
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

6-1991

A Sixteen-Valued Algorithm for Test Generation in Combinational A Sixteen-Valued Algorithm for Test Generation in Combinational

Circuits Circuits

Akhtar Uz Zaman

M. Ali

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Uz Zaman, Akhtar; Ali, M.; and Hartmann, Carlos R.P., "A Sixteen-Valued Algorithm for Test Generation in
Combinational Circuits" (1991). Electrical Engineering and Computer Science - Technical Reports. 114.
https://surface.syr.edu/eecs_techreports/114

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/114?utm_source=surface.syr.edu%2Feecs_techreports%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-18

A Sixteen-Valued Algorithm for Test
Generation in Combinational Circuits

Akhtar-uz-zaman M. Ali and Carlos R.P. Hartmann

June 1991

SU-CIS-91-18

A Sixteen-Valued Algorithm for Test
Generation in Combinational Circuits

Akhtar-uz-zaman M. Ali and Carlos R.P. Hartmann

June 1991

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

Syracuse University

School of Computer and Information Science

Technical Report No. SU-CIS-91-18

A Sixteen-Valued Algorithm for Test
Generation in Combinational Circuits1

Akhtar-uz-zaman M. AlP

Carlos R. P. Hartmann3

Abstract A 16-valued logic system for testing combinational circuits is pre
sented. This logic system has been used to develop SIMPLE, an efficient test
generation algorithm for single stuck-at faults.

The proposed scheme for testing stuck-at faults is based on imposing all the
constraints that must be satisfied in order to sensitize a path from a fault site to a
primary output. Consequently all deterministic implications are fully considered
prior to the enumeration process. The resulting ability to identify inconsistencies
prior to enumeration improves the possibility of quicker identification of redundant
faults. In order to prune the search space we have introduced several speed-up
techniques that effectively combine the information provided by the deterministic
path sensitization and that obtained from the circuit topology.

Some properties of undetectable faults are presented and methods to identify
them without actual test generation are proposed.

1This work was partially supported by the Rome Air Development Center under Con
tract No. F30602-88-D-0027 and a Senate Research Grant from Syracuse University.

2 A. M. Ali was with the Department of Electrical &. Computer Engineering, 121 Link
Hall, Syracuse University, Syracuse, NY 13244-1240. He is now with IBM Corporation,
Neighborhood Road, Dept. 32UA, Mail Station 467, Kingston, NY 12401. (e-mail:
ali@kgnvmf.vnet.ibm.com)

3 C. R. P. Hartmann is with the School of Computer and Information Science, Suite
4-116, Center for Science and Technology, Syracuse University, Syracuse, N.Y. 13244-4100.
(e-mail: hartmann@top.cis.syr .edu)

Contents

1 Introduction

2 SIMPLE: An ATPG Algorithm

2.1 Preliminaries

2.1.1 The Logic System Used

2.1.2 Fault Site Testing

1

2

2

2

5
2.1.3 Deriving Common Requirements for Testing Different Checkpoints. 5

2.2 Pre-processing Phase 6

2.2.1 Construction of Dominator Forest . 6

2.2.2 Token Assignment 9

2.3 Propagation Phase 9

2.4 Enumeration Phase 12

2.5 Consistency Checking Approach .

2.6 Use of Token Vectors

3 Speed-up Techniques

3.1 Use of the Contrapositive

3.2 Identifying Independent Subcircuits During Enumeration Phase

3.2.1 SVN Identification

3.2.2 IVN Identification

3.3 Backward Implication of Desensitizing Values

3.4 Selection of Alternate Sensitizing Paths .

3.5 Examples

4 Identification of Redundant Faults

4.1 Redundancy Identification using Known Undetectable Faults

4.2 Redundancy Identification using Topological Information

5 Conclusion

Appendices

A Construction of Deterministic Test Cubes

A.1 Forward Implication .

A.2 Backward Implication.

B Properties of the Backward Implication Procedure

I

14

16

20

20
25

27

29
30

31

31

34

35

37

38

40

40

40

42

44

C Proof of Properties of Token Vectors

D Proof of Theorems in §3.1

References

11

45

46

48

List of Tables

1

2

3

4

5

6

7

8

AND Table

NOT Table

XOR Table

Implications in 3-VP .

Implications of a 0 and 1 in 16-VP .

Relationship between 3-VP and 16-VP
(L2 , G) combinations that yield useful contrapositive assertions .

Backward Implication for a 2-input AND gate

111

4

4

4

21
22

22

23
42

List of Figures

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

Common requirements for testing several checkpoint faults

An example circuit

Dominator forest for example circuit

Use of token vectors

Use of the contrapositive

Example for contrapositive of a backward implication

Identification of an SVN

General structure of the subcircuit corresponding to the tree T/nv .
U nsatisfiable value at an IVN

IVN identification example where Tm. cannot be deleted.

Backward implication of desensitizing values .

Example ECAT circuit . :

Use of the off dominator sensitizing inputs - I

Use of the off dominator sensitizing inputs - II

Example where Lo C LN during forward implication

Example where Lo S£ LN and LN S£ Lo during forward implication

Example for backward implication

Gate decomposition

Example of backward implication for an XOR gate

lV

51
52
53

54
54
55
56

57
57
58

59
59

60
60
61

61

62
63
64

1 Introduction

The generation of test patterns for combinational circuits has been long recognized by re

searchers as a well defined mathematical problem which belongs to the class of NP-complete

problems [12, 15]. Several Automatic Test Pattern Generation (ATPG) algorithms for de

tecting stuck-at-faults in combinational circuits exist in the literature [8, 9, 11, 13, 14, 17,

20, 21, 22]. Most researchers characterize test pattern generation as a search problem and

address strategies to make this search process efficient. For realistic circuit sizes the search

space is prohibitively large and, to make matters worse, a solution is not always guaran

teed to exist. However, as PODEM [14] first demonstrated, it is not necessary to explicitly

search the entire space - sometimes a partial search can determine a test pattern or the

fact that none exists. In fact the huge amount of backtracking computation that is some

times required before recognizing that a test cannot be generated for a particular fault (such

faults are termed redundant faults) proves to be a major bottleneck in any ATPG algorithm.

In order to overcome this difficulty different strategies have been developed by researchers.

These strategies vary from making use of unique implications to using circuit topology in

formation. In spite of the improvements achieved by these strategies test pattern generation

still remains a complex problem and the possibility of further improvements a viable one.

In this report we propose a 16-valued logic system and show its usefulness in combina

tional circuit testing. In§ 2 we present an ATPG algorithm called SIMPLE that is based on

this 16-valued logic system. This gate level algorithm uses a single stuck-at fault model and

includes XOR and XNOR as primitive gates. In fact we will show how the proposed logic

system can exploit the linearity of the XOR/XNOR gates. The key feature in Sll\:IPLE is the

derivation of all deterministic constraints that must be satisfied for propagating sensitization

along a chosen path. The use of necessary assignments coupled with the completeness of the

logic system helps in pruning the search space.

To improve the performance of SIMPLE we present, in § 3, several speed-up techniques.

These are dynamic in nature and are based on the circuit topology and the information

derived by the test generation process. We will show we can identify several independent

subcircuits so that the value justification problem can be effectively divided into smaller

problems.

The existence of undetectable faults is one of the main factors that cause test generation

to be a complex procedure. With this in mind we present, in §4, methods to identify

undetectable faults. These will be based on using information about already determined

undetectable faults to identify newer ones and also on using circuit topology to identify

undetectable faults without actual test generation.

1

2 SIMPLE: An ATPG Algorithm

In this section we present SIMPLE (Sixteen valued, Maximized Propagation Lowered

Enumeration approach to test generation), an ATPG algorithm for detecting single stuck

at-faults in combinational circuits that contain NOT, AND, NAND, OR, NOR, XOR and

XNOR gates. This algorithm is based on a 16-valued logic system and introduces some novel

approaches to make test pattern generation more efficient. There are three distinct phases

in the algorithm presented here:

(i) Pre-processing phase (§2.2): In this phase we construct a set of trees based on the

interdependence of circuit nets. Among other things this forest will be used to easily identify

which circuit nets must be sensitized to derive a test. We also compute the token vectors

which keep track of the parity of inversions between nets. This information is useful because

it can identify which inputs of a gate may or may not be simultaneously sensitized.

(ii) Propagation phase (§2.3): In this phase we deliberately sensitize a single path (say

Pi) from the fault site (say f) to a primary output (PO) and find all the resulting determinis

tic forward and backward implications. In the process other paths may get sensitized. Path

selection is the only choice made in this phase-implications are based on all the constraints

that must be satisfied in order to sensitize the chosen path. This is possible because of the

completeness of the logic system and the use of deterministic implication rules. In a manner

analogous to the D-algorithm (21] we use test cubes whose entries reflect the current values

of all nets during any stage of test generation. The test cube obtained after all deterministic

implications have been performed will be denoted as TJ(pi).

(iii) Enumeration phase (§2.4): In general, the test cube TJ(Pi) constructed by the

propagation phase may not yield a test-particularly because no arbitrary choices were made

in the assignment of net values. Thus there may be gates whose input net values contain

combinations capable of desensitizing the chosen path. In this phase we use an enumeration

procedure to choose values for the primary inputs (Pis) so that such combinations can never

occur.

In§ 3 we will discuss how the proposed algorithm can be further improved by the incor

poration of several speed-up techniques.

2.1 Preliminaries

2.1.1 The Logic System Used

Test generation involves considering the value of a net in the good and the faulty circuit.

This can be done by representing the value of a net as an ordered pair (b9 , b1) where b9 (b1)

2

is the value of the net in the good (faulty) circuit [18]. Using this representation the value of

a net can be one of the elements of the set U= {(0,0), (0, 1), (1,0), (1, 1)}. Thus a net which

has a different logic value in the good and the faulty circuit can either have the value (1,0)

or (0,1). Conventionally these values have been referred to as D and D respectively [21].

Thus any test for a s-a-1 (or s-a-0) fault must cause the value of the faulty net to be D or

(D). Consequently the test generation process is initialized by introducing this "difference"

between the good and the faulty circuit in some form e.g. the primitive D-cube of the

failure (pdcf) [21], initial objective [14] etc. The initialization procedure in our algorithm is

based on the concept of fault site testing which tries to generate the conditions that must be

satisfied in order to test a particular fault site without imposing the constraint of a particular

stuck-at fault at the site. In the next subsection we will show how we can take into account

the common propagation requirements of the two stuck-at faults at the same net. vVe do

this by introducing a new variable which contains the information that there is a difference

between the normal and faulty circuits without imposing any constraints about the direction

of the difference- this variable is denoted by A. So A= {(x, x)} and the corresponding

A= { (x, x)} where x E {0, 1 }. Thus our algorithm is initialized by setting the value of the

fault site to be tested to A. In the process of generating tests it might not be possible to

uniquely specify the value of a net as one of the elements of U. However, we may already

know that a net cannot assume one or more of these values. We incorporate this information

by defining the value of a net as one of the 16 subsets of U. We denote these 16 sets as

¢, 0, 1, A, A, 0/1, 0/ A, 1/ A, 0/ A, 1/ A, A/ A, 0/1/ A, 0/1/ A, 0/ A/ A,

1/ A/ A, and 0/1/ A/ A where 0={(0, 0)}, 1={(1, 1)}, A={(x, x)}, A= {(x, x)} and"/"

denotes set union. Note that U=0/1/ A/ A. The value¢ needs to be included to reflect

the situation when two or more constraints require disjoint values at any net. If we set A=

D (or A= D) then these 16 values would be equivalent to the elements of the logic system

developed by Akers [3] to provide a tool for test generation. Tables 1, 2 and 3 represent the

AND, NOT, and XOR functions in our 16-value system for the values 0, 1, A, and A. The

complete table for all the 15 non-¢ values can be easily constructed from the given tables by

using the set union operation. The tables for all other logic functions can be obtained from

these three tables. Note that any logic function with ¢ as one of its arguments will yield¢

as a result. Using this notation we will define a sensitized net as one whose value is either

A, A, or A/ A. Furthermore, if all the nets along a path in the circuit are sensitized, then

the path is said to be sensitized. As will be seen later on, this 16-valued system exploits the

linearity of XOR/XNOR gates during test generation. It also allows us to characterize all

restrictions that are imposed by a fault and the particular circuit path chosen in order to

propagate its effect.

3

0 0 0 0 0

t 0 t L1 L1

L1 0 L1 L1 0

L1 0 L1 0 L1

Table 1: AND Table

I Variable II 0 It I L1 I L1 I
I Complement lit I 0 I L1 I L1 I

Table 2: NOT Table

0 0 t L1 L1

t t 0 L1 L1

L1 L1 L1 0 t
L1 L1 L1 1 0

Table 3: XOR Table

4

2.1.2 Fault Site Testing

In this section we discuss how we can exploit the common requirements that are imposed

when we sensitize the same path from the fault site to a PO in order to generate tests for

both stuck-at faults at this net. In order to do this we cannot impose the conditions required

to sensitize the fault site until the common requirements are taken into consideration. As

discussed earlier we must introduce the "difference" between the normal and faulty circuit

without imposing the constraint about the direction of the difference. We do this by in

troducing a fictitious gate G f at the site of the fault. If the fault is at net n we introduce

G1 between net nand a newly created net n1. Net n1 is connected to all nets which were

previously connected to n. In order to take into account both stuck-at faults at a given net

our initial test cube should have the following values for nets n and n1:

We will then execute the Propagation Phase of the algorithm (§2.3) to sensitize a path Pi from

net n1 to some PO. This phase will impose all the deterministic constraints of propagating

sensitization along path Pi· As mentioned earlier, the resulting test cube obtained at the end

of the Propagation Phase will be denoted as TJ(Pi)· Since TJ(Pi) does not take any particular

stuck-at fault into account we then construct two test cubes by setting the value of net n to

0(1) and find its corresponding deterministic implications to generate Tb(Pi) (T1o(Pi)) for

an s-a-1 (s-a-O) fault at net n. The Enumeration Phase can then be independently executed

for both these deterministic test cubes in order to generate tests for both the faults. This

procedure and its merits will be made clearer later with the help of an example. As opposed

to fault site testing, conventional fault testing for a stuck-at fault at a net n would require

the following initialized values:

n s-a-0

n s-a-1

n n1

1 D

0 D

2.1.3 Deriving Common Requirements for Testing Different Checkpoints

It is well known that a test set, that detects all single stuck-at faults at the PI nets, fanout

branch nets and the output nets of all XOR/XNOR gates of a circuit, will detect all single

stuck-at faults in the circuit [6). Thus these nets, henceforth referred to as "generalized

checkpoints," constitute our initial list of target faults for which tests have to be gener

ated. However, if any of these target faults is undetectable, additional target faults must be

considered [1, 10, 19].

5

In this section we investigate the possibility of reducing the computation required in

testing several checkpoints by first considering their common requirements and performing

this computation only once.

