
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1991

A Practical Hierarchical Model of Parallel Computation ll: Binary A Practical Hierarchical Model of Parallel Computation ll: Binary

Tree and FFT Algorithms Tree and FFT Algorithms

Todd Heywood

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Heywood, Todd and Ranka, Sanjay, "A Practical Hierarchical Model of Parallel Computation ll: Binary Tree
and FFT Algorithms" (1991). Electrical Engineering and Computer Science - Technical Reports. 122.
https://surface.syr.edu/eecs_techreports/122

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/122?utm_source=surface.syr.edu%2Feecs_techreports%2F122&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-07

A Practical Hierarchical Model
of Parallel Computation II:

Binary Tree and FFT Algorithms

Todd Heywood and Sanjay Ranka

October 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Abstract

A companion paper has introduced the Hierarchical PRAM (H-PRAM) model of parallel com

putation, which achieves a good balance between simplicity of usage and reflectivity of realistic

parallel computers. In this paper, we demonstrate the usage of the model by designing and analyz

ing various algorithms for computing the complete binary tree, and the FFT /butterfly graph. By

concentrating on two problems, we are able to demonstrate the results of different combinations

of organizational strategies and different types of sub-models of the H-PRAM. The philosophy in

algorithm design is to maximize the number of processors P that are efficiently usable with respect

to an input size N, and to minimize the inefficiency when efficiency is not possible (when Pis too

large with respect to N). This can be done because of the H-PRAM's representation of general

locality, i.e. both strict and neighborhood locality, and results in algorithms that can efficiently

employ more processors (and are thus faster) than algorithms for models that only represent strict

locality.

1 Introduction

In the companion paper [8] we introduced the Hierarchical PRAM (H-PRAM) model of parallel

computation, and discussed its properties and benefits in detail. In this paper we demonstrate

the usage of the H-PRAM via the design and analysis of various algorithms for computing both

complete binary trees and FFT /butterfly graphs. By concentrating on two problems, we are able

to demonstrate the results of different combinations of organizational strategies and different types

of sub-models of the H-PRAM, e.g. EREW PRAM, LPRAM [1], and BPRAM [2].

It is assumed that the reader is familiar with the H-PRAM and its properties, as defined in [8].

General locality has been defined to mean both strict and neighborhood locality. We can

employ general communication and synchronization locality on the private H-PRAM, or general

synchronization locality (and strict communication locality) on the shared H-PRAM. Since the

private H-PRAM provides the tightest simultaneous control over the four types of complexities

(computation, communication, synchronization, and conceptual, as discussed in Section 2.2 of [8]),

reduces the responsibilities of overlaying programming models (Section 2.2 of [8]), and provides a

framework that may allow reduced communication bandwidth requirements on architectures as they

scale up (Section 3.2 of [8]), we feel that algorithms should initially attempt to employ the private

H-PRAM. However, problems that only submit to non-oblivious (data dependent) communication,

or possess irregular communication patterns, may require a switch to the shared variant, which is

the main reason for its existence. The private variant is assumed in this paper.

Section 2 of the section considers some preliminary algorithmic issues. In Section 3, we give

two H-PRAM algorithms for computing a complete binary tree. The first serves as an introduction

to the use of the H-PRAM, and the second introduces simple memory management, which results

in improved performance for certain latencies.

In Section 4 we conduct a case study of the H-PRAM by designing and analyzing various

H-PRAM algorithms for computing the FFT (or butterfly) graph. These algorithms differ both

in design and in the types of sub-models which are employed, thus demonstrating the results

of different combinations of organizational strategies and different types of sub-models of the H

PRAM. Section 5 concludes the paper with a discussion of general algorithmic issues.

2 Preliminaries

We always assume that P ~ N for input size N and number of H-PRAM processors P. For

simplicity, we also consider the size of the H-PRAM memory to be equal to the size of the data set

under consideration (normally the input size, but some algorithms may use space> N). The reason

for this is that, in the private H-PRAM, partition steps partition memory proportionately to the

processors, and in algorithm design what we are really doing is partitioning the input data. This

assumption is realistic since a mapping of the H-PRAM to an architectural model can simply assign

N / P memory locations of the H-PRAM memory to the local memory of each architecture processor.

The H-PRAM memory can be seen as P blocks of N / P memory locations, where the blocks are

1

the units that may be grouped and partitioned. Note that for any P'-processor sub-PRAM with

N' memory, we have N' I P' = NIP and P' ~ N'.

We employ the streamlined complexity analysis procedure introduced and justified in Sec

tion 2.3.2 of [8).

Recall from [8) that the latency l(P') is the cost of a communication in a P'-processor sub

PRAM, and sp(Q,P') is the cost for aP'-processor sub-PRAM to,8-synchronize Q sub-sub-PRAMs.

Since latency is not necessarily the diameter of a P'-processor sub-network in an underlying archi

tecture, diam(P') is used when diameter is meant.

In H-PRAM algorithm analysis, it is often useful to fix the latency parameter l in order to

obtain more informative and concrete results. Since an exhaustive enumeration of results for all

possible values of l is out of the question, we wish to choose a couple of "representative" functions

to fix l to. In this paper we will consider the cases l(P') = log P' and l(P') = VJ», where P' is the

number of processors being communicated amongst, since these functions (and functions of these

functions) seem to cover a wide range of the latencies of existing and likely-to-be-built architectures.

It is also useful to fix the ,8-synchronization parameter sp along with l. Recall that when /3-
synchronization is solely a function of the number of sub-PRAMs being synchronized, diam(Q) ~

sp(Q,P') ~ diam(Q)logQ. As noted in Section 3.1 of [8), most hierarchical architectures have

/3-synchronization costs which are solely functions of Q. Thus, when l(P') = diam(P') = logP'

we redenote sp(Q,P') as sp(Q). Although the range of sp(Q) is logQ ~ sp(Q) ~ log2 Q, for

simplicity we fix sp(Q) = logQ in this paper. This is very reasonable; for example, the hierar

chical, logarithmic-diameter hypercube network can synchronize Q sub-cubes in O(log Q) time. If

latency is not defined as diameter then we are at worst overestimating /3-synchronization cost, since

diam(Q) ~ l(Q).
The two-dimensional mesh may have a ,8-synchronization cost that is also a function of the

number of processors P' in the PRAM that is synchronizing the Q sub-PRAMs (see Section 3.1

of [8]). Although sp(Q, P') has been defined to be diam(P') ~ sp(Q, P') ~ diam(P') log Q in this

case, since the two-dimensional mesh is the only .Jl>'-diameter architecture and it is known that

P' mesh processors can synchronize in time 0(.JPI), when l(P') = VJii we (redenote sp(Q, P') as

sp(P') and) fix sp(P') = VJ». Again, if latency is not defined as diameter then we are at worst

overestimating /3-synchronization cost.

The following fact, discussed in Section 2.3.2 of (8), will be used when /3-synchronization is under

consideration. The ,8-synchronization complexity of a sub-PRAM sub-algorithm will not dominate

the sub-algorithm's complexity if the following two conditions are met:

1. sp(Q,P') ~ l(P') (note Q ~ P' always).

2. The number of partition steps, thus the number of ,8-synchronizations, in the sub-algorithm

is of the order of the number of communication steps in the sub-algorithm. Or equivalently,

that it is of the order of N' / P' times the number of permutation steps on N' elements, which

is the same as saying that the number of partition steps is of the order of the number of

permutation steps on N' elements for all possible P' and N' (since P' ~ N' always holds).

2

It is hard to conceive of any architecture where ,8-synchronization could not be done at the latency

l(P') of the sub-PRAM executing the partition step, so we assume Condition 1 to be true. Note that

the cases we consider are (a) l(P') = logP' and sp(Q,P') = sp(Q) = logQ, and (b) l(P') = VJii
and sp(Q, P') = sp(P') =..[iii, so Condition 1 certainly holds for our purposes. Given this, what

Condition 2 means is that ,8-synchronization will not dominate the complexity of any sub-PRAM

algorithm that performs memory management, i.e. that executes permutation steps on the N'
elements in the sub-PRAM memory (in time (N' I P')l(P')) "paired" with partition steps, since

it will be subsumed by the cost of the permuting. If ,8-synchronization does not dominate the

complexity of any of the sub-algorithms in a hierarchy, then clearly we can conclude that it does

not dominate the complexity of the H-PRAM algorithm that they comprise.

Due to the numerous definitions of "optimal" in the literature, we need to make the following

explicit definition.

Definition 2.1 An optimal H-PRAM algorithm is one which is efficient, i.e. whose processor-time

product is of the order of (within a constant factor of) the running time of the best known sequential

algorithm for the problem at hand.

We often refer to the "optimality range"; by this we mean the range of values that P may

take with respect toN (or vice versa) such that optimality is achieved. We want to maximize the

number of processors P that can efficiently be used on a problem of size N; the perfect (optimal!)

optimality range is P :5 N.
Results are mainly compared to LPRAM [1] results for the same problem, thus comparing

neighborhood and strict locality utilization (the LPRAM is a PRAM where, in addition to the

global shared memory, processors have unbounded local memory).

3 Complete binary tree

Consider the computation of an N -leaf, height log N binary tree where the inputs to the problem

reside at the leaves, and an internal node corresponds to the result of some computation ED on the

node's two children. Computation starts with the parents of the leaves and flows upward until

the root is computed. This is a good introductory problem for the H-PRAM because of the tree

hierarchy relation that it uses. The results of this section also hold for the parallel prefix problem

by making two passes through the tree, first from the leaves to the root then from the root to the

leaves [5].

We give two algorithms for computing a height log N (log N + !levels) binary tree. The first is

straightforward and intuitive, and serves as the introduction to usage of the H-PRAM; the second

is an adjustment of the first that improves performance in certain cases (latencies), and serves as

an introduction to simple memory management. Assume we have a P-processor H-PRAM and let

k be an arbitrary value, 2 :5 k :5 P, to be fixed later, where both P and k are powers of two

(clearly N is a power of two). All sub-PRAMs are EREW PRAMs. We divide theN-leaf binary

tree into (log PI log k) + 1 layers, where layers .X, 1 :5 .\ :5 log PI log k, have height log k and layer

3

(log PI log k) + 1 has height log(NIP). The number of sub-trees in layer A, 1 :5 A :5 (log PI log k) + 1,

is k>.-1 • If we represent each sub-tree in the partitioned binary tree as a node, then we obtain a k

ary tree of height logk P = log PI log k whose P leaf nodes involve the computation of an NIP-leaf
binary tree, and whose internal nodes involve the computation of a k-leaf binary tree.

The algorithm configures the H-PRAM to compute this k-ary tree. We create a k-ary hierarchy

of sub-PRAMs, where each of the logk P +!levels of the hierarchy corresponds to a layer in the

original binary tree, and sub-PRAMs in the same level of hierarchy computes the sub-trees in the

corresponding layer of the binary tree. In other words, each sub-PRAM in levels A, 1 :5 A :5logk P,

computes a k-leafbinary tree, and each sub-PRAM in levellogk P+l computes an NIP-leaf binary

tree, with computation starting at the bottom of the hierarchy and proceeding upward.

The parameter k can be seen as a "partitioning parameter", dictating the sizes and numbers of

sub-PRAMs used in the H-PRAM algorithm. The idea is that, given N and P, we will choose k

to optimize the performance of the algorithm; this will be returned to subsequently.

