
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1991

Resolution without Unification Resolution without Unification

William C. Purdy
Syracuse University, wcpurdy@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Purdy, William C., "Resolution without Unification" (1991). Electrical Engineering and Computer Science -
Technical Reports. 102.
https://surface.syr.edu/eecs_techreports/102

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/102?utm_source=surface.syr.edu%2Feecs_techreports%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-31

Resolution without Unification

William C. Purdy

October 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Resolution without Unification

William C. Purdy*

October 1991

*School of Computer and Information Science, Syracuse University

1

Abstract

Resolution as an inference procedure forms the basis of most automated

theorem-proving and reasoning systems. The most costly constituent of the

resolution procedure in its conventional form is unification. This paper de

scribes PCS, a first-order language in which resolution-based inference can be

conducted without unification. PCS resembles the language of elementary logic

with the difference that singular predicates supplant individual constants and

functions. The result is a uniformity in the treatment of individual constants,

functions and predicates. An especially costly part of unification is the occur

check. Since unification is unnecessary for resolution in PCS, the occur check is

completely circumvented. The conditions that would invoke an occur check are

properly represented however. In this sense, resolution in PCS can be viewed as

a refinement of conventional resolution. PCS does not have an identity relation.

Nonetheless, identity can be expressed in PCS and deduction with identicals

can be performed.

2

1 Introduction Resolution [8] as an inference procedure forms the basis of

most automated theorem-proving and reasoning systems. In its conventional form,

resolution involves computation of a substitution, which is applied to the expressions

to be resolved. This computation, called unification, is the most costly constituent of

the resolution procedure, and so has been the subject of intensive study.

This paper describes PCS, a first-order language in which resolution-based inference

can be conducted without unification. PCS resembles the language of elementary

logic with the following difference. Singular predicates supplant individual constants

and functions. It is not unusual to treat individual constants as nullary functions,

nor to treat n-ary functions as (n + 1)-ary predicates. But it appears that these

devices have not been used together. When they are, the result is a uniformity in the

treatment of individual constants, functions and predicates.

A computationally costly part of unification is the operation known as the occur check.

The occur check prevents cyclic substitutions. Because of its high cost, it is simply

ignored in most automated reasoning systems. For most applications, this causes no

problem. However, soundness of the inference procedure is sacrificed. Computation

with cyclic (infinite) terms has been investigated [4] to avoid the occur check while

retaining soundness. Since unification is unnecessary for resolution in PCS, the occur

check is completely circumvented. The conditions that would invoke an occur check

are properly represented however. In this sense, resolution in PCS can be viewed as

a refinement of conventional resolution.

3

PCS does not have an identity relation. Nonetheless, identity of singular expressions,

which correspond to terms in conventional predicate calculus, can be expressed. De

duction with identicals can be performed in PCS using the same resolution-based

inference procedure.

In the following sections, the syntax and semantics of PCS are defined. Then some

special properties of singular expressions are established. Next the transformation to

clausal form in PCS is described. Resolution in PCS is defined and shown to be sound

and complete as a refutation procedure. The occur check is discussed in relation to

resolution in PCS. Finally, deduction with identicals is introduced. Examples are

presented to illustrate refutation in PCS. The treatment throughout is semantic;

however, an axiomatic treatment can also be given (see [6]).

4

2 Definition of PCS

2.1 Syntax The vocabulary of PCS consists of the following.

1. Predicate symbols 'P of two kinds (let w+ := w- {0}):

(a) ordinary predicate symbols n = (Unew+ 'R.n) where 'R.n = {.Ri : i E w },

and

(b) singular predicate symbols S = (Unew+ Sn) where Sn = {Sf : i E w}

2. Variable symbols V = {Vi : i E w}

3. Boolean operators 1\ and ...,

4. Quantifier :3

5. Parentheses (and)

6. Comma,

There are no terms in PCS. In their stead, singular expressions are used. These are

defined as follows:

1. if S1 E sl and and X E v then S1 (X) is a singular expression

2. if sn+l E Sn+l' X' Xt, ... 'Xn E v are distinct and St, ... 'Sn are singular expres-

sions, then ::lxt(St(xi) 1\ .. ·I\ ::lxn(Sn(Xn) 1\ sn+l(x~, ... 'Xn, x)) .. ·)is a singular

expressiOn

5

3. nothing else is a singular expression

Expressions are defined as follows:

1. if pn E (Rn USn) and xb ... , Xn E V, then pn(xt, ... , Xn) is an expression

2. if <P is an expression then •<P is an expression

3. if </J, '1/J are expressions then (<P 1\ '1/J) is an expression

4. if <P is an expression and x E V occurs free in </J, then 3x<P is an expression

5. nothing else is an expression

Free and bound variables are defined in the usual way. When a list of variable

symbols follows an expression symbol, e.g., <P(x1 , .•• , Xn), these variables are all the

free variables and only free variables in the expression. When the expression symbol

is used without a list of variable symbols, it is left open which variables are free in

that expression. As a general rule, it is assumed that all expressions are rectified.

