
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1991

On the Question ‘Do We Need Identity?’ On the Question ‘Do We Need Identity?’

William C. Purdy
Syracuse University, wcpurdy@ecs.syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Purdy, William C., "On the Question ‘Do We Need Identity?’" (1991). Electrical Engineering and Computer
Science - Technical Reports. 101.
https://surface.syr.edu/eecs_techreports/101

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/101?utm_source=surface.syr.edu%2Feecs_techreports%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-91-33

On The Question 'Do We Need Identity?'

William C. Purdy

October 1991

School of Computer and Information Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

On the Question 'Do We Need Identity?'

William C. Purdy*

October 1991

*School of Computer and Information Science, Syracuse University

1

Abstract

Sommers posed the question 'Do We Need Identity?' and answered in the

negative. According to Sommers, the need for a special identity relation re

sulted from an arbitrary distinction between concept and object introduced by

Frege and retained in modern predicate logic (MPL). This is reflected in the

syntactic distinction between predicate and individual constant. Traditional

formal logic (TFL) does not respect this distinction and, as a consequence, has

no need for a special identity relation. But Sommers' position has not gained

general acceptance. On the contrary, it has received considerable criticism.

While it is conceded that TFL can express the identity of individual constants,

it is quickly pointed out that this falls far short of providing the expressiveness

of the logical identity relation. But the precise extent of the deficit in expres

siveness, if indeed there is any deficit, has not been determined. It appears that

Sommers' position on identity has not been adequately formalized to permit

such a determination. This paper formalizes and extends Sommers' position on

identity. This formalization is compared with MPL to define precisely the dif

ference in expressive power. The conclusion is that it has less expressive power

than MPL, but nonetheless does provide essentially all the expressiveness of

the logical identity relation. The formal language defined for this investiga

tion is similar to the language of MPL. The similarity will not only facilitate

comparison, but perhaps will also make this formal language more palatable to

readers whose experience and/or predisposition favors MPL.

2

1 Introduction The question 'Do We Need Identity?' was raised by Sommers

(4, 5]. He answered that a special identity relation is not needed in traditional formal

logic (TFL), since predication and the laws governing it already allow identity to be

expressed. But Frege injected a new, and arbitrary, distinction into modern predicate

logic (MPL), which gave rise to the need for an identity relation.

The distinction is between concept and object, reflected in the syntactic distinction

between predicate and individual constant (or name). Its import is that a predicate

can predicate, but an individual constant cannot. Consequently, two individual con

stants can be related only under a binary predicate. In particular, two individual

constants can be declared identical only by a binary identity relation.

TFL does not respect this distinction. In TFL an individual constant, denoting an

object, can occupy the predicate position. For example, 'Hans is John' predicates the

property (concept) of being John to Hans. But if 'John' is a predicate in 'Hans is

John', consistency dictates that it is a predicate also in 'John is kind', and hence can

be quantified. Thus 'some John is kind' must be well-formed, and must assert that

the denotations of the predicates 'John' and 'kind' have nonempty intersection. Since

'John' is singular (i.e., denotes a singleton set), this is tantamount to asserting that

the unique element in the set denoted by 'John' is a member of the set denoted by

'kind'. Therefore, 'John is kind' can be viewed as abbreviation for 'some John is kind'.

Because of the singularity of the predicate 'John', 'some John is kind' is equivalent

to 'all John is kind'. To indicate that 'John' is thus simultaneously universally and

existentially quantified, Sommers writes '*John is kind'. This he calls 'wild quantity'.

3

When the arbitrary distinction between object and concept is eliminated, the need

for a special identity relation disappears. Thus '*Hans is John' asserts that the deno

tations of the predicates 'Hans' and 'John' have nonempty intersection (equivalently,

the denotation of 'Hans' is a subset of the denotation of 'John'), that is, are identi

cal. Sommers gives a demonstration that for individual constants a and b, the unary

predication '*a is b' in TFL has all the properties ascribed to the binary predication

'a = b' in MPL.