In level A, 1 :5 A :5logk P+l, there are k>.-1 sub-PRAMs, each of which has Plk>.-1 processors.

Note that this means that there is a single P-processor (sub)-PRAM in Ievell (as necessary) and

P !-processor sub-PRAMs in levellogk P + 1. Thus each P'-processor sub-PRAM in level A,

1 :5 A :5 logk P, creates k sub-sub-PRAMs of P' lk processors each, or equivalently, all of the sub

PRAMs in level A collectively create k>. level A+ 1 sub-sub-PRAMs that have PI k>. processors each;

in other words P' lk = Plk>.. Since by the definition of the private H-PRAM, memory is partitioned

proportionately with the processors, each of the !-processor sub-PRAMs in levellogk P + 1 initially

has NIP leaves of the binary tree in its memory. The H-PRAM algorithm consists of the recursive

use of one EREW PRAM sub-algorithm, BT(P', A), which is given below.

BT(P', A)

if A = logkP + 1 then

<compute NIP-leaf binary tree with P' = 1 processor >
else

partition{k, P' lk, BT(P' lk, A+ 1)}

<compute k-leaf binary tree with k processors; note that k :5 P' >
end-if-then-else

end-BT

The H-PRAM algorithm is invoked by BT(P, 1). The part of BT that computes an NIP-leaf

binary tree is the standard sequential method. The part of BT that computes a k-leaf binary tree

is the straightforward method of computing each level of the tree in parallel, where a processor

computing an internal node (the leaves are in memory) reads the node's two children from memory,

performs the operation ffi on them, and writes the result to memory. We note that only kl2

4

Levell

Level 2

<- _________________ l6.:P..r2~e~S,9~ !!:~~~¥- ________________ -:>

, , ,

, ,
,

, ,
I

I

' ... ' ...
' ' ' ' '

...

1-processor sub-PRAM
at level (log P / log k) + 1 = 3

Figure 1: Hierarchy arising from BT(P, 1) when P = 16, N = 128, and k = 4

processors, rather than k, are actually used to compute a k leaf binary tree. The quantity k is used

in order to (slightly) simplify analysis and the adjusted algorithm discussed below.

Figure 1 shows the hierarchy that arises from BT(P,1) for P = 16, N = 128 (thus NfP = 8),

and k = 4. Each box in the figure denotes a sub-PRAM, and the sub-tree within each box is the

sub-tree computed by the sub-algorithm running on the corresponding sub-PRAM.

Lemma 3.1 {3-synchronization does not dominate the complexity of the BT(P, 1) algorithm.

Proof: Clearly, the number of partition steps (1), thus the number of {3-synchronization steps,

in a BT(P', .\)sub-algorithm is ~ the number of communication steps. Thus the conditions for

{3-synchronization non-domination are satisfied for all sub-algorithms in the hierarchy, and we con

clude that {3-synchronization does not dominate the complexity ofthe BT{P, 1) H-PRAM algorithm.

0

5

Although we know that ,8-synchronization will not dominate BT(P, 1), and thus can be dropped

from further analysis, for this problem we keep it under consideration for demonstration purposes.

Theorem 3.1 BT(P, 1) can be computed in time

(
log,.P log,.P)

0 logP+logk· {; l(k>.)+NIP+ {; sp(k,k>.)

Proof: Clearly BT(1,loglc P + 1) running on single processor, level logic P + 1 sub-PRAMs, will

take time O(NIP) as l(1) = 1. BT(P',A) sub-algorithms running on P' = Plk>.-1 processor sub

PRAMs in level A, 1 ~A~ log1cP, have logk (parallel) computation steps and 3logk (parallel)

communication steps. Thus the total cost of computation and communication steps in levels ~

logic Pis

(
log,.P)

0 {; (logk + logk ·l(Pik>.-1))

(
log,.P)

0 logP + logk · {; l(Pik>.-1)

By reversing the sum, we get

0 (logP+Iogk ·! l(k'))

Adding the 0(NIP) time for level logic P + 1 sub-PRAMs to this gives the total time required for

computation and communication. The final term in the complexity is that of ,8-synchronization,

which is obtained by observing that P' = Plk>.-1 processor sub-PRAMs in level A, 1 ~ A ~

logic P have one ,8-synchronization step on k sub-sub-PRAMs, for a ,8-synchronization complexity

of E~!~P sp(k, Plk>.-1). Again reversing the sum, we get E~!~P sp(k, k>.). D.

The form of this result is typical of H-PRAM algorithms which use hierarchies whose height is a

function of the number of processors. We see that it is useful to consider specific latency functions

in order to remove the sums and obtain a more concrete result (which can be compared with results

for other models).

Theorem 3.2 For l(P) = logP, BT(P, 1) can be computed in time

O(log2 P +NIP)

Proof: Setting l(x) =log x in Theorem 3.1 simplifies the sum: ~;!~Plog(k>.) = O(logk ·log~ P).

So without ,8-synchronization complexity added in, the time is

O(log P + log k(log k ·log~ P) + NIP)

= O(log P + log2 P + NIP)

regardless of the choice of k. Since sp(k,k>.) = sp(k) = logk in this case, the ,8-synchronization

component is E~~~ P log k =log P. Thus the complexity of BT(P, 1) is O(log P + log2 P +NIP) =

O(log2 P + NIP). D

6

Corollary 3.1 For i(P) =log P, BT(P, 1) is optimal for £Plog2 P ~ N, constant£.

Proof: Since the best sequential time for this problem is O(N), BT(P, 1) is optimal if log2 P =

O(NIP), i.e. if Plog2 P ~ c · N, some constant c, and£= 11c. D

On the LPRAM, the algorithm for this problem takes time O(log2 P + (NIP) log P) [1] when

i(P) =log P. On the BPRAM [2], Phase PRAM [6] (7], and the model of Papadimitriou and Yan

nakakis [11] (which is essentially an arbitrary-pipelined LPRAM), which are all pipelined models,

algorithms take time O(log2 PlloglogP +NIP) when l(P) = logP (and, for the Phase PRAM,

which charges for (a) synchronization, when the synchronization cost is O(l)). lfpipelining capabil

ity is taken away from these models, it adds a factor of log P to the times (although this comparison

is somewhat unfair, as the algorithms are designed to take advantage of the pipelining). Note that

the problem can be solved directly on the log P diameter hypercube in time O(log P + NIP) by

embedding the tree in it.

Theorem 3.3 For l(P) = VP, BT(P, 1) can be computed in time

O(VP+NIP)

Proof: Setting l(P) = VP in Theorem 3.1 simplifies the sum: ~;!~P ../fX = O(VP). So without
,8-synchronization complexity added in, the time is

O(logP +logk · VP +NIP)

Since sp(k, k>.) = sp(k>.) = #in this case, the ,8-synchronization component is E~!~ P ,ffX =

0(VP). The log k term in the complexity indicates that k should be fixed at its minimum legal

value, which is 2. Therefore we get

O(logP+ VP+ NIP)= O(VP+ NIP)

D

Corollary 3.2 For l(P) = VP, BT(P, 1) is optimal for£· p3/2 ~ N, constant£.

Proof: The algorithm is optimal for VP = O(NIP), which translates to P 312 ~ c·N, and£= 11c.
D

If the underlying latency l(P) = VP architecture is a diameter ,.fP two-dimensional mesh, it

may be best to fix k = 4 such that P'-processor sub-PRAMs will map to ,fPi X ,fPi sub-meshes.

The complexity is affected by a factor of 2.

We note that 0(vP + NIP) is the fastest possible time for solving this problem on an ar

chitecture with l(P) = vP, and matches the complexity of the equivalent algorithms for the

abovementioned pipelined models without using pipelining (all sub-PRAMs are EREW). On the

LPRAM, the algorithm for this problem takes time 0(YP(log P + NIP)).

7

BT requires no explicit memory management, as it consists of only partitioning on the way

down into the hierarchy, and computation as it proceeds back up where all data (leaves) needed

by each sub-PRAM algorithm exists in the sub-PRAM memory. H we take responsibility for some

memory management, we can adjust BT to obtain an H-PRAM algorithm that performs better for

certain latencies, specifically l(P) = logP but not l(P) = VP (for which BT achieves the fastest

possible time anyway). The remainder of this section is devoted to this new algorithm, and serves

as an introduction to the abstract control over memory management that the H-PRAM provides.

In BT, k processors are (actively) used by P'-processor sub-PRAMs to compute k-leaf binary

trees in levels .\, 1 ~ .\ ~ logk P. In levellogk P, P' = k; and in levels< logk P, P' > k. So it can

be seen that we are unnecessarily charging l(P') for communication even though only k processors

are actually used. The adjustment to BT which results in the new algorithm, BT-Pack, is that

we use k-processor sub-PRAMs to compute the k-leaf binary trees. The new algorithm works as

before, except that as it proceeds back up through the hierarchy, a sub-PRAM with> k processors

(i.e. those in levels .\, 1 ~ .\ ~ logk P- 1) does not directly compute its k-leaf binary tree. Instead,

it moves ("packs") the k leaves in its memory into a contiguous block of memory and performs a

partition step such that this block becomes the private block of shared memory of a k-processor

sub-sub-PRAM. The algorithm assigned to this sub-sub-PRAM computes the k-leaf binary tree

with its k processors.

There are three sub-algorithms for this H-PRAM algorithm. Nuii-Aig is an algorithm that

does absolutely nothing. Par-BT(x, y) computes a x-leaf binary tree with y processors (we will

set x = y = k) via the straightforward method of computing each level of the tree in parallel,

where a processor computing an internal node (the leaves are in memory) reads the nodes two

children from memory, performs the operation ffi on them, and writes the result to memory. The

last sub-algorithm is BT-Pack(P', .\),which is given below.

Recall from the beginning of this section that the input size N is equated to the H-PRAM's

memory size, such that a partition step conceptually partitions data, and that the units of H-PRAM

memory that are grouped and partitioned are blocks of NIP memory locations. A P'-processor

sub-PRAM has memory (data) size N' = P' ·NIP. What the last partition step does is create

two sub-sub-PRAMs: one with k processors and memory size k ·NIP, which will compute a k-leaf

binary tree; and one with P' - k processors and memory size (P' - k) · NIP. Therefore, before the

partition step we must make sure that all k leaves in the P'-processor sub-PRAM are moved into

the block of memory that contains the first k · NIP memory locations, 0, ... , (kN I P) - 1, of the

sub-PRAM; specifying locations i ·(NIP), 0 ~ i ~ k -1 just evenly spaces the leaves in memory.

The partition step creates two sub-PRAMs; the k-processor one computes the k-leaf binary tree and

the (P'- k)-processor one does nothing (Nuii-Alg).

The H-PRAM algorithm is invoked by BT-Pack(P, 1).

Lemma 3.2 {J-synchronization does not dominate the complexity of the BT-Pack(P, 1} algorithm.

Proof: Identical to that of Lemma 3.1. D

8

BT-Pack(P', ..\)

if ..\ = logkP + 1 then

<compute N I P-lea.f binary tree with P' = 1 processor >
else if ..\ = logk P then

partition{k, P' lk,BT-Pack(P' lk, ..\ + 1)}

<compute k-leaf binary tree with k processors; note that k = P' >
else

partition{k, P' lk,BT-Pack(P' lk, ..\ + 1)}

<pack the k leaves: k processors read the leaves, and then write them to

locations i ·(NIP), 0 ~ i ~ k -1 >
partition{

k: Par-BT(k,k);

P' - k: Null-alg}
end-if-then-else

end-BT-Pack

Again, although we know that ,B-synchronization does not dominate, we keep it under consid

eration in the following analysis for demonstration purposes.