Since the intended interpretation oEix</J(x11 ••• , Xn, x) is identical to that of 3y<jl(xt, ... , Xn, y),

PCS expressions are defined to be equivalence classes, each equivalence class consist-

ing of all alphabetic variants. This equivalence can be defined formally (e.g., see

Barnes and Mack [2]), but this will not be done here. Any member of a given equiv-

alence class will be used to represent the class. Hence the two forms given above

represent the same PCS expression.

6

In the sequel, parentheses are dropped whenever no confusion can result. Metavari

ables are used as follows: Rn ranges over Rn; sn ranges over Sn; pn ranges over

Rn USn; x, y, z range over V; S ranges over singular expressions; and 4>, .,P, (} range

over expressions. Applying subscripts to these symbols does not change their ranges.

2.2 Semantics An interpretation of PCS is a pair T = ('D, F) where 'D is a

nonempty set and F is a mapping defined on 'P satisfying:

2. if Sn+l E Sn+t, then F(Sn+l) ~ vn+t such that for all d~, ... , dn E 'D there

exists dE 'D with (d1, ... , dn, d) E F(Sn+l) and for all d' E V, (db ... , dn, d') E

F(Sn+l) implies d' = d

Let d1, ... , dn E 'D and f/>(x~, ... , Xn) be an expression of PCS. Then 4>(x17 ••• , Xn) is

satisfied by dt, ... , dn in T (written T f= f/>[d1 , ... , dn]) iff one of the following holds:

3. f/>(xb · · ·, Xn) = .,P(xin ... , Xi1) tdJ(Xj17 ••• , Xjm) and (T f= .,P[diu ... , diJ and

T F O[d;0 •.. , d;m]), where { i17 ... , il} U {jb ... ,jm} = {1, ... , n}

4. 4>(XI, . .. , Xn) = 3x.,P(XI, . .. , Xn, x) and there exists d E 'D such that I f=

'1/J(dl, • . •, dn, d}

7

An expression ¢(x1 , ... , Xn) is true in I, written I~ ¢(x1, ... , Xn), iff for all d1, ... , dn E

D, I~ ¢[db···,dn]. ¢(xb···,xn) is valid, written~ ¢(xt, ... ,xn), iff <P(xb···,xn)

is true in every interpretation.

2.3 Abbreviations PCS is extended by the following abbreviations.

1. 1/J V () := •(•1/J A ...,())

2. 1/J --+ () := •(1/J A ...,())

3. 1/J +-+ () := (1/J --+ 0) 1\ (() --+ 1/J)

4. Vx1j; := •3x•1/J

The semantics for these abbreviations can be given directly as follows:

1. If ¢(xb ... , Xn) = 1/J(xiu ... , Xi1) V O(xiu ... , xim) then I ~ ¢[d1, ... , dn] iff

(I ~ 1/J[diu ... , di,] or I ~ O[di1l ... , dim]), where { i1, ... , i1} U {j1, ... ,jm} =

{l, ... ,n}

2. If ¢(x1, ... , Xn) = 1/J(Xi1 , ••• , Xi1) --+ O(xit, ... , Xim) then I ~ ¢[d1, ... , dn] iff

(I ~ 1/J[di!l ... , diJ implies I ~ O[di1l ... , dim]), where {it, ... , i1}U{j1, ... ,jm} =

{l, ... ,n}

3. If ¢(x1, ... ,xn) = 1/J(Xiu···,Xi1) +-+ O(xi1l···,xim) then I~ ¢[dl, ... ,dn] iff

(I ~ 1/J[dill · · ·, di,] iff I ~ O[djp ... , dim]), where {ib ... , i1} U {jl, ... ,jm} =

{l, ... ,n}

8

4. If </>(xl! ... ,xn) = Vx,P(xt, ... ,xn,x) then 'IF f/>[di, ... ,dn] iff for all dE V,

'I F 1/J[dt, .. ·, dn, d]

From the definition oftruth in 'I, it follows that 'IF </>(xl! ... , Xn) iff 'I F Vx1 · · · Vxn4>

(x17 ••• , Xn)· Clearly this holds for every universal closure of l/>(xt, ... , xn) (i.e., every

permutation of the prefix Vx1 • • • Vxn)· That every universal closure of 4> is true in 'I

will be written 'IF= Vlj>.

Two useful lemmas follow directly from these remarks.

LEMMA 1 If 'IF= V(l/> -4 1/J), then 'IF= V</> implies 'IF= V,P.

LEMMA 2 If T is obtained from a Boolean tautology by uniform substitution of PCS

expressions for propositional variables, then F= Vr.

9

3 Properties of singular expressions Singular expressions play a central role

in PCS. The denotation of a singular expression is a single (though not necessarily

unique) individual. Singular expressions commute in a certain way with the Boolean

operators. These properties are established in this section.

