X_{1} \wedge \cdots \wedge\left\langle d_{l}\right\rangle \vDash X_{l}\right) \rightarrow\left\langle d_{1}, \ldots, d_{l}\right\rangle \vDash Z^{l}\right)$ iff $\mathcal{I} \vDash \wedge X_{m} \cdots \wedge X_{1} Y^{m} \wedge$ $\mathcal{I} \models \wedge X_{l} \cdots \wedge X_{1} Z^{l}$ (Section 2.4) iff $\mathcal{I} \models \wedge X_{m} \cdots \wedge X_{1} Y^{m} \cap \wedge X_{l} \cdots \wedge X_{1} Z^{l}$ (definition of satisfaction (4)). Thus $\mathcal{I} \vDash X_{j} T \cap \cdots \cap X_{n} T \cap \wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)$ implies $\mathcal{I} \models \wedge X_{m} \cdots \wedge X_{1} Y^{m} \cap \wedge X_{l} \cdots \wedge X_{1} Z^{l}$ whence by Section $2.3, \mathcal{I} \models\left(X_{j} T \cap \cdots \cap X_{n} T \cap\right.$ $\left.\wedge X_{n} \cdots \wedge X_{1}\left(Y^{m} \cap Z^{l}\right)\right) \subseteq\left(\wedge X_{m} \cdots \wedge X_{1} Y^{m} \cap \wedge X_{l} \cdots \wedge X_{1} Z^{l}\right)$. Since \mathcal{I} is arbitrary, axiom $D 1$ is valid.
(ii) Rule EI preserves validity.

Suppose $\vDash \overline{\left(V^{0} \cap R T \cap \wedge R X \cap X_{n} \cdots X_{1} \wedge R Y^{n+1}\right)}$, where R is fresh, but there exist interpretations \mathcal{I} such that $\mathcal{I} \vDash V^{0} \cap X_{n} \cdots X_{1} X Y^{n+1}$. In such interpretations, $\exists\left\langle d, d_{1}, \ldots, d_{n}\right\rangle \in A^{n+1}:\langle d\rangle \vDash X$ and $\left\langle d_{1}\right\rangle \vDash X_{1}$ and \cdots and $\left\langle d_{n}\right\rangle \vDash X_{n}$ and $\left\langle d, d_{1}, \ldots, d_{n}\right\rangle \vDash Y^{n+1}$. Since R is fresh, among the interpretations \mathcal{I} there are interpretations \mathcal{I}^{\prime} such that $\mathcal{F}^{\prime}(R)=\{\langle d\rangle\}$. But then $\mathcal{I}^{\prime} \vDash V^{0} \cap R T \cap \wedge R X \cap$ $X_{n} \cdots X_{1 \wedge} R Y^{n+1}$, which contradicts the assumption of validity.

Next completeness of the axiomatization is shown. The proof is in the style of Henkin. But because of the absence of atomicity, the construction of an interpretation is not
the standard one. Therefore the proof of the satisfiability theorem is given in full. First some definitions are needed. Let $\Gamma \subseteq \mathcal{L}_{N}$ be a set of sentences. Γ is consistent iff it does not contain X_{1}, \ldots, X_{n} such that $\overline{X_{1} \cap \cdots \cap X_{n}}$ is in $\mathcal{T} . \Gamma$ is complete iff for every sentence $X \in \mathcal{L}_{N}$, either X or \bar{X} is in $\Gamma . \Gamma$ is saturated iff it is complete, consistent and contains $R T, \wedge R X$ and $X_{n} \cdots X_{1} \wedge R Y^{n+1}$ for some $R \in \mathcal{R}_{1}$ whenever it contains $X_{n} \cdots X_{1} X Y^{n+1}$. Γ^{*} is the set of sentences obtained from Γ by uniform substitution of $R_{2 i}^{1}$ for R_{i}^{1} in each $X \in \Gamma$. Thus only unary predicate symbols with even index occur in Γ^{*}, leaving a denumerably infinite number of fresh unary predicate symbols. Notice that the axioms do not reference any particular predicate symbol except R_{0}^{1}. Therefore any uniform substitution of distinct unary predicate symbols for distinct unary predicate symbols that leaves R_{0}^{1} fixed preserves consistency and inconsistency.