Consider a two-input AND gate G, shown in Figure l(a), where both inputs of G are

generalized checkpoints and thus belong to our initial list of target faults. Instead of testing

each of the inputs separately, we first impose the constraints that must be satisfied to site-test

the output net of Gas shown in Figure l(b). Figure l(c) shows the additional constraints

that must be imposed on the test cube obtained at the end of the Propagation Phase in

order to generate tests for all four faults at the inputs of G.

The above procedure should be adopted whenever we encounter a gate which has at

least two inputs belonging to the set of generalized checkpoints. We would then perform

the Propagation Phase of the algorithm by considering the output of the gate as the fault

site. Once this is successfully done the Enumeration Phase can he performed independently

for each of the checkpoint faults. In the situation that any of these checkpoint point faults

cannot be detected by sensitizing the chosen path then alternate paths, if any, must be

investigated for this fault.

2.2 Pre-processing Phase

To illustrate the various phases of our algorithm we will consider net 25, of the example

circuit shown in Figure 2, as the fault site. Note that nets 22 and 23 belong to the set of

generalized checkpoints and thus belong to our initial list of target faults. Hence we will

consider net 25 as the fault site and perform the sensitization of a path. Consequently we

introduce the gate G 1 whose input and output are nets 25 and 251 respectively.

2.2.1 Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to he detected was first

highlighted by Akers [3] and later by Fujiwara and Shimono [11]. As pointed out in TOPS

[17], the concept of graph dominators [23] can be used to identify the nets which must be

sensitized to detect a fault. In the context of test generation we term the set of dominators

of a net m as the set of all nets in the circuit which lie on every path from net m to any PO.

By definition, net m is a dominator of itself; however, for ease of notation we define D(m)

as the set of all dominators of m except m itself. To account for multiple output circuits the

concept of dominator tree can he extended to that of a forest. We present here a procedure

to construct this forest for a given circuit. This forest will not only be used to compute the

dominators for a particular fault site; but also for the sensitization of subpaths, selection of

6

Pis in the Enumeration Phase and generation of the initial list of target faults.

We construct a set of trees such that every net of the circuit corresponds to a node in

one of the trees in the forest. We start by creating as many trees as there are POs such

that each PO corresponds to a root of a tree. However, new trees may be created during the

procedure. Thereafter, each node which has not been marked as a leaf is inspected and the

tree construction is continued as follows:

(i) If the node mi being considered corresponds to the output net of a logic gate G in

the circuit, then every input net of G becomes a child of this node mi. Furthermore, if the

input net is a PI it is marked as a PI leaf. If the input net is a fanout branch (FOB), then

it is marked as a FOB leaf.

(ii) If the node mi being inspected is a fanout stem (FOS), then wait until all the FOBs

corresponding to this FOS have been marked as FOB leaves. Then find the immediate

common ancestor of all these FOB leaves. If such an ancestor exists, then make mi a child

of this ancestor node. If it does not, then start a new tree with mi as a root. In either case,

mark mi as an FOS node-if it is also a PI, then it must be marked as a PI leaf also.

The above procedure is continued until every net of the circuit becomes a node in some

tree of the forest.

The forest construction is based on the following properties:

1. The dominance relation is transitive

2. If a FOS net mi has ni FOB nets denoted by mit, mi2 , ••• , min;, then

3. The output net of any gate G is a dominator for every input net of G

The root of any tree in the constructed forest is either a PO or a FOS. If any tree has a single

node, then this node must either correspond to a PI which is also a FOS net or a PO which

is also a FOB net. The leaves of the trees in the forest correspond to the checkpoints, i.e.,

the Pis and the FOBs. Thus our initial list of target faults consists of all leaves of the trees

of the dominator forest and the output of all XOR/XNOR gates [6]. However, as pointed

out earlier, in case any of these target faults are undetectable additional target faults must

be considered [1, 10, 19].

The set D(m) contains all the nodes encountered when traversing the tree (in which m

is a node) from m to the root. Recall that m ~ D(m).

The "basis nodes," as defined in TOPS [17], can also be identified easily from the domi-

7

nator forest. 1 However, keeping in mind that a node cannot be a basis node unless all FOS

nets that influence it have completely reconverged prior to it, we adopt a simpler approach

of identifying which nodes are NOT basis nodes. Thus, instead of inspecting each node to

verify whether it is a basis node or not, we pick one FOS net at a time to generate the set of

nodes which are NOT basis nodes. Let there be k FOS nets denoted by mi, i = 1, 2, ... , k.

Furthermore, let the FOS net mi have ni FOB nets denoted by mit, mi2 , • •• , min;. The set
of nodes which are NOT basis nodes is given by

;~ lQ [D(m;;) U {m;;}]- D(m;)].

To prove the above assertion consider a net me E U7:1 [Uj~1 [D(mij) U {mij}]- D(mi)].

Thus there must exist i and j, 1 ::::; i ::::; k and 1 ::::; j ::::; ni, such that me E D(mii) U { mij}

and me f/:. D(mi)· In other words me is influenced by a FOS net mi all of whose fanout

branches do not reconverge prior to net me. Thus me is not a basis node. Conversely if

me is not a basis node then it must be influenced by some FOS net(s) all of whose fanout

branches do not reconverge prior to net me. Tracing back paths from net me to the Pis

let mi (1 ::::; i ::::; k) be the first such FOS net (i.e. those whose branches do not reconverge

prior to net me) encountered. If there are any other FOS nets between mi and me then

they must totally reconverge prior to m,_. Thus there must be a FOB net mii (1 ::::; j ::::; ni)

corresponding to the FOS net mi such that m,_ E D(mij) U { mij} and me f/:. D(mi). Thus

me E U7=1 (Uj~1 [D(mij) U {mii}]- D(mi)].

Explicit evaluation of the above expression is, however, not necessary. We can keep track

of the basis nodes while constructing the dominator forest. Recall that we have to identify

the immediate common ancestor of all the FOB nets corresponding to a FOS net in order

to determine the position of the latter in the forest. If such an ancestor exists then all nets,

excluding this common immediate ancestor, that are encountered when traversing the trees

from every FOB net to the immediate ancestor belong to the set of NOT basis nodes. If such

an ancestor does not exist, then all nets encountered when traversing the trees from every

FOB net to the root of its tree belong to the set of NOT basis nodes. Note that in either

case all the FOB nets are also included in this set. Consequently, all nodes not belonging

to this set are basis nodes. Furthermore the justification of a 0 or a 1 at these nodes will

not lead to contradictions provided there is no net in the good circuit which has a constant

value independent of the Pis.

The dominator forest for the circuit in Figure 2 is shown in Figure 3. Note that the only

basis nodes for this circuit are the Pis.

1 A net, say m, is defined to be a basis node if and only if all FOS nets that influence m tota1ly reconverge
prior to it (17].

8

2.2.2 Token Assignment

The goal of this stage is to identify which circuit nets can or cannot be affected by a fault.

In order to convey this information we associate with every net a Boolean token. This token

will be TRUE if and only if there exists a path from n 1 to any PO which passes through

this net. These tokens can be computed by a single forward pass through the circuit. In

the example we are considering the nets which are assigned a TRUE token are 25J, 26-28,

33-35, 39, 40 and 42-52. In a later section we will extend the concept of a Boolean token to

that of a token vector which will be useful if there are XOR/XNOR gates on the path being

sensitized.

2.3 Propagation Phase

In this phase we sensitize a single path from net n1 to a PO, however, other paths may

also get sensitized. As mentioned before we use test cubes whose entries reflect the current

values of all nets during any stage of test generation. The entries of any test cube, te~c, are

elements of our 16-valued system.

We initialize this phase by constructing te1 in the following manner:

1. Set net n1 to the value ...::1.

2. Assign ...::1/ .L1 to all nets belonging to the set D(n).

3. Set all nets with FALSE tokens to 0/1.

4. Assign 0/1/...::1/ .L1 to all unassigned nets of the test cube.

In our example D(25) = {48}, and the resulting te1 is shown below where only nets

whose entries are different from 0/1 and 0/1/...::1/ .L1 are shown.

25, 48

.L1 ...::1/...::1

All other nets either have the value 0/1 (if they have a FALSE token) or the value 0/1/...::1/ L1

(if they have a TRUE token).

For each test cube tck generated at any stage of our algorithm we find its corresponding

"deterministic" test cube, d(tc~c). We define a d(tc~c) as one in which no entry can be

changed without making some arbitrary choice(s) in one or more net values. That is, all

unique implications of the net values must be considered. Rules for forward and backward

implication procedures to be used in constructing d(te~c) from tc1c are given in Appendix A. If

in any d(tci) we have a sensitized path Pi from the fault site to any PO, then the Enumeration

9

Phase is invoked. This test cube, d(tcj), is denoted as TJ(Pi)· As mentioned earlier, we

must construct Tlo(Pi) and Tfl(Pi) from TI(Pi) in order to derive tests for the s-a-0 and

s-a-1 faults at net n respectively.

The d(te1) for our example is shown below. Only the entries for nets whose values are

different from those in te 1 are listed. In fact, for each cube for the example we are considering

only the entries whose values are different from those in the preceding one will be shown.

26 27 28 33 34 35 39 40

0/ A 0/ A 0/ A 0/1/ A 0/1/ A

41 47 49 50 51 52

0 0/A/A 1/ A/ A

If d(te 1) cannot be constructed because contradictions were encountered, then there

exists no test for the two stuck-at faults at net n. If during the construction of d(tc 1) the

value of net n changes from 0/1 to 0 {1) then there is no test for the fault net n s-a-0 (s-a-1).

If d(tc 1) is successfully constructed then we have a sensitized path from n 1 to all the FOB

nets corresponding to the first FOS node (could be n itself!) encountered in traversing the

appropriate tree of the dominator forest from n to the root. If there is no FOS encountered,

then we have a sensitized path from n 1 to the PO corresponding to the root of the tree. In

our example, we have sensitized paths till the FOB nets 26, 27 and 28.

At this point we have to select one of the FOB nets, say mt, to extend the sensitized path.

The use of testability measures should be incorporated into this selection process in order

to make it more efficient. The discussion in this section will, however, be kept general and

no specific heuristic will be referred to. To obtain tc2 we should sensitize all nets belonging

to the set D(m1) - D(n) by intersecting their values in d(tc 1) with A/ A. If any empty

intersection results, then the sensitized path cannot be extended through m 1 and alternate

paths should be investigated. Note that this step is implicitly performing the equivalent of

the X-path check [14] while setting up which gate outputs should be sensitized. As stated

earlier, we would then construct d(tc2). If contradictions occur while constructing d(tc2),

then an alternate path must be selected. Otherwise we have a sensitized path from n 1 to

at least the FOB nets corresponding to the next FOS net or some PO. Assume that we

extend the sensitized path in our example through net 28. We use D{28)- D(25) = {35} to

construct the te2 and d(tc2) shown below. We now have sensitized paths till the FOB nets

49 and 50.

35

A

10

13 29 30 36 47 48 49 50 51 52

1 1 1 1 0/ Ll 0/Ll 1

The process of extending the sensitized path by selecting a FOB net, constructing a tck

and its corresponding d(tck) is continued until we reach some PO and have constructed

T1(pi)· If contradictions occur, then alternate paths should be investigated. If all possible

paths give contradiction, then no test exists. Note that all possible single paths need not be

explicitly investigated to arrive at this conclusion-for example, if all paths from net n to any

net m E D(n) gives contradictions, then we can conclude that no test exists. If during the

construction of d(tck), k 2: 2, the value of net n changes from 0/1 to 0 (1) then an alternate

path, if one exists, must be investigated to derive a test for the fault net n s-a-0 (s-a-1).

Proceeding with our example, let us extend the sensitized path through net 49. (Note that

the attempt to extend the sensitized path through net 50 would lead to a contradiction and

this would be identified immediately from the existing and required value of net 52.) Thus

we use D(49) - D(48) = {51} in order to construct the tc3 and d(tc3) shown below. \Ve

now have a sensitized path (say pl) from 251 to a PO, and thus d(tc3) is TJ(P1).

tc3 :

51

Ll

d(tc3):

1 17 18

1 1 1

At this point we have to set the value net 25 to 0(1) and find its corresponding determin

istic implications to generate TJ1 (Pi) (TJo(Pi)) respectively. We illustrate this process by

considering only the s-a-0 fault at net 25. Thus we set the value of net 25 to 1 and construct

the corresponding deterministic test cube shown below:

TJo(Pi):

9 10 21 22 23 24

1 1 1 1 1 1

In order to keep the discussion as general as possible, we will henceforth use the notation

TJv(Pi), where v E {0, 1}, instead of making specific references to T/l(Pi) or TJo(Pi)·

Note that all the constraints imposed by TJv(Pi) must be satisfied in order to sensitize

path Pi· Since the backward implication rule does not make any arbitrary choices, there

11

may be gates where the output value is a proper subset of the value implied by the input

values, i.e., the input values include combination(s) that will desensitize path Pi· In view of

this fact we introduce the following definition. If, in a deterministic test cube d(tck), the

value of the output net m of a gate G is a proper subset of the value implied at net m by

the input values, in d(tck), of G then net m is said to be a variant net in d(tck)· If a net is

not variant it is defined to be invariant in d(tck)· In our example, nets 41 and 47 are the

variant nets.

If all the nets in the circuit are invariant nets in TJv(Pi) then the specified Pis in TJv(Pi)

represent all the requirements that must be satisfied by any input pattern that detects the

fault net n 1 s-a-v by sensitizing path Pi. In general, however, not all nets in TJv(Pi) will be

invariant. In such a situation there exists an assignment of the unspecified Pis (i.e., inputs

with the 0/1 value) in TJv(Pi) which will desensitize path Pi· In order to obtain a test from

T1v(Pi) we must convert all variant nets to invariant ones by specifying one or more of these

Pis. Moreover, the new deterministic test cube obtained by specifying these Pis in TJv(Pi)

should result in net values that are subsets of their corresponding values in TJv(Pi) for all

the nets of the circuit. This condition is required to prevent the setting of Pis in such a way

as to result in a disallowed value at a net that was variant in TJv(Pi)· For example, if we set

PI nets 15 and 16 to the value 1 in the TJo(Pi) obtained, then the resulting deterministic

test cube would have the value 1 at net 4 7 and also at both the POs of the circuit.

vVe re-emphasize that conversion of variant nets to invariant ones will always involve some

arbitrary choice(s). Different approaches can be adopted to make choices that will convert

all variant nets in TJv(p;) to invariant ones with values that are subsets of the corresponding

net values in TJv(Pi) for all the nets of the circuit, provided there exists an input pattern that

sensitizes path Pi· In this report we will describe an enumeration approach and a consistency

checking approach. However only the enumeration procedure will be used in our example.

2.4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned Pis in T1v(Pi) such that

all nets are invariant in the resulting deterministic test cube and have values that are subsets

of their corresponding values in TJv(Pi)· In order to convert variant nets into invariant ones

we assign values to different Pis such that the resulting value at the net is a subset of

the required value. In § 3 we will discuss how we can prioritize the value justification of

the variant nets and how we can guide the selection of the Pis to which values should be

assigned.