LEMMA 3 There exists d E 1) such that I f= S[d] and for all d' E 'D, I f= S[d']

implies d' = d.

proof: Define the depth of a singular expression as follows. depth(S1 (x)) := 0.

depth(3xt(St(Xt)A· · ·A3xn(Sn(xn)ASn+l(xt, ... ,xn,x)) · · ·)) := 1+max{depth(Si(xi)):

1 ~ i ~ n}. The proof is a straightforward induction on the depth of S (x).

In the following, Lemma 3 will be abbreviated 3!d E 1): If= S[d].

LEMMA 4 IF 3xt(SI(xt)A· · ·A3xn(Sn(xn)A•¢>(xt, ... ,xn)) · · ·) ifJI F •3xt(S1 (xt)A

···A 3xn(Sn(xn) A ¢>(xt, ... , Xn)) · · ·).

proof: I F 3xt(St(Xt) A ···A 3xn(Sn(xn) A •¢>(xt, ... , Xn)) · · ·) iff 3!dl · · · 3!dn :

(I f= St[dt]) A ···A (I f= Sn[dn])A (I f= •¢>[db ... , dn]) iff 3!dt · · · 3!dn : (I f=

St(dt])A· ··A (IF Sn[dn])A (IV= ¢>[dt, ... , dn]) iff IV= 3xt(St(xt)A· · ·A3xn(Sn(xn)A

¢>(xt,. ·. ,xn)) ···)iff IF •3xt(St(Xt)A· · ·A3xn(Sn(xn)A¢>(xt, ... ,xn)) ···)(follows

from the definition of satisfaction and Lemma 3).

COROLLARY 5 IF 3xt(St(xt)A· · ·A3xn(Sn(xn)A¢>(xt, ... , xn)) · · ·) iffi f= V'x1(St(x1)-...

· · · _... 'lxn(Sn(xn) --? ¢>(xt, ... , Xn)) · · ·).

10

LEMMA 6 If= 3xl(St(Xt)A···I\3xn(Sn(xn)l\c/>(Xi1 , ••• ,Xi1)1\?j;(x;n···,Xjm))···) iff

(If= 3xi1 (Si1 (xi1)A· · ·l\3xi1(Si1(xi1)1\c/>(xi1 , ••• , Xi1)) • • ·) and If= 3x;1 (Sil (x;1)/\· ··I\

3x;m(S;m (x;m) 1\ ?j;(x;n ... , x;m)) · · ·)), where {it, ... , i,} U {it, ... ,jm} = {1, ... , n} ·

proof: If= 3xt(St(Xt)l\···l\3xn(Sn(xn)Ac/>(xi1 , ••• ,xi1)1\'lj;(xj17 ···,xim))···) iff

3!dt · · · 3!dn : (I F SI[d1]) 1\ ···I\ (I F Sn[dn])A (I F (c/>(Xiu ···,Xi,)/\ ?j;(xh' · • · 'Xjm)

[dh, . .. , d;m]) iff :J!d1 • • • 3!dn : (I F St (dt])/\· • • 1\ (I F Sn[dn])l\ (I F c/>[dil' • • • , di,])l\

(I F ?j;(d;u ... 'd;m]) iff (I F 3xil (sit (Xi}) " ... " 3xil (sil (Xi,) 1\ 4>(X in ... 'Xil)) ...))

1\(I f= 3x;1 (S;1 (x;1) 1\ ···/\ 3x;m(S;m(x;m) A1/J(x;1 , ••• ,x;m))···)) (follows from the

definition of satisfaction and Lemma 3).

LEMMA 7 If= V(Sf+l(xt, ... , Xn, x) ---+ (Sj+1 (Yt, ... , Ym, x) V c/>)) iff IF V(Sj+l(Yll

... , Ym, X) ---+ (Sf+l (Xt, ••• , Xn, X) V cP)), providing X is not free in </> and is distinct

from Xt, ... , Xn, Yb · ·., Ym·

proof: Let a : V ---+ 1) be an assignment to variables, and let I f= Sf+l [a] be an

abbreviation for If= Sf+1[a(x1), ... , a(xn), a(x)]. Then it follows from the definition

of satisfaction that I I= 'v'(Sf+l(xt, ... , Xn, x) ---+ (Sj+l(Yb ... , Ym, x) V c/>)) iff for each

a, I I= Sf+I[a] implies either I f= Sj+I[a) or I f= c/>[a]. If I f= c/>[a], the lemma

follows. Suppose then that I ~ c/>[a]. Since x is not free in c/> and is distinct from

Xt, •.. , xn, Yb ... , Ym, there is an assignment a' that agrees with a off x such that

I I= Sf+l[a']. In this case, I f= Sj+I[a'] as well. But by Lemma 3, a' is the only

assignment that agrees with a off x having this property. Hence I I= Sf+l [a'] iff

I I= Sj+1 [a']. This completes the proof.

11

4 Skolem form An expression is in prenex form iff it is an instance of the

schema Q1 · · · QnM, where 0 ~ n, each Qi is either 3xi or Vxi, and M is an expression

containing no occurrences of 3 or \1. Q1 · · · Qn is the prefix and M is the matrix of

the expression. Given any closed expression, construction of a corresponding prenex

form in PCS and proof of their logical equivalence is the same as for conventional

predicate calculus (e.g., see Enderton [5)).

