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Abstract 

Sommers posed the question 'Do We Need Identity?' and answered in the 

negative. According to Sommers, the need for a special identity relation re

sulted from an arbitrary distinction between concept and object introduced by 

Frege and retained in modern predicate logic (MPL). This is reflected in the 

syntactic distinction between predicate and individual constant. Traditional 

formal logic (TFL) does not respect this distinction and, as a consequence, has 

no need for a special identity relation. But Sommers' position has not gained 

general acceptance. On the contrary, it has received considerable criticism. 

While it is conceded that TFL can express the identity of individual constants, 

it is quickly pointed out that this falls far short of providing the expressiveness 

of the logical identity relation. But the precise extent of the deficit in expres

siveness, if indeed there is any deficit, has not been determined. It appears that 

Sommers' position on identity has not been adequately formalized to permit 

such a determination. This paper formalizes and extends Sommers' position on 

identity. This formalization is compared with MPL to define precisely the dif

ference in expressive power. The conclusion is that it has less expressive power 

than MPL, but nonetheless does provide essentially all the expressiveness of 

the logical identity relation. The formal language defined for this investiga

tion is similar to the language of MPL. The similarity will not only facilitate 

comparison, but perhaps will also make this formal language more palatable to 

readers whose experience and/or predisposition favors MPL. 
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1 Introduction The question 'Do We Need Identity?' was raised by Sommers 

(4, 5]. He answered that a special identity relation is not needed in traditional formal 

logic (TFL), since predication and the laws governing it already allow identity to be 

expressed. But Frege injected a new, and arbitrary, distinction into modern predicate 

logic (MPL), which gave rise to the need for an identity relation. 

The distinction is between concept and object, reflected in the syntactic distinction 

between predicate and individual constant (or name). Its import is that a predicate 

can predicate, but an individual constant cannot. Consequently, two individual con

stants can be related only under a binary predicate. In particular, two individual 

constants can be declared identical only by a binary identity relation. 

TFL does not respect this distinction. In TFL an individual constant, denoting an 

object, can occupy the predicate position. For example, 'Hans is John' predicates the 

property (concept) of being John to Hans. But if 'John' is a predicate in 'Hans is 

John', consistency dictates that it is a predicate also in 'John is kind', and hence can 

be quantified. Thus 'some John is kind' must be well-formed, and must assert that 

the denotations of the predicates 'John' and 'kind' have nonempty intersection. Since 

'John' is singular (i.e., denotes a singleton set), this is tantamount to asserting that 

the unique element in the set denoted by 'John' is a member of the set denoted by 

'kind'. Therefore, 'John is kind' can be viewed as abbreviation for 'some John is kind'. 

Because of the singularity of the predicate 'John', 'some John is kind' is equivalent 

to 'all John is kind'. To indicate that 'John' is thus simultaneously universally and 

existentially quantified, Sommers writes '*John is kind'. This he calls 'wild quantity'. 
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When the arbitrary distinction between object and concept is eliminated, the need 

for a special identity relation disappears. Thus '*Hans is John' asserts that the deno

tations of the predicates 'Hans' and 'John' have nonempty intersection (equivalently, 

the denotation of 'Hans' is a subset of the denotation of 'John'), that is, are identi

cal. Sommers gives a demonstration that for individual constants a and b, the unary 

predication '*a is b' in TFL has all the properties ascribed to the binary predication 

'a = b' in MPL. 

But Sommers' position has not gained general acceptance. On the contrary, it has 

received considerable criticism. While it is conceded that '*a is b' can express the 

identity of individual constants, it is quickly pointed out that this falls far short of 

providing the expressiveness of the logical identity relation. But the precise extent of 

the deficit in expressiveness, if indeed there is any deficit, has not been determined. 

It appears that Sommers' position on identity has not been adequately formalized to 

permit such a determination. 

This paper formalizes and extends Sommers' position on identity. This formalization 

is compared with MPL to define precisely the difference in expressive power. The 

conclusion is that it has less expressive power than MPL, but nonetheless does provide 

essentially all the expressiveness of the logical identity relation. 

The formal language defined for this investigation (hereinafter referred to as 'PCS') 

is similar to the language of MPL (hereinafter referred to as 'PCI'). The similarity 

will not only facilitate comparison, but perhaps will also make PCS more palatable 
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to readers whose experience and/or predisposition favors MPL. PCS differs from PCI 

in that the distinction between predicate and individual constant is not present. 