We start by choosing an unspecified PI, h, in TJv(Pi) and assign a logic value (0 or

1) to it, thereby creating a new test cube which we denote by tcJv(Pi, 1). Now we find its

12

corresponding deterministic test cube d(tcJv(Pi, 1)) and update its list of variant nets (note

that new variant nets may be created). However if d(tcJv(Pi, 1)) cannot be obtained due

to some contradiction, then we complement the entry for lt1 in tCJv(Pi, 1) and construct

its corresponding d(tc1v(Pi, 1)). If this also leads to a contradiction, then there exists no

test corresponding to TJv(Pi)· If we are successful in constructing d(tcJv(Pi, 1)), we assign

a logic value to some other unspecified PI, lt2 , thereby creating tc/v(Pi, 2). As before we

must construct d(tc1v(Pi' 2)) and update its list of variant nets. This procedure is continued

and we traverse the decision tree, in a manner analogous to PODEM [14], until one of the

following two conditions occur:

• The list of variant nets corresponding to some d(tc,v(Pi,j)) becomes empty.

• The decision tree is exhausted, i.e. no test exists.

If the procedure is terminated because the former condition is satisfied, then the values

of the Pis in d(tc/v(Pi,j)) represent test(s) for the fault. To derive test patterns for the

fault we would then assign either 0 or 1 to those Pis in d(tc,v(pi,j)) which have the value

0/1.
Heuristics like controllability measures should be used in this phase to guide the selection

of the Pis to be assigned values. However, as in the case of the Propagation Phase we will

avoid making reference to any particular measure in order to preserve generality.

Returning to our example, nets 41 and 47 are the only variant nets in TJo(P1). By

inspecting the dominator forest we notice that nets 15 and 16 are the Pis which are "closest"

to net 47. We thus start by setting net 15 to 0-however, this does not change the value

of any other net. We continue by setting net 16 to 0-once again no new changes result.

We now use the dominator forest to reach the FOS net 42 and thus determine that nets 8

and 12 are the next "closest" Pis. We could, for example, set net 8 to 0-the only resulting

change is a 0/ ~at net 39. We then set the value of net 12 to 0-this changes the value of

net 40 to 0/ ~. Continuing in this fashion we would set net 7 to 0-this would result in a

0 at nets 33, 39 and 4 7 and a 0/ ~ at nets 42 through 46. However net 4 7 is still a variant

net and we continue the enumeration process. If we now set net 11 to a 0 it will result in a

..::1 at 34, 40 and 42 through 46; it would also give a contradiction at net 47. So we go back

and change the value of the last PI that was assigned i.e. net 11 is now set to a 1. This

will result in a 0 at nets 34, 40 and 42 through 4 7. Thus net 4 7 has been converted to an

invariant one. A similar procedure can be followed to covert net 41 to an invariant one. For

example, setting nets 2, 3 and 4 to the value 1 would achieve the required conversion.

Note that the generation of tests for the s-a-1 faults at the checkpoint nets 22 and 23,

while sensitizing the same path p 1 , involves only the construction of T/1 (p1) with appropriate

13

values for nets 22 and 23 and then executing the Enumeration Phase. In summary, we have

used the same T1(p1), which is d(tc3) of our example, to obtain tests for four single stuck-at

faults at two checkpoint nets. These are the faults net 22 s-a-0, net 22 s-a-l, net 23 s-a-0

and net 23 s-a-1.

Since the conversion of variant nets to invariant ones is the key to generating a test from

TJv(Pi) it is useful to keep track of nets which are variant in the process of constructing

TJv(Pi)· This would avoid the unnecessary checking of every net as variant or invariant after

TJv(Pi) has been constructed. Note that if a net is invariant at some stage of generating a

test for a fault it will not become variant unless a new backward implication (with a value

which is a proper subset of the existing value) is made for the net.

The algorithm described so far can be substantially improved by the introduction of

several speed-up techniques which we discuss in §3.

2.5 Consistency Checking Approach

In this section we discuss an alternate procedure that can be used instead of the Enumeration

Phase in order to convert all the variant nets in TJv(Pi) to invariant ones. The approach

followed here is similar to the consistency operation of the D-algorithm [21]. Recall that a

gate whose output is a variant net is characterized by having inputs, specified in TJv(Pi),
that can produce values at the output of this gate which do not appear in TJv(Pi)· So we

must restrict the inputs of this gate in several ways-multiple choices exist because it is a

variant net-such that these disallowed values cannot appear at its output. When making

these input restrictions, care must be taken to see that every input pattern from T1v(Pi)

that yields permissible output values is accounted for in at least one of the choices. H the

constraints imposed by a particular choice cannot be met, then another choice is selected.

If there is no input combination that converts all variant nets into invariant ones, there

exists no test pattern that sensitizes path Pi· Different heuristics can be used to decide the

priority among different choices. For the sake of efficiency we would like to minimize both

the number of choices and the overlap between different choices.

Example 1 Assume that the entries corresponding to a two-input AND gate (with input

nets X1 and X 2 , output net Z) in TJv(Pi) is as follows:

x1 x2 z I
0/~1~ 0/1/~1~ 0

Note that net Z is variant since its value, as implied by nets X1 and X2 , is 0/ ~/ ~. All

the permissible input combinations that convert net Z into an invariant one are covered by

the following three input patterns:

14

(i)
(ii)
(iii)

Oflf Jt!f Jtl

Of Jtl

Of Jtl

z
0

0

0

Depending on the heuristics used these three choices would have different priorities which in

turn would decide the order in which they would be tried.

•
We now give a procedure that can be used to obtain the different choices that can be

made to convert a variant net to an invariant one. Only a 2-input AND gate and a 2-input

XOR gate need to be considered because, as stated earlier, all other cases can be derived

from these. Consider a 2-input gate G with input nets Xt and X 2 and output net Z. Let

St, S2 , and Sa be the set of values in TJv(Pi), associated with X1 , X 2 , and Z, respectively.

Since Z is a variant net, IStl > 1 and IS2I > 1. Without loss of generality, assume that

IS2I ~ IS1 I and let St = {sn,St2, ... ,Stm}· With Sa as the requested output value and

Sti E S1 as the value of one input we use either Table 8 (if G is an AND gate) or Table 3 (if

G is an XOR gate) to obtain the set s2i· The allowable value at input x2, with Sti at input

Xt, is given by S~i = S2i n S2. This procedure is performed for all the elements of S1 . This

yields the following choices:

Input Xt {sn} {st2}

Input X2 S~1 S~2

The output Z is an invariant net for any of the above choices because input X1 has a single

value. We may reduce the number of choices by combining values of input X1 . This can be

done only when S~i = S~i· In this situation the ith and lh choices can be replaced by the

input pattern that has { Sti, Stj} at Xt and s~i at x2. The same procedure can be used to

combine three choices if possible.

Example 2 Consider a 2-input AND gate (input nets Xt,X2; output net Z) whose net

entries in TJv(Pi) is shown below:

I x1 x2 z I
Of ~:if Jtl Of1f ~:if J:i Of Jtl .

Thus net Z is a variant net. The procedure described above yields the following choices:

Input X 1 0 J:l J:l

Input X2 Of1f Jt!f:il 0/1/ ~/:il 0/ ~

15

Since the value of X2 is identical for the first two choices they can be combined to yield:

Input xl 0 I A A

Input X2 0/1/ .A/3. 0/ .d

•
2.6 Use of Token Vectors

The introduction of .A/ A as a sensitized value was motivated by the deterministic prop

agation along an XOR/XNOR gate. For example, a A at the input of a two input XOR

gate can produce both a A or a A at the output depending on whether the other input

is 0 or 1. Thus unlike the other gates, XOR/XNOR gates may result in a situation where

the parity of inversions with respect to the fault site can no longer be determined. In this

section we discuss, how we can tackle this problem so that our deterministic implications

are not weakened by this phenomenon.

Consider a gate G (not an XOR/XNOR gate) which lies on the path Pi that we de

liberately sensitize. Evidently one input of G, say net mt, lies on path Pi and must have

a sensitized value. If this value is L1 (or L1) then our deterministic implication procedure

would eliminate the value L1 (or L1) from the set of values of the other inputs of G. Consider

the situation where net mt has the value L1/ A and the value of another input, say net mk,

of G contains both L1 and .d. Also let the A and L1 at nets mt and mk be due to the

value L1/ L1 at some FOS net mi that influences both mt and mk. Furthermore assume that

a .d (.d) at net mt requires a A (L1) at net m i and that a L1 (L1) at net mk requires a

.d (.d) at net mi. Thus, if we want to sensitize net mt, then net mk cannot be sensitized.

However since the value of net mi contains both A and L1 we would not be able to arrive

at this conclusion using the implication rules alone. This motivates the introduction of the

concept of "sensitization parity" which will help us in identifying such relationships among

the sensitized values of different nets. For ease of explanation we introduce the following

definitions:

Definition 1 Net mi is said to be the sensitization source for net mt with respect to the

fault site n if and only if all paths from net n to net mt pass through net mi.

•
Note that the above definition does not necessarily imply that mt E D(n) or that

mt E D(mi)·

16

Definition 2 The path parity of a single path Pa, not containing any XOR/XNOR gates,

is the parity of the number of inverting gates along Pa·

• We will use the value 0 for even parity and the value 1 to denote odd parity. As far

as XOR (or XNOR) gates are concerned, the count of inversions is dependent on the exact

inputs and not just circuit structure. Thus the path parity cannot be uniquely determined

by circuit structure alone. The concept of path parity was effectively used in [2] for fault

simulation purposes.

Definition 3 The inversion parity of net mt with respect to net m; is b if and only if

there exists at least one single path from net m; to net mt and the path parity of all single

paths from net m; to net mt is b.

•
Definition 4 The sensitization parity of net mt with respect to net m;, given a particular

fault site n, is b if and only if net m; is a sensitization source for net mt (with respect to the

fault site n) and the inversion parity of net mt with respect to net m; is b.

•
Let us consider again the gate G (not an XOR/XNOR gate) which lies on the path Pi

that we deliberately sensitize. As before let the value of the input net mt of gate G that lies

on path Pi be Ll./ Ll. and the value of another input, say net mk, contain both Ll. and Ll.. If

the sensitization parity of net mt with respect to net m; is band that of mk with respect to

net m; is b then net mk cannot be sensitized when we are trying to sensitize path Pi· Hence

we can eliminate both Ll. and Ll. from the value of net mk· Note that we have excluded G

to be an XOR/XNOR gate because the output of such a gate is sensitized if and only if it

has an odd number of sensitized inputs which may include both Ll. and Ll..

In order to take advantage of the information provided by the sensitization parity we

introduce the concept of a token vector of the form [m, b]. If the token vector of net mh is

[m;, b], then b is the sensitization parity of net mh with respect to net m;. To explain the

assignment of token vectors we divide gates (which are not XOR/XNOR gates) which have

at least one input with a token vector and whose output token vector has not been assigned

into two categories:

(i) Type I: gates for which all inputs with the TRUE token have token vectors.

(ii) Type II: gates for which there is at least one input with a TRUE token but no token

vector.

17

In our procedure the token vector of the output net of a gate will be defined in terms of

the input token vectors only when all the inputs with the TRUE token have identical token

vectors. Otherwise we will restart the sensitization parity count at the output net. Thus the

rule to assign token vectors is as follows:

If all the input token vectors of a gate G are identical (say, (m, b]), then its output is

assigned [m, b] if G is noninverting or (m, b] if G is inverting. Otherwise the output net m 9

of gate G is assigned the vector [m9 , 0].

In the algorithm for assigning token vectors we first level-order the net numbers of the

circuit if it is not already in that format. A level ordered net numbering scheme implies that

for every gate in the circuit the net number of the output is greater than the net number of

any of its inputs.

We now describe the steps involved in assigning token vectors:

Step 1: Consider the set of all XOR/XNOR gates that have a TRUE token at their

output net. Using the dominator forest inspect if any of these output nets influence a FOS

net. If no such FOS net found then token vectors need not be assigned. If at least one such

FOS net is found then continue.

Step 2: Assign [ms, 0] to the output of every XOR/XNOR gate that has a TRUE token

at its output net m 5 •

Step 3: If a net which was assigned a token vector in the previously executed step is an

FOS net, then all its FOB nets are assigned the same vector.

Step 4: If there exists a gate of Type I, then assign its output token vector and go to

Step 3. Otherwise, continue.

Step 5: If there exists a gate of Type II, then choose the one with lowest output net

number and assign its token vector and then go to Step 3. If no such gates exist then the

assignment of token vectors is complete.

Note that when the above procedure terminates (termination is due to the finiteness of

the number of gates), all the gates (not XOR/XNOR gates) whose output nets do not have

an assigned token vector are those for which no input has an assigned token vector.

There are two ways in which token vectors can provide information which a deterministic

implication alone may not. If several inputs of a gate G (not an XOR/XNOR gate) have

identical token vectors, then we may simultaneously sensitize any number of these inputs.

Furthermore, we can never simultaneously sensitize two inputs of G whose token vectors

differ only in their second component.

We will show in Appendix C that our algorithm for assigning token vectors satisfies the

following properties:

Property 1 If the proposed algorithm assigns a token vector to a net then there exists a

18

path from the fault site to this net that contains an XOR/XNOR gate. •
Property 2 If the proposed algorithm assigns a token vector to the output of a Type II

gate G, then there is no XOR/XNOR gate in any path from the fault site to any input of G
that has a TRUE token but no token vector. •

Property 3 If the sensitization parity of net mt with respect to net m; is b1 and the

algorithm assigns the token vector [m, b] to net m; then it would assign the token vector

[m, b ffi b1] to net mt. •
Not all the token vectors generated by the above procedure will be useful-however their

computation was necessary in order to compute the useful token vectors. The token vector

of a net m1 may be useful only if it is the input to a gate G (where G is not an XOR/XNOR

gate) which has at least one more input, say net m2, such that the first component of the

token vectors of m1 and m2 are identical. Accordingly the token vector of any net that does

not satisfy the above condition can be deleted.

Example 3 To illustrate the use of the token vectors consider the circuit shown in Figure 4.

The token vectors of the nets, given that net 3 has a TRUE token, are shown in the figure.

Assume the path being sensitized is through nets 3, 8, 12 and 14 and let the value of net

3 be .tl./ .tl.. If token vectors were not used then the deterministic test cube that takes the

propagation requirements into account would be as follows:

3 4 5 6 7 8 9

.tl./ ,tl 0/1 0 .tl./ ,tl .tl./ ,tl .tl./ ,tl 0/1

10 11 12 13 14

1/ .tl./ ,tl 1/ .tl./ ,tl .tl./ ,tl

In the above test cube nets are 13 and 14 are variant nets. If now the token vectors are take

into account, then comparing those of nets 12 and 13 indicate that net 12 and 13 can never

be simultaneously sensitized because their vectors differ only in their second component.