LEMMA 8 For every closed expression there exists a logically equivalent prenex form

expresszon.

Let 4> = Ql · · · QnM be a prenex form expression. Then *tP, its corresponding Skolem

form, can be constructed in PCS. First, for 0 ~ k, *k¢> is defined inductively as

follows. *0 ¢> := ¢>. If *k¢> = Vx1 · · · Vxm3Xm+1Qm+2 · · · QnM, where 0 ~ k and 0:::; m,

then *k+l¢> = \lx1 · · · Vxm'VXm+lQm+2 · · · Qn(Sm+l(xt, ... , Xm, Xm+t) -+ M), where

sm+t is a singular predicate symbol that has no previous occurrence. This defines a

construction. Now, *¢> := *q ¢>, where q is the number of existential quantifiers in the

prefix of¢>.

LEMMA 9 For every closed expression </> there exists a Skolem form *tP such that *tP

is satisfiable iff</> is satisfiable.

proof: It may be assumed that ¢> is in prenex form. It suffices to prove that *k 4>

is satisfiable iff *k+l¢> is satisfiable. Let *k¢> = Vx1 • · · Vxm3Xm+1Qm+ 2 • • • QnM, where

0 ~ k and 0 ~ m and *k+l¢> = Vx1 · · · Vxm Vxm+1Qm+2 · · · Qn(Sm+l(xt, ... , Xm, Xm+l)-+

12

M). Suppose If= *k~. Then Vd1 · · · 'Vdm3dm+l :IF Qm+2 · · · QnM[dt, ... , dm, dm+I]·

Since the denotation of sm+l is irrelevant for satisfaction of *k~ in I, let I' be

an interpretation like I except that F'(Sm+l) = { (dt, ... , dm, dm+I) : cdm+l(I f=

Qm+2 · .. QnM [d17 ... , dm, dm+1])}, where e is a choice function. For a denumerable

domain, dm+l can be specified as the first element in an enumeration of V that sat

isfies I f= Qm+2 .. · QnM [dt, ... , dm, dm+I], thus eliminating the need for c. With

this definition for sm+I' I' F *k+l~. Conversely, if IF *k+l~, then by the definition

of an interpretation, Vdl ... Vdm3dm+l :I F sm+l [dt, ... 'dm, dm+l]· Thence, by the

definition of satisfaction, I I= *k~.

13

5 Clausal form An atom is an n-ary predicate symbol followed by a list of

n variables, e.g., pn(x~, ... , xn)· A literal is an atom or an atom with a prefixed

complement operator. If the literal contains a complement operator, it is negative,

otherwise positive. An atom or literal is singular if the predicate symbol is singular. A

clause is the universal closure of a finite disjunction of literals. The common practice

of writing a clause without the quantifier prefix will be followed. Also a clause will

sometimes be written as a set of literals. Which form is being used will be clear from

the context. This implies that a clause is actually an equivalence class where the

equivalence is defined by the associative, commutative and idempotent properties of

disjunction. The empty clause, consisting of no literals, is written D. A clausal form

is a finite conjunction of clauses.

The following lemma follows from the existence of Skolem form and negation normal

form for every closed expression.

LEMMA 10 For every closed expression <P there exists a clausal form D such that ¢

is satisfiable iff D is satisfiable.

A variable occurrence as the rightmost argument of a singular predicate is a singular

occurrence; other occurrences are nonsingular. A variable that has a singular occur

rence in a negative literal is constrained, otherwise, unconstrained. If a variable has

only one occurrence in a clause and that occurrence is in a negative singular literal,

then the literal in which it occurs is improper. A clause is proper if it has no improper

literals.

14

LEMMA 11 If C is a clause and L an improper literal in C, then C - { L} and C are

logically equivalent.

proof: Let C(xt, ... ,xn,x) = L(xi17 • •• ,xi,x)VC'(xj17 • •• ,xim), where {it, ... ,i,}U

{j17 ••• ,jm} = {l, ... ,n}. I f= V(L(xi17 ••• ,xi,x) V C'(xi17 ••• ,xim)) iff for all

d1 , ••• ,dn E V: If= Vx(L(xi17 ••• ,Xi17 x) V C'(xi17 ••• ,xi,J)[dt, ... ,dn] iff for all

d1 , ..• , dn E V : (for all d E V: I f= L[di17 ••• , dip d]) or I F C'[diu ... , diml·

But L(xi17 ••• ,xi,x) = •S1+1(xi17 ••• ,xi17 x). Therefore, (for all d E V: I f=

L[di17 ••• , di" d]) cannot hold in I for anydi17 ••• , di1 E V since 3!d: If= S[di17 ••• , din d].

Hence for all di1 , ••• , dim E V: If= C'[di1 , ••• , dim], i.e., IF VC'(xi1 , ••• , Xjm)·

If C is a clause, var(C) is the set of variables occurring in C. A substitution is a

mapping u : V --+ V. C u will denote the clause obtained from clause C by applying

substitution u to each of the variable occurrences in C. Since all variable occurrences

are bound, any substitution that is bijective will yield the same clause (an alphabetic

variant). Substitutions are closed under composition.