Theorem 3.4 BT-Pack(P, 1} can be computed in time

(
(log,.P)-1 log,.P log,.P-1)

0 logP+l(k)logP+ _(; l(k)I.)+NIP+ _(; sp(k,k)l.)+ _(; sp(2,k)l.)

Proof: Clearly BT-Pack(1,log.kP + 1) running on single processor, levellogkP + 1 sub-PRAMs,

will take time O(N I P) as l(1) = 1. BT-Pack(P', ..\) sub-algorithms running on P' = k processor

sub-PRAMs in level log.k P have log k computation steps and 3log k communication steps, thus

taking time O(log k+l(k) logk). BT-Pack(P', ..\)sub-algorithms running on P' = P/k}l.-1 processor

sub-PRAMs in level ..\, 1 ~ ..\ ~ (logk P)- 1, have 2 communication steps, thus taking time

O(E~~~,.P)-1 l(P/k}l.-1)). Therefore the total cost of computation and communication steps in

levels $log.k P by the BT-Pack(P', ..\)sub-algorithm is

(
(log,. P)-1)

0 logk + l(k)logk + _(; l(Pik>.-1)

Reversing the sum of the third term:

(
(log,.P)-1)

0 log k + l(k) log k + {; l(k>.)

9

The Par-BT and Nuii-Aig algorithms run in levels ..\, 2 ~ ..\ ~ logk P, concurrently with each

other. Since Nuii-Aig does nothing, the time of a partition step which invokes the two algorithms

is dominated by Par-BT, which has 3log k communication steps and log k computation steps on k

processors. So the total time spent in Par-BT is O((logkP- 1)(1ogk + l(k)logk)). Putting the

times for BT-Pack(P', ..\)and Par-BT together, we get

(
(log,.P)-1)

0 logk P(log k + l(k) log k) + [; l(k).) + NIP

(
(log,.P)-1)

= 0 log P + l(k) log P + [; l(k).) + NIP

The final term in the complexity is that of ,8-synchronization. The ,8-synchronization from the

k-ary hierarchy is the same as before, i.e. E~!~ P sp(k, k).), and we have the additional cost of

,8-synchronizing 2 sub-PRAMs in each level ..\, 1 ~ ..\ ~ logk P- 1, which is ~;!~ P-1 sp(2, k).). D.

Theorem 3.5 For l(P) = logP, BT-Pack(P, 1) can be computed in time

O(log312 P +NIP)

Proof: Settingl(P) = logP in Theorem 3.4 simplifies the sum: E~:~,.P)-1 log(k).) = O(log2 Pllogk

log P + log k). So without ,8-synchronization complexity added in, the time is

(~p) 0 logP+logk·logP+(logk -logP+logk)+NIP

(log2 P) = 0 logk·logP+ logk +logk+NIP

(log2 p)
= 0 logk·logP+ logk +NIP

In this case we have sp(k,k).) = sp(k) = logk and sp(2,k).) = sp(2) = log2 = 1. Therefore the

,8-synchronization component is subsumed by the other components of the complexity. because

E~!~ P log k = log P and ~;!~ P-1 sp(2) = logk P - 1.

We wish to pick k to minimize the complexity

log2 P
O(log k ·log P + log k + NIP)

Choosing k = 2~, and noticing that k is legal (i.e. a power of two such that 2 ~ k ~ P) gives

the result O(log312 P + NIP). D

Corollary 3.3 For l(P) =log P, BT-Pack(P, 1) is optimal for €Plog312 P ~ N, constant €.

10

Proof: The algorithm is optimal if Plog312 P = O(N), i.e. Plog312 P:::; c · N, constant c, and

f.= 11c. 0

In comparison to the O(log312 P +NIP) time for BT-Pack(P, 1), the LPRAM algorithm for

this problem takes time O(log2 P + (NIP)logP) [1] when l(P) = logP. The algorithms for the

pipelined models of [2] [6] [7] [11] take time log2 PI log log P + NIP when £(P) = log P.

BT-Pack(P, 1) gives no improvement over BT(P, 1) for the case l(P) = ../P.

4 Case study: FFT graph

In this section we conduct a case study of the utility of the private H-PRAM by designing and

analyzing algorithms for computing the FFT, or butterfly, graph. We give algorithms that employ

both two-level and multi-level (logk P) hierarchies, with different combinations of EREW PRAM,

LPRAM, and BPRAM sub-models for these cases. (Although it has been noted in Section 2 of [8]

that it may not be a good idea in practice to use extended PRAMs such as the LPRAM or BPRAM

as sub-models, it is important to include them in a case study.) In addition to demonstrating

different instances and contexts in which the H-PRAM can be used, a key goal of this section is

to show how the H-PRAM can exploit general locality. Strict locality can sometimes be used to

to obtain optimal algorithms, but the optimality only holds when N is significantly larger than

P. We show that, in the context of the FFT graph problem, when N is not-so-large with respect

to P, we can switch to employing neighborhood locality to achieve optimality. Furthermore, the

configuration of the H-PRAM, representing the degree of locality employed, can be parameterized

by N and P so that the "best" configuration is used, resulting in optimal algorithms for a wider
range of N and P with respect to each other than achievable with strict locality alone.

The problem of computing the FFT graph is an ideal problem for a case study of the H-PRAM

due to its regular structure, and high communication and synchronization requirements.

A directed acyclic graph, or "dag", can be used to represent a computational problem, where

nodes represent inputs (if in-degree is 0), outputs (if out-degree is 0), or computations (if in-degree

and out-degree are positive), and whose edges represent data dependencies, or communications.

The time required to compute a dag is the time taken by an algorithm to compute all of the output

(out-degree 0) nodes. The binary tree of the previous section is a dag whose leaves are input nodes,

and root is the output node. The FFT graph, also known as the butterfly graph, is a dag whose

computation can solve several problems; the Fast Fourier Transform and bitonic merge are two

simple examples.

For N = 2m, an N -point, height log N FFT graph has log N + 1 levels of N nodes each, and

can be represented algorithmically as follows. Let Xi,j denote the jth node, 0:::; j :::; N- 1, in level

i, 0 :::; i :::; m. Then the graph is defined by

• Inputs: xo,o, xo,1, ... , xo,N -1

• Outputs: Xm,o, Xm,h ••• , Xm,N-1

11

Figure 2: A 16-point FFT graph

• Computations: For 1 ~ i ~ m, Xi,q = f(xi-I,q,Xi-I,r)

where f is a binary function computed in constant time, and q and r have binary representations

that are identical except in the (m- i)th position. Figure 2 shows a 16-point FFT graph.

We assume again in this section that P is a power of two.

In Section 4.1 we give a simple extension of the BT algorithm to solve the FFT graph problem.

The following sections consider more sophisticated H-PRAM algorithms for computing the FFT

graph that undertake memory management; Section 4.2 considers algorithms that employ two-level

hierarchies, while Section 4.3 addresses algorithms which use (logk P)-level hierarchies.

4.1 Binary tree extension

As with a binary tree, note that the N -point, height log N FFT graph can be divided into logk P + 1

stages, where stages A, 1 ~ A ~ log~; P have height log k, and stage logk P + 1 has height log(N / P).
Furthermore, the result of this is that the FFT graph is partitioned into disjoint sub-graphs, where

12

a sub-graph in level A ,1 S: A S: logic P, consists of the first log k levels of a (N I k>.-1)·point FFT

graph, and a sub-graph in level logic P + 1 is a NIP-point FFT graph. Therefore we see that we can

adjust the binary tree algorithm, BT(P, 1), to obtain an algorithm for computing the FFT graph,

where stages correspond to levels of hierarchy, and sub-PRAMs to sub-graphs. The adjustments

are that computation is done on the way down into the hierarchy, rather than on the way back up,

and that FFT sub-graphs are computed rather than binary sub-trees.

Note that no memory management is required; as long as we store the jth point in a level

of a FFT sub-graph in the jth memory location of the sub-PRAM that is computing (the first

logk levels of) it, the memory (points) partition as required. The H-PRAM algorithm consists

of one sub-algorithm FFT-BT-Ext(P', .X) that is used recursively, given below, and is invoked by

FFT-BT-Ext(P, 1).

FFT-BT-Ext(P', .X)

if A = log~cP + 1 then

<compute (N I P)-point FFT with P' = 1 processor >
else

<compute first logk levels of (Nik>.-1)-point FFT

with P' = PI k>.-1 processors >
partition{k, P' lk, FFT-BT-Ext(P' lk, .X+ 1)}

end-if-then-else

end-FFT-BT-Ext

Theorem 4.1 FFT-BT-Ext(P, 1) has complexity

(
N logA:P N logA:P)

0 p (log P +log k · _(; l(k>.)) + p log(N I P) + _(; sp(k, k>.)

Proof: The proof follows from that of BT (Theorem 3.1) after noting two differences between FFT

BT-Ext(P', .X) and BT(P', .X). First, in level logic P + 1 the FFT-BT-Ext sub-algorithms take time

O((NIP)log(NIP)) to compute an (NIP)-point FFT graph, rather than O(NIP) for BT. Second,

FFT-BT-Ext sub-algorithms operating in levels S: logic P take time that is an additional factor of

NIP over that of BT sub-algorithms. Specifically, the time required for a level A, 1 S: A S: logic P,

FFT-BT-Ext sub-algorithm, which computes log k - 1 levels (since one of the log k levels is the

"input level") of Nlk>.-1 points using Plk>.-1 processors, is

0 (;~:~=: · (logk + logk ·l(Pik>.-1))) = 0 (;(logk + logk ·l(Pik>.-1)))

The proof follows from that of Theorem 3.1. D

13

Theorem 4.2 For l(P) = logP, FFT-BT-Ext(P, 1) can be computed in time

0 (~ (log2 P + log(NIP)))

Proof: Follows from Theorem 3.2 and Theorem 4.1. 0

Corollary 4.1 For l(P) = logP, FFT-BT-Ext(P, 1) is optimal for pt.·logP ~ N, constant f.

Proof: Since the best sequential time for this problem is O(N log N), FFT-BT-Ext(P, 1) is optimal
if log2 P = O(log N), or log2 P ~ c ·log N for some constant c. This solves to pt.·logP ~ N, where

f= 11c. 0

Theorem 4.3 For l(P) = VP, FFT-BT-Ext(P, 1) can be computed in time

0 (~(VP + log(NIP)))

Proof: Follows from Theorem 3.3, and Theorem 4.1 above. 0

Corollary 4.2 For l(P) = VP, FFT-BT-Ext(P, 1) is optimal for 2t.·../P ~ N, constant f.

Proof: The algorithm is optimal when VP = O(log N), or VP ~ c ·log N, constant c. This solves

to 2t.·../P ~ N, where f = 1lc. 0

The algorithm for computing the FFT graph on the LPRAM [1] is optimal for P · 2t.·l(P) ~ N,

so we see that the H-PRAM allows a larger number of processors to be efficiently used than on
the LPRAM for l(P) = VP, but not l(P) = logP (since P · 2t.·l(P) = pt.+I < pt.·logP). The range

pt.·log P ~ N for l(P) = log P is not very good, and gives motivation to the development of the

additional algorithms of the following two sections.