In the following sections, the syntax and semantics of PCS are defined. Then the 

essential properties of singular expressions are established. To facilitate comparison, a 

conventional definition of PCI is provided. Translation from PCS to PCI demonstrates 

that PCS is equivalent to a subset of PCI. Translation from PCI to PCS is shown to be 

partial only, identifying a deficit in expressiveness of PCS relative to PCI. Therefore, 

there are wffs in PCI for which there are no semantically equivalent wffs in PCS. 

However, for such a wff in PCI, there is a schema in PCS that expresses the same 

meaning. In particular, any theory that can be axiomatized with axiom schemas in 

PCI can be axiomatized with axiom schemas in PCS. The treatment throughout is 

semantic; however, an axiomatic treatment can also be given (see [3]). 
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2 Definition of PCS This section defines PCS, a first-order language that 

formalizes and extends Sommers' ideas regarding singular terms. PCS resembles PCI, 

the language of MPL, with the following difference. Singular predicates supplant 

individual constants and functions. It is not unusual to treat individual constants 

as nullary functions, nor to treat n-ary functions as ( n + 1 )-ary predicates. But it 

appears that these devices have not been used together. When they are, the result 

is a uniformity in the treatment of individual constants, functions and predicates. 

While PCS does not have an identity relation, identity of singular expressions, which 

correspond to terms in PCI, can be expressed. Moreover, deduction with identicals 

can be performed conveniently in PCS. 

2.1 Syntax The vocabulary of PCS is listed first. Let w+ := w- {0}. 

1. Predicate symbols P of two kinds 

(a) ordinary predicate symbols R = UnEw+ Rn, where Rn = {Ri: i E w}, and 

(b) singular predicate symbols S = UnEw+ Sn, where Sn = {Sf : i E w} 

2. Variable symbols V = {Vi : i E w} 

3. Boolean operators A and --, 

4. Quantifier 3 

5. Parentheses ( and ) 

6. Comma, 
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There are no terms in PCS. In their stead, singular expressions are used. These are 

defined as follows: 

1. if S 1 E St and and X E v then S1 (X) is a singular expression 

2. if S"'+l E Sn+l, x, x1 , ..• , Xn E V are distinct and St, ... , Sn are singular expres-

sions, then 3x1(S1(xt) 1\ ···A 3xn(Sn(xn) 1\ S"'+l(xt, ... , Xn, X))···) is a singular 

expression 

3. nothing else is a singular expression 

Expressions in PCS are defined as follows: 

1. if P"' E ('R.n. USn) and Xt, ••• , Xn E V, then P"'(xt, ... , Xn) is an expression 

2. if 4> is an expression then -,4> is an expression 

3. if 4>, 1/J are expressions then ( 4> 1\ 1/J) is an expression 

4. if 4> is an expression and x E V occurs free in 4>, then 3x4> is an expression 

5. nothing else is an expression 

Free and bound variables are defined in the usual way. When a list of variable 

symbols follows an expression symbol, e.g., 4>(xt, ... , xn), these variables are all the 

free variables and only free variables in the expression. When the expression symbol 

is used without a list of variable symbols, it is left open which variables are free in 

that expression. As a general rule, it is assumed that all expressions are rectified. 
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Since the intended interpretation of 3x4>( Xt, • •• , Xn, x) is identical to that of 3y<f>( x1, ... , 

Xn, y ), PCS expressions are defined to be equivalence classes, each equivalence class 

consisting of all alphabetic variants. This equivalence can be defined formally (e.g., 

see Barnes and Mack [1 ]), but this will not be done here. Any member of a given 

equivalence class will be used to represent the class. Hence the two forms given above 

represent the same PCS expression. 

In the sequel, parentheses are dropped whenever no confusion can result. Metavari

ables are used as follows: Rn ranges over Rn; sn ranges over Sn; pn ranges over 

Rn USn; x, y, z range over V; S ranges over singular expressions; and 4>, 'lj;, () range 

over expressions. Applying subscripts to these symbols does not change their ranges. 

2.2 Semantics An interpretation of PCS is a pair I = (V, 9) where V is a 

nonempty set and 9 is a mapping defined on P satisfying: 

1. if Rn ERn, then 9(Rn) ~ vn 

2. if sn+l E Sn+b then 9(Sn+l) ~ vn+l such that for all d1 , ... , dn E V there 

exists dE V with (dt, ... , dn, d) E 9(Sn+l) and for all d' E 'D, (d1 , ... , dn, d') E 

9(Sn+l) implies d' = d 

Let g E vv be an assignment of values to variables, and 4> be an expression of PCS. 