If C is a clause and u a substitution, then C' = C u is a factor of C. If C' contains

fewer literals than C, then C' is a proper factor. A proper factor is formed when u is

not bijective and makes previously distinct literals identical. The following lemma is

immediate from the definition of satisfaction and truth.

LEMMA 12 If C is a clause and C' is a factor of C, then C' is a logical consequence

of C.

15

Let C1 and C2 be clauses and u be a substitution. If C1 u ~ C2 , then C1 subsumes

C2 . From Lemmas 1 and 2 and the Boolean tautology p ---t (p V q), it follows that

if C1u ~ C2 , then VC2 is a logical consequence of VC1u. Hence by Lemma 12, if C1

subsumes c2, then vc2 is a logical consequence of vel.

If C is a clause and S is a singular atom, then C' = •S V C is an instance of C. C' is

a proper instance if some x E var(C) is unconstrained in C and constrained in C'. If

C' is an instance (proper instance) of C, then an instance (proper instance) of C' is

an instance (proper instance) of C. An instance with no unconstrained variables is a

ground instance. Since an instance C' of C is subsumed by C, it follows that C' is a

logical consequence of C.

16

6 Resolution in PCS Let C1 and C2 be clauses containing literals L1 =

pn(x1, ... , xn) and L2 = ,pn(y1, ... , Yn), respectively. Moreover, let var(C1) be

disjoint from var(C2). Let u be a substitution such that u(xi) = u(yi) for 1 ~ i ~ n.

Then (C1 - { L1})u u (C2 - { L2})u is a resolvent of C1 and C2. It is a proper resolvent

if it is a proper clause.

Let D be a clausal form and C be a clause. A deduction of C from D, written D 1- C,

is a sequence C1, ... , Cn = C of clauses, where for 1 < i ~ n, Ci is either a clause

of D, or a proper resolvent of C; and Ck for some j, k < i. A refutation of D is a

deduction of the empty clause from D, written D 1- D.

THEOREM 13 (Soundness of Resolution) If C1 and C2 are clauses, then any resolvent

of cl and c2 is a logical consequence of cl " c2.

proof: Let cl = c~ v pn(Xt, ... 'Xn) and c2 = c~ v ...,pn(Yt, ... 'Yn)· By Lemma

12, C1u is a logical consequence of C1 and C2u is a logical consequence of C2. Hence,

using the definition of satisfaction, C1 u A C2u is a logical consequence of C1 A C2.

Since ((p V q) A (r V •q)) -+ (p V r) is a Boolean tautology, Lemma 2 yields f=

V(((C~uV pn(z17 ... , zn)) A (C~uV -,pn(z17 ... , Zn))) -+ (C~uV C~u)). Finally Lemma

1 gives the desired result.

It follows from this theorem that deduction as defined above is a sound procedure,

i.e., D 1- Conly if Cis a logical consequence of D.

In view of the properties of singular expressions stated in Section 3, it is clear that

17

a ground instance of a clause is logically equivalent to a Boolean combination of

atomic ground instances of the form 'v'(•St(Xt) V · · · V •Sn(xn) V pn(xt, ... , Xn)).

Considering these atomic ground instances as prime expressions, the truth-functional

properties of the Boolean expression may be investigated. The next lemma states that

the deduction procedure defined above is complete for recognizing truth-functional

contradiction.

LEMMA 14 (Ground Completeness) If D is a ground clausal form, and D is a truth

functional contradiction, then D 1- D.

proof: A proof can be found in Andrews [1] (Theorem 1600).

Let D be a clausal form. The lexicon of D is the set of singular predicates occurring in

D, with the provision that if no unary singular predicate occurs in D, SJ is added to

the lexicon. Ground instances of D formed using only elements of the lexicon will be

called Herbrand instances. The conjunction of a finite number of Herbrand instances

will be called a compound Herbrand instance (cH-instance).

LEMMA 15 (Herbrand's Theorem) If D is a clausal form, and D is unsatisfiable, then

some compound Herbrand instance of D is truth-functionally contradictory.

proof: The proof is an adaptation of Andrews [1] Theorem 3503. Suppose that

D has no truth-functionally contradictory cH-instances. Then there exists a truth

functional assignment g to atomic ground instances that validates all the eM-instances

18

of D. (Here an appeal is made to the compactness of the propositional calculus- see

Andrews [1] Theorem 1501.) Q is now used to construct a model M = (1J, :F) for D

as follows. Let 1) be the set of all singular expressions constructed from the lexicon

of D reduced by the equivalence ~, defined as the least equivalence such that

(i) for any x, y E V: S(x) ~ S(y)

(ii) if Q(Vxl···VxnVx(-.Sl(xl)V ··· V •Sn(xn) V •S(x)V Sn+l(x1 , •.. ,xn,x)))

true then S(x) ~ Vxl ... Vxn(•St (xt)V ... v •Sn(xn) v sn+l(x~, ... 'Xn, X))

(iii) if Si(x) ~ Si(x) then Vxt· · ·Vxn(•St(xt)V · · · V •Si(xi)V · · · V •Sn(xn)V

S"+l(x~, ... ,xn,x)) ~vxt••·Vxn(-.St(Xt)V ···V-.Sj(Xi)V ···V•Sn(Xn)V sn+t

(xl, ... ,Xn,x))

1J corresponds to the Herbrand universe of D. In the following, let any singular

expression represent its equivalence class.