Lemma 4 Let $\Gamma \subseteq \mathcal{L}_{N}$ be a set of sentences. If Γ^{*} is consistent it can be extended to a saturated set of sentences $\Gamma^{+} \subseteq \mathcal{L}_{N}$.
proof: Let W_{1}, W_{2}, \ldots be an enumeration of the sentences of \mathcal{L}_{N} such that if $W_{i}=X_{n} \cdots X_{1} X Y^{n+1}$ then $W_{i+1}=R_{j}^{1} T \cap \wedge R_{j}^{1} X \cap X_{n} \cdots X_{1 \wedge} R_{j}^{1} Y^{n+1}$ for some j such that j is odd and R_{j}^{1} does not occur in W_{k} for $k \leq i$. Let $\Gamma_{0}=\Gamma^{*}$ and $\Gamma_{i+1}=\Gamma_{i} \cup\left\{W_{i+1}\right\}$ if it is consistent and $\Gamma_{i+1}=\Gamma_{i}$ otherwise. Let $\Gamma^{+}=\bigcup_{i \in \omega} \Gamma_{i}$.
(1) Γ^{+}is consistent since each Γ_{i} is.
(2) Γ^{+}is complete, for suppose $X \notin \Gamma^{+}$and $\bar{X} \notin \Gamma^{+}$. Then for some $i, W_{j_{1}}, \ldots, W_{j_{n}} \in$ Γ_{i} such that $\overline{W_{j_{1}} \cap \cdots \cap W_{j_{n}} \cap X} \in \mathcal{T}$ and for some i^{\prime} (say $i \leq i^{\prime}$) $W_{k_{1}}^{\prime}, \ldots, W_{k_{m}}^{\prime} \in$
$\Gamma_{i^{\prime}}$ such that $\overline{W_{k_{1}}^{\prime} \cap \cdots \cap W_{k_{m}}^{\prime} \cap \bar{X}} \in \mathcal{T}$. But then by axiom BT and rule MP, $\overline{W_{j_{1}} \cap \cdots \cap W_{j_{n}} \cap W_{k_{1}}^{\prime} \cap \cdots \cap W_{k_{m}}^{\prime}} \in \mathcal{T}$, contradicting the consistency of $\Gamma_{i^{\prime}}$.
(3) Γ^{+}is saturated, for suppose $W_{i}=X_{n} \cdots X_{1} X Y^{n+1} \in \Gamma_{i}$. Then Γ_{i+1} contains $R T \cap \wedge R X \cap X_{n} \cdots X_{1} \wedge R Y^{n+1}$ for some fresh R unless there are $W_{j_{1}}, \ldots, W_{j_{m}} \in \Gamma_{i}$ such that $\overline{W_{j_{1}} \cap \cdots \cap W_{j_{m}} \cap R T \cap \wedge R X \cap X_{n} \cdots X_{1} \wedge R Y^{n+1}} \in \mathcal{T}$. But by rule EI, this implies $\overline{W_{j_{1}} \cap \cdots \cap W_{j_{m}} \cap X_{n} \cdots X_{1} X Y^{n+1}} \in \mathcal{T}$, contradicting the consistency of Γ_{i}.