But Sommers' position has not gained general acceptance. On the contrary, it has

received considerable criticism. While it is conceded that '*a is b' can express the

identity of individual constants, it is quickly pointed out that this falls far short of

providing the expressiveness of the logical identity relation. But the precise extent of

the deficit in expressiveness, if indeed there is any deficit, has not been determined.

It appears that Sommers' position on identity has not been adequately formalized to

permit such a determination.

This paper formalizes and extends Sommers' position on identity. This formalization

is compared with MPL to define precisely the difference in expressive power. The

conclusion is that it has less expressive power than MPL, but nonetheless does provide

essentially all the expressiveness of the logical identity relation.

The formal language defined for this investigation (hereinafter referred to as 'PCS')

is similar to the language of MPL (hereinafter referred to as 'PCI'). The similarity

will not only facilitate comparison, but perhaps will also make PCS more palatable

4

to readers whose experience and/or predisposition favors MPL. PCS differs from PCI

in that the distinction between predicate and individual constant is not present.

In the following sections, the syntax and semantics of PCS are defined. Then the

essential properties of singular expressions are established. To facilitate comparison, a

conventional definition of PCI is provided. Translation from PCS to PCI demonstrates

that PCS is equivalent to a subset of PCI. Translation from PCI to PCS is shown to be

partial only, identifying a deficit in expressiveness of PCS relative to PCI. Therefore,

there are wffs in PCI for which there are no semantically equivalent wffs in PCS.

However, for such a wff in PCI, there is a schema in PCS that expresses the same

meaning. In particular, any theory that can be axiomatized with axiom schemas in

PCI can be axiomatized with axiom schemas in PCS. The treatment throughout is

semantic; however, an axiomatic treatment can also be given (see [3]).

5

2 Definition of PCS This section defines PCS, a first-order language that

formalizes and extends Sommers' ideas regarding singular terms. PCS resembles PCI,

the language of MPL, with the following difference. Singular predicates supplant

individual constants and functions. It is not unusual to treat individual constants

as nullary functions, nor to treat n-ary functions as (n + 1)-ary predicates. But it

appears that these devices have not been used together. When they are, the result

is a uniformity in the treatment of individual constants, functions and predicates.

While PCS does not have an identity relation, identity of singular expressions, which

correspond to terms in PCI, can be expressed. Moreover, deduction with identicals

can be performed conveniently in PCS.

2.1 Syntax The vocabulary of PCS is listed first. Let w+ := w- {0}.

1. Predicate symbols P of two kinds

(a) ordinary predicate symbols R = UnEw+ Rn, where Rn = {Ri: i E w}, and

(b) singular predicate symbols S = UnEw+ Sn, where Sn = {Sf : i E w}

2. Variable symbols V = {Vi : i E w}

3. Boolean operators A and --,

4. Quantifier 3

5. Parentheses (and)

6. Comma,

6

There are no terms in PCS. In their stead, singular expressions are used. These are

defined as follows:

1. if S 1 E St and and X E v then S1 (X) is a singular expression

2. if S"'+l E Sn+l, x, x1 , ..• , Xn E V are distinct and St, ... , Sn are singular expres-

sions, then 3x1(S1(xt) 1\ ···A 3xn(Sn(xn) 1\ S"'+l(xt, ... , Xn, X))···) is a singular

expression

3. nothing else is a singular expression

Expressions in PCS are defined as follows:

1. if P"' E ('R.n. USn) and Xt, ••• , Xn E V, then P"'(xt, ... , Xn) is an expression

2. if 4> is an expression then -,4> is an expression

3. if 4>, 1/J are expressions then (4> 1\ 1/J) is an expression

4. if 4> is an expression and x E V occurs free in 4>, then 3x4> is an expression

5. nothing else is an expression

Free and bound variables are defined in the usual way. When a list of variable

symbols follows an expression symbol, e.g., 4>(xt, ... , xn), these variables are all the

free variables and only free variables in the expression. When the expression symbol

is used without a list of variable symbols, it is left open which variables are free in

that expression. As a general rule, it is assumed that all expressions are rectified.