Then 4> is satisfied by g in I (written If= <f>[g]) iff one of the following holds: 

1. 4> = pn(Xt, ... ,xn) and (g(xl), ... ,g(xn)) E 9(Pn) 

2. 4> = •'l/J and I~ 'lj;[g] 
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3. 4> = 7/J A(} and (I p 7/J[g] and I p 8[g]) 

4. 4> = 3xtjJ, where x occurs free in 7/J, and there exists g' E 'Dv that agrees with g 

off x such that I f= tP [g1 

An expression 4> is true in I, written I I= </>, iff for all g E 'Dv, I I= <f>[g]. </> is valid, 

written p </>, iff </> is true in every interpretation. 

2.3 Abbreviations 

abbreviations. 

1. tP V (} := •( ...,7/J A •8) 

2. '1/J -+ () := •( '1/J A •0) 

It is convenient to extend PCS by introducing the following 

3. '1/J +-+ (} := (¢-+ 8) A (0-+ ¢) 

The semantics for these abbreviations can be given directly as follows: 

1. If </> = '1/J V () then I p </>[g] iff (I p '1/J[g] or I p 8[g]) 

2. If 4> = '1/J -+ (} then If= </>[g] iff (I p '1/J[g] implies I p O[g]) 

3. If 4> = '1/J +-+(}then If= </>[g] iff (If= ,P[g] iff If= O[g]) 

4. If </> = Vx,P, where x occurs free in ¢, then I f= <f>[g] iff for all g' E vv that 

agree with g off x, I p tjJ[g'] 
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3 Properties of singular expressions Singular expressions play a central 

role in PCS. The denotation of a singular expression is a single (though not neces

sarily unique) individual. Singular expressions commute in a certain way with the 

Boolean operators. The principal result is that not only unary singular predicates, 

corresponding to individual constants in PCI, but more generally singular expressions 

exhibit 'wild quantity'. These results are established in this section. 

In the following, if </>(xt, ... , xn) is a wff, I f= </>[dt, ... , dn] will abbreviate I f= </>[g] 

where g E 1JV such that g(xt) = dt, ... ,g(xn) = dn. 

LEMMA 1 There exists d E V such that I f= S[d] and for all d' E 'D, I f= S[d'] 

implies d' = d. 

proof: Define the depth of a singular expression as follows. depth(S1(x)) := 0. 

depth(3xt(St(Xt)A· · ·!\3xn(Sn(xn)!\Sn+l(xt, ... , Xn, x)) · · ·)) := 1+max{depth(Si(xi)) : 

1 < i ~ n }. The proof is a straightforward induction on the depth of S(x ). 

In the following, Lemma 1 will be abbreviated 3!d E V: If= S[d]. 

THEOREM 2 IF 3xt(St(xt)A· · ·!\3xn(Sn(xn)A•</>(xt, ... , Xn)) · · ·) iffi f= •3x1(S1 (xt)A 

· · · !\ 3xn(Sn(xn) !\ </>(xt, ... , Xn)) · · ·). 

proof: I F 3xt ( St (xt) !\ · · · !\ 3xn( Sn( Xn) !\ •</>( Xt, . .. , Xn)) · · ·) iff 3!d1 · · · 3ldn : 

(I F St[dt]) !\ '· · !\ (I F Sn[dn])!\ (I F •</>[dt, ... , dn]) iff 3!dt · • · 3!dn : (I F 

St[dt))A· ··!\(IF Sn[dn])!\ (I l;b </>[dt, ... , dn]) iff I l;b 3xt(St(Xt)A· · ·!\3xn(Sn(Xn)A 
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¢>(x1 , ••• , Xn)) · .. ) iff I f= --,3x1(S1 (xt) /\ · · · /\ 3xn(Sn( Xn) /\ <P(xb ... , Xn)) · · ·) (follows 

from the definition of satisfaction and Lemma 1). 

COROLLARY 3 If= 3xt(St(Xt)A· · ·/\3xn(Sn(Xn)A¢>(xt, ... , Xn)) · · ·) iffi F 'Vxt(St(xt) ~ 

· · · ~ 'v'xn(Sn(xn) ~ <P(xb ... , Xn)) · · ·). 