THEOREM 5 (Satisfiability) Let $\Gamma \subseteq \mathcal{L}_{N}$ be a set of sentences. If Γ^{*} is consistent there is an interpretation $\mathcal{I}=\langle\mathcal{A}, \mathcal{F}\rangle$ of \mathcal{L}_{N} satisfying Γ^{*}.
proof: Let Γ^{+}be a saturated set of sentences extending Γ^{*}. It suffices to show that \mathcal{I} satisfies Γ^{+}. Let \mathcal{A} be the subalgebra of unary expressions of the Lindenbaum algebra of Γ^{+}[1]. Then \mathcal{A} is a Boolean algebra whose universe is the set of equivalence classes of unary expressions of \mathcal{L}_{N} defined: $X \approx Y$ iff $\wedge T(X \equiv Y) \in \Gamma^{+}$. Let $|X|$ be the equivalence class of X.

The partial order of \mathcal{A} is defined: $|X| \subseteq|Y|$ iff $\wedge T(X \subseteq Y) \in \Gamma^{+}$. Some simple properties of this partial order are the following. These properties are based on the theorem schemas $\wedge X T$ and $\wedge X Y \equiv \wedge T(X \subseteq Y)$, which follow directly from the axiomatization.
(i) $\wedge X T$ and $\wedge X T \equiv \wedge T(X \subseteq T)$ imply $\wedge T(X \subseteq T)$. Hence $|T|$ is the upper bound of \mathcal{A}.
(ii) From (i) and axiom $\mathrm{BT}, \wedge T(\bar{T} \subseteq X)$. Hence $|\bar{T}|$ is the lower bound of \mathcal{A}.
(iii) $X T \in \Gamma^{+}$iff $\overline{X T} \notin \Gamma^{+}$iff $\wedge X \bar{T} \notin \Gamma^{+}$iff $\wedge T(X \subseteq \bar{T}) \notin \Gamma^{+}$iff $|X|$ is nonzero in \mathcal{A}. (iv) $\wedge X Y \in \Gamma^{+}$iff $\wedge T(X \subseteq Y) \in \Gamma^{+}$iff $|X| \subseteq|Y|$ in \mathcal{A}.

For each $R^{n} \in \mathcal{R}_{n}$ define $\mathcal{F}\left(R^{n}\right):=\left\{\langle | X_{1}\left|, \ldots,\left|X_{n}\right|\right\rangle: X_{1} T \cap \cdots \cap X_{n} T \cap \wedge X_{n} \ldots \wedge X_{1} R^{n} \in\right.$ $\left.\Gamma^{+}\right\} . \mathcal{F}$ satisfies the requirements for a denotation function (see Section 2.2). That the first requirement is satisfied follows from the definition of \mathcal{F} and property (iii) above. Satisfaction of the second requirement follows from axiom SS and property (iv). That the third requirement is satisfied can be seen as follows. Suppose \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle:$ $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \in \mathcal{F}\left(R^{n}\right)$ but $\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \notin \mathcal{F}\left(R^{n}\right)$. Then $U_{1} T, \ldots, U_{n} T, \wedge U_{1} V_{1}, \ldots, \wedge U_{n} V_{n}$, $\wedge U_{n} \cdots \wedge U_{1} R^{n} \in \Gamma^{+}$and $\overline{\wedge V_{n} \cdots \wedge V_{1} R^{n}} \in \Gamma^{+}\left(\Gamma^{+}\right.$is complete). Hence $V_{n} \cdots V_{1} \overline{R^{n}} \in \Gamma^{+}$ and $\exists R_{1}, \ldots, R_{n} \in \mathcal{R}_{1}$ such that $R_{1} T, \ldots, R_{n} T, \wedge R_{1} V_{1}, \ldots, \wedge R_{n} V_{n}, \wedge R_{n} \cdots \wedge R_{1} \overline{R^{n}} \in$ $\Gamma^{+}\left(\Gamma^{+}\right.$is saturated). By the initial assumption and properties (iii) and (iv) above, $\exists Q_{1}, \ldots, Q_{n}: Q_{1} T, \ldots, Q_{n} T, \wedge Q_{1} R_{1}, \ldots, \wedge Q_{n} R_{n}, \wedge Q_{n} \cdots \wedge Q_{1} R^{n} \in \Gamma^{+}$, and so by axiom EG, $Q_{n} \cdots Q_{1} R^{n} \in \Gamma^{+}$. But because \mathcal{F} satisfies the second requirement, $\wedge Q_{n} \cdots \wedge Q_{1} \overline{R^{n}} \in \Gamma^{+}$whence by axiom $\mathrm{N}, \overline{Q_{n} \cdots Q_{1} R^{n}} \in \Gamma^{+}$, contradicting the consistency of Γ^{+}.