7

Since the intended interpretation of 3x4>(Xt, • •• , Xn, x) is identical to that of 3y<f>(x1, ... ,

Xn, y), PCS expressions are defined to be equivalence classes, each equivalence class

consisting of all alphabetic variants. This equivalence can be defined formally (e.g.,

see Barnes and Mack [1]), but this will not be done here. Any member of a given

equivalence class will be used to represent the class. Hence the two forms given above

represent the same PCS expression.

In the sequel, parentheses are dropped whenever no confusion can result. Metavari

ables are used as follows: Rn ranges over Rn; sn ranges over Sn; pn ranges over

Rn USn; x, y, z range over V; S ranges over singular expressions; and 4>, 'lj;, () range

over expressions. Applying subscripts to these symbols does not change their ranges.

2.2 Semantics An interpretation of PCS is a pair I = (V, 9) where V is a

nonempty set and 9 is a mapping defined on P satisfying:

1. if Rn ERn, then 9(Rn) ~ vn

2. if sn+l E Sn+b then 9(Sn+l) ~ vn+l such that for all d1 , ... , dn E V there

exists dE V with (dt, ... , dn, d) E 9(Sn+l) and for all d' E 'D, (d1 , ... , dn, d') E

9(Sn+l) implies d' = d

Let g E vv be an assignment of values to variables, and 4> be an expression of PCS.

Then 4> is satisfied by g in I (written If= <f>[g]) iff one of the following holds:

1. 4> = pn(Xt, ... ,xn) and (g(xl), ... ,g(xn)) E 9(Pn)

2. 4> = •'l/J and I~ 'lj;[g]

8

3. 4> = 7/J A(} and (I p 7/J[g] and I p 8[g])

4. 4> = 3xtjJ, where x occurs free in 7/J, and there exists g' E 'Dv that agrees with g

off x such that I f= tP [g1

An expression 4> is true in I, written I I= </>, iff for all g E 'Dv, I I= <f>[g]. </> is valid,

written p </>, iff </> is true in every interpretation.

2.3 Abbreviations

abbreviations.

1. tP V (} := •(...,7/J A •8)

2. '1/J -+ () := •('1/J A •0)

It is convenient to extend PCS by introducing the following

3. '1/J +-+ (} := (¢-+ 8) A (0-+ ¢)

The semantics for these abbreviations can be given directly as follows:

1. If </> = '1/J V () then I p </>[g] iff (I p '1/J[g] or I p 8[g])

2. If 4> = '1/J -+ (} then If= </>[g] iff (I p '1/J[g] implies I p O[g])

3. If 4> = '1/J +-+(}then If= </>[g] iff (If= ,P[g] iff If= O[g])

4. If </> = Vx,P, where x occurs free in ¢, then I f= <f>[g] iff for all g' E vv that

agree with g off x, I p tjJ[g']

9

3 Properties of singular expressions Singular expressions play a central

role in PCS. The denotation of a singular expression is a single (though not neces

sarily unique) individual. Singular expressions commute in a certain way with the

Boolean operators. The principal result is that not only unary singular predicates,

corresponding to individual constants in PCI, but more generally singular expressions

exhibit 'wild quantity'. These results are established in this section.

In the following, if </>(xt, ... , xn) is a wff, I f= </>[dt, ... , dn] will abbreviate I f= </>[g]

where g E 1JV such that g(xt) = dt, ... ,g(xn) = dn.

LEMMA 1 There exists d E V such that I f= S[d] and for all d' E 'D, I f= S[d']

implies d' = d.

proof: Define the depth of a singular expression as follows. depth(S1(x)) := 0.

depth(3xt(St(Xt)A· · ·!\3xn(Sn(xn)!\Sn+l(xt, ... , Xn, x)) · · ·)) := 1+max{depth(Si(xi)) :

1 < i ~ n }. The proof is a straightforward induction on the depth of S(x).

In the following, Lemma 1 will be abbreviated 3!d E V: If= S[d].