4.2 Two-level algorithms

We begin by noticing (in more detail than the previous section) how the FFT graph can be par

titioned, so that we can partition the H-PRAM accordingly in order for sub-PRAMs to compute

sub-graphs. Let k be an arbitrary value, whose bounds will be fixed subsequently, which is a. power

of two. Then the N -point, height log N FFT graph can be partitioned into log N I log k = log~; N

stages of height log k, where ea.ch stage consists of N lk independent k-point FFT graphs. Within a

stage, the k-point FFT graphs are generally "intertwined", i.e. have intersecting edges, but share

no common nodes, so are thus disjoint from each other. The output of one stage is the input of the

next.

Figure 3 shows a 16-point FFT graph with k = 4. It is thus partitioned into log 16flog4 = 2

stages of height log4 = 2. In each stage, one independent (k = 4)-point FFT sub-graph is outlined

in bold.

The idea behind a two-level H-PRAM algorithm is to compute the FFT graph stage by stage,

with the level 1 P-processor PRAM acting as the coordinator and executing log~; N partition steps,

14

, • ,, ,,

r
..!' , ... ,
,I'

-_I - --..~ .,_ I -.- -. -. Sr·I , I ,
I ,

,
I ,

,(r ,(.. , , .. ,I, I ...,
,I

..
.. I , ... I I ' I ' .. I'

I\. \. I
, 1 \. \. I I

l '\ I V I , y I , I '\ I V I 1 I
I \. I I \. I I ' I I '\ I I I I \. I I \. I I I
I 'I' .., , v , ... , , I ,, ... ,, ,,

'I' \. I 11\. \. 1 I \. 1 I '\ , I \. 1 I \. I , I < I ... I I A I ... I I "'
I ...

I I I I '\I '\ I I I I '\I '\I
+I

I I '\I '\I Stage 2 • • tt .. "
., • .. • • •

I' II 1\ II II I\ II I'
II I\ II

1
I \ I I I \ I I

I \ I I I \ I I I \ I I I \ I I

1 '.' I
\ I

I \ I \ I \ I \ I
I I V I I I I I I

v ((
I I \ I I I I I I

"
1\ I \ I \ I \

I I \ I I I \ I I I I I \ I I I \ I
I \ \

II \I II \ I I I \I II \I II \I II \I

• • • • • • • • • • • •
Figure 3: A partitioned (with k = 4) 16-point FFT graph. Within each stage, one independent

(k = 4)-point FFT sub-graph is outlined in bold.

15

and employing N/k level2 sub-PRAMs to compute the k-point FFT (sub)-graphs. However, since

the k-point FFT graphs within a stage are generally intertwined, meaning that the points of a

sub-graph are not contiguous in (level!) memory, the k-point sub-graphs must be "untangled" so

that level 2 sub-PRAMs can compute them. This means that memory management is required;

but if we do this, then we can obtain parameterized (through k) control over the sizes of all FFT

(sub)-graphs that are computed in the algorithm. In other words, we can parameterize general

locality, and k can be set to obtain the optimum degree of locality for certain l, P, and N.
The memory management required is as follows. At the beginning and end of every stage, the

jth point of the corresponding level is stored in the jth memory location, 0 ::; j ::; N- 1, in the

level 1 PRAM. Then untangling the k-point FFT graphs at each stage consists of permuting the

N points, i.e. permuting the H-PRAM memory, such that the points of each k-point FFT graph

are in contiguous memory locations. Then blocks of k memory locations (points) will become the

shared memories of level 2 sub-PRAMs. After the level 2 sub-PRAMs compute the k-point FFTs

and exit, the memory is "unpermuted" so that points are returned to their correct order in the

current level in the N -point FFT graph.

The required permutation is the k-shuffie, and the "unpermutation" the k-unshuffie. The k
shuffie (k-unshuffie) is equivalent to performing log k perfect shuffles (unshuffies). The permutations

are "segmented", i.e. number the permutations are applied independently to multiple blocks of

contiguous points, whose number and size depends on the stage number. To be more specific, in

stage >., 1 ::; >. ::; logk N, the k-shuffie is applied to each of k>.-1 blocks of N f k>.-1 points prior

to computing the k-point FFTs of that stage, and the k-unshuffie is applied to the same blocks

following the k-point FFT computations. (Note that in stage logk N the permutations are identity

permutations and thus are not necessary.) The fact that the memory management permutations

are "segmented" ones is used in Section 4.3 to design multi-level H-PRAM algorithms.

The general two-level, P-processor H-PRAM algorithm for computing the N -point FFT graph

consists of two sub-algorithms: the coordinator sub-algorithm that runs on the level 1 PRAM,

performing the memory management, and the sub-algorithm that computes a k-point FFTs on a

level 2 sub-PRAM. Since, in each stage, there are Nfk FFT graphs to be computed, each partition

step in the Ievell sub-algorithm creates N fk level 2 sub-PRAMs. Note that the minimum number

of sub-PRAMs created must be one (Nfk ~ 1) and the maximum must be P (N/k::; P), therefore

the bounds on the value of k are N / P::; k ::; N. The number of processors in a level 2 sub-PRAM
l·s P'- P - k - 7Vfk- N[P•

The specific H-PRAM algorithms are those that we have when the types (PRAM, LPRAM,

BPRAM) of sub-models are fixed, thus fixing the specifics of the sub-algorithms that run on those

sub-models. We give a general, high-level description of the two-level H-PRAM algorithm, and then

consider the specific instances of it that occur when various combinations of sub-model types are

fixed. Let Direct-FFT(P') be the sub-algorithm that is assigned to level 2 sub-PRAMs to compute

k-point FFT graphs with P' processors. The sub-algorithm running on the level 1 PRAM is FFT

Two-Levei(P'), and is given below; the H-PRAM algorithm is initiated by FFT-Two-Levei(P).

16

F FT-Two- Level(P')
for~= 1 to logkN do

< k-shuffie on k~-1 blocks of points/memory >
partition{N/k, N'P' Direct-FFT(N'P)}

< k-unshuffie on k~-1 blocks of points/memory >
end-for-do

end-FFT-Two-Level

We use the notation TYPE1-TYPE2 to refer to the specific H-PRAM algorithms that use a.

TYPEl sub-model in Ievell (on which FFT-Two-Level runs) and TYPE2 sub-models in level 2 (on

which Direct-FFT algorithms run). We consider three types of sub-models: EREW PRAM (EREW

for short), LPRAM, and BPRAM. There are three specific H-PRAM algorithms presented: EREW

EREW, EREW-LPRAM, and BPRAM-EREW. The reason that the LPRAM is not considered as a.TYPEl

sub-models is that it has no a.dva.nta.ges over the EREW PRAM for performing permutations. As

noted in Section 3.2 of [8], whether to classify the BPRAM as a. computational or architectural model

is unclear. We explore its use as a. TYPEl sub-model since its algorithm for "rational permutations"

can implement our memory management, and we want to see the results of using block pipelining to

move data around (permute it) for memory management. While the EREW-EREW and EREW-LPRAM

algorithm results are presented in detail, we only briefly discuss the BPRAM-EREW results since

the rather complicated complexity of the BPRAM rational permutation (sub)-algorithm combined

with dynamic configura.bility of the H-PRAM leads to tedious and complicated analysis. We do

not consider algorithms that employ the BPRAM as a TYPE2, variable-sized (parameterized by k)
sub-model.

We first consider the ,8-synchronization complexity of F FT-Two- Level algorithms, as it is inde

pendent of the types of sub-models used.

Theorem 4.4 The ,8-synchronization component in FFT-Two-Level algorithm complexities will

never dominate.

Proof: FFT-Two-Level runs in Ievell on all PH-PRAM processors, executing logk N =log N /log k

partition steps. Since there are 2logk N permutation steps, the conditions for ,8-synchronization

non-domination are met. 0

Thus, we drop consideration of ,8-synchronization complexity from the subsequent analyses of

the FFT-Two-Level algorithms. This results in a significantly cleaner and simpler process.

We first concentrate on the EREW-EREW FFT-Two-Level algorithm.

17

4.2.1 EREW-EREW FFT-Two-Level

Theorem 4.5 The EREW-EREW FFT-Two-level algorithm can be computed in time

O (NlogN. (t(-k) + l(P)))
P NIP logk

Proof: FFT-Two-level, running on the Ievell, P-processor sub-PRAM, executes 2logkN permu

tations and logk N partition steps which create N lk sub-PRAMs. Permuting N elements takes time

O((NIP)·l(P)), therefore the time taken by the FFT-Two-level sub-algorithm is O(logk N ·(NIP)·

l(P)). A Direct-FFT sub-algorithm operating in level2 on P' = N'P processors computes a k-point

FFT graph in the straightforward way in time

0 (klogk klogk ·l(P'))
P' + P'

= 0 (Nlogk Nlogk ·l(-k-))
P + P NIP

0 (Nlogk ·l(-k-))
P NIP

and level 2 Direct-FFT sub-algorithms are invoked logk N times. Therefore the total time taken by

the H-PRAM algorithm is

0 (logkN · (N~gk ·l(N~P) +(NIP) ·l(P)))

Which, by changing logk N to log N I log k and rearranging, gives the result. 0

Again, k must be NIP~ k ~ N.

Theorem 4.6 The EREW-EREW FFT-Two-level algorithm is optimal for P · 2€·l(P) ~ N, constant

f.

Proof: The optimal parallel time is O((N I P) logN) so we see that the EREW-EREW FFT-Two-level

algorithm is optimal when
k l(P)

l(NIP)+ logk = O(l)

In order for this to hold, we need l(N'P) = 0(1), which means that k must be 0(NIP) by the

definition of the latency function (see Section 2.3 of [8]). So we choose k =NIP. We also need

l(P)
logk

l(P)
log(NI P) = O(l)

or equivalently l(P) ~ c·log(NIP), constant c. This solves toP· 2t:·i(P) ~ N, where£= lie. 0

The range P · 2t:·i(P) ~ N is the same as that of the FFT graph algorithm for the LPRAM

[1]. This is expected, since k = NIP means that there are 1-processor sub-PRAMs in level 2, and

the LPRAM is an instance of the H-PRAM corresponding to a two-level private H-PRAM with

1-processor sub-PRAMs in level 2.

Note that this is an improvement in the optimality range over that of FFT-BT-Ext for l(P) =
logP but not for l(P) = ..JP.

18

The fact that k = NIP means that only strict locality is employable to achieve optimality, for

FFT-Two-Level. H k >NIP, sub-PRAMs have> 1 processor; this would be using neighborhood

locality. Although choosing k > NIP will not achieve optimality, it may result in an improved

complexity (over that from choosing k = NIP) when the given N and P are not within the

optimality range. In other words, neighborhood locality may be useful for reducing inefficiency

when N is not so much larger than P.

Following these lines, we now consider what we call the term minimization strategy for config

uring the H-PRAM (i.e. for choosing k, given N and P). Very simply, it consists of minimizing

the non-optimal factor
k l(P)

l(NIP) + logk

by choosing k such that the two terms are equal to each other. To do this, we need to fix the

latency function.

Lemma 4.1 When l(P) = logP, the equality

l _k __ l(P)
(NIP)- logk

holds when k is chosen such that

logk = ~ (log(NIP) + Vlog2(NIP) + 4logP)

and furthermore, this k is within the required bounds NIP ~ k ~ N.