The proof will actually establish the more general claim: for each $X^{n} \in \mathcal{L}_{N},\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash$ X^{n} iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq$ $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \wedge U_{n} \cdots \wedge U_{1} X^{n} \in \Gamma^{+}$. Proof is by induction on the structure of X^{n}. The basis follows directly from the definition of satisfaction, the definition of \mathcal{F}, and the requirements for a denotation function. The induction step involves four cases.

Axiom BT and rule MP are used implicitly.
Case 1. $X^{n}=\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}$, where $n=\max \left(k_{j}\right)_{1 \leq j \leq m}$.
$\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash X^{n}$ iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1} \mid$, $\left.\ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle:\langle | U_{k_{1}}\left|, \ldots,\left|U_{k_{m}}\right|\right\rangle \models R^{m}$ (definition of satisfaction) iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle:$ \forall nonzero $\langle | Q_{k_{1}}\left|, \ldots,\left|Q_{k_{m}}\right|\right\rangle \subseteq\langle | U_{k_{1}}\left|, \ldots,\left|U_{k_{m}}\right|\right\rangle: \exists$ nonzero $\langle | P_{k_{1}}\left|, \ldots,\left|P_{k_{m}}\right|\right\rangle \subseteq\langle | Q_{k_{1}} \mid$, $\left.\ldots,\left|Q_{k_{m}}\right|\right\rangle: \wedge P_{k_{m}} \cdots \wedge P_{k_{1}} R^{m} \in \Gamma^{+}$(induction hypothesis) iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq$ $\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | P_{1}\left|, \ldots,\left|P_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \wedge P_{k_{m}} \cdots \wedge P_{k_{1}} R^{m} \in \Gamma^{+}$ (transitivity of \subseteq). The proof for this case is completed by proving the following claim.

Claim: $\wedge P_{k_{m}} \cdots \wedge P_{k_{1}} R^{m} \in \Gamma^{+}$iff $\wedge P_{n} \cdots \wedge P_{1}\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m} \in \Gamma^{+}$.
The only if direction follows directly from axiom C 2 . For the if direction, suppose $\wedge P_{k_{m}} \cdots \wedge P_{k_{1}} R^{m} \notin \Gamma^{+}$. Then $P_{k_{m}} \cdots P_{k_{1}} \overline{R^{m}} \in \Gamma^{+}\left(\Gamma^{+}\right.$is complete) and therefore $R_{k_{1}} T \cap \cdots \cap R_{k_{m}} T \cap \wedge R_{k_{1}} P_{k_{1}} \cap \cdots \cap \wedge R_{k_{m}} P_{k_{m}} \cap \wedge R_{k_{m}} \cdots \wedge R_{k_{1}} \overline{R^{m}} \in \Gamma^{+}$for some $R_{k_{1}}, \ldots, R_{k_{m}} \in \mathcal{R}_{1}\left(\Gamma^{+}\right.$is saturated). Hence $\wedge R_{n} \cdots \wedge R_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}} \in$ Γ^{+}, where $R_{j}=P_{j}$ if $j \notin\left\{k_{1}, \ldots, k_{m}\right\}$ (axioms C 1 and N), and by axiom EG, $P_{n} \cdots P_{1} \overline{\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}} \in \Gamma^{+}$. That is, $\overline{\wedge P_{n} \cdots \wedge P_{1}\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m}} \in \Gamma^{+}$and so $\wedge P_{n} \cdots \wedge P_{1}\left\langle k_{1}, \ldots, k_{m}\right\rangle R^{m} \notin \Gamma^{+}\left(\Gamma^{+}\right.$is complete $)$.