THEOREM 2 IF 3xt(St(xt)A· · ·!\3xn(Sn(xn)A•</>(xt, ... , Xn)) · · ·) iffi f= •3x1(S1 (xt)A

· · · !\ 3xn(Sn(xn) !\ </>(xt, ... , Xn)) · · ·).

proof: I F 3xt (St (xt) !\ · · · !\ 3xn(Sn(Xn) !\ •</>(Xt, . .. , Xn)) · · ·) iff 3!d1 · · · 3ldn :

(I F St[dt]) !\ '· · !\ (I F Sn[dn])!\ (I F •</>[dt, ... , dn]) iff 3!dt · • · 3!dn : (I F

St[dt))A· ··!\(IF Sn[dn])!\ (I l;b </>[dt, ... , dn]) iff I l;b 3xt(St(Xt)A· · ·!\3xn(Sn(Xn)A

10

¢>(x1 , ••• , Xn)) · ..) iff I f= --,3x1(S1 (xt) /\ · · · /\ 3xn(Sn(Xn) /\ <P(xb ... , Xn)) · · ·) (follows

from the definition of satisfaction and Lemma 1).

COROLLARY 3 If= 3xt(St(Xt)A· · ·/\3xn(Sn(Xn)A¢>(xt, ... , Xn)) · · ·) iffi F 'Vxt(St(xt) ~

· · · ~ 'v'xn(Sn(xn) ~ <P(xb ... , Xn)) · · ·).

Using the notation of restricted quantification, this result can be recognized as as

serting the 'wild quantity' of singular expressions, e.g., (3x : S(x))(¢>(x)) +-+ ('Vx :

S(x))(<P(x)).

THEOREM 4 I f= 3x1(S1(x1) /\ · · • /\ 3xn(Sn(Xn) A <P(xiu · · ·, Xi1) A 1/J(xiu · · ·, Xim)) · · ·)

iff (I f= 3xi1 (Si1 (xs1) /\ • • • /\ 3xi1 (8;1 (xi,)/\ <P(xiu ... , Xi1)) • • ·) and I f= 3xil (Sil (xil) /\

· · · /\ 3 X im (S im (X im) /\ tP (X il , ••• , X im)) · · ·)) 1 where { i 1 , ... , i I} U {j 1 , ... , J m } = { 1 , ... , n} .

proof: If= 3xl(SI(xl) /\ · · · /\ 3xn(Sn(xn) /\ <P(xiu· .. , Xi1) /\ 1/J(xiu ... , Xim)) ···)iff

3!dl "· 3!dn : (IF 81 [d1])/\ .. · /\ (IF Sn[dn])/\ (I F (</>(Xip · .. , Xi1) /\1/J(xil, · .. , Xim)

[dil' ... 'dim]) iff 3!dl ... 3!dn :(I F sl [dl])/\· .. /\(I F Sn[dn])A (I F <P[dil' ... 'di,])/\

(I F ¢[diu ... , dim]) iff (I F 3xi1 (Si1 (Xi1) /\ " • /\ 3xs,(Si1 (Xi1) /\ </>(Xiu ... , Xi1)) .. ·))

/\(I F 3xj1 (Sil (Xj1) /\ .. • /\ 3xim(Sim(xim) /\ 1/J(xiu· .. , Xim)) .. ·)) (follows from the

definition of satisfaction and Lemma 1).

Thus singular expressions distribute over conjunction. Examples, using the notation

of restricted quantification, are: (3x: S(x))(¢>(x)/\¢(x)) +-+ ((3x: S(x))(¢>(x))A(3x:

S(x))(¢(x))) and ('Vx: S(x))(<P(x) /\ ¢()) +-+ (('v'x: S(x))(<P(x)) /\ ¢()).

11

4 PCS and PCI Compared The expressiveness of PCS relative to PCI will

be investigated through the use of meaning-preserving translations between the two

languages. Translation from PCS to PCI is not surjective. The difference of PCI and

the image of PCS in PCI will give the deficit in expressiveness.

To facilitate definition of a translation function, a brief definition of PCI will first be

given. This definition is standard, but chosen to parallel the definition of PCS given

in Section 2.