Proof: k is chosen such that
k logP

log(NIP)= logk

which simplifies to

log2 k -log(NIP)logk -logP = 0

Applying the quadratic formula gives the solution for log k:

logk = ~ (log(NIP) + Vlog2(NIP) + 4logP)

It needs to be checked that NIP ~ k ~ N, or equivalently that log(NIP) ~ log k ~ log N. We

first check that log(NIP) ~ log k:

log(NIP) ~ ~ (log(NIP)+Vlog2(NIP)+4logP)

log(NIP) < Vlog2(NIP) + 4logP

log2(NIP) ~ log2(NIP) + 4logP

19

which clearly holds. We now check that log k ~ log N:

~ (log(N/P) + Vlog2(N/P) + 4logP) ~ logN

Vlog2(N/P)+4logP ~ logN +logP

(log N - log P)2 + 4log P < (log N + log P?

4logP ~ 4logNlogP

which clearly holds. Finally, we note that k is a power of two, as required. 0

Theorem 4.7 For l(P) = logP, the EREW-EREW FFT-Two-Level algorithm can be computed in

time

o (Nl~gN (Vlog2(N/P) + 4logP -log(N/P)))

Proof: Choosing k as in Lemma 4.1, we have log(N;P) = ~~~~, so the non-optimal factor in the
complexity is

k
~ 2log(N/P)

= 2 (~(log(N/P) + Jlog2(N/P) + 4logP) -log(N/P))

= Vlog2(N/P) + 4logP -log(N/P)

and the Theorem follows. 0

Corollary 4.3 For l(P) = logP, the EREW-EREW FFT-Two-Level algorithm can be computed in

time
O (NlogN~g(NfP))

for P · 22ylogP ~ N, and in time

for P · 22ylogP ~ N.

Proof: If 4logP ~ log2(N/P), then

Vlog2(N/P) + 4logP -log(N/P)

< V2log2(N/P) -log(N/P)

= 0.41·log(N / P)

and 4logP ~ log2(N/P) simplifies to

)4log P < log(N/ P)

22~ < NfP

P·22~ < N

20

Similarly, if 4log P 2: log2(NIP) (i.e. if P · 22y1og? 2: N), then

Vlog2(NIP) + 4logP -log(NIP)

~ .j8logP -log(NIP)

< .j8logP = 2.83 · JlogP

The Corollary follows from substituting O(log(NIP)) or O(JIOg'"P) for Jlog2(NIP) + 4logP

log(NIP) in Theorem 4.7. 0

Compare the times in Corollary 4.3 to the complexity which was obtained when k = NIP:

O (NlogN. logP)
P log(NIP)

which is also the complexity of the FFT graph algorithm on the LPRAM [1]. We see that neigh

borhood locality can indeed be used to improve performance for N not so "significantly" larger

than P (i.e. when N and P are such that optimality is not achievable).

We now apply the term minimization strategy to the EREW-EREW FFT-Two-Level algorithm for

the other latency we consider in this paper, l(P) = VJS.

Lemma 4.2 When l(P) = VP,
l(k) l(P)

NIP ~ logk

when k is chosen such that k = N I log2 N. However, in order for this k to be legal {NIP ~ k ~ N },

it is necessary that N ~ 2../P.

Proof: We want to choose k such that

fli;=~
which simplifies to klog2 k = N. Since k = O(Nilog2 N) when klog2 k = N, we choose to fix

k = N I log2 N. Now it needs to be checked that NIP ~ k ~ N. Clearly N I log2 N ~ N so we

check that NIP ~ N I log2 N. This simplifies to N ~ 2../P, which must hold in order to apply the

term minimization strategy. It is also necessary that k be a power of two; if N I log2 N is not then

we pick the nearest power to it. 0

Theorem 4.8 For l(P) = n, the EREW-EREW FFT-Two-Level algorithm can be computed in

time

21

Proof: Choosing k as in Lemma 4.2 under its constraint N :::; 2../P, we know that ~ ~ 1$.
Since

,fP ,fP

log k - log(N I log2 N)

is the slightly larger term, the non-optimal factor in the complexity is

< ,fP
- log(Nilo-i N)

so the complexity is

O (NiogN. ,fP) _ O (N n)
P log(Nilog2 N) - P

D

When l(P) = ,fP then, the term minimization strategy can be employed to get a O((N I P)VP)

time algorithm for N :::; 2../P. In comparison, the complexity when k was chosen to be NIP was

(N VP logN)
O P p .log(NIP)

which is also the complexity of the FFT graph algorithm on the LPRAM.

4.2.2 EREW-LPRAM FFT-Two-Level

We turn to the EREW-LPRAM FFT-Two-level algorithm, where the level 1 sub-model remains an

EREW PRAM, but the level 2 sub-models that are used to compute k-point FFT graphs are

now LPRAMs. Recall that the level 2 sub-PRAMs have P' = NjP processors each in FFT-Two

level. The EREW PRAM algorithm for computing a k-point FFT graph with P' processors used

O((kiP')Iogk) = O((NIP)Iogk) computation and communication steps. The LPRAM algorithm

in [1] uses O((kiP')Iogk) = O((NIP)Iogk) computation steps and O(p, 1:~~jP')) = O(pf:~(~jP))
communication steps. In the following we consider the Direct-FFT sub-algorithm in the general

FFT-Two-level algorithm to be this LPRAM algorithm. Using the LPRAM as a sub-model of the

H-PRAM allows one to exploit strict and neighborhood locality simultaneously.

Theorem 4.9 The EREW-LPRAM FFT-Two-level algorithm can be computed in time

O (NiogN (l(ki(NIP)) + l(P)))
P log(NIP) logk

Proof: The FFT-Two-level sub-algorithm, running on the Ievell, P-processor sub-PRAM, takes

the same time as it did for the EREW-EREW algorithm:

0 (loglcN. N l(P)) = 0 (NlogN. l(P))
p p logk

From the above discussion of the number of steps in the LPRAM FFT algorithm, it is straight

forward that a Direct-FFT sub-algorithm operating in level 2 on P1 = N'jp processors computes a

k-point FFT graph in time

(N Nlogk k)
O P logk + Plog(NIP) ·l(NIP)

22

and level 2 Direct- FFT sub-algorithms are invoked logk N = log N I log k times. Therefore the total

time taken up by Direct-FFT in the FFT-Two-level algorithm is

O (NlogN (1 + l(ki(NIP)))) = O (NlogN. l(ki(NIP)))
P log(NIP) P log(NIP)

Adding this and the above time for the level1 sub-algorithm together gives the result. D

In the following, we consider the circumstances under which the EREW-LPRAM FFT-Two-level

algorithm is optimal.

Lemma 4.3 The EREW-LPRAM FFT-Two-level algorithm is optimal if k can be chosen such that

the following bounds hold simultaneously.

1. l(-,/jp) ~ Ct ·log(N I P)

2. k ~ 2£2·l(P)

where Ct and c2 are positive constants in the running time, c1 corresponding to the Direct-FFT

sub-algorithm and c2 corresponding to the FFT-Two-level sub-algorithm, and £2 = 1lc2.

Theorem 4.10 Forl(P) = logP, the EREW-LPRAM FFT-Two-level algorithm is optimal for

p£/(c+I)+l ~ N

where c and£ are positive constants such that£~ 1 + 1lc. (c = c1 and£= £2 = 11c2, where c1 and

c2 are the constants in the running time used in Lemma 4.3).

Proof: We know from Lemma 4.3 that the algorithm is optimal when k can be chosen such that

{1) log(N'P) ~ Ctlog(NIP), which solves to k ~ (NIPY1+1 = (NIP)c+l, and (2) k ~ 2£2logP,

which solves to k ~ P£2 = pc. Remembering that k must be within the bounds NIP ~ k ~ N, we

conclude that the algorithm is optimal if k can be chosen such that

Since N and P are powers of two, we can assume that k also is, as required.

Therefore, optimality exists when max(NIP,Pc) ~ min(N,(NIPY+l). Clearly, NIP ~ N

and NIP ~ (N I P)c+l, so we need to show the conditions under which we know that pc <
min(N,(NIP)c+1) holds. Let min(N,(NIP)c+l) = (NIPY+l. Then pc ~ (NIP)c+l when

pt:+c+l ~ Nc+l

pt:/(c+t)+I ~ N

which gives the claimed optimality range. Now consider that min(N, (N I PY+l) = N. In this case,

N ~ (NIP)c+1

pc+l ~ Nc

pl+l/c ~ N

23

Then P£ ~ m.in(N, (N/ PY+l) = N ifF ~ pl+l/c, i.e. if£~ 1 + 1/c, which gives the constraints

on the constants, and the Theorem follows. D

Note that the smaller£ is and the larger cis, the better the optimality range

p£/(c+l)+l ~ N

Also,£ stands for 1/c2 and c for c~, where c1 and c2 are constants in the running time (Lemma 4.3).

Therefore we see that the larger the constant factors in the running time are, the better the

optimality range.

Assume that c1 = c2 and denote the common constant by c (so £ = 1/c); the optimality

range of the EREW-LPR.AM FFT-Two-Level algorithm becomes pl/c(c+l)+l ~ N. Assume c = 1

for demonstration purposes; then the range is p3/2 ~ N. Now let c = 2; here the EREW-LPRAM

FFT-Two-Level algorithm's optimality range is P716 ~ N (remember that the perfect optimality

range would be P ~ N). We think that this is good evidence for the utility of neighborhood

locality, at least for the problem of computing the FFT graph with an underlying logarithmic

latency architecture.

The other latency function we consider in this paper is l(P) = ,fP, so attention is now turned

to how the EREW-LPRAM FFT-Two-Level algorithm behaves in this case.

Theorem 4.11 Forl(P) = ,fP, the EREW-LPRAM FFT-Two-Level algorithm is optimal for

2£·# ~ N

where £ is a positive constant such that, for a positive constant c, £ ~ 1 + 1/ c. (c = c1 and

£ = £2 = 1/c2, where c1 and c2 are the constants in the running time used in Lemma ./.3).

Proof: We know from Lemma 4.3 that the algorithm is optimal when k can be chosen such that

(1) ~ ~ c1·log(N/P), which solves to

k ~ (c1) 2 • (N/P)log2(N/P) = c2(N/P)log2(N/P)

and (2) k ~ 2£2 ·VP = 2(.#. Remembering that k must be within the bounds N/P ~ k ~ N, we

conclude that the algorithm is optimal if k can be chosen such that

Since N and P are powers of two, we can assume that k also is, as required.

Therefore, optimality exists when

Clearly, N/P ~ N and N/P ~ c2 · (N/P)log2(N/P), so we need to show the conditions under

which we know that

24

holds. Clearly, we need that 2~../P :::; N; this establishes the optimality range stated in the Theorem.

Now consider the other case, where

min(N,c2 · (NIP)log2(NIP)) = c2 · (NIP)log2(NIP)

We need to show that 2~../P ::=; c2 ·(N I P) log2(N I P). Operating under the knowledge that 2~../P:::; N,

we know that
2~../P 2

c2 · p (log(2~../PIP)) :::; c2 · (NIP)log2(NIP)

Then 2~../P:::; c2(NIP)log2(NIP) if

2~../P :::; , 2<H (e·H) r c ·-- log --p p

!..;p e<H) :::; log --
c p

!..;p :::; f.VP -logP
c

1
logP :::; ..fP(f.--)

c

This holds if f.~ 1 + 1lc, which is the constraint on the constants, and the Theorem follows. D

As before, notice that the smaller f. is (and thus the larger c is, since it is necessary that

f ~ 1 + 1lc), the better the optimality range. Remember that f stands for 11c2 and c for Ct, where

c1 and c2 are constants in the running time (Lemma 4.3).
This optimality range, 2~../P :::; N, matches that of FFT-BT-Ext for i(P) = ...(P, and is an

improvement over the one for the LPRAM FFT graph algorithm [1] (and, equivalently, the EREW

EREW F FT-Two-Level algorithm where k = NIP), which is P · 2~../P :::; N.

4.2.3 BPRAM-EREW FFT-Two-Level

For the reasons noted at the beginning of this section, we only briefly discuss the results of the

BPRAM-EREW FFT-Two-Level algorithm. These results are analogous to those obtained for the

EREW-EREW FFT-Two-Level algorithm. Optimality is only obtainable for the k = NIP case of

single-processor sub-PRAMs in level 2, and occurs for the range P · l(P) :::; N. This matches

the result for computing the FFT graph on the BPRAM [2], which is to be expected because the

BPRAM is an instance of a two-level private H-PRAM corresponding to a BPRAM sub-model in

level 1 with single-processor sub-PRAMs in level 2. Term minimization may be used to obtain

slightly improved performance for N < P · l(P), but is overly complicated.

4.3 Multi-level algorithms

Although the general two-level algorithm is simple and avoids the sums in its analyses that arise

from multi-level hierarchies, it does not exploit all of the general locality inherent in the problem

25

of computing the N -point FFT graph. The general multi-level (logk P) algorithm presented in

this section, although more involved, does allow the exploitation of all inherent general locality; it

can be seen as a combination of the two-level algorithm and the binary tree extension algorithm

FFT-BT-Ext. As in the previous section, we will consider specific instances of the general algorithm

which are obtained by fixing the types of sub-models of the H-PRAM used.

The previously unexploited locality can be seen in the memory management of F FT-Two- Level,

specifically in the permutations on memory /points that "untangle" and "retangle" the k-point FFT

graphs prior to and following each of the logk N stages. Recall that these permutations were per

formed in the Ievell P-processor (sub)-PRAM, and thus that communication steps implementing

the permutation were charged at the full latency l(P) of the H-PRAM. However, the permutations

were "segmented", i.e. multiple independent permutations were applied to multiple independent

blocks of contiguous points/memory, where block sizes grew successively smaller with successive

stages. The idea behind the multi-level algorithm is to partition the the H-PRAM in correspon

dence with the blocks that permutations are applied to, so that each block, and only one block,

is within a sub-PRAM's private memory when a permutation is applied. Then permuting can be

done at the latency of the sub-PRAM rather than that of the P-processor PRAM at level 1 in the

hierarchy.

A better way of explaining is in terms of the structure of the N -point FFT graph first noticed

in Section 4.1. Again consider the graph to be partitioned into logk N = log N /log k stages of

height log k. Then note that after stage .X, 1 ~ .X ~ logk N, has been computed, the remainder of

the N -point FFT graph that is yet to be computed consists of k>.. distinct (disjoint) FFT graphs,

each of which has N / k>.. points. Broadly speaking, the general multi-level algorithm will compute

a stage and then call itself recursively on each of the remaining FFT sub-graphs.

As an example, consider Figure 3. Here we have N = 16 and k = 4. Note that after stage 1

has been computed, there are k1 = 4 disjoint FFT sub-graphs of N / k1 = 4 points. After stage 2

has been computed, there are k 2 = 16 disjoint FFT sub-graphs of N / k 2 = 1 point.

The algorithm computes Nfk k-point FFT graphs as before, but also partitions the H-PRAM

into a k-ary hierarchy. At each level in the hierarchy, sub-PRAM algorithms will permute (untan

gle), compute k-point FFT graphs (via a partition step, as before), and unpermute (retangle). Each

stage .X of theN-point graph will be computed by sub-PRAMs in level A of the hierarchy.

Since the P-processor H-PRAM is being partitioned into a k-ary hierarchy, and P ~ N, we have

to partition the N -point FFT graph slightly differently. The straightforward way is to say that it

is partitioned into logk P + 1 = log P /log k + 1 stages, where stage .X, 1 ~ .X ~ logk P, has height

log k, and stage logk P + 1 has height log(N / P). Here, in level .X of the hierarchy, 1 ~ .X ~ logk P,
k-point FFT graphs will be computed, and in levellogk P+ 11-processor sub-PRAMs will compute

(N /P)-point FFT graphs.

However, we wish to allow for the case that k > P (although k ~ N), since maximizing the

partitioning flexibility (parameterized by k) maximizes the H-PRAM's ability to adapt to different

N, P, and cost functions. Define logk x = 1 when k > x. Then we say that the N -point FFT graph

26

is partitioned into [logk Pl + 1 stages, where stage >., 1 ~ >. ~ [logk Pl, has height log k, and stage

[logk Pl + 1 has height log N- [logk Pllog k. If k > P, there will be two stages, the first having

height log k and the second having height log N - log k = log(N I k).
We give a pseudo-code outline of the general multi-level algorithm below, followed by further

discussion, after which an understanding of the FFT-Multi-Level algorithm and its correctness should

be immediate when it is given. The sub-algorithm Seq-FFT(x) is a standard sequential algorithm

that computes an x-point FFT graph on a 1-processor sub-PRAM.

Pseudo-FFT-Multi-Levei(P', >.)

< Compute N lk>. k-point FFT graphs >
< Comment: note that there are k>.- 1 sub-PRAMs in level>.,

and k>.- 1 • Nlk>. · k = N >
if >. < logk P then

partition{k, P' lk, Pseudo-FFT-Multi-Levei(P' lk, >. + 1)}

else

if k ~ P then

<Comment: note that P'lk = 1 and Nlk>. =NIP>

partition{k, 1, Seq-FFT(NIP)}

else

< Comment: note that N I k>. = N I k >
partition{P, 1, Seq-FFT(N lk)}

end-if-then-else

end-if-then-else

end-Pseudo-FFT-Multi-Level

The (pseudo) H-PRAM algorithm is invoked by Pseudo-FFT-Multi-Levei(P, 1). As for FFT-BT

Ext, there are k>.-1 sub-PRAMs in levels >., 1 ~). ~ logk P. If k ~ P, there are k>.-1 = P

sub-PRAMs in level >. = logk P + 1. If k > P, there will be a two-level hierarchy with one

P-processor sub-PRAM in level 1 and P !-processor sub-PRAMs in level 2. Consider the point

where). = logk P. Note that if k ~ P we have computed log P levels of the FFT graph and have

yet to compute the remaining log(N I P) levels. k>. = P sub-PRAMs in level >. then compute these

remaining levels by independently computing N lk>. = NIP point FFT graphs. If k > P, then when

>. = logk P = 1 we have computed log k levels and have yet to compute the remaining log(N I k)

levels. There are k > P independent N I k < NIP point FFT graphs to be computed. Since P is

the maximum number of sub-PRAMs usable, P of them are created, each of which computes an

(N I k)-point FFT graph.

We now turn attention to the computation of k-point FFT graphs in levels 1 ~ >. ~ logk P.

27

Sub-PRAMs in level A collectively compute stage A of the N-point FFT graph in the same way

that the two-level algorithm did; by permuting, partitioning, and unpermuting. There are e·-1

sub-PRAMs running Pseudo-FFT-Multi-Level in level A; each is responsible for computing Njk>..

k-point FFT graphs. Therefore each stage is computed as Njk independent k-point FFT graphs

since (Njk>..) · k>..-1 = Njk.

The general FFT-Multi-Level algorithm is given below. Note that when a P' = Pjk>..-1 processor

sub-PRAM partitions itself to create N jk>.. sub-sub-PRAMs for computing k-point FFT graphs,

the sub-sub-PRAMs have
P' Pjk>..-1 Pk k

Njk>.. = Njk>.. = N = NjP

processors, as in the two-level algorithm. As before, the Direct-FFT(x) sub-algorithm computes a

k-point FFT graph using x processors.

FFT-Multi-Levei(P', A)
< k-shuffie on the Njk>..-1 points in memory>

partition{Njk\ N'P' Direct-FFT(NJP)}
< k-unshuffie on the N j k>..- 1 points in memory >

if A < logk P then

partition{k, P' jk, FFT-Multi-Levei(P' jk, A+ 1)}

else

partition{ min(k, P), 1, Seq-FFT(N jk>..) }

end-if-then-else

end-FFT-Multi-Level

We again use the notation TYPE1-TYPE2 to refer to specific instances of the general algorithm,

where FFT-Multi-Level runs on TYPE1 sub-models, and Direct-FFT runs on TYPE2 sub-models. Two

specific algorithms are considered: EREW-EREW and EREW-LPRAM.

We first consider the ,8-synchronization complexity of FFT-Multi-Level since it is independent

of the types of sub-models used.

Theorem 4.12 The ,8-synchronization complexity of FFT-Multi-Level will never dominate.

Proof: The FFT-Multi-Levei(P', A) sub-algorithms in the hierarchy each have two partition steps

and two permutation steps. Therefore the conditions for ,8-synchronization non-domination are met

for each sub-algorithm, and we conclude that ,8-synchronization does not dominate the complexity

of the FFT-Multi-Levei(P, 1) H-PRAM algorithm. o
Therefore we again drop consideration of ,8-synchronization from the subsequent analyses of the

FFT-Multi-Level algorithms.

28

4.3.1 EREW-EREW FFT-Multi-Level

Theorem 4.13 The EREW-EREW FFT-Multi-Level algorithm can be computed in time

Proof: Clearly the Seq-FFT sub-algorithm running on !-processor sub-PRAMs in levellogk P + 1

will take time O((NIP)log(NIP)) or O((Nik)log(Nik)) depending on whether k ~Pork> P,
respectively. Since NIP > Nlk when k > P we just use the O((NIP)log(NIP)) form. The

EREW PRAM Direct-FFT sub-algorithm is executed logkP times (in levels 2, ... ,logkP + 1 of

the hierarchy); each time employing P' = N'P processors computing a k-point FFT graph in the
straightforward way. Thus the total time taken by Direct-FFT sub-algorithms is

0 (l p. (klogk klogk ·l(-k-)))
ogk P' + P' NIP

= (logP (N k)) 0 log k . p log k ·l(NIp)

= O (NlogP ·l(-k-))
P . NIP

Lastly, the FFT-Multi-Level sub-algorithm runs in levels .X, 1 ~ .X ~ logk P + 1, and executes

permutations (in addition to partition steps, already accounted for). Permuting N' elements with

P' (~ N') processors takes time O((N' I P')l(P')) on an EREW sub-model. In level .X there are
k~-1 sub-PRAMs running FFT-Multi-Level; each has Plk~-1 processors and Nlk~-1 points in its

memory. Thus the total time taken by FFT-Multi-Level sub-algorithms in the EREW-EREW FFT
Multi-Level algorithm is

0 L: ~-1 ·l(Pik~-1) = 0 - L: l(Pik~-1) (
lolk P Nlk~-1) (N logA: P)

~=1 Plk p ~=1

By reversing the sum, we get

o (~El(k'>)
Adding the total times of the three sub-algorithms gives the result. D

Lemma 4.4 The EREW-EREW FFT-Multi-Level algorithm is optimal if k can be chosen such that

the following bounds hold simultaneously.

1. l(N'P) ~ c1 • ~::~

2. ~;!~P l(k~) ~ c2 ·logN

where c1 and c2 are positive constants in the running time, c1 corresponding to the Direct-FFT
sub-algorithm and c2 corresponding to the FFT-Multi-Level sub-algorithm.

29

We again consider the explicit latency functions l(P) = log P and l(P) = ..(P in order to

remove the sums from the analyses and get simpler and more informative results.

Theorem 4.14 Let c = c1 and£= l/c2, where c1 and c2 are the constants in the running time

used in Lemma ./ . ./, and let a = (logP + c)/logP. Then, for l(P) = logP the EREW-EREW

FFT-Multi-Level algorithm is optimal for

p(l+v'1+4r~t:)/2a $ N

under the restriction that £ $ 1 (c2 2:: 1).

Proof: We know from Lemma 4.4 that the algorithm is optimal if k can be chosen such that (1)

log(N' p) $ c1 ·log N /log P, which, letting c = c~, solves to

logk < logN
c · log p + log(N / P)

k < N. NcflogP
p

and (2)
logk P

L log(k>.) $ c2 • log N

which, letting £ = 1/c2 and noting that

log,.P (2)
{; log(k>.) = 0 1C::g:

solves as

log2 P
$ c2 ·logN

logk

log2 P
< logk £·--

logN
r-·IogP/logN $ k

Remembering that k must be within the bounds N / P :5 k :5 N, we conclude that the algorithm is

optimal if k can be chosen such that

Since N and P are powers of two, we can assume that k also is, as required. Thus, the algorithm

is optimal when

30

Clearly, NIP$ Nand NIP$~· NcflogP. Also pe·logP/logN $ N when

log2 P
€·-- < logN

logN
v'£ ·log P $ log N

which holds for all P $ N when € $ 1 (or c2 ~ 1 since € = 1lc2), which gives the restriction in the

Theorem.

The final case that must hold is

pe·logP/logN < N . NcflogP
-p

which we now proceed to simplify to the optimality range stated in the Theorem.

pe·(log P/ log N)+I < N(c/log P)+I

1 p (€ • log p 1)
og logN + $ logN Co;P + 1)

€ ·logP + 1
logN

< logN cogP +c)
logP logP

For presentational purposes, let x = logNilogP and let a= (logP + c)jlogP. Then we have

(

-+1 $ xa
X

£+X $ x2a

x2a- x- € ~ 0

Applying the quadratic formula to the equation gives

log N 1 + vf1 + 4a£ X = -- > _ __;_ __ _
logP - 2a

Therefore, with a = (log P + c)jlog P, k is choosable such that the algorithm is optimal when

1 P 1 + vf1 + 4a£
og · $ logN

2a
p(l+V'1+4ae)/2a $ N

and the Theorem follows. D

Now the behavior of the EREW-EREW FFT-Multi-Level algorithm when l(P) = VP is considered.

Theorem 4.15 Forl(P) = -/P, the EREW-EREW FFT-Multi-Level algorithm is optimalfor2f·VP $

N, where € = 1 I c2 and c2 is a constant in the running time (corresponding to the c2 in Lemma 4. 4).

Proof: We know from Lemma 4.4 that the algorithm is optimal if k can be chosen such that (1)

{;;;; $ c1 • log N I log P, which solves to

k < (c)2 . N log2 N
- 1 Plog2 P

31

and (2)

which, noting that

solves to

logkP

L ..fki ~ c2 ·logN
).=1

logkP

L ~=O(YP)
).=1

vP < c2 ·logN

2f..;p < N

where£= l/c2. Remembering that k is constrained by N/P ~ k ~ N, we see that the algorithm

is optimal for 2f../P ~ N if k can be chosen such that

N/P < k < min(N (c)2. Nlog2 N)
- - ' 1 Plog2 P

This is clearly possible since N / P is ~ both terms of the min function. Since N and P are powers

of two, we can assume that k also is, as required. D

We again note that 2f../P ~ N is a substantial improvement in the optimality range, for f(P) =
,fP, over the P · 2~ ~ N optimality range of both the ER.EW-ER.EW FFT-Two-Level algorithm,

and the LPRAM FFT graph algorithm [1]. It matches the FFT-BT-Ext and ER.EW-LPR.AM FFT

Two-level ranges for l(P) = VP.
The term minimization strategy can be employed to choose k for the ER.EW-ER.EW FFT-Multi

Level algorithm similarly to the way it was for the ER.EW-ER.EW FFT-Two-Level algorithm, giving

very similar results. We only summarize them here. For l(P) = logP, the complexities are

O (NlogP~g(N/P))

for P · 22.../fuiP < N and - '
0 (Nlog~v1()gP)

for P · 22yloiP ~ N. For £(P) = ,fP the complexity is

0 (~(YP + log(N/P)))

We again note that term minimization is meant to be used when N and P are values such that

optimal time O((N/P)logN) cannot be achieved.

32

4.3.2 EREW-LPRAM FFT-Multi-Level

Theorem 4.16 The EREW-LPRAM FFT-Multi-Level algorithm can be computed in time

(
N (logP k log,.P ~))

0 p · logP+ log(NIP) ·l(NIP)+ {; l(k)+log(NIP)

Proof: The only difference from the EREW-EREW algorithm is that the sub-models that k-point

FFT graphs are computed on are now LPRAMs rather than EREW PRAMs. The total time taken

by the FFT-Multi-Level sub-algorithms and Seq-FFT sub-algorithms is the same, which we know

from Theorem 4.13 to be

The LPRAM Direct-FFT sub-algorithm is executed logic P times (in levels 2, ... , logic P + 1 of the hi

erarchy); each time employing P' = N'P processors computing a k-point FFT graph. The LPRAM

algorithm in [1] uses O((kiP')logk) = O((NIP)logk computation steps and O(p, 1!~(fjP'))
O(p{;i~jp)) communication steps. Thus the total time taken by Direct-FFT sub-algorithms is

((k log k k log k k))
O log~cP· p;-+ P'log(kiP') ·l(NIP)

= (logP (N Nlogk k))
O logk . P logk + Plog(NIP) ·l(NIP)

= (N (logP k)) 0 P · log p + log(NIP) ·l(NIP)

Adding the total times of the three sub-algorithms gives the result. o

Lemma 4.5 The EREW-LPRAM FFT-Multi-Level algorithm is optimal if k can be chosen such that

the following bounds hold simultaneously.

J. l(1c) < c . logNlog(N/P) "'ifTP - 1 log P

2. ~~~~P l(k~) ~ c2 ·logN

where c1 and c2 are positive constants in the running time, c1 corresponding to the Direct-FFT

sub-algorithm and c2 corresponding to the FFT-Multi-Level sub-algorithm.

We turn to considering the explicit latency functions l(P) = log P and £(P) = ...JP, as usual,

in order to remove the sums from the analyses and get simpler and more informative results.

For l(P) = logP, finding the optimality range J(P) ~ N requires solving a cubic equation.

Because of the difficulty of this, we define the range in terms of the cubic equation in the following

Theorem, and subsequently calculate a few explicit range results.

33

Theorem 4.17 Let c = c1 and £ = 11 c2 , where c1 and c2 are the constants in the running time

used in Lemma 4. 5, let x = log N I log P, and let z denote the positive solution to the cubic equation

cx3 + (1 - c)x2 - x - £ ~ 0

Then, for l(P) =log P, the EREW-LPRAM FFT-Multi-level algorithm is optimal for P:' ~ N, under

the restriction that£~ 1 (c2 ~ 1).

Proof: We know from Lemma 4.5 that the algorithm is optimal if k can be chosen such that (1)
1 (k) < logNlog(N/P) hi h 1 · 1 og N/ p _ c1 · log p , w c , ettmg c = Ct, so ves to

logk ~ c . log Nl~~g~N I P) + log(NIP)

logN
= log(N I P)(c · log p + 1)

k ~ (N y·IogN/logP+t
p

N Nc·logN/logP
= pc·log N /log P p

N Nc·logN/logP
= p Nc

k ~
N . Nc·(logN/logP-1)
p

and (2)
logr.P
L log(k~) ~ c2 ·log N
~=1

which, letting£= llc2 and noting that

L log(k~) = 0 og p logk P (l 2)

~=1 logk

solves as

log2 P
< c2 ·logN

logk

log2 P
£·--

logN
< logk

p(•logP/logN < k

Remembering that k must be within the bounds NIP ~ k ~ N, we conclude that the algorithm is
optimal if k can be chosen such that

max (NIP, p(·logP/logN) ~ k ~min (N, ~ . Nc·(logN/logP-1))

34

Since N and P are powers of two, we can assume that k also is, as required. Thus, the algorithm

is optimal when

max (NIP, pf·logP/logN) ~ min (N, ~ . Nc·(logN/logP-1))

Clearly, NIP~ N and NIP~ ~ · Nc-(logN/logP-1). Also pf·logP/logN ~ N when

log2 P
£·-- ~ logN

logN

v'£·logP ~ logN

which holds for all P ~ N when£~ 1, (or c2 ~ 1 since£= 1lc2), which gives the restriction in the

Theorem.

The final case that must hold is

pf·logPflogN < N . Nc·(logN/logP-1)
-p

which we now proceed to simplify to the optimality range stated in the Theorem.

Nc·(logN/logP-1)+1

log N (c · G:: ~ -1) + 1)
logN (c. (logN _ 1) + 1)
logP logP

For presentational purposes, let z = log N I log P. Then we have

£
z · (c(z- 1) + 1) -+1 ~ z

£+z ~ z2 • (ex - c + 1)

cz3 + (1- c)x2 - x- £ ~ 0

which is the cubic equation stated in the Theorem. Let z be the positive solution of the equation.

Then z = l~:~ ~ z, which solves to

z·logP ~ logN

pz < N

and the Theorem follows. A very loose upper bound can be established for z. We are looking for

a solution z > 1 to the cubic equation. Reformulate it as

and note that this holds if

35

holds (for x > 1). Then we get

cx2(x- 1)- 1 · (x- 1) ;?: £

(x- 1)(cx2 - 1) ;::: £

Assume that c;?: 1 (clearly reasonable since cis a constant in the running time). Then the last

equation holds if

which reformulates as

This last equation holds if

(x- 1)(cx2 - c);:::£

(x- 1)(x2 - 1) ;?: £/c

(x- 1)(x- 1)(x + 1) ;?: £/c

(x- 1)3 ;?: £/c

x ;::: 1 + (£/c)113

Thus z ::;; 1 + (£/ c)113 is a solution, and provides a very loose (due to the simplifying assumptions)

upper bound on z. 0

By calculating solutions to the cubic equation for certain c1 and c2 (constants in the running

time; see Lemma 4.5), it can be seen that the optimality range for the EREW-LPRAM FFT-Multi

Level algorithm is better than that of the EREW-LPRAM FFT-Two-Level algorithm for l(P) = logP.

For example, for c1 = c2 = 1 we get the range P413 ::;; N (compare to P312 ::;; N for the two-level

algorithm), and for c1 = c2 = 2 we get the range P817 ::;; N (compare to P716 ::;; N for the two

level algorithm). Again we see that the larger the constants in the running time, the better the

optimality range.