:F is defined:

(i) for each Sn+t in the lexicon of D, :F(Sn+t) = { (S~, ... , Sn, Vx1 · · • Vxn(·S1(x 1)V

... v •Sn(xn) v sn+l(xl, ... 'Xn, x))} : St, ... 'Sn E 1J}

(ii) for each IF occurring in D, :F(JF) = {(81, ... , Sn) : Q(Vx1 · · · Vxn(•S1(x1)V

· · · V •Sn(xn) V JF(x~, ... , Xn))) =true}

It follows immediately from (i) that for any singular expression S(x), If= S[S(x)].

19

Claim: If Dis a clausal form that has no truth-functionally contradictory cH-instances,

and M is defined as above, then M f= D. Proof of the claim is by induction on h =

the number of unconstrained variables in D.

(i) h = 0. In this case, D is already a cH-instance, and therefore is validated by Q.

HenceM f=D.

(ii) h > 0. This case employs an embedded induction on the number of clauses in D.

(a) SupposeD= VxVx1 · · · VxnC, where xis an unconstrained variable of D. Let S(x)

be an arbitrary singular expression in 'D, and consider D' = VxVx1 · · · Vxn(•S(x)VC).

Every cH-instance of D' is also a cH-instance of D, which is validated by Q. Therefore

by the inductive hypothesis, M f= VxVx1· · · Vxn(•S(x) V C). But :3!d E 'D: M f=

S[d], viz., d = S(x). Therefore, M f= Vx1 · · · VxnC[S(x)] for every singular expression

S(x) E 'D. Hence by the definition of satisfaction, M f= D.

(b) Suppose D = Dt 1\ D2. Let G1 and G2 be any cH-instances of D1 and D2, re

spectively. Then Gt 1\ G2 is a cH-instance of D, and so is validated by Q. But then

Gt and G2 are validated by Q as well. By the induction hypothesis M f= D1 and

M f= D2. Hence by the definition of satisfaction, M f= D.

LEMMA 16 (Lifting Lemma) Let Bt and B2 be subsumed by clauses Ct and c2, re

spectively. If B is a resolvent of B1 and B 2 , then either {i) there exists a resolvent C

of Ct and C2 such that B is subsumed by C or (ii) B is subsumed by C1 or by C2 •

20

literals and a the substitution involved in the resolution. Consider two cases.

(i) L1 E C1.\ and L 2 E C2.\. Then B = (B1- {Lt})a U (B2- {L2})a =((Ct.\ U

BD- {Lt})aU ((C2.\ U B~)- {L2})a= (CtA- {Lt})aU (C2.\- {L2})aU B~a U B~a.

Then C = (C1 .\ - { L1 })a U (C2.\ - { L2})a is a resolvent of C1 and C2 that subsumes

B. This argument is simplified by the assumption that none of the literals in B are

improper. Actually some of the literals may drop out, but this does not alter the

conclusion.

(ii) L1 E B~ or L2 E B~. Suppose L1 E B~. Then B = (Bt- {Lt})aU (B2- {L2})a=

((C1.\UBD-{Lt})aU (B2-{L2})a= C1 .\aU((B~ -{Lt})U(B2 -{L2}))a. Therefore,

C1 .\a ~ B, i.e., B is subsumed by C1 . The argument is similar for L2 E B~.

THEOREM 17 (Completeness) D is unsatisfiable only if D f- D.

proof: If D is unsatisfiable, then by Herbrand's Theorem, there exists an unsatis

fiable ell-instance G of D. By the completeness of ground deduction, G f- D. Let

the refutation be Bt, ... , Bn = D. Construct a sequence of clauses Ct, ... , Cn, such

that for 1 ~ i :::; n, Ci subsumes Bi, as follows. Arguing inductively, assume that

Ct, ... , Ci-t has been constructed. If Bi is a clause of G, let Ci be the clause of D such

that Bi is an instance of Ci. If Bi is a resolvent of Bj and Bk, then by the induction

hypothesis, Ci and Ck subsume B3 and Bk, respectively. Now by the Lifting Lemma,

Bi is subsumed by either a resolvent C of Ci and Ck, or by Ci, or by Ck. Choose the

appropriate one for Ci. Thus Ct, ... , Cn is a deduction. Since Cn subsumes Bn = o,

this sequence is a refutation. Therefore D f- D.

21

The following example, taken from Chang and Lee [3] (p. 89), illustrates resolution

in PCS.