4.1 Definition of PCI The vocabulary of PCI consists of the following.

1. Predicate symbols R = UnEw+ Rn, where Rn = { Ri : i E w}

2. Individual constant symbols C = { Ci : i E w}

3. Function symbols :F = UnEw+ Fn, where Fn = {f? : i E w}

4. Variable symbols V = {Vi: i E w}

5. Boolean operators A and ...,

6. Identity relation =

7. Quantifier 3

8. Parentheses (and)

9. Comma,

Terms in PCI are defined as follows:

12

1. individual constant symbols and variable symbols are terms

2. if fn E Fn and it, . .. , in are terms, then fn(tt, ... , in) is a term

3. nothing else is a term

In the following, i will be used as a metavariable ranging over terms of PCI.

Expressions in PCI are defined as follows:

1. if Rn ERn and it, ... , in are terms, then Rn(it, ... , in) is an expression

2. if i 1 , i 2 are terms, then i 1 = i2 is an expression

3. if </> is an expression then -,¢> is an expression

4. if l/J, '1/; are expressions then (¢J 1\ '1/;) is an expression

5. if ¢Y is an expression and x E V occurs free in l/J, then 3x¢> is an expression

6. nothing else is an expression

An interpretation of PCI is a pair I= (D, Q) where Dis a nonempty set and Q is a

mapping defined on P satisfying:

2. if c E C, then Q(c) ED

3. if fn E Fn, then Q(fn) E -p'D"

13

4. Q(=) is the diagonal relation on 1)

Let g e vv be an assignment of values to variables. Define an extension g* of g to

the set of terms of PCI as follows:

1. if x E V, then g*(x) := g(x)

2. if c E C, then g*(c) := Q(c)

3. if/"' E Fn. and t1, ... , tn are terms, theng*(J"'(tl, ... , tn.)) := Q(f"')(g*(tl), ... ,g*(tn.))

Let 4> be an expression of PCI. Then 4> is satisfied by g in I (written If= f/>[g]) iff one

of the following holds:

1. 4> = R"'(h, ... , tn) and (g*(tl), ... ,g*(tn)) E Q(R"')

2. 4> = (t1 = t2) and g*(tl) = g*(t2)

3. 4> = ...,tP and I ~ 1P[g]

4. 4> = tP A() and (I F 1P[g] and I f= 8[g])

5. 4> = 3x1P, where x occurs free in 1P, and there exists g' E vv that agrees with g

off x such that If= tP[91

The usual definitions and notational conventions defined for PCS carry over to PCI.

4.2 Translation to PCI A translation function r from PCS into PCI is defined

as follows. For atomic expressions:

14

2. Sl(X) f-+ Cj = X

This definition for atomic expressions is extended to a {A, •, (3x)xev)-homomorphism.

Let I = (V, 9) and I' = (V, 9') be interpretations of PCS and PCI, respectively,

over the same universe. Then I and I' are similar iff

1. 9(Ri) = 9'(Rf)

2. 9(Sl) ={(d)} iff 9'(ci) = d

3. (dt, ... ,dn,d) E 9(Si+l) iff9'(fr)(dt, ... ,dn) = d

LEMMA 5 Let I and I' be similar interpretations of PCS and PCI, respectively, over

universe 1J. Let g E vv and</> E PCS. Then If= </>[g) iff I' f= T(</>)[g].

proof: The proof is a straightforward induction on the structure of ¢>.

Thus T is a mapping of PCS into PCI.

4.3 Translation from PCI Next consider a translation T 1 of PCI into PCS,

defined for atomic expressions:

1. Ci = x r-+ Sl(x)

15

2. Ci = t ~ 3x(Sl(x) A r'(t = x)), where t ¢ V

4. ff(x~, ... , Xn) = t ~ 3x(Si+l(x~, ... , Xn, x) A r'(t = x)), where t ¢ V

5. ff(t~, ... ,tn) = t ~ 3xk1 (r'(tk1 = xkJ A··· A 3xkm(r'(tkm = Xkm)A 3x(r'(t =

x)ASf+l(x1, ... , Xn, x)) ···),where t, tk1 , ••