Case 2. $X=\bar{Y}$.
$\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash X^{n}$ iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle:\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \not \vDash$ Y (definition of satisfaction) iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \forall$ nonzero $\langle | Q_{1}\left|, \ldots,\left|Q_{n}\right|\right\rangle \subseteq\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle:$
$\wedge Q_{n} \cdots \wedge Q_{1} Y \notin \Gamma^{+}$(induction hypothesis). But $\wedge Q_{n} \cdots \wedge Q_{1} Y \notin \Gamma^{+}$iff $Q_{n} \cdots Q_{1} \bar{Y} \in$ $\Gamma^{+}\left(\Gamma^{+}\right.$is complete $)$iff for some $R_{1}, \ldots, R_{n} \in \mathcal{R}_{1}: R_{1} T \cap \cdots \cap R_{n} T \cap \wedge R_{1} Q_{1} \cap$ $\cdots \cap \wedge R_{n} Q_{n} \cap \wedge R_{n} \cdots \wedge R_{1} \bar{Y} \in \Gamma^{+}$(Γ^{+}is saturated). It follows from properties (iii) and (iv) above that $\left|R_{i}\right|$ is nonzero and $\left|R_{i}\right| \subseteq\left|Q_{i}\right|$ in \mathcal{A}. By transitivity of \subseteq, \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | R_{1}\left|, \ldots,\left|R_{n}\right|\right\rangle \subseteq\langle | W_{1} \mid$, $\left.\ldots,\left|W_{n}\right|\right\rangle: \wedge R_{n} \cdots \wedge R_{1} \bar{Y} \in \Gamma^{+}$, which supports the claim.

Case 3. $X^{n}=Y^{m} \cap Z^{l}$ where $n=\max (l, m)$.
$\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash X^{n}$ iff $\langle | V_{1}\left|, \ldots,\left|V_{m}\right|\right\rangle \vDash Y^{m}$ and $\langle | V_{1}\left|, \ldots,\left|V_{l}\right|\right\rangle \vDash Z^{l}$ (definition of satisfaction) iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{m}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{m}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{m}\right|\right\rangle \subseteq$ $\langle | W_{1}\left|, \ldots,\left|W_{m}\right|\right\rangle: \wedge U_{m} \cdots \wedge U_{1} Y^{m} \in \Gamma^{+}$and \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{l}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{l}\right|\right\rangle:$ \exists nonzero $\langle | Q_{1}\left|, \ldots,\left|Q_{l}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{l}\right|\right\rangle: \wedge Q_{l} \cdots \wedge Q_{1} Z^{l} \in \Gamma^{+}$(induction hypothesis). Now observe that in general, $(\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta: \phi(\gamma)) \wedge(\forall \beta \subseteq \alpha$: $\exists \delta \subseteq \beta: \psi(\delta))$ iff $\forall \beta \subseteq \alpha: \exists \gamma \subseteq \beta:(\phi(\gamma) \wedge \exists \delta \subseteq \gamma: \psi(\delta))$. Using this observation, the last condition can be modified: iff \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq$ $\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \wedge U_{m} \cdots \wedge U_{1} Y^{m} \in \Gamma^{+}$ and \exists nonzero $\langle | Q_{1}\left|, \ldots,\left|Q_{n}\right|\right\rangle \subseteq\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle: \wedge Q_{l} \cdots \wedge Q_{1} Z^{l} \in \Gamma^{+}$. According to properties (iii) and (iv) above, $Q_{i} T, \wedge Q_{i} U_{i} \in \Gamma^{+}$. This implies $\wedge Q_{m} \cdots \wedge Q_{1} Y^{m} \in$ Γ^{+}(axiom SS) and hence $\wedge Q_{n} \cdots \wedge Q_{1}\left(Y^{m} \cap Z^{l}\right) \in \Gamma^{+}$(axiom D2). Conversely, suppose \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | Q_{1}\left|, \ldots,\left|Q_{n}\right|\right\rangle \subseteq$ $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \wedge Q_{n} \cdots \wedge Q_{1}\left(Y^{m} \cap Z^{l}\right) \in \Gamma^{+}$. Then $\wedge Q_{m} \cdots \wedge Q_{1} Y^{m}, \wedge Q_{l} \cdots \wedge Q_{1} Z^{l} \in$ $\Gamma^{+}\left(\right.$axiom D1) and hence $\langle | V_{1}\left|, \ldots,\left|V_{m}\right|\right\rangle \vDash Y^{m}$ and $\langle | V_{1}\left|, \ldots,\left|V_{l}\right|\right\rangle \vDash Z^{l}$ (induction hypothesis) whence $\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash Y^{m} \cap Z^{l}$ (definition of satisfaction).