The premises are:

Vx((E(x) A -.V(x))--+ 3y(S(x, y) A C(y)))

3x(P(x) A E(x) A Vy(S(x,y)--+ P(y)))

Vx(P(x)--+ -.V(x))

and the conclusion is:

3x(P(x) A C(x))

In Skolem form (with the conclusion denied):

VxVy(S~(x,y)--+ ((E(x) A -.V(x))--+ (S(x,y) A C(y))))

VxVy(SJ(x)--+ (P(x) A E(x) A (S(x,y)---. P(y))))

Vx(P(x)--+ -.V(x))

Vx(P(x)--+ -.C(x))

where s~ and s~ are singular predicates.

In clausal form:

1. -.SJ(x,y) V •E(x) V V(x) V S(x,y)

22

2. ·S6(x,y) V •E(x) V V(x) V C(y)

3. •SJ(x) V P(x)

4. •SJ(x) V E(x)

5. ·SJ(x) V •S(x,y) V P(y)

6. •P(x) V •V(x)

7. •P(x) V •C(x)

The following sequence of clauses, appended to the premises, is a refutation. The

justification for each clause is given in parentheses.

8. •SJ(x) V •V(x) (resolve 3,6)

9. •SJ(x) V •S6(x,y) V V(x) V C(y) (resolve 2,4)

10. •SJ(x) V •S6(x,y) V C(y) (resolve 8,9)

11. •SJ(x) V •S6(x,y) V V(x) V S(x,y) (resolve 1,4)

12. •SJ(x) V •S6(x,y) V S(x,y) (resolve 8,11)

13. •SJ(x) V •S6(x,y) V P(y) (resolve 5,12)

14. -,SJ(x) V ...,S5(x,y) V ...,C(y) (resolve 7,13)

15. 0 (resolve 10,14)

23

7 The occur check Resolution in PCS does not involve unification, and so it

does not involve an occur check either. However, it is of interest to examine those

situations in which an occur check would inhibit resolution in conventional predicate

calculus.

A simple example often used is the following.

1. •P(z,z)

2. P(x,f(x))

Here an occur check blocks unification. But if the occur check is ignored, 0 is erro

neously deduced.

In PCS this example is represented as follows.

1. -.P(z,z)

2. •S](x,y) V P(x,y)

Using the substitution [zjx, zjy], the resolvent is -.S](z, z). Since this is a proper

clause and no further resolution is possible, a refutation is not obtained. The resolvent

asserts Vz•S}(z, z), or equivalently, -.3zS}(z, z). That is, the singular predicateS}

is irreflexive. This is equivalent to asserting that the corresponding function has no

fixed-point. If it were given that at least one fixed-point exists, i.e., 3zS}(z, z), or in

clausal form, -.S}P(v) V S}(v,v), then a refutation would follow.

24

Thus resolution in PCS is a refinement of resolution in conventional predicate calculus.

It may also be compared with the extension of conventional predicate calculus to cyclic

terms. 3zS}(z,z) asserts the existence of a value for the cyclic term J(f(f(· · ·))).

25

8 Identity in PCS PCS does not have an identity relation. Nonetheless,

identity of singular expressions can be expressed. 3x (St (X) 1\ s2 (X))' or equivalently

Vx(S1(x) ~ S2 (x)), expresses the identity of singular expressions S1 and S2 • The only

deficit relative to predicate calculus with a logical identity relation is the inability to

express x = y (see [7]). Indeed, except for expressions of this form, translation

between PCS and predicate calculus with identity (PCI) can be accomplished by

means of the correspondence:

This places the expressiveness of PCS properly between that of predicate calculus

without identity and predicate calculus with identity.

Reasoning in PCS with identicals needs only resolution and the rule of symmetrical

pairs. This rule, justified by Lemma 7, is the following.

Let clause C = •Si+l(xt, ... , Xn, x) V Sj+l(Yt, ... , Ym, x) V B, where

x fj {xt, ... ,xn} U {yt, ... ,ym} U var(B). Then from C infer C' =

Si+l(xt, ... 'Xn, x) v ·Sj+l(Yt, ... 'Ym, x) v B.

Si+l(xt, ... , Xn, x) and Sj+l(Yt, ... , Ym, x) are called a symmetrical pair. This rule

provides for the substitutivity of identicals. It might be argued that it does so more

simply than either the rule of substitution or the functional reflexive axioms together

with the rule of paramodulation.

26

In the sequel, resolution in PCS is extended to allow interchange of the members of

a symmetrical pair in one of the clauses entering into the resolution.

To illustrate this extended definition of resolution, a simple theorem of elementary

group theory will be proved.

In any group (for which left identity and left inverses are postulated) the

left cancellation law holds.

The premises are:

A. VxVyVz(m(m(x, y), z) = m(x, m(y, z))

ID. Vx(m(e,x) = x)

IN. Vx(m(i(x), x) =e)

and the conclusion is:

T. VxVyVz(((m(x,y) = m(x,z)) ~ (y = z))

In PCS clausal form with the conclusion denied:

1. •m(x,y,u) V •m(u,z,v) V •m(y,z,w) V m(x,w,v)

2. •e(x) V m(x,y,y)

3. •e(x) V •i(y, z) V m(z, y, x)

27

4. -,a(x) V -,b(y) V -,c(z) V -,m(x, y, u) V m(x, z, u)

5. -,b(x) V -,c(x)

Note that a, b, c, e, i, mare all singular predicates.

The following sequence of clauses, appended to the premises, is a refutation. The

justification for each clause is given in parentheses. The literal involved in resolution

is underlined. When interchange of a symmetrical pair is involved, for clarity it is

shown on a separate line.

6. -,e(u)V-,i(y,x)V-,m(u,z,v)V-,m(y,z,w)Vm(x,w,v) (resolve 1,3)

7. -,i(y, x) V -,m(y, z, w) V m(x, w, z) (resolve 2,6)

8. -,a(x) V -,b(y) V -,c(z) V m(x, y, u) V -,m(x, z, u) (interchange symmetrical pair

in 4)

9. -,a(y) V -,b(z) V -,c(v) V -,i(y, x) V -,m(y, v, w) V m(x, w, z) (resolve 7,8)

10. -,m(x,y,u) V m(u,z,v) V -,m(y,z,w) V -,m(x,w,v) (interchange symmetrical

pair in 1)

11. -,a(y) V -,b(z) V -,c(v) V -,i(y,x) V -,m(x,y,u) V m(u,v,z) (resolve 9,10)

12. -,e(u) V -,b(z) V •c(v) V m(u,v,z) (resolve 3,11)

13 . .,e(u) V b(z) V -,c(v) V •m(u,v,z) (interchange symmetrical pair in 12)

14. b(v) V •c(v) (resolve 2,13)

28

15. 0 (resolve 5,14)

29

9 Conclusion PCS appears to offer certain computational advantages relative

to conventional predicate calculus for automated reasoning. Specifically, unification is

supplanted by simple alphabetic conversion; the need for an occur check disappears;

'cyclic terms' are properly represented; the binding environments required for the

refutation process are less complex; and reasoning with identicals is simplified in that

substitution of identicals is subsumed by resolution. The reason for this appears to be

that the singular expressions involved in resolution-based reasoning in PCS function

as generalized and "flattened" terms.

However, a complexity analysis for reasoning in PCS was not presented. Nor was

the use of heuristics to guide the refutation process considered. Some heuristics

developed for conventional predicate calculus are applicable. Others must be adapted

to reasoning in PCS. Still others are peculiar to PCS. These topics are deferred to

subsequent papers.

30

References

[1] Andrews, Peter B. An Introduction to Mathematical Logic and Type Theory,

Academic Press, Orlando 1986.

[2] Barnes, Donald W. and John M. Mack An Algebraic Introduction to Mathemat

ical Logic, Springer-Verlag, New York 1975.

[3] Chang, Chin-Liang and Richard Char-Tung Lee Symbolic Logic and Mechanical

Theorem Proving, Academic Press, New York 1973.

[4] Colmerauer, A. "Prolog and Infinite Trees," in Clark and Tarnlund (eds.) Logic

Programming, Academic Press, New York 1982.

[5] Enderton, Herbert B. A Mathematical Introduction to Logic, Academic Press,

New York 1972.

[6] Purdy, William C. A Logic of Singular Predicates, Report SU-CIS-91-32. School

of Computer and Information Science, Syracuse University, 1991.

[7] Purdy, William C. On the Question 'Do We Need Identity'?', Report SU-CIS-91-

33. School of Computer and Information Science, Syracuse University, 1991.

[8] Robinson, J. A. "A Machine-Oriented Logic Based on the Resolution Principle,"

JACM 12, 1965.

31

	Resolution without Unification
	Recommended Citation

	SU-CIS-91-31_001c
	SU-CIS-91-31_002c
	SU-CIS-91-31_003c
	SU-CIS-91-31_004c
	SU-CIS-91-31_005c
	SU-CIS-91-31_006c
	SU-CIS-91-31_007c
	SU-CIS-91-31_008c
	SU-CIS-91-31_009c
	SU-CIS-91-31_010c
	SU-CIS-91-31_011c
	SU-CIS-91-31_012c
	SU-CIS-91-31_013c
	SU-CIS-91-31_014c
	SU-CIS-91-31_015c
	SU-CIS-91-31_016c
	SU-CIS-91-31_017c
	SU-CIS-91-31_018c
	SU-CIS-91-31_019c
	SU-CIS-91-31_020c
	SU-CIS-91-31_021c
	SU-CIS-91-31_022c
	SU-CIS-91-31_023c
	SU-CIS-91-31_024c
	SU-CIS-91-31_025c
	SU-CIS-91-31_026c
	SU-CIS-91-31_027c
	SU-CIS-91-31_028c
	SU-CIS-91-31_029c
	SU-CIS-91-31_030c
	SU-CIS-91-31_031c
	SU-CIS-91-31_032c