Consequently net 13 must be set to 1. The resulting deterministic test cube is:

3 4 5 6 7 8 9 10 11 12 13 14

~~~ 0 0 ~~~ ~~~ A/~ 0 1 1 ~~~ 1 

Note that substantial deterministic changes result because of the use of token vectors and 

also that all the nets shown are now invariant. 

• 
19 



3 Speed-up Techniques 

3.1 Use of the Contrapositive 

In this section we will discuss how using the contrapositive assertions of implications per

formed during the Pre-processing Phase can be used as an effective speed-up technique. The 

use of the contrapositive to reduce the search space was first suggested by Schulz, et. al., in 

SOCRATES [22]. 

The contrapositive of the logic expression P ==? Q is the equivalent expression rv Q ==?rv 

P. Referring to the circuit of Figure 5 we notice that X 3 = 0 ==? Z = 0. Hence the 

contrapositive would yield Z = 1 ==? X3 = 1. However, if we require the value 1 at Z 

given that all other nets have the value 0/1, no deterministic change would be implied by 

the backward implication procedure alone. Note, however, that in some cases a backward 

implication will yield the information provided by the contrapositive property. For example, 

X 3 = 0 ==? 14 = o yields 14 = 1 ==? X3 = 1. However, a backward implication of 14 = 

1 yields a 1 at X 3 , X4 , and X 5 • Hence it is useful to identify the conditions under which 

a backward implication cannot yield the information provided by a contrapositive assertion. 

In such cases we may store this information for possible use later in the test generation 

process. 

The procedure presented in SOCRATES can only be used to backward imply the value 

0 or 1 because it is assumed in (22, §4.3] that the "injected target fault is not located in 

this part of the circuit and the effects of the target fault cannot propagate to it as \vell." 

Furthermore, as mentioned in the learning procedure of (22, Fig. 5], the 0 and 1 implications 

are performed for all the nets of the circuit. 

In this section we present a procedure that performs the 0 and 1 implications for only 

the FOS nets of the circuit. However we will show that this is sufficient to generate the infor

mation that can be obtained by performing the 0 and 1 implications for the remaining nets 

because of the deterministic nature of our backward implication procedure. Consequently 

the number of implications performed and the assertions stored for possible future use are 

less than that of SOCRATES. Furthermore we will also show that these stored 0 and 1 

implications from FOS nets are sufficient to generate the useful contrapositive assertions for 

all 16 values of our system and for all nets of the circuit. Thus our use of contrapositive 

assertions will not be limited, as SOCRATES is, to only nets that are unaffected by the 

fault. 

In our 16-valued system, assume that the forward implication of a value L1 at net m1 with 

0/1/ Ll./ L1 at all other nets yields the value L 2 at net m2 • Thus when we require a value 

L~ r;;,((0/1/ Ll./ Ll.)-L2 ) at net m 2 , then the value of net m1 cannot contain any element 

20 



Value applied Implied value at net m2 

at net m1 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 

0 0/1 0 1 0 1 0 1 0/1 0/1 

1 0/1 0 1 1 0 0/1 0/1 0 1 

Table 4: Implications in 3-VP 

of L1 . To obtain the implications for all possible values of L1 we only need to perform 

implications for each individual element of 0/1/ Ll/ Ll. Thus the procedure to obtain the 

implications for the 16-valued system, henceforth referred to as 16-VP, would be to set the 

value of net m 1 to each of the values 0, 1, Ll and Ll, one at a time and with 0/1/ Ll/ Ll at 

all other nets, and observe the implied value at net m2. Each such implication is referred 

to as a 16-VP "experiment." We will show that the information yielded by 16-VP can 

be obtained from a simpler procedure that utilizes a 3-valued (0, 1, 0/1) logic system. In 

this procedure, which we denote as 3-VP, we set the value of an FOS net m1 to each of 

the values 0 and 1 one at a time and with 0/1 at all other nets, and observe the implied 

value at net m2 • Each such implication is referred to as a 3-VP "experiment." For ease 

of explanation we define the values 0 and 1 as "singleton" values. Table 4 shows the nine 

possible combinations of values obtained by 3-VP at net m2 when the values 0 and 1 are 

applied at net m 1 • Note that cases (ii) and (iii) show that net m 2 has a constant value 

independent of the circuit inputs. As a consequence, at least one of the stuck-at faults at 

net m 2 is undetectable. Cases ( iv) and ( v) simulate an identity function and an inverter 

between nets m 1 and m 2 , respectively. 

Consider a 3-VP experiment performed by setting a FOS net m1 to a singleton value and 

all other nets to 0/1. The experiment in which net m 1 is set to the same singleton value while 

all other nets are set to 0/1/ Ll/ Ll is known as the corresponding 16-VP experiment. The 

following theorems, whose proofs appear in Appendix D, establish the relationship between 

the results of a 3-VP experiment and the corresponding 16-VP experiment. 

Theorem 1 If a 3-VP experiment yields a singleton value at net m2 , then the corre

sponding 16-VP experiment yields the same singleton value at this net. 

• 
Theorem 2 If a 3-VP experiment yields the value 0/1 at net m2 , then the corresponding 

16-VP experiment yields the value 0/1/ Ll/ Ll at this net. 

• 
21 



Value applied Implied value at net m2 

at net m1 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 
0 0/1/A/A 0 1 0 1 0 1 0/1/A/A 0/1/A/A 
1 0/1/A/A 0 1 1 0 0/1/A/A 0/1/A/A 0 1 

Table 5: Implications of a 0 and 1 in 16-VP 

Value applied Implied value at net m2 

at net m1 ( i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) 
3-VP 0 0/1 0 1 0 1 0 1 0/1 0/1 

1 0/1 0 1 1 0 0/1 0/1 0 1 
16-VP 0 0/1/A/A 0 1 0 1 0 1 0/1/A/A 0/1/A/A 

1 0/1/A/iS. 0 1 1 0 0/1/A/iS. 0/1/A/iS. 0 1 
A 0/1/A/iS. 0 1 A A 0/A 1/iS. O/A 1/A 
A 0/1/A/A 0 1 A A O/A 1/A 0/A 1/A 

Table 6: Relationship between 3-VP and 16-VP 

Consequently Table 5 is obtained from Table 4 when a 0 and 1 implication is performed 

in 16-VP. We now show that the information yielded by 16-VP can be obtained from 

that yielded by 3-VP. We do this by illustrating how Table 5 can be used to obtain the 

implications due to a .d or a .d at net m1. Note that a .d at net m 1 corresponds to a change 

in value of net m1 from a 1 to a 0 or a 0 to a 1. Thus, to obtain the implied value at net m 2 

due to a .d at net m 1 we only need to know the value at net m 2 due to a 1 and a 0 at net 

m 1 in 16-VP. 

Consider the situation where a 1 and a 0 at net m1 yields a 0 and 0/1/ .d/ .d, respec

tively, at net m 2. Thus, with a 0 at net m1 we can obtain both 0 and 1 at net m 2. Thus 

if the (b9 , b1) value at net m1 is (1,0) then the possible (b9 , b1) values at net m 2 are (0,0) 
and (0,1). On the other hand a (b9 ,bJ) of (0,1) at net m1 implies the possible values at net 

m 2 are (0,0) and (1,0). This information can be represented in a compact form by stating 

that the value .d (.d) at net m1 implies the value 0/ .d (0/ .d) at net m2 • Analogously, we 

can inspect the other cases to generate the implications of a .d or .d at net m1 • Table 6 

summarizes our results and shows how the 16-VP table can be obtained from the 3-VP 

table. 

We now discuss the conditions under which the information yielded by a contrapositive 

assertion cannot be obtained by a deterministic backward implication alone and hence should 

be stored for future use. Consider the situation where a singleton value L1 at net m1 yields, 

using 3-VP, a singleton value L2 at the output net m 2 of a gate G. The corresponding 

contrapositive assertion should be stored if and only if the value L 2 can be obtained at the 

22 



~ G 

0 OR NAND XOR XNOR 
1 NOR AND XOR XNOR 

Table 7: (£2 , G) combinations that yield useful contrapositive assertions 

output of G by setting all its inputs to non-controlling values. Consequently, Table 7 shows 

the £ 2 and G combinations for which this implication should be stored for future use. In 

general, for the cases that satisfy the (£2 , G) combinations given in Table 7 we will not 

be able to drop £ 1 from the set of all possible values at net m1 when we require a value 

L~ ~((0/1/ .tl/ .tl.)-£2 ) at net m2 by using only the backward implication procedure. 

We now present a procedure which, when incorporated into the Pre-processing Phase, 

can derive all the contrapositive assertions for our 16-valued system. 

1. Construct two test cubes tC00 and tC01 in which the values of all nets of the circuit are 

set to 0/1. 

2. In tc00 ( tc01 ) change the value of net m1 , where m1 is a FOS net , to the singleton 

value £ 1 ( £ 1 ) and perform a forward implication of this value. 

Let £ 2 (L3 ) be the implied value at the output net m2 of gate G. 

3. If both £ 2 and £ 3 are singleton values, then both these implications (£1 at m1 ==> £ 2 

at m 2 and L 1 at m1 ===> £3 at m2) need to be stored. 

4. If only one of the values (say £2) is singleton and this value £ 2 and the gate G happen 

to be one of the combinations listed in Table 7, then this implication ( £ 1 at m1 ==> L 2 

at m 2) should be stored. Note that whenever we have only one implication stored for 

a given m~, m2 pair it means that the other value at net m1 yields a 0/1 at net m2. 

5. Repeat steps 1-4 for all FOS nets. 

The learning procedure presented in SOCRATES [22, Fig. 5] performs the 0 and 1 

implications for all nets of the circuit. However, we have reduced the amount of computation 

and storage requirements by performing the implications for only FOS nets. It is easy to show 

that the information for all other nets can be derived from this because of the deterministic 

nature of our backward implication procedure. 

The contrapositive assertions in the 16-valued system corresponding to the implications 

stored by the above procedure can be generated using Table 6. So, it has to be shown 

that if any implication was not stored by the above procedure, then either its corresponding 

23 



contrapositive assertion yields no information or the information yielded can be derived by 

using the stored contrapositive assertions and the backward implication rules. The former 

situation refers to the trivial case when both L2 and £3 are 0/1. The latter situation refers 

to the case where only one of L2 or L3 (say L2) is singleton and (L2, G) is not one of the 

combinations listed in Table 7. This implies that a controlling value at some input of G 

produces the value L2 at its output. Hence there exists at least one input of G, say net mj, 

such that the value of L1 at net m1 yields, using 3-VP, a controlling value for gate G at net 

mi. From Lemma 3 of Appendix D we know that this 3-VP experiment creates a path (say 

p 1 ) of singleton values from net m1 to net mi. Furthermore, if the singleton value of any net 

on this path is a non-controlling value for the gate Gi it drives, then this experiment sets 

all inputs of Gi to non-controlling values. Let us consider the two possible ways this could 

happen: 

( i) in path p 1 all nets have values that are controlling values for the gates they drive. 

( ii) In path p 1 there exists at least one gate such that the value L1 at net m1 sets all 

inputs of such gates to non-controlling values. Let Gi be the gate which satisfies the above 

property and is closest to m2. Thus, using Table 7, the implication of the value, say Li, 

obtained at the output of Gi due to the value L1 at net m1 would be stored for future use. 

Consider the situation where the required value at net m2 does not include the value 

L2 • Thus we can drop the controlling input value from all inputs of G, including net mi. 

Furthermore if the value at net m 2 does not include .L1 ( ...:::1) then we can drop the value ...:::1 

(...:::1) from all inputs of G, including net mi, if G is a non-inverting (or inverting) gate. vVe 

then traverse backwards along path p 1 from net mj to net m1 . In the case of situation (i) 
described above we would be able to drop, from every net on path p 1 , the controlling value 

for the gate this net drives. Moreover, we could also drop one ....:::1 or ....:::1 (depending on the 

number of inversions along p 1 ) from these nets too. Thus at net m1 we will be able, by 

applying the backward implication procedure, to drop the value L1 and one of the values 

.L1 or ....:::1. If situation ( ii) had occurred then we would be able to drop the controlling value 

and one of ....:::1 or ....:::1 from nets on path P1 till we reach the output of gate Gi. Specifically 

we would drop the value Li and one of the values ....:::1 or ....:::1 (as is appropriate) from the set 

of values at the output of gate Gi. However since we have stored the implication (L1 at net 

m1 ~ Li at output of Gi) we would now invoke the contrapositive of this assertion to drop 

L1 and the appropriate ....:::1 or ....:::1 from the set of values of net m1 . Thus the implications 

stored by the procedure outlined in this section are sufficient to generate all the necessary 

contrapositive assertions. 

The discussion in this section was so far limited to performing forward implications from 

nets and storing only those whose contrapositive assertions are useful. However, as pointed 

24 



out in [16], performing the backward implication can also yield useful relationships between 

the values of the nets. As an example consider the circuit shown in Figure 6. 

Performing backward implication of the value 0 at net S yields the relation (0 at net 

S ::=:} 1 at net R) from which we can deduce that (0 at net R ==> 1 at netS). Thus if we 

had stored this implication it could potentially be useful during the test generation process. 

Note that obtaining all the deterministic changes due to a backward implication of a value 

at some net will generally involve performing forward implication of the values of nets also. 

This is unlike the case for forward implication where we did not have to perform backward 

implication of the values of nets to obtain the useful contrapositive assertions. For example 

we need to forward imply the value 0 at P and the value 1 at Q in order to obtain the value 1 

at R due to a 0 at S. The procedure proposed in [16] performs backward implication (which 

may involve performing forward implications too) from all nets of the circuit, analyzes the 

results of these implications and accordingly stores those which may be useful later, i.e. 

those which cannot be directly obtained from forward or backward implication. Moreover, 

the procedure in [16] can only be applied to nets that are unaffected by the fault site. As in 

the case of forward implications, the relationship between 3-VP and 16-VP for backward 

implications can also be derived from Table 6. This is easily understood by realizing that a 

backward implication, using 3-VP, of a singleton value at the output of a gate given a 0/1 

at all inputs can only result in changes at the inputs of the gate if the requested output is 

due to all inputs being set to non-controlling values. Thus both 3-VP and 16-VP would 

give the same results in such a situation. If some input of the gate has already been set to a 

singleton value 3-VP then it must be due to a forward implication and hence 16-VP would 

also yield the same result. Thus as in the case of forward implications, we can also use the 

contrapositive of backward implications for nets that affected by the fault being considered. 

But, in order to obtain all useful contrapositive assertions, we need to perform implications 

for all nets of the circuit. A method to obtain a subset of all useful contrapositive assertions 