Case 4. $X^{n}=Y^{1} Z^{m}$ where $m=n+1$.
$\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \models X^{n}$ iff for some nonzero $|V|:\langle | V| \rangle \models Y^{1}$ and $\langle | V\left|,\left|V_{1}\right|, \ldots,\left|V_{n}\right|\right\rangle \models$ Z^{m}. Proceeding as in Case 3 , it can be seen that the preceding statement holds iff \forall nonzero $\langle | W\left|,\left|W_{1}\right|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V\left|,\left|V_{1}\right|, \ldots,\left|V_{n}\right|\right\rangle: \exists$ nonzero $\langle | U\left|,\left|U_{1}\right|, \ldots,\left|U_{n}\right|\right\rangle \subseteq$ $\langle | W\left|,\left|W_{1}\right|, \ldots,\left|W_{n}\right|\right\rangle: \wedge U_{n} \cdots \wedge U_{1} \wedge U Z^{m} \in \Gamma^{+}$and \exists nonzero $\left.\langle | Q\rangle \subseteq\langle | U|\right\rangle: \wedge Q Y^{1} \in$ Γ^{+}, which implies $Q T \cap \wedge Q Y^{1} \cap \wedge U_{n} \cdots \wedge U_{1 \wedge} Q Z^{m} \in \Gamma^{+}$, whence $\wedge U_{n} \cdots \wedge U_{1} Y^{1} Z^{m} \in$ Γ^{+}(axiom EG). Conversely, suppose \forall nonzero $\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle \subseteq\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle$: \exists nonzero $\langle | U_{1}\left|, \ldots,\left|U_{n}\right|\right\rangle \subseteq\langle | W_{1}\left|, \ldots,\left|W_{n}\right|\right\rangle: \wedge U_{n} \cdots \wedge U_{1} Y^{1} Z^{m} \in \Gamma^{+}$. Since $U_{i} T$ and $\wedge U_{i} U_{i} \in \Gamma^{+}, \wedge U_{n} \cdots \wedge U_{1} Y^{1} Z^{m} \in \Gamma^{+}$implies $U_{n} \cdots U_{1} Y^{1} Z^{m} \in \Gamma^{+}$by axiom EG. Therefore for some $R, R_{1}, \ldots, R_{n} \in \mathcal{R}_{1}, R T \cap R_{1} T \cap \cdots \cap R_{n} T \cap \wedge R Y^{1} \cap \wedge R_{1} X_{1} \cdots \cap$ $\wedge R_{n} X_{n} \cap \wedge R_{n} \cdots \wedge R_{1} \wedge R Z^{m} \in \Gamma^{+}\left(\Gamma^{+}\right.$is saturated $)$. By axiom SS, \forall nonzero $|Q| \subseteq$ $|R|: \wedge Q Y^{1} \wedge \wedge R_{n} \cdots \wedge R^{1} \wedge Q Z^{m} \in \Gamma^{+}$and hence $\langle | R\left\rangle \models Y^{1}\right.$ and $\left.\left.\langle | R\right|,\left|V_{1}\right|, \ldots,\left|V_{n}\right|\right\rangle \models$ Z^{m} (induction hypothesis) whence $\langle | V_{1}\left|, \ldots,\left|V_{n}\right|\right\rangle \vDash Y^{1} Z^{m}$ (definition of satisfaction).