Using the notation of restricted quantification, this result can be recognized as as

serting the 'wild quantity' of singular expressions, e.g., (3x : S(x))(¢>(x)) +-+ ('Vx : 

S(x))(<P(x)). 

THEOREM 4 I f= 3x1(S1(x1) /\ · · • /\ 3xn(Sn(Xn) A <P(xiu · · ·, Xi1) A 1/J(xiu · · ·, Xim)) · · ·) 

iff (I f= 3xi1 (Si1 (xs1 ) /\ • • • /\ 3xi1 (8;1 (xi,)/\ <P(xiu ... , Xi1)) • • ·) and I f= 3xil (Sil (xil) /\ 

· · · /\ 3 X im ( S im (X im) /\ tP (X il , ••• , X im ) ) · · ·)) 1 where { i 1 , ... , i I} U {j 1 , ... , J m } = { 1 , ... , n} . 

proof: If= 3xl(SI(xl) /\ · · · /\ 3xn(Sn(xn) /\ <P(xiu· .. , Xi1 ) /\ 1/J(xiu ... , Xim)) ···)iff 

3!dl "· 3!dn : (IF 81 [d1])/\ .. · /\ (IF Sn[dn])/\ (I F ( </>(Xip · .. , Xi1 ) /\1/J(xil, · .. , Xim) 

[dil' ... 'dim]) iff 3!dl ... 3!dn :(I F sl [dl])/\· .. /\(I F Sn[dn])A (I F <P[dil' ... 'di,])/\ 

(I F ¢[diu ... , dim]) iff (I F 3xi1 (Si1 ( Xi1 ) /\ " • /\ 3xs,(Si1 ( Xi1 ) /\ </>( Xiu ... , Xi1)) .. ·)) 

/\(I F 3xj1 (Sil (Xj1 ) /\ .. • /\ 3xim(Sim(xim) /\ 1/J(xiu· .. , Xim)) .. ·)) (follows from the 

definition of satisfaction and Lemma 1). 

Thus singular expressions distribute over conjunction. Examples, using the notation 

of restricted quantification, are: (3x: S(x))(¢>(x)/\¢(x)) +-+ ((3x: S(x))(¢>(x))A(3x: 

S(x))(¢(x))) and ('Vx: S(x))(<P(x) /\ ¢()) +-+ (('v'x: S(x))(<P(x)) /\ ¢()). 
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4 PCS and PCI Compared The expressiveness of PCS relative to PCI will 

be investigated through the use of meaning-preserving translations between the two 

languages. Translation from PCS to PCI is not surjective. The difference of PCI and 

the image of PCS in PCI will give the deficit in expressiveness. 

To facilitate definition of a translation function, a brief definition of PCI will first be 

given. This definition is standard, but chosen to parallel the definition of PCS given 

in Section 2. 

4.1 Definition of PCI The vocabulary of PCI consists of the following. 

1. Predicate symbols R = UnEw+ Rn, where Rn = { Ri : i E w} 

2. Individual constant symbols C = { Ci : i E w} 

3. Function symbols :F = UnEw+ Fn, where Fn = {f? : i E w} 

4. Variable symbols V = {Vi: i E w} 

5. Boolean operators A and ..., 

6. Identity relation = 

7. Quantifier 3 

8. Parentheses ( and ) 

9. Comma, 

Terms in PCI are defined as follows: 
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1. individual constant symbols and variable symbols are terms 

2. if fn E Fn and it, . .. , in are terms, then fn(tt, ... , in) is a term 

3. nothing else is a term 

In the following, i will be used as a metavariable ranging over terms of PCI. 

Expressions in PCI are defined as follows: 

1. if Rn ERn and it, ... , in are terms, then Rn(it, ... , in) is an expression 

2. if i 1 , i 2 are terms, then i 1 = i2 is an expression 

3. if </> is an expression then -,¢> is an expression 

4. if l/J, '1/; are expressions then ( ¢J 1\ '1/;) is an expression 

5. if ¢Y is an expression and x E V occurs free in l/J, then 3x¢> is an expression 

6. nothing else is an expression 

An interpretation of PCI is a pair I= (D, Q) where Dis a nonempty set and Q is a 

mapping defined on P satisfying: 

2. if c E C, then Q(c) ED 

3. if fn E Fn, then Q(fn) E -p'D" 
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4. Q( =) is the diagonal relation on 1) 

Let g e vv be an assignment of values to variables. Define an extension g* of g to 

the set of terms of PCI as follows: 

1. if x E V, then g*(x) := g(x) 

2. if c E C, then g*(c) := Q(c) 

3. if/"' E Fn. and t1, ... , tn are terms, theng*(J"'(tl, ... , tn.)) := Q(f"')(g*(tl), ... ,g*(tn.)) 