by performing implications for only some of the nets of the circuit is proposed in [5]. 

3.2 Identifying Independent Subcircuits During Enumeration Phase 

Recall that in the Enumeration Phase we have to convert all variant nets to invariant ones 

with values that are subsets of their required values in the deterministic test cube being 

considered. In this section we discuss how we can use the dominator forest to identify 

"independent" subcircuits whose value justification during the Enumeration Phase can be 

done independently. 

The concept of postponing the value justification of nets whose justification process is 

guaranteed to succeed was proposed in FAN [11]. It was based on classifying all the nets of 

25 



the circuit into the following categories: 

• When a signal line Lis reachable from some fan-out point, that is, there exists a path 

from some fan-out point to L, we say that L is a bound line. 

• A signal line which is not bound is said to be a free line. 

• When a free line is adjacent to some bound line, we say that it is a head line. 

In [11] the backtrace procedure terminates at a head line instead of continuing towards a 

PI. This is because a head line is the output of a fanout-free sub-circuit and hence its value 

justification can always be satisfied. Consequently it is useful to postpone the value justifi

cation of head lines till all other lines have been justified. This avoids a lot of unnecessary 

computation in the event that one of the other lines cannot be justified. Unfortunately, in 

most practical circuits, including the ISCAS benchmark circuits [7], a majority of the head 

lines are the PI nets. This is because almost all PI nets are also FOS nets. Thus signifi

cant improvement in ATPG performance cannot be expected to be contributed by using the 

concept of head lines. 

To overcome this difficulty, TOPS [17] introduced the concept of "basis nodes" whereby 

a net (say m) is defined to be a basis node if and only if all FOS nets that influence m totally 

reconverge prior to it. Utilizing this property TOPS could postpone the value justification of 

basis nodes until that of other nodes because they do not interfere with the value justification 

of nets lying outside its cone of influence. Furthermore, if the circuit does not contain any 

nets whose value is constant (i.e. independent of the Pis) then the value justification of the 

basis nodes will not lead to contradictions. Although the use of basis nodes is a generalization 

of the head line concept introduced in FAN [11], it is still a static procedure and does not 

take into account the constraints imposed by the values of the test cube generated at any 

stage of the test generation. Moreover both the head line and basis node concepts are limited 

to the the discussion of nets which are unaffected by the fault site. In this section we present 

a dynamic procedure that overcomes these drawbacks by utilizing both the circuit structure 

and the values of all the nets in the associated deterministic test cube. Furthermore our 

procedure can be applied to all nets of the circuit, including those that are affected by the 

fault. 

We will denote a variant net as a Satisfiable Variant Net (SVN) if the justification of 

its value with respect to a deterministic test cube is guaranteed to succeed and thus can be 

postponed to the last stage of test generation. 

In some cases it may be possible to identify nets which are not necessarily SVNs but 

their value justification depends on a subset of the Pis which do not influence the value 

26 



justification of some other variant nets. In such a situation the value justification of the two 

sets of nets in question are independent. Thus for a given deterministic test cube it would be 

useful to identify these nets- henceforth denoted as Independent Variant Nets (IVNs)

so that their value justification can proceed independently. Note that with every IVN there 

is an associated subcircuit such that the value justification of the IVN is independent of all 

nets outside this subcircuit. Hence it is important to identify this subcircuit along with the 

IVN. 

The procedure for the identification of SVNs and IVNs should be substantially simpler 

than their actual value justification for this speed-up technique to be useful. Thus we will 

concentrate on developing fairly straightforward procedures that utilize information that has 

been already derived by other aspects of the test generation process and try to identify as 

many SVNs and IVNs as possible. 

For the remainder of this section we will refer to a net as being "single-valued" if the 

cardinality of the set of values associated with this net, in the deterministic test cube being 

considered, is one. Similarly a net will be termed "multi-valued" if the cardinality is greater 

than one. 

We now present procedures for the identification of SVNs and IVNs using the dominator 

forest and the values of the circuit nets in the deterministic test cube with respect to which 

the nets in question are variant. 

3.2.1 SVN Identification 

Let mv be the net under inspection which is variant with the value Lv in the deterministic 

test cube d(tc). Consider the subtree Tm., of the dominator forest that has net mv as its 

root. 

(i) From Tm., delete all nodes that correspond to FOS nets. Note that the removal of a 

node implies the removal of the entire subtree which has this node as its root. The remaining 

tree corresponds to the largest fanout-free subcircuit that has net mv as its output. 

( ii) Consider all the nodes of the remaining tree which are single-valued in d( tc). Remove 

every child of each of these nodes. Let us denote the remaining tree as T/n,.,. 
Consider all the leaves of T/n,., which corresponds to nets which are multi-valued in d(tc ). 

If all these nets are Pis then net mv is an SVN. In other words, if net mv is an SVN 

then the inputs of the fanout-free subcircuit corresponding to T/n.., can be divided into two 

categories- nets which are single-valued in d(tc) and PI nets with the value 0/1 in d(tc). 
As an example of the SVN identification procedure consider the subcircuit shown in Figure 7 

which is part of a larger circuit. Note that the value 1 at PI net 3 is obtained by using the 

contrapositive assertions. In this example net 12 is a variant net and inspection of T{2 shows 

27 



that it is indeed an SVN. 

Let m11 be a net which has been verified to be an SVN with respect to some d( tc) as per 

the identification procedure described. Consider the subcircuit corresponding to the tree T~" 

that is constructed by the procedure. The general structure of this fanout-free subcircuit is 

depicted in Figure 8 where the leaves ofT~" consist of single-valued (all values discussed are 

with respect to d(tc)) nets msi, msz, ... , msk and PI nets m;1, m;z, ... , mii· Note that some 
or all of m 61 , m62 , ••• , m 11k may also be variant in d(tc). Consider the set of nodes consisting 

of all the interior nodes (all nodes except the leaves) of T~. except the root net m11 • All 

nodes belonging to this set are multi-valued and some of them may also be variant. Let L 11 

be the required value, in d(tc), at the SVN net mv. The following theorem provides the 

rationale for postponing the value justification of an SVN until all the non-SVN nets have 

been converted to invariant ones. 

Theorem 3 For every 111 E L11 , there exists an assignment of the PI nets mi1 , mi2 , ••• , mii 

that converts net m11 to an invariant net with the value 111 • Furthermore this assignment will 

also convert all the other interior variant nets of T/n" into invariant ones with values that are 

subsets of their required values in d(tc). 

Proof Since T/n" corresponds to a fanout-free circuit and all values are with respect to 

a deterministic test cube d( tc), thus for every lv E Lv there exists an assignment of the 

unassigned inputs of T/n" (in this case the PI nets mil, m;z, . .. , m;i) that will result in the 

value lv at net m 11 thereby converting it to an invariant net. Furthermore this assignment 

converts all the nets of T/n" into single-valued nets. Consider the situation where one of the 

previously variant interior nets, say m;, of T/n" now has a value that is not one of the required 

values at this net. Thus this value is capable of producing the value 111 at net m11 • Moreover 

because of the fanout-free structure of T~", net m; affects the rest of the circuit through 

net m 11 • Hence the value obtained at net mi due to this assignment would not be dropped 

from it's set of allowable values because it produces a required value at net m 11 • Hence the 

obtained value at m; must be one of the elements of its required value in d(tc). Thus all the 

interior nets of T~., are also converted to invariant ones. • 

Thus for every single-value lv E Lv, there exists an assignment of these Pis which yield 

the value 111 at net m11 without interfering with the values of nets outside T/n,. The following 

theorem, whose proof follows directly from the SVN identification procedure, is useful in the 

process of justifying SVNs. 

Theorem 4 Let mv be an SVN with respect to some deterministic test cube d(tc1 ). Let 

d(tc2 ) be a deterministic test cube obtained by converting some variant nets in d(tc 1 ) to 

invariant ones by assigning some of the unassigned Pis of d(tc 1 ). Then net m11 is either an 

SVN or an invariant net with respect to d(tc2 ). • 

28 



3.2.2 IVN Identification 

As in the case of SVNs, in order to check whether a variant net mv is an IVN with respect 

to a deterministic test cube we start with the subtree Tm., of the dominator forest that has 

net mv as its root. 

( i) For every node m 8 of Tm., which is single-valued in the deterministic test cube in 

question, consider the subtree Tm 6 which has net ms as its root. 

(ii) If none of the FOB leaves of Tm 6 are multi-valued then delete the subtree Tm 6 from 

Tm.,. Otherwise, consider the FOS nets corresponding to the multi-valued FOB leaves of 

Tm 6 • If all these FOS nets are outside Tm., then delete the subtree Tm 6 from Tm.,. After all 

possible deletions let the remaining subtree of Tm., be denoted as T,::.,. 

(iii) If for every multi-valued FOB leaf ofT,::.,, the corresponding FOS net also belongs 

to T_" then net mv is an IVN. m., 

The value justification of net mv can be performed by assigning values to the multi-

valued PI leaves of T,::., and is independent of all nets that are not in T,::.,. However unlike 

the situation for SVNs, this value justification process is not guaranteed to succeed. It is 

important to note that net mv need not be the only variant net in T::_.,. In such a situation the 

value justification of all the variant nets in T,::., are dependent - however it is independent 

of all nets lying outside T,::.,. 
As an example of a situation where a net can be ascertained to be a IVN and yet its 

value in a certain d(tc) cannot be justified, consider the circuit of Figure 9. The output of 

the XOR gate is a IVN with respect to a d(tc) which has the values shown in the figure. 

However, enumeration will show that this net can only have the value 1 given the values 

present at the FOB nets shown. The important thing to realize, however, is that even though 

the value justification of a IVN may not succeed, the justification process is independent of 

the rest of the circuit. 

We now discuss the rationale for the proposed procedure for IVN identification. Note 

that a basis node is an IVN with respect to any deterministic test cube. This is because a 

node mv is a basis node if and only if all the FOS nets corresponding to the FOB leaves of 

Tm., are contained in Tm". In order to potentially identify more nets whose value justification 

is independent of other nets we can then relax this condition to allow the single-valued FOB 

leaves of Tm., to have their FOS nets outside Tm.,· This is because the value of these nets 

will not be changed during the value justification of net mv and will not affect any nets 

outside Tm". More IVNs can potentially be identified if we delete single-valued nodes from 

Tm., provided the value justification of net mv does not result in an incorrect value at the 

single-valued node m 8 that was deleted. The value justification of net mv can affect the 

value of node m8 by changing the value of the FOB leaves of the tree Tm.· Inspection of the 

29 



multi-valued FOB leaves of 'Tm. can result in one of the following three situations: 

( i) All the FOS nets corresponding to the multi-valued FOB leaves of 'Tm. belong to 'Tm.,. 

( ii) All the FOS nets corresponding to the multi-valued FOB leaves of 'Tm. are outside 

'Tm.,· 
(iii) There is at least one multi-valued FOB leaf of 'Tm. whose FOS net is outside 'Tm., 

and at least one multi-valued FOB leaf of Tm. whose FOS net is in 'Tm.,· 
Situation ( i) does not violate the requirement of a basis node but the FOB leaves of 

'Tm. can be affected by the value justification of mv and hence 'Tm. should not be deleted 

from 'Tm.,. In situation ( ii) the value justification of net mv will not affect the value of net 

ms provided net mv is an IVN as per the procedure described earlier. Hence 'Tm. can be 

deleted from 'Tm.,. We now explain why we cannot delete the subtree 'Tm. from 'Tm., when 

we have situation (iii). Consider the situation depicted in Figure 10 where nets m1 and m2 

are the FOB nets corresponding to the FOS net m12 and nets m3 and m 4 are the FOB nets 

corresponding to the FOS net m34 • Let mv be the variant net being inspected and let ms 

be a single-valued node in its tree. Furthermore let nets m12 and m34 be multi-valued in 

the deterministic test cube being considered. Note that the presence of m1 and m3 would 

prevent us from deleting 'Tm. from 'Tm.,. During the value justification of net mv, net m12 

might be set to a certain value which in turn will assign this new value to nets m1 and m2• 

This new value of net m1 might impose certain conditions on the value of net m3 in order 

that the required value of net m 8 be satisfied. Consequently this will affect the value of 

net m34 and hence value justification of net mv will no longer be independent of nets lying 

outside 'Tm.,. 
Note that a SVN is also an IVN - however the distinction between SVN s and IVN s is of 

importance because we can prioritize the value justification of variant nets. In this strategy 

nets which are neither IVNs nor SVNs will be justified before IVNs which in turn will be 

justified before SVNs. Thus if any stage results in a contradiction then the subsequent stages 

need not be performed. 

3.3 Backward Implication of Desensitizing Values 

In this subsection we discuss how backward implication of the desensitizing value from variant 

nets may help speed-up the enumeration process. Consider the output net m1 of a gate G1 

which has the value Lt and is a variant net in d(tctv(Pi, k )), a deterministic test cube 

obtained at some stage of the Enumeration Phase. Let L~ be the value implied at net m1 by 

the values in d(tcJv(Pi, k)) of the inputs of G1. We construct a new test cube d'(tc1v(Pi, k)) 
which is identical to d(tcJv(Pi' k)) except that net m1 has the value L~ - L1• Note that 

the value L~- L1 at net m1 desensitizes path Pi· Using d'(tcJv(Pi, k)) we backward imply 

30 



the value L~ - L1 at net m1 by applying only the backward implication rules and the stored 

contrapositive assertions and observe the nets whose values change in the process. Let mi, 

2 < j :::; J, be the nets where this backward implication terminates. Note that mi is either 

a PI or the output of a gate whose input values do not change during this process. Also, let 