Now we turn attention to the behavior of the EREW-LPRAM FFT-Multi-Level algorithm for

l(P) = ...(P.

Theorem 4.18 Forl(P) = ...[P, the EREW-LPRAM FFT-Multi-Level algorithm is optimalfor2~.../P::;;
N, where £ = 1/ c2 and c2 is a constant in the running time (corresponding to the c2 in Lemma 4. 5).

Proof: We know from Lemma 4.5 that the algorithm is optimal if k can be chosen such that (1)
;;t;;::;; c1 · logN~~~gjf/P), which solves to

k < (c)2 . Nlog2 Nlog2(N/P)
- 1 Plog2 P

and (2)
logkP

L ~::;; c2 ·logN
A=1

36

which, noting that

solves to

log,.P

L .fk>. = O(VP)
A=l

VP ~ c2 ·log N

2f..;p ~ N

where£= 1lc2. Remembering that k is constrained by NIP~ k ~ N, we see that the algorithm

is optimal for 2f../P ~ N if k can be chosen such that

NIP< k <min (N (c)2. Nlog2 Nlog2(NIP))
- - ' 1 Plog2 P

This is clearly possible since NIP is ~ both terms of the min function. Since N and P are powers

of two, we can assume that k also is, as required. D

Note that this optimality range is the same as for the FFT-BT-Ext, EREW-LPRAM FFT-Two
Level, and EREW-EREW FFT-Multi-Level algorithms.

5 Conclusions and discussion

Although a key emphasis of this paper was to demonstrate usage of the H-PRAM, and the results

of using different combinations of sub-model types and hierarchical structures, it is informative

to summarize a few of the "best" complexity results here. For the binary tree problem: when

l(P) = logP, time O(log312 P +NIP) (optimal for £Plog312 P ~ N, £ = 1lc, c a constant in

the running time). When l(P) = VP, time O(VP +NIP) (optimal for £P312 ~ N, £ = 1lc, c a

constant in the running time).

For the FFT graph problem: when l(P) = VP, optimal time O((NIP)IogN) is achieved

for 2f../P ~ N, £ = 11 c, c a constant in the running time. This is an improvement over the

P · 2f../P ~ N optimality range of the case where only strict locality is used (the LPRAM [1]).

When l(P) = logP and j3-synchronization cost is logarithmic in the number of sub-PRAMs being

synchronized, optimality is achieved for pz ~ N, where z approaches 1 as two constants c1 and c2

in the running time grow. When c1 = c2 = 2 the optimality range is pS/7 ~ N.

The algorithms presented in this and the following sections demonstrate a methodology of

building on existing algorithms to obtain new results. In other words, the H-PRAM provides

a means of organizing various existing algorithms such that communication and synchronization

overhead is "minimized", which can result in a composite algorithm that performs better than its

individual sub-algorithms do alone. Although we give H-PRAM algorithms for basic problems for

study and comparison purposes, the H-PRAM should allow conceptually simple construction of

"larger", more complex parallel algorithms comprised of many simple sub-algorithms. It allows us

to build on the work which already exists with respect to the PRAM. In other words, we really do

37

not want to design H-PRAM versions of common (and optimal) PRAM algorithms, i.e. reinvent

the wheel, even if those PRAM algorithms are not optimal on the H-PRAM, but to use them

as building blocks for designing "larger" (and optimal) H-PRAM algorithms. We anticipate that

basic algorithms, such as for prefix and list ranking, would be provided as primitives (employing

network topology) in any implementation of an H-PRAM to architecture mapping. The point here

is that the H-PRAM allows the modular construction of large, (controlled) asynchronous, complex

systems from simple synchronous PRAM algorithms, and we wish to make full use of the large

body of work that exists on PRAM computations.

We want to stress that algorithm design and analysis seems relatively simple; it appears that the

implicit hierarchical organization controls any additional conceptual complexity over the PRAM

model. What can be difficult, as seen in the following section, is choosing the best configuration of

the H-PRAM given an H-PRAM algorithm, input size N, and number of processors P. However,

in a computer system that supports the H-PRAM, automated tools could do this. The general

philosophy in (private) H-PRAM algorithm design should be to obtain algorithms that have the

greatest possible partitioning flexibility. This means defining the loosest possible upper and lower

bounds on the values that the "partitioning parameter" k can take on. The algorithm complexities

will be in terms of k, N, and P. Then, given a value for N (the input size that a user want to

compute on) and a value for P (the number of processors available to the user), the value for k

that minimizes the complexity can be chosen; as stated, potentially by automated tools.

In theoretical work one can attempt to find a value, or range of values, for k (as a function of

N and P) such that good (optimal) performance is obtained for the widest possible range of values

for N and P. This is what we will do in the following section, in effect to maximize the number of

processors that are efficiently usable with respect to an input size N, and to minimize the inefficiency

when optimality is not possible (when Pis too large with respect to N). This is possible because

of the H-PRAM's representation of general locality, i.e. both strict and neighborhood locality.

When N and P are such that optimality ranges hold for multiple fixed instances of the latency

parameter (e.g. logP, ../P), then the H-PRAM algorithm is architecture independent without loss

of efficiency across architectures with those latencies. Similarly, when optimality is not possible

but the inefficiency is within a certain bound for multiple latencies, the algorithm could be consid

ered architecture independent with bounded inefficiency across architectures with those latencies.

Kruskal, Rudolph, and Snir [9) have proposed a complexity theory of parallel algorithms based on

preservation of efficiency across multiple architectures.

There is the potential that general H-PRAM algorithms can be designed, with unspecified

types of sub-models and unspecific sub-algorithms (one defines what the sub-algorithms do but not

how they go about it), in order to gain an additional degree of architecture independence. Once

a target architecture is known, one can choose the type(s) of sub-models(s) that most reflect it

(e.g. PRAM, LPRAM, BPRAM), then choose specific sub-algorithms that have been designed for

that/those sub-model(s). In other words, one general H-PRAM algorithm may have various specific

instances of it, as demonstrated by the FFT graph algorithms of the following section.

38

The private H-PRAM provides a memory management paradigm that lies between the extremes

of totally automated (PRAM) and totally manual (networks). This is one reason for our belief, as

stated in the introduction, that the H-PRAM provides a good balance between simplicity of usage

and reflectivity of realistic architectures. The paradigm is one where memory is seen as a linear

block of memory locations, and there is responsibility for organizing that block into groups (by

permuting the memory), but not for the details of implementing the organizing (i.e. for routing

data in a network).

Clearly, the private H-PRAM with a tree hierarchy relation is naturally suited for problems

that can be solved by divide-and-conquer. Preparata and Vuillemin (10] have defined ASCEND

and DESCEND classes of algorithms, which operate in a divide-and-conquer manner, and noticed

that quite a few algorithms either belong to, or are comprised of sub-algorithms which belong to,

these classes. Cypher [4] has generalized these classes to a class (the "bit-block" class) that is less

restrictive of the operations in a divide-and-conquer algorithm.

Chan [3] has pointed out that many problems in scientific and numerical computation have

natural hierarchical solutions, and advocated the development of hierarchical parallel algorithms

and architectures for this domain.

Not all problems will submit to solution on the private H-PRAM; there may be difficulties in

designing algorithms for this variant such that data required by processors are always in the private

shared memory of the sub-PRAMs that the processors belong to. Problems that only submit to

non-oblivious (data dependent) communication may require a switch to the shared variant, which

is one reason for its existence. We conjecture that H-PRAM algorithms will generally be "control

oblivious", i.e. the partitioning will not be data dependent, but will instead depend on the cost

parameters, number of processors P, and input size N.

We are continuing to investigate algorithms for the private variant of the H-PRAM.

References

[1] A. Aggarwal, A.K. Chandra and M. Snir, Communication complexity of PRAMs, Theoretical

Computer Science, Vol. 71, 1990, pp. 3-28.

[2] A. Aggarwal, A.K. Chandra and M. Snir, On communication latency in PRAM computations,

Tech. Rep. RC 14973 (#66882) 9/27/89, IBM T .J. Watson Research Center, Yorktown Heights,

NY.

[3] T.F. Chan, Hierarchical algorithms and architectures for parallel scientific computing, Proc.

ACM Inti. Conference on Supercomputing, 1990, pp. 318-329.

[4] R. Cypher, Efficient communication in massively parallel computers, Ph.D. Thesis, Dept. of

Computer Science, Univ. of Washington, 1989.

[5] E. Dekel and S. Sahni, Binary trees and parallel scheduling algorithms, IEEE Trans. on Com

puters, March 1982, pp. pp. 307-315.

39

[6] P.B. Gibbons, A more practical PRAM model, Proc. 1st Annual ACM Symposium on Parallel

Algorithms and Architectures, 1989, pp. 158-168.

[7] P.B. Gibbons, The asynchronous PRAM: a semi-synchronous model for shared memory MIMD

machines, Ph.D. thesis, Computer Science Division, University of California, Berkeley, Cali

fornia, Dec. 1989.

[8] T. Heywood and S. Ranka, A practical hierarchical model of parallel computation I: The

model, Technical Report SU-CIS-91-06 School of Computer and Information Science, Syracuse

University, Feb. 1991, Revised: Oct. 1991.

[9] C.P. Kruskal, L. Rudolph and M. Snir, A complexity theory of efficient parallel algorithms,

Theoretical Computer Science, Vol. 71, 1990, pp. 95-132.

[10] F .P. Preparata and J. Vuillemin, The Cube-Connected Cycles: a versatile network for parallel

computation, Commun. of the ACM, May 1981, pp. 30Q-309.

[11] C.H. Papadimitriou and M. Yannakakis, Towards an architecture independent analysis of

parallel algorithms, SIAM Journal on Computing, April1990, pp.322-328.

40

	A Practical Hierarchical Model of Parallel Computation ll: Binary Tree and FFT Algorithms
	Recommended Citation

	SU-CIS-91-07_001c
	SU-CIS-91-07_002c
	SU-CIS-91-07_003c
	SU-CIS-91-07_004c
	SU-CIS-91-07_005c
	SU-CIS-91-07_006c
	SU-CIS-91-07_007c
	SU-CIS-91-07_008c
	SU-CIS-91-07_009c
	SU-CIS-91-07_010c
	SU-CIS-91-07_011c
	SU-CIS-91-07_012c
	SU-CIS-91-07_013c
	SU-CIS-91-07_014c
	SU-CIS-91-07_015c
	SU-CIS-91-07_016c
	SU-CIS-91-07_017c
	SU-CIS-91-07_018c
	SU-CIS-91-07_019c
	SU-CIS-91-07_020c
	SU-CIS-91-07_021c
	SU-CIS-91-07_022c
	SU-CIS-91-07_023c
	SU-CIS-91-07_024c
	SU-CIS-91-07_025c
	SU-CIS-91-07_026c
	SU-CIS-91-07_027c
	SU-CIS-91-07_028c
	SU-CIS-91-07_029c
	SU-CIS-91-07_030c
	SU-CIS-91-07_031c
	SU-CIS-91-07_032c
	SU-CIS-91-07_033c
	SU-CIS-91-07_034c
	SU-CIS-91-07_035c
	SU-CIS-91-07_036c
	SU-CIS-91-07_037c
	SU-CIS-91-07_038c
	SU-CIS-91-07_039c
	SU-CIS-91-07_040c
	SU-CIS-91-07_041c
	SU-CIS-91-07_042c