Let 4> be an expression of PCI. Then 4> is satisfied by g in I (written If= f/>[g]) iff one 

of the following holds: 

1. 4> = R"'(h, ... , tn) and (g*(tl), ... ,g*(tn)) E Q(R"') 

2. 4> = (t1 = t2) and g*(tl) = g*(t2) 

3. 4> = ...,tP and I ~ 1P[g] 

4. 4> = tP A() and (I F 1P[g] and I f= 8[g]) 

5. 4> = 3x1P, where x occurs free in 1P, and there exists g' E vv that agrees with g 

off x such that If= tP[91 

The usual definitions and notational conventions defined for PCS carry over to PCI. 

4.2 Translation to PCI A translation function r from PCS into PCI is defined 

as follows. For atomic expressions: 
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2. Sl( X) f-+ Cj = X 

This definition for atomic expressions is extended to a {A, •, (3x )xev )-homomorphism. 

Let I = (V, 9) and I' = (V, 9') be interpretations of PCS and PCI, respectively, 

over the same universe. Then I and I' are similar iff 

1. 9(Ri) = 9'(Rf) 

2. 9(Sl) ={(d)} iff 9'(ci) = d 

3. (dt, ... ,dn,d) E 9(Si+l) iff9'(fr)(dt, ... ,dn) = d 

LEMMA 5 Let I and I' be similar interpretations of PCS and PCI, respectively, over 

universe 1J. Let g E vv and</> E PCS. Then If= </>[g) iff I' f= T(</>)[g]. 

proof: The proof is a straightforward induction on the structure of ¢>. 

Thus T is a mapping of PCS into PCI. 

4.3 Translation from PCI Next consider a translation T 1 of PCI into PCS, 

defined for atomic expressions: 

1. Ci = x r-+ Sl(x) 
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2. Ci = t ~ 3x(Sl(x) A r'(t = x)), where t ¢ V 

4. ff(x~, ... , Xn) = t ~ 3x(Si+l(x~, ... , Xn, x) A r'(t = x)), where t ¢ V 

5. ff(t~, ... ,tn) = t ~ 3xk1 (r'(tk1 = xkJ A··· A 3xkm(r'(tkm = Xkm)A 3x(r'(t = 

x)ASf+l(x1, ... , Xn, x)) ···),where t, tk1 , ••• , tkm f/_ V and ( { t1, ... , tn}-{ tk1 , • ·., tkm}) 

~v 

6 . .R'/(lt, ... , tn) ~ 3Xk1 (r'(tk1 = Xk1 )A·· ·A3xkm ( r'(tkm = Xkm)A R'/(xt, · · ·, Xn)) · · · ), 

where tkn· .. , tkm fj. V and ( {tt, ... , tn}- {tkn·. ·, tkm}) ~ V 

As with T, this definition of r' for atomic expressions is extended to a (A, •, (3x )xev}

homomorphism. Note that r' is partial since r'(x1 = x2) is not defined. Let PCit be 

the domain of r'. 

LEMMA 6 Let I and I' be similar interpretations of PCS and PC!, respectively, over 

universe V. Let g E vv and tf; E PCI1 • Then I' f= tf;[g] iff If= r'(.,P)[g]. 

proof: The proof is a straightforward induction on the structure of t/J. 

Therefore, PCS and PCI1 are equivalent in expressiveness, and any deficit in expres

siveness of PCS is restricted to the difference PCI- PCI1 • More precisely, any deficit 

in expressiveness of PCS is restricted to those wffs of PCI- PCI1 containing nonelim

inable occurrences of atomic expressions of the form x1 = x 2 • Occurrences of atomic 

expressions of the form x1 = x2 in a wff tf; are eliminable iff there exists a wff tf;' such 
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that for any interpretation I of PCI, IF .,P' iff I F .,P. Let PCh be the set of wffs 

containing noneliminable occurrences of expressions of the form Xt = x2. That PCI2 

is not empty is shown next. 

Consider the unary predicate m E PCI and let .,p = 3xtVx2(m(x2) +-+ (x2 = Xt)). 