Lj, 2 < j < J, be the new value obtained at net m; by the above procedure. 

Since the value L~- L1 at net m1 implies that the value of net m; is Lj, we know from 

the contrapositive principle that, for any j, 2 < j < J, if the value of net mi does not 

contain any of the values in the set Lj, then the value at net m1 will not contain any of the 

values in the set L~- L1 and hence m1 will become an invariant net. A sufficient condition 

to make m 1 an invariant net without interfering with the requirements of other variant nets 

is that there exists some m; such that m1 E D(m;) and mi is a basis node. If mi is not a 

basis node but is a SVN in the new deterministic test cube formed after removing the value 

Lj form its value in d(tcJv(Pi' k)), then net m1 can be made invariant. 

3.4 Selection of Alternate Sensitizing Paths 

Suppose that it is not possible to generate a test from TJv(Pi)· This means that there exists 

no test for the given s-a-v fault that sensitizes path Pi· We now have to select another path, 

if any exists (say Pi), and construct the corresponding TJv(Pi), if possible, to generate a test 

for the fault. The following theorem may be helpful in deciding whether there exists a test 

for the fault that sensitizes path Pi· 

Theorem 5 If the value of every net in TJv(pi) is a subset of the corresponding value 

in TJv(Pi) (denoted by TJv(Pi) ~ TJv(Pi)) and there is no input pattern that sensitizes path 

Pi, then there is no input pattern that sensitizes path Pi· 

Proof. (By contradiction.) Assume that there is an input pattern I that sensitizes path P;. 

Since TJv(Pi) imposes only those restrictions that must be satisfied by any input pattern that 

sensitizes path Pi, then values of all the nets of the circuit in the presence of input I must be 

subsets of their corresponding values in TJv(Pi)· Since TJv(Pi) ~ TJv(Pi), then the values of 

all the circuit nets in the presence of input I must be subsets of their corresponding values 

in TJv(Pi)· Thus I satisfies all the restrictions imposed by TJv(Pi) and hence it sensitizes 

path Pi, which is a contradiction. • 

3.5 Examples 

Example 4 Let us reconsider the circuit of Figure 2 with net 25 as the fault site to 

highlight the improvements obtained by the speed-up techniques proposed in this section. 

31 



As before we will use test cubes to reflect the results of each stage of the test generation. Also 

the entries shown for a particular test cube include only those nets whose values are different 

from those in the preceding cube. Note that the initial test cube tc1 will be identical to 

that obtained earlier. However d(tcl) is different because use of the contrapositive principle 

yields further changes. The value of net 4 7 and the use of the contrapositive of the assertion 

(1 at net 42 ===> 1 at net 47) drops the value 1 from net 42 which in turn changes the value 

of nets 39, 40, 8 and 12. Similarly the value of net 41 and use of the contrapositive principle 

changes the value of nets 4, 19 and 20 to 1. The resulting d(tc1 ) is: 

4 8 12 19 20 26 27 28 33 34 35 39 40 

1 0 0 1 1 L1 L1 L1 0/Ll 0/Ll 0/Ll 0/Ll 0/Ll 

41 42 43 44 4 7 49 50 51 52 

0 0/ L1/ L1 0/ L1/ L1 0/ L1/ L1 0/ L1/ L1 L1/ L1 L1/ L1 0/ L1/ L1 1/ L1/ L1 

As before we extend the sensitized path through net 28 and obtain tc2 in which the value 

of net 35 is changed to .d. From tc2 construct d(tc2 ), which is shown below: 

11 13 29 30 34 36 40 42 43 44 

1 1 1 1 0 1 0 0/ L1 0/ L1 0/ L1 

45 46 4 7 48 49 50 51 52 

0/1/Ll 0/1/Ll 0/.d L1 L1 L1 0/Ll 1 

Note that the resulting d(tc2 ) contains more information than the corresponding d(tc2 ) 

shown earlier because of the use of contrapositive assertions. From (0 at net 42 ===> 0/1 at 

net 47) and (1 at net 42 ===;. 1 at net 47) we can use Table 6 to conclude that (L1 at net 42 

===;. 1/ L1 at net 47). Thus the value 0/ L1 at net 47 drops the value L1 at net 42 which in 

turn sets the value of nets 40, 34 and 11 to 0, 0 and 1 respectively. The 0/ L1 at net 42 also 

changes the value of nets 43, 44, 45 and 46. We then extend the sensitized path through net 

49 to obtain the tc3 and d( tc3 ) shown below. 
tc3 : 

51 

L1 

1 17 18 

1 1 1 

32 



At this point we have a sensitized path from the fault site to a PO and must construct 

T/1 (Pi) and T1o(Pi) in order to generate tests for both stuck-at faults. As before we restrict 

our attention only to the s-a-0 fault at net 25 and construct the TJo(Pi) shown below by 

setting net 25 to 1 and finding all its deterministic implications. 

TJo(pi): 

9 10 21 22 23 24 

1 1 1 1 1 1 

We now invoke the Enumeration Phase to convert the variant nets (nets 41 and 47 in this 

case) into invariant ones. We first prioritize the variant nets so that the value justification 

of SVNs can be postponed till the other variant nets have been taken care of. In order 

to do this we first identify the subtrees T~1 and T~7, as defined in §3.2, for nets 41 and 4 7 

respectively. Using the procedure described, we can conclude that net 41 is an SVN and net 

47 is not- thus we first try to justify the value of net 47. We can now perform the backward 

implication of the desensitizing value 1 at net 4 7 to obtain the value 1 at nets 15 and 16 

as shown in Figure 11. Thus setting either of the PI nets 15 or 16 to the value 0 will yield 

the required value at net 47 and would convert it to an invariant net. We can now proceed 

to justify the value of net 41 - a process we which we know is guaranteed to succeed. For 

example, setting the PI nets 2 and 3 to a 1 is a possible solution. 

Once again we note that the generation of tests for the s-a-1 faults at the checkpoint 

nets 22 and 23, while sensitizing the same path p 1 , involves only the construction of T/l(P1 ) 

with appropriate values for nets 22 and 23 and then executing the Enumeration Phase. In 

summary, we have used the same TJ(pJ, which is d(te3 ) of our example, to obtain tests for 

four single stuck-at faults. These are the faults net 22 s-a-0, net 22 s-a-1, net 23 s-a-0 and 

net 23 s-a-1. 

• 
Example 5 Consider the class of circuits shown in Figure 12 with net 3 being the fault 

site. Note that the ECAT circuit considered by Goel to illustrate the efficiency of PODEM 

[14] is an element of this class. Using D(3) = {5, 7} we construct te1 as shown below where 

all other nets have the value 0/1. 

1 2 3 4 5 6 7 

0/1 0/1 0/1 0/1 0/1 

The attempt to construct d(te 1 ) does not change the value of any net i.e. te1 is a 

deterministic test cube. Moreover we have a sensitized path from 3/ to the PO and hence 

33 



we can invoke the Enumeration Phase after setting the value of net 3 depending on the type 

of stuck-at fault being tested. For example, if we have to generate a test for net 3 s-a-0 

then we set the value of net 3 to 1 and construct the corresponding deterministic test cube 

T 10(pi). This causes the value of nets 1 and 2 to change to 1. Since we have a sensitized 

path from 3/ to the PO and there are no variant nets, a test has been generated. Note that 

the algorithm specifies only the value of PI nets 1 and 2 because it takes full advantage of 

the linearity of XOR gates. 

• 
4 Identification of Redundant Faults 

The existence of redundant faults in circuits is one of the principal reasons that cause test 

generation to be such a computationally intensive exercise. Most ATPG schemes are com

plete algorithms in the sense that given enough time they will implicitly try all input com

binations before declaring a target fault to be redundant. The ability to quickly identify 

redundancies is a good measure of the efficiency of test generation algorithms. As pointed 

out earlier, SIMPLE tries to achieve this goal by considering all the necessary assignments 

that arise out of sensitizing a particular path from the fault site to a PO. In spite of this, 

the fact remains that this kind of redundancy identification is a by-product of actual test 

generation. In this section we investigate several other approaches that can enhance the 

performance of SIMPLE by identifying more undetectable faults without actually testing 

for them. Some of these approaches will be based on using information generated during 

the Pre-Processing Phase to identify possible undetectable faults, while others will use the 

knowledge of already identified redundant faults to determine newer ones. However before 

discussing these redundancy identification techniques let us review some information that 

lends a proper perspective to the material presented in this section. 

The need to identify redundancies does not arise in circuits that are either fanout free 

or do not possess reconvergent fanouts because a circuit can be redundant with respect to 

some single or multiple stuck-at fault only if it contains reconvergent fanout. It is also well 

known that if the fault Xi s-a-v is undetectable, where Xi is a primary input and v E { 0, 1}, 

then the fault Xi s-a-v is also undetectable. 

All ATPG algorithms use concepts like fault equivalence and fault dominance in order to 

reduce the set of faults in a circuit that need to be tested. One approach is to consider only 

single stuck-at faults on the checkpoints of a circuit where the checkpoints comprise the Pis 

and FOBs of the circuit (6]. This is because a test set that detects all single stuck-at faults 

on the checkpoints of a circuit C (that contains NOT, AND, NAND, OR and NOR gates 

34 



only) detects all single stuck-at faults inC [6]. Thus the initial list of target faults can consist 

of the checkpoint faults. However as pointed out in [1, 10, 19] a test set that detects all 

detectable checkpoint faults does not necessarily detect all detectable single stuck-at faults 

in the circuit. Thus if any of the checkpoint faults is undetectable then additional target 

faults may need to be considered. It has been shown in [1) that for any set of target faults 

based on dominance relations, the only faults not guaranteed to be detected by a test set 

that detects all detectable target faults are those faults which dominate only undetectable 

faults. Using this result, the authors of [1] provided a method for identifying additional 

target faults. 

Definition 5 [1] The term direct checkpoint of a line 1 denotes a checkpoint k such that 

there exists a unique path between k and 1 and no other checkpoint lies on this path. 

• 
Theorem 6 [1] Let T be a test set that detects all detectable checkpoint faults and let l s

a-v be a detectable fault not detected by T.- Every direct checkpoint of 1 has an undetectable 

single stuck-at fault. 

• 
Since SIMPLE allows the use of XOR and XNOR gates as primitive elements we need 

to extend the concept of checkpoints to generalized checkpoints which will consist of all the 

PI nets, FOB nets and the output nets of all XOR and XNOR gates of the circuit. This is 

because unlike the situation for other gates, a test set that detects all stuck-at faults at the 

inputs of an XOR/XNOR gate does not necessarily detect the stuck-at faults at the output. 

Consequently we will also extend the definition of a direct checkpoint to that of a generalized 

direct checkpoint in order to include the output of XOR/XNOR gates. We now discuss ways 

in which knowledge of an undetectable fault can be used to identify more redundant faults. 

4.1 Redundancy Identification using Known Undetectable Faults 

In this section we will discuss the properties of a circuit that allow us to identify undetectable 

faults by using the information about already determined undetectable faults. 

Theorem 7 Let net m be a basis node in a circuit C such that net m does not implement 

a constant (i.e. 0 or 1). If the fault m s-a-vis undetectable, then the fault m s-a-vis also 

undetectable. Furthermore the stuck-at faults at all the nets in the subcircuit which has net 

m as its output are also undetectable. 

35 



Proof Let z be the function implemented by C. Since h is a basis node we can partition 

the inputs x = (x1 , x2 , ••• , Xn) into two disjoint components x: and xl, where h = H(x:) and 

z = F(h, x/,). Since h s-a-v is undetectable, and h does not implement a constant value, 

dFfdh = 0 for all possible values of xl, and independent of the value of x:, where dF/dh is 

the Boolean difference of F with respect to h. Hence h s-a-v will also be undetectable as 

will be the stuck-at faults at all nets which have net has its dominator and must propagate 

sensitization through it. • 

The above theorem suggests that we try to generate tests for basis nodes instead of first 

trying to generate tests for its direct checkpoints. If no test can be generated for the faults 

at a basis node then the faults at its direct checkpoints (actually the entire subcircuit that 

drives this basis node) are automatically determined to be redundant. On the other hand, 

this method is still useful if the faults at the basis node are detectable. In fact, as soon 

as we determine the test for any stuck-at fault at a basis node, the test generation for the 

other stuck-type fault and all faults in its subcircuit involve enumeration only because the 

propagation requirements beyond the basis node have already been accounted for. 

In order to analyze how topological dominance relates to redundant faults we introduce 

the following definition. 

Definition 6 Net m2 is said to be an even (odd) dominator of net m1 if and only if net 

m 2 is a dominator of net m 1 and all paths from m1 to m 2 have even (odd) parity. 

• 
Note that we cannot determine the parity of a path which contains an XOR or XNOR 

gate. 

Theorem 8 If net m 2 is an even (odd) dominator of net m 1 and the fault net m 2 s-a-vis 

undetectable then the fault net m1 s-a-v (v) is also undetectable. 

Proof (By contradiction for the even dominator case - the odd dominator case is anal

ogous). Let the test t detect the fault net m1 s-a-v. Then the (b9 , b1) value of net m 1 due 

to t must be (v, v ). Since m 2 is an even dominator of mt, the (b9 , b1) value of net m 2 in 

the presence of t must also be (v, v ). Thus the fault m2 s-a-v is also activated by t. Since t 
propagates the effect of the fault m1 s-a-v beyond net m2 to some PO and m 2 is a dominator 

of m 1, t also tests the fault m2 s-a-v. This is a contradiction- hence the fault net m 1 s-a-v 

must be undetectable. • 

Corollary 1 If a circuit is redundant with respect to a single stuck-at fault a at net m1 

then it is redundant with respect to some single stuck-at fault (3 at net m2, where m2 is a 

generalized direct checkpoint of net m1. • 

36 



In [5] we have presented several properties of a circuit that allow us to identify unde

tectable faults from the knowledge of known redundant PI faults. 

4.2 Redundancy Identification using Topological Information 

In this section we will discuss how certain redundant faults can be identified by using the in

formation about the circuit topology in conjunction with some of the experiments performed 

during the Pre-Processing Phase of SIMPLE. 

Definition 7 Let Gt be a gate whose output is net mt. An input mi of Gt is defined to 

be an off dominator sensitizing input of net m if and only if net mi does not lie on any path 

from net m to any PO and net mt belongs to the set of dominators, D(m), of net m. 

• 
For any gate G let INc( G) and Ic( G) denote the non-controlling and controlling input 

value of G respectively. Similarly let ONe( G) denote the value that is obtained at the output 

of G if all its inputs are set to non-controlling values and Oc(G) denote the value obtained 

at the output if at least one input is set to a controlling value. The next two theorems, 

whose proofs are straightforward, illustrates the usefulness of the off dominator sensitizing 