COROLLARy 6 (Completeness) $\vDash X$ only if $X \in \mathcal{T}$.

4 Conclusion In the discrete version of \mathcal{L}_{N} presented in [5], the absence of variables did not result in loss of expressiveness or increased complexity of proofs. In the generalization of \mathcal{L}_{N} presented in this paper, absence of variables enhances expressiveness and reduces the complexity of proofs relative to conventional predicate logic. For a comparison, see the elegant generalization of predicate logic to nonatomic domains presented by Roeper [8]. In a language for mass terms, variables are superfluous if not intrusive. Consider the sentence $\wedge X Y \check{R}$, which with some syntactic sugar is forall X exists $Y \breve{R}$, and makes the assertion that for all X there exist Y that stand in the relation R. Compare (all $X p$) (some $Y q$) $R p q$, or $($ all $p)(X p \rightarrow($ some $q)(Y q \wedge R p q))$, which make the same assertion (see $[7,8])$. Far from increasing expressiveness, the variables seem to get in the way of understanding.

Where a logic is desired for models that are nonatomic but not atomless, the present logic can be supplemented by adding singular predicates, $\mathcal{S}=\left\{S_{i}: i \in \omega\right\}$, with semantics:
for each $S \in \mathcal{S}, \mathcal{F}(S)=\{\langle a\rangle\}$ for some (not necessarily unique) atom $a \in A$
and axiom schema (S is a metavariable ranging over \mathcal{S}):

$$
\text { S. } \wedge X_{n} \cdots \wedge X_{1} \overline{\left(S Y^{n+1}\right)} \equiv \wedge X_{n} \cdots \wedge X_{1} S \overline{Y^{n+1}}
$$

In this way, reasoning about mass terms and reasoning about discrete terms can be dealt with uniformly under a single logic.

Having established a sound and complete axiomatization, one can proceed to prove theorems similar to those of [5]. Principal among these is the Monotonicity Theorem, which states that if Y occurs as a subexpression of W such that Y lies in the scopes of an even (respectively, odd) number of complement operators and $(\wedge T)^{n}(Y \subseteq Z)$ (respectively, $(\wedge T)^{n}(Z \subseteq Y)$), then $W \subseteq W^{\prime}$, where W^{\prime} is obtained from W by substituting Z for that occurrence of Y. (Some of the details have been suppressed to simplify the statement.) These theorems provide an approach to reasoning that is similar to syllogistic and, because of the closeness of the expressions involved to surface English, is termed "surface reasoning" [6].

Acknowledgment This paper benefited in numerous ways from the comments of the anonymous referee.

References

[1] Bell, J. L. and M. Machover A Course in Mathematical Logic, North-Holland Publishing Company, 1977.
[2] Bunt, Harry C. Mass Terms amd Model-Theoretic Semantics, Cambridge University Press, 1985.
[3] Čulík, K "Well-Translatable Grammars and Algol-Like Languages," in Steel, T. B. Jr., ed., Formal Language Description Languages for Computer Programming, North Holland, 1966, 76-85.
[4] Gratzer, George General Lattice Theory, Academic Press, 1978.
[5] Purdy, William C. "A Logic for Natural Language," Notre Dame Journal of Formal Logic, to appear.
[6] Purdy, William C. "Surface Reasoning," Notre Dame Journal of Formal Logic, to appear.
[7] Roeper, P. "Semantics for Mass Terms with Quantifiers," Noûs 17 (1983), 251265.
[8] Roeper, P. "Generalisation of First-Order Logic to Nonatomic Domains," Journal of Symbolic Logic 50 (1985), 815-838.