Then in any interpretation I'= (V,Q} of PCI, I' F .,P only if card(Q(m)) = 1. The 

next lemma shows that PCS is indifferent to this property. 

LEMMA 7 There is no closed wff <P E PCS such that for every interpretation I = 

(V, 9} of PCS, I F <P only if card(Q(m)) = 1. 

proof: Let <P E PCS and let n E w such that if SJ occurs in <P then j < n. Let 

It = {w, 9t} and I 2 = {w, Y2} be interpretations of PCS, where Yt and 92 are defined 

as follows. 9t(m) = { (n}} and 9 2(Rf,) = {(n}, {m}} for n < m, and for all other 

predicates R} of PCS, 9t(R}) = 92(R}) = 0. For all singular predicates SJ of PCS, 

9t(Sj) = 92(Sj) = {{it, ... , iz-t,j} :it, ... , iz-t E w }. 

It suffices to show the following. If <Pis any rectified wff of PCS with free variables 

Xt, •.. , xz, then 3it, ... , iz E w: It F </J[it, ... , iz] iff 3jt, ... ,jz E w: I2 F <P[it, ... ,jz]. 

The proof is by induction on the structure of </J. 

For the basis, let <P = P1(x 17 ••• , xz) where P1 is an ordinary or singular predicate 

of PCS. First suppose that It F P 1[i1, ... , iz]. Define bi1 , ••• , bi, as follows. For 

1 ~ k < I, if i~c =f:. m then jk = i~c and if i~c = m then jk = m + 1. It follows from 

the definitions of 9 1 and Q2 that I 2 F P1[j17 ••• ,jz]. For the converse, suppose that 
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I 2 I= P1[it, ... ,j1]. Define it, ... , iz as follows. For 1 < k :5 l, if ik =f. m then i~e = j~e 

and if jk = m then i~e = n. Again it follows from the definitions of 9t and Q2 that 

It I= P1[i17 ••• , iz]. Hence It I= P1 [i~, ... , iz] iff I2 I= P1[it, ... ,jz]. 

The induction step is straightforward. 

It remains to show that the deficit in expressiveness of PCS relative to PCI is exactly 

PCI2. 

THEOREM 8 Let I' and I be similar interpretations of POI and POS, respectively, 

and .,P be a wff of POI. There exists a wff ¢> of POS such that {I' I= .,P[g] iff I I= tf>[g)} 

iff '1/J ¢ P0/2. 

proof: The 'if' direction is an immediate corollary of Lemma 6. For the 'only if' 

direction, suppose ¢>is a wff of PCS such that I' I= .,P[g] iff I I= tf>[g]. By Lemma 5, 

I' I= T(t/>)[g] iff I I= tf>[g]. By definition, T(t/>) has no occurrences of atomic expressions 

of the form Xt = x2. Therefore, .,P ¢ PCI2. 

While the meaning ofthe wff 3xt Vx2(.m(x2) +-+ (x2 = Xt)) of PCI cannot be expressed 

by a wff of PCS, the meaning can be expressed by a schema of PCS. Indeed an identity 

relation can be defined by the schema I: 

THEOREM 9 Let I= (V, Q} be a POS model of schema I. Then Q(_m) is the diagonal 

relation on V' ={dE V: It= S[d], where Sis a singular expression}. 
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proof: Let d~, d2 E 1J such that I f= S1[d1] and I f= S2[d2]. Then I f= R6[d~, d2] 

iff I F 3xl(Sl(xl) A 3x2(S2(x2) A m(xt,x2))) (definition of satisfaction) iff I F 

3x(S1(x) A S2(x)) (schema 1.) iff 3!d E 1J: (If= St[d]) A (I f= S2[d]) (definition of 

satisfaction and Lemma 1) iff d1 = d2 • 

1J' is the set of named elements of the universe 'D. It follows from the theorem that for 

any set of axiom schemas in PCI there exists a semantically equivalent set of axiom 

schemas in PCS. 
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5 Conclusion Sommers' position on identity has not received the attention it 

deserves. Part of the reason is perhaps that his argument was presented in the context 

of the Calculus of Terms ([6]), running counter to the prevailing bias that only MPL 

can be taken seriously. Further, his argument appears to be incomplete, dealing only 

with individual constants. 

This paper gives a full answer to Sommers' question, 'Do We Need Identity?'. The 

argument is couched in MPL, modified only as much as necessary to eliminate the 

distinction between concept and object. The answer given here essentially supports 

Sommers' position. 
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