inputs of a net in detecting undetectable faults. 

Theorem 9 Let msi be a FOB net corresponding to a FOS net m 8 • Let mi be an off 

dominator sensitizing input of net msi and let this net mi drive the gate Gi. If during 3-

VP, applying the value v at net ms yields the value Ic( Gi) at net mi, then the fault net msi 

s-a-v is undetectable. 

• 
Consider the situation during 3-VP where a value v at a FOS net ms yields the value 

Oc(Gi) at the output of a gate Gi· If this happens then inspect each input mi of Gi to see 

whether it is a FOB net of ms or a dominator of a FOB net of m 8 • If this is true and if at 

least one of the remaining inputs of Gi (i.e. inputs other than mi) has the value Ic(Gi) in 

this 3-VP experiment then the FOB net in question is redundant with respect to the s-a-v 

fault. 

As an example of this situation consider the circuit shown in Figure 13 which is a subcir

cuit of c6288, one of the ISCAS benchmark circuits [7]. The implication of a 0 at FOS net 

591, during 3-VP, yields a 0 at net 1371, which is the output net of a gate whose input net 

593 is a FOB of net 591. Furthermore the other input of this gate (net 1313) has a controlling 

input value in this experiment. Thus the fault net 593 s-a-1 is undetectable. Similarly, since 

37 



a 1 at net 591 yields a 0 at net 1401, net 1371 is a dominator of net 593, and net 1372 has 

a controlling value, we can deduce that the fault net 593 s-a-0 is also undetectable. In fact 

all the faults in c6288 which have been reported by [4] to be undetectable (both stuck-at 

faults at nets 593, 641, 689, 737 and 785) can be easily verified to be so by the application 

of Theorem 9 i.e. during the Pre-Processing Phase. 

Theorem 10 Let the FOB net mil be an off dominator sensitizing input of net mi. Let 

net msi be the FOS net corresponding to net mil and let Gil be the gate driven by mil· Let 

net mi2 be another off dominator sensitizing input of net mj and let the gate driven by net 

mi2 be denoted as Gi2 • If during 3-VP, applying the value INc( Gil) at net msi yields the 

value Ic( Gi2 ) at net mi2 , then both the stuck-at faults at net mj are undetectable. 

• 
As an example of a situation where the above theorem can be applied, consider the circuit 

shown in Figure 14. In this figure, nets b and d are off dominator sensitizing inputs of net 

a. In 3-VP, performing the implication of the value 1 (which is the non-controlling input 

value for gate G1 ) at net c yields the value 1 at net d. This value is a controlling value for 

gate G2 and hence both stuck-at faults at net a are undetectable. 

5 Conclusion 

In this report we have presented a 16-valued ATPG algorithm that introduces several new 

concepts to make test generation more efficient. It is the only algorithm that takes into 

account all the deterministic implications of sensitizing a path prior to the enumeration 

process. The resulting ability to identjfy inconsistencies prior to enumeration improves the 

possibility of quicker identification of redundant faults. Instead of sensitizing a single gate 

at a time, we sensitize subpaths by sensitizing all gates lying between successive FOS nets, 

thereby reducing the number of times deterministic test cubes have to be constructed. Our 

algorithm exploits the linearity of the XOR/XNOR gate and also shows how use of the sensi

tization parity can speed-up test generation for circuits containing such gates. The speed-up 

techniques introduced are based on both circuit topology and the net values that must be 

satisfied to sensitize the chosen path. We have also shown how use of the desensitizing values 

can guide the selection of Pis in the Enumeration Phase. The contrapositive assertions for 

our 16-valued system was obtained from a simple procedure that uses a 3-valued system and 

performs forward implications for FOS nets only. We emphasize that the different aspects 

of the algorithm discussed above owe their efficiency to the strength of the 16-valued system 

38 



used. We have also shown how the dominator forest of a circuit can be effectively used in 

several phases of test generation. 

We have also shown how to exploit the common requirements that are imposed when 

we sensitize the same path from the fault site to a PO in order to generate tests, whenever 

possible, for both stuck-at faults at this net. 

Various properties that can be used to identify redundant faults without actual test 

generation have been presented. This is an important fact because redundant faults seem to 

be the major bottleneck in any ATPG algorithm. 

Note that there are no changes involved in the procedure described if we are interested 

in performing conventional stuck-at fault testing at a net as opposed to fault site testing. In 

such a situation we only need to interpret~ and ~as D and D respectively and use the 

initializing values discussed earlier. 

39 



Appendix 

A Construction of Deterministic Test Cubes 

In a d(tek) all deterministic implications (no arbitrary choice) of all entries of the test cube 

tek are fully considered. For example, if the output of an AND gate is 0/1/ Ll/ Ll and one 

of its inputs changes to 0/ Ll, then, irrespective of the other inputs, the output is changed 

to 0/ Ll. 

To construct d(te 1 ) from te1 we perform backward and forward implications of all nets 

whose values in te1 are different from 0/1 and 0/1/ Ll/ Ll and all other nets whose values 

change during this implication process. In the general case, when we are constructing d(tek) 

from tek, we start by considering the forward and backward implications of the nets whose 

values in tek are different from those in the last successfully constructed deterministic test 

cube and that of all other nets whose values change during this implication process. During 

the construction of d(tek) from tek, if a backward or forward implication request results in 

a new value L~ for any net m; of the circuit, then we should update the corresponding net 

entry L; by setting it to L; n L~. If this intersection yields the empty set then d(tck) cannot 

be constructed. 

In order to obtain d(tck) the process of forward and backward implications should be 

continued until no more changes occur in the values associated with any net. Note that this 

process will terminate in a finite number of steps because we are performing set intersection 

on finite sets. 

The rules for constructing deterministic test cubes must include the provision for appro

priately handling the values of nets associated with fanout points and should also take into 

account the information provided by the token vectors. We now present the rules for forward 

and backward implication. 

A.l Forward Implication 

The process of forward implication of the values associated with every net is done with 

the help of Tables 1, 2 and 3. These tables are a generalization of the truth tables of the 

respective gates. For gates with more than two inputs the method adopted is similar to that 

used by Akers [3]. We view every gate as being constructed out of 2 input gates and use the 

existing values at the inputs of a gate to generate a new value for the output. Depending on 

the gate in question, appropriate tables are used. Note that the three tables are sufficient 

because OR, NOR, and NAND functions can be derived by appropriately using Tables 1 

40 



and 2, whereas Tables 2 and 3 can be used to generate the XNOR function. Also we do not 

have to perform forward implication for gate G 1 - its output value is determined by the 

initialization described earlier. 

Suppose we are performing forward implications due to change( s) in input( s) of a gate G 

whose output is net m. Let Lo be the set of values associated with net m in the test cube 

prior to forward implication being performed. Also let LN be the value obtained at net m by 

using the new values of the inputs of G. Net m will then be set to Lon LN unless Lon LN 

= 0 which implies a contradiction. Four other situations are possible: 

1. L0 =LN. No further action is needed for this forward implication. 

2. LN C Lo (proper subset). We now have to consider the forward implication of the 

value of LN at net m on all gates driven by G. 

3. Lo C LN. We now have to perform a backward implication of the value Lo at net m. 

This may result in further changes in the inputs of gate G. 

Example 6 An example of the situation where Lo C LN is shown in Figure 15. If 

input A of gate G is changed from 0/1 to 1, then forward implication using Table 1 

would yield LN = 0/1. Since Lo C LN, we now perform a backward implication of 

the value 0 at the output of gate G. It will be clear from the next section that this 

backward implication yields a 0 at input B. 

• 
4. L0 ~ LN and LN ~ Lo. Both forward and backward implications of the value Lo nLN 

at net m should be performed. 

Example 7 An example of the situation where Lo ~ LN and LN ~ L0 can be seen 

from the incompletely specified circuit of Figure 16. Assume that at some stage of test 

generation we have the following d(tck)· 

1 2 3 4 5 6 7 8 

0/1 .d 0/1 0/1 0/1 1/.d 

9 10 11 12 13 14 15 16 

0/.d 0/1 0/.d 0/.d 0/1/.d 0/.d 0/.d/.d .d/.d 

41 



• II 
0 

** 

0 0/1/A/A 0 0 0 
1 0 1 A A 

A 0/A 0 1/A 0 
A 0/A 0 0 1/A 

*Requested Output 

** Existing value at one input 

Table 8: Backward Implication for a 2-input AND gate 

The value at net 14 is La = 0/ A. If we now extend the sensitized path through net 

4 by setting nets 5, 6 and 7 to 1 then forward implication would yield the value LN = 

1/ A at net 14. Hence La n LN = A, La C£. LN and LN C£. La. 

• 
A.2 Backward Implication 

The process of backward implication involves determining the changes required at the inputs 

of a gate in order to satisfy a requested change at the output. A change in the value of a 

net will mean that one or more possible values associated with the net has been deleted. In 

that sense an input change can be made only if the deleted value can never be used with the 

existing values at the other inputs to generate any of the requested output value(s). 

Example 8 Consider a two-input AND gate whose values at inputs and output is 0/ A. 

If we require that the output be changed to 0, we cannot change any of the inputs because 

all the input values can be used in some input pattern to generate a 0 at the output. 

• 
A general set of backward implication rules can be derived in terms of the input values 

and the requested output value. However, in a manner similar to that presented in [3] we 

consider each multiple input gate as a cascade of two input gates. The backward implication 

rules for a two-input AND gate is shown in Table 8. Note that the element 0 has been 

included in this table to detect an unsatisfiable backward implication request. The complete 

42 



table for all 15 non-0 values is obtained by the set union operation. If we set A= D (or A= 
D) then the resulting table is equivalent to that proposed by Akers [3]. To perform backward 

implication for a two-input AND gate we reference the table using the requested value at the 

output and the existing value at one input to generate the value of the other input. Since 

the XOR gate is linear, Table 3 can be used for backward implication also. Thus Tables 2, 3 

and 8 can be used to perform backward implication for any two-input gate. Irrespective of 

the gate in question, the value generated by the appropriate table must be intersected with 

the existing value of the input to generate the new value of the input. Analogously, the new 

value of the input and the requested value of the output must now be used to generate the 

new value of the other input. For example, consider a 2-input gate whose input values are 

L1 and L2 • If the requested value of the output of the gate is La, then we use La and L1 to 

determine the new value L; of the second input and then L; and La to determine the new 

value L~ of the first input. 

Example 9 Consider the two-input AND shown in Figure 17. Initially, input A has the 

value 0/ .A/ .d, input B has the value 0/1/ .d, and the output has the value 0/ .d/ .d. If we 

require a .d at the output, then the backward implication process using Table 8 and values 

of C and A would yield a 1/ .d at B. That, intersected with its existing value of 0/1/ .d, 

yields 1/ .d. Now a backward implication of a A at C with a 1/ .d at B yields 1/ .d at A. 

This value of A intersected with the existing value of 0/ .d/ .d results in a .d at input A . 

• 
As stated before, any gate with more than two inputs will be represented as a cascade of 

two-input gates. Consider ann-input gate G represented as a cascade of (n- 1) two-input 

gates G1, G2, ... , Gn-2 and Gn-1, with net numbers as shown in Figure 18. Assume that the 
values at nets 1, 2, ... , n are Xt, X2, ... , Xn respectively. We first use forward implication 

of these values to compute Yi., ¥2, ... , Yn-2, the values of nets n + 1, n + 2, ... , n + (n- 2) 

respectively. Then using the value Z, which is the required value at the output of gate G, we 

apply the backward implication rules for gate Gn-1 to obtain Zn-2 and X~, the new values of 

nets n + (n- 2) and n respectively. Having done that, we proceed backwards and apply the 

backward implication rules for all the gates, one at a time, ending with gate G1 . Since the 

binary operation represented by any logic gate is associative, the order in which the inputs 

xi are cascaded is irrelevant. 

It will be shown in Appendix B that the above procedure will stabilize in a single pass, 

unlike the approach followed in [3] which may require several passes. 

Example 10 Consider the 3-input XOR gate G shown in Figure 19 with associated net 

values. Assume that we request the value .d at net 5. We now view gate G as constructed 

43 



out of 2-input gates G1 and G2 as shown in Figure 19. The values of nets 1 and 2 are first 

used to compute the value 0/1/ .tl/ .tl at net 4. By using Table 3 and the requested value 

.tl at the output of G2 we obtain the value 0/1 at net 4, but the value of net 3 remains 

unchanged. By requesting a 0/1 at net 4 we obtain a .tl/ .tl at input net 2, and the value of 

net 1 remains unchanged. 

• 
Note that in the above example the value of the intermediate net 4 does not have to 

be sensitized in order that the overall gate output be sensitized. This can only happen for 

XOR/XNOR gates. 

From the discussion on backward implication it should be clear that it is not always 

possible to make changes at the inputs of a gate G such that the new value of the inputs 

yield exactly the requested value at the output of the gate (in the above example the new 

values of the inputs produce a .tl/ .tl at the output of G). In Appendix Bit is shown that the 

requested value La at the output is always a subset of L'a, the value at the output implied 

by the new values of the inputs obtained by the backward implication procedure. 

B Properties of the Backward Implication Procedure 

In this appendix we discuss some useful properties of the backward implication procedure. 

For ease of explanation we will use the following notation in this appendix. Let G be a 

two-input gate. If A and B are the set of values of the inputs of G, then the set of values of 

the output, implied by these inputs, is denoted by G(A, B). Also, let (Lo/ Li) denote the set 

of values at one input that can produce Lo at the output of the gate, given that the other 

input is Li. 
Property 1. Let G be a two-input gate with inputs A and B. Consider a backward 

implication of the value Z, where Z ~ G(A, B), at the output of G. If this backward 

implication causes the inputs to be changed to A' and B', respectively, then 

Z ~ Z' 

where Z' = G(A',B'). 

Proof. Let z E Z. Since Z ~ G(A, B) there exists a E A and b E B such that {z} -

G( {a}, { b}). Since z E Z, after a backward implication of Z at the output of G is performed 

using the given tables, the new values of the inputs A' and B' are such that a E A' and 

bE B'. Thus z E G(A', B'), i.e., z E Z'. Therefore Z ~ Z'. • 

Note that the above property can be extended to gates which have more than two inputs. 

44 



Consider a two-input gate whose input values are L1 and L2 and the requested value at 

the output is La. The new values of the inputs after one pass of the backward implication 

procedure will be 

and 

If L; ~ (La/ L~) then another pass of the backward implication procedure is unnecessary 

because L; n (La/ L~) is going to yield L~-implying no further changes at the input. 

Property 2. L; ~ (La/ LD 

Proof. Select any 12 E L;. Thus h E (La/ L1). Hence there exists h E L1 such that 

{19 } = G({lt},{l2}) where 19 E La. Since l2 E L; and G({ll},{l2}) ~La then 11 E (La/L;) 

and consequently !1 E L~. Therefore 12 E (La/L~) since 11 E L~ and G({1I},{l2}) ~La. 

This proves that L~ ~(La/ LD. • 

As a consequence of Property 2, every new application of the backward implication 

procedure requires only a single pass to determine the new values of each input of the gate 

in question. 

C Proof of Properties of Token Vectors 

In this appendix we will prove some of the properties of the algorithm, for assigning token 

vectors, that were presented in §2.6. The proof of Property 1 is straightforward and will 

not be presented. 

Proof of Property 2 By definition, a Type II gate G must have an input that has a TRUE 

token but no token vector. Consider any path from the fault site to such an input (say mi) of 

G. If the path contains an XOR/XNOR gate it would have been assigned a token vector in 

Step 2. Consider every net on this path from the XOR/XNOR gate to net mi. All these nets 

have a lower net number than the output of G and consequently would have been assigned 

a token vector before it. Hence net mi must also have an assigned token vector. This is a 

contradiction. • 

Proof of Property 3 Since the sensitization parity of net me with respect to net mi is b1 

and net mi has an assigned token vector, then all nets on any path from net mi to net me 

must have TRUE tokens and there are no XOR/XNOR gates on any of these paths. Thus 

the algorithm will assign a token vector to net me. We now show by contradiction that the 

algorithm assigns the token vector [m, b EB b1] to net me. Assume that the first component 

of the token vector assigned by the algorithm to net me is different from m. Thus there 

45 



exists at least one gate G on a path from net m; to net mt whose token vector at the output 

is [m', x] where m' =f. m and which has at least one input with a token vector whose first 

component is m. Trace this path starting from net m; till the first such gate is encountered. 

This implies that there exists at least one input to this gate whose token vector is [m, 0] and 

at least one input whose token vector is [m, 1]. Consequently we cannot define the inversion 

parity of the output net of this gate with respect to net m;, which in turn implies that net 

m; cannot be a sensitization source for net mt. This is a contradiction. 

Thus the algorithm assigns m as the first component of the token vector of net mt. In 

fact, it assigns m as the first component of the token vector of all nets on every path from 

net m; to net mt. The fact that the algorithm assigns bffi b1 as the second component of the 

token vector of net mt is a consequence of the above fact and the definition of sensitization 

parity. • 

D Proof of Theorems in §3.1 

In this appendix we will always denote the net at which we apply a value (either in 3-VP or 

16-VP), to observe the implications at other nets, as net m1 • In order to prove the theorems 

stated in §3.1 we will make use of the following lemmas. The proofs of the first three lemmas 

are straightforward and will not be presented. 

Lemma 1 The value of every net in a 3-VP experiment is a subset of the value of this net 

in the corresponding 16-VP experiment. • 

Lemma 2 In a 3-VP experiment, if we traverse backwards along any path of singleton 

values from net m; which has a singleton value, then we will always reach net m1 . • 

Lemma 3 If a 3-VP experiment yields a singleton value at net m;, then this experiment 

yields a path of singleton values from net m1 to net m;. Furthermore, if this experiment 

yields a singleton value at the output net of any gate G, then it either sets one or more of 

its inputs to controlling values or all its inputs to non-controlling values. • 

Lemma 4 If the output of a gate G has a singleton value in a 3-VP experiment and 

additional value(s) in the corresponding 16-VP experiment, then there exists at least one 

input to this gate which has a singleton value in this 3-VP experiment and additional 

value(s) in this 16-VP experiment. 

Proof ( i) Assume that in the 3-VP experiment the singleton value at the output of G was 

obtained due to a controlling value at one or more inputs of G. In this situation all these 

46 



inputs must contain additional value(s) in the corresponding 16-VP experiment. Otherwise, 

we will obtain the singleton value at the output as given by the 3-VP experiment. 

( ii) From Lemma 3, the only remaining alternative is that the singleton value at the out

put of gate Gin the 3-VP experiment was obtained by setting all its inputs to non-controlling 

values. Thus it is obvious that at least one input must contain additional value(s) in the 

corresponding 16-VP experiment in order to produce additional value(s) at the output. • 

Proof of Theorem 1 Let G be the gate whose output is net m2 or whose output is a FOS 

net with m 2 as one of its FOB nets. Let L2 be the singleton value yielded at net m2 by the 

3-VP experiment. Let the corresponding 16-VP experiment yield the value L~ at net m2 . 

By Lemma 1, L2 ~ L~. Assume that L2 C L~. Then, by Lemma 4, at least one input of 

G must contain a singleton value in this 3-VP experiment and additional value( s) in this 

16-VP experiment. This input must either be net m 1 or be connected to the output of 

some gate. If the latter is true, then this gate must also possess at least one input that has a 

singleton value in this 3-VP experiment and additional value(s) in this 16-VP experiment. 

Proceeding backwards in this manner we must, by Lemma 2, eventually conclude that net 

m1 has a singleton value in this 3-VP experiment and additional value(s) in this 16-VP 

experiment. This is a contradiction. Thus, L2 = L~. • 

Proof of Theorem 2. Let G be the gate whose output is net m2 or whose output is a FOS 

net with m2 as one of its FOB nets. Since net m2 has the value 0/1 in the 3-VP experiment, 

then at least one input of G must also have the value 0/1 in this experiment and all the 

values of all other inputs must include the non-controlling value for gate G. The input with 

the 0/1 value is either a primary input or is connected to the output of some gate which in 

turn must have at least one input with the value 0/1 and the value of all other inputs must 

include the non-controlling value for this gate. Proceeding in this manner we will reach some 

primary input, say 11 , in a finite number of steps. Thus there is a path p 1 from 11 to net m2 

such that all nets on this path have the value 0/1 in this 3-VP experiment. Furthermore, 

the value of all inputs of every gate on this path p 1 must contain the non-controlling value. 

By Lemma 1, in the corresponding 16-VP experiment, the value of all inputs of every gate 

along path p 1 must contain the non-controlling value. Thus a 0/1/ A/ A from input 11 will 

propagate through every gate along path p 1 yielding a 0/1/ A/ A at net m2• • 

47 



References 

[1] M. Abramovici, P. R. Menon and D. T. Miller, "Checkpoint Faults are not sufficient 

Faults for Test Generation," IEEE Transactions on Computers, Vol. C-35, pp 770-

771, August 1986. 

[2] M. Abramovici, P.R. Menon and D. T. Miller, "Critical Path Tracing- An Alternative 

To Fault Simulation," in Proceedings of the 20th ACM/IEEE Design Automation 

Conference, pp 214-220, 1983. 

[3] Sheldon B. Akers, "A Logic System for Fault Test Generation," Presented at Sympo

sium on Fault-Tolerant Computing, Paris, France, June 1975. Also IEEE Transactions 

on Computers, Vol. C-25, pp 620-630, June 1976. 

[4] Sheldon B. Akers, Christie Joseph and Balakrishnan Krishnamurthy, "On the Role 

of Independent Fault Sets in the Generation of Minimal Test Sets," Proceedings of 

the IEEE International Test Conference, pp 1100-1107, 1987. 

[5] Akhtar-uz-zaman M. Ali, "Use of a 16 Valued Logic System in Combinational Circuit 

Testing," PhD Dissertation, Syracuse University, August 1990. 

[6] M. A. Breuer and A. D. Friedman, Diagnosis & Reliable Design of Digital Systems. 

Computer Science Press, 1976. 

[7] Frank Brglez and Hideo Fujiwara, "A Neutral Netlist of 10 Combinational Benchmark 

Circuits and a Target Translator in Fortran," in Proceedings of the IEEE Symposium 

on Circuits and Systems; Special Session on ATPG and Fault Simulation, pp 663-698, 

June 1985. 

[8] Charles W. Cha, William E. Donath and Fiisun Ozgiiner, "9-V Algorithm for Test 

Pattern Generation of Combinational Digital Circuits," IEEE Transactions on Com

puters, Vol. C-27, pp 193-209, March 1978. 

[9) Wu-Teng Cheng, "Split Circuit Model for Test Generation," in Proceedings of the 

25th ACM/IEEE Design Automation Conference, pp 96-101, 1988. 

[10] Warren Debany, "On Using the Fanout-Free Substructure of General Combinational 

Networks," PhD Dissertation, Syracuse University, December 1985. 

[11] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms," 

IEEE Transactions on Computers, Vol. C-32, pp 1137-1144, December 1983. 

48 



[12] H. Fujiwara and S. Toida, "The complexity of fault detection: An approach to design 

for testability," in Proceedings of the 12th International Symposium on Fault Tolerant 

Computing, pp 101-108, June 1982. 

[13] John Giraldi and Michael L. Bushnell, "EST: The New Frontier in Automatic Test

Pattern Generation," in Proceedings of the 21th ACM/IEEE Design Automation Con

ference, pp 667-672, June 1990. 

[14] Prabhakar Gael, "An Implicit Enumeration Algorithm to Generate Tests for Combi

national Logic Circuits," IEEE Transactions on Computers, Vol. C-30, pp 215-222, 

March 1981. 

[15] 0. H. Ibarra and S. K. Sahni, "Polynomially Complete fault detection problems," 

IEEE Transactions on Computers, Vol. C-24, pp 242-259, March 1975. 

[16] R. Jacoby, P. Moceyunas, H. Cho and G. Hachtel, "New ATPG Techniques for Logic 

Optimization," Proceedings of the IEEE International Conference on Computer Aided 

Design, pp 548-551, 1989. 

[17] Tom Kirkland and M. Ray Mercer, "A Topological Search Algorithm for ATPG," 

in Proceedings of the 24th ACM/IEEE Design Automation Conference, pp 502-508, 

1987. 

[18] P. Muth, "A Nine-Valued Circuit Model for Test Generation," IEEE Transactions on 

Computers,. Vol. C-25, pp 630-636, June 1976. 

[19] Y. W. Ng and A. Avizienis, "Comments on 'Fault Folding for Irredundant and Re

dundant Combinational Circuits'," IEEE Transactions on Computers, Vol. C-25, pp 

207, February 1976. 

[20] Janusz Rajski and Henry Cox, "A Method of Test Generation and Fault Diagnosis 

in Very Large Combinational Circuits," Proceedings of the IEEE International Test 

Conference, pp 932-943, September 1987. 

[21] J. P. Roth, W. G. Bouricius and P. R. Schneider, "Programmed algorithms to com

pute tests to detect and distinguish between failures in logic circuits," IEEE Trans

actions on Computers, Vol. C-16, pp 567-579, October 1967. 

[22] Michael H. Schulz, Erwin Trischler and Thomas M. Sarfert, "Socrates-A Highly 

Efficient Automatic Test Pattern Generation System," in Proceedings of the 1987 

International Test Conference, pp 1016-1026, 1987. 

49 



[23) R. Tarjan, "Finding Dominators in Directed Graphs," SIAM Journal of Computing, 

Vol. 3, pp 62-89, 1974. 

50 



(a) 

---

(b) 

--- --- ---

1 0 1 

1 1 0 

--- --- ---

(c) 

Figure 1: Common requirements for testing several checkpoint faults 

51 



.-IN 

...... 
~ 

... 

"' ~ 

CD .... 

"' CD 

Figure 2: An example circuit 

52 

.... .... 

N 
II) 

.... 

...... 



KEY: 

~ Fanout Stem 

«::) Fanout Branch 

D Primary Input 

Figure 3: Dominator forest for example circuit 

53 



4 

6 [3,0] 
[3, 1] 

1 13 
[3,0] 7 [3,0] 

3 
2 (14, 0] 

9 
14 

8 [ 3, 0] [3,0] 

12 
5 

Figure 4: Use of token vectors 

Figure 5: Use of the contrapositive 

54 



p 

s 

R 

Q 

Figure 6: Example for contrapositive of a backward implication 

55 



1 
2 

3 
1 

4 

7 

8 

/ 
/ 

6 1 

1 

1 

0/1 1 

9 

0/1 
10 

0/1 
11 

1 1 

Figure 7: Identification of an SVN 

56 

0/1 1 1 0/1 



T' mv 

Figure 8: General structure of the subcircuit corresponding to the tree T/nv 

Figure 9: Unsatis:fiable value at an IVN 

57 



Figure 10: IVN identification example where Tm. cannot be deleted. 

58 



• 
• 
• 

0/1-1 
15 

43 (0/1/~) - (0/~ 
0/~ = 1 

42 ---
47 

44 

0/1-1 
16 

Figure 11: Backward implication of desensitizing values 

5 

7 
6 

Figure 12: Example ECAT circuit 

59 



1312 

1402 

1311 1314 1372 
1401 

19 

275 1313 
1403 

593 
1371 

Figure 13: Use of the off dominator sensitizing inputs - I 

Figure 14: Use of the off dominator sensitizing inputs - II 

60 



2 

5 

0/1 
A---~ 

B -----1 

0/1 

L = 0 
0 

Figure 15: Example where Lo C LN during forward implication 

15 --
1 8 

3 

11 

4 
9 

6 

12 
14 

10 

7 

Figure 16: Example where Lo ~ LN and LN ~ Lo during forward implication 

61 

16 



o!AIA D 0/A/A ;;--t:. A 

B 
0/1/A 

(a) 

A 
o!A!A 

D A c 
B 

(1//)J n <0/1//)J 
= 1/ll 

(b) 

c 

(c) 

Figure 17: Example for backward implication 

62 



3 

• 
• 
• 

1 

2 

- G 
1 -

1 

2 

3 

• G n+(n-1) 

• 
• 
n 

n+1 

G n+2 
2 f--

.___ 

n ---------------------------------------------; 

Figure 18: Gate decomposition 

63 

G 
n-1 

n+ (n-1) 



6.!6. 
1 

0/6.!/:l 0/1//:l/6 
2 5 

6.!/:l 
3 

(a) 

/:l/6 
1 0/1//:l/ll. 

0 !ll.!ll 4 2 

/:l/6 
5 

3 0/1/f:l/6. -ll 

(b) 

l:l/6 
1 

~ 6.!6 
2 5 

6/6 
3 

(c) 

Figure 19: Example of backward implication for an XOR gate 

64 


	A Sixteen-Valued Algorithm for Test Generation in Combinational Circuits
	Recommended Citation

	SU-CIS-91-18_001c
	SU-CIS-91-18_002c
	SU-CIS-91-18_003c
	SU-CIS-91-18_004c
	SU-CIS-91-18_005c
	SU-CIS-91-18_006c
	SU-CIS-91-18_007c
	SU-CIS-91-18_008c
	SU-CIS-91-18_009c
	SU-CIS-91-18_010c
	SU-CIS-91-18_011c
	SU-CIS-91-18_012c
	SU-CIS-91-18_013c
	SU-CIS-91-18_014c
	SU-CIS-91-18_015c
	SU-CIS-91-18_016c
	SU-CIS-91-18_017c
	SU-CIS-91-18_018c
	SU-CIS-91-18_019c
	SU-CIS-91-18_020c
	SU-CIS-91-18_021c
	SU-CIS-91-18_022c
	SU-CIS-91-18_023c
	SU-CIS-91-18_024c
	SU-CIS-91-18_025c
	SU-CIS-91-18_026c
	SU-CIS-91-18_027c
	SU-CIS-91-18_028c
	SU-CIS-91-18_029c
	SU-CIS-91-18_030c
	SU-CIS-91-18_031c
	SU-CIS-91-18_032c
	SU-CIS-91-18_033c
	SU-CIS-91-18_034c
	SU-CIS-91-18_035c
	SU-CIS-91-18_036c
	SU-CIS-91-18_037c
	SU-CIS-91-18_038c
	SU-CIS-91-18_039c
	SU-CIS-91-18_040c
	SU-CIS-91-18_041c
	SU-CIS-91-18_042c
	SU-CIS-91-18_043c
	SU-CIS-91-18_044c
	SU-CIS-91-18_045c
	SU-CIS-91-18_046c
	SU-CIS-91-18_047c
	SU-CIS-91-18_048c
	SU-CIS-91-18_049c
	SU-CIS-91-18_050c
	SU-CIS-91-18_051c
	SU-CIS-91-18_052c
	SU-CIS-91-18_053c
	SU-CIS-91-18_054c
	SU-CIS-91-18_055c
	SU-CIS-91-18_056c
	SU-CIS-91-18_057c
	SU-CIS-91-18_058c
	SU-CIS-91-18_059c
	SU-CIS-91-18_060c
	SU-CIS-91-18_061c
	SU-CIS-91-18_062c
	SU-CIS-91-18_063c
	SU-CIS-91-18_064c
	SU-CIS-91-18_065c
	SU-CIS-91-18_066c
	SU-CIS-91-18_067c
	SU-CIS-91-18_068c
	SU-CIS-91-18_069c
	SU-CIS-91-18_070c
	SU-CIS-91-18_071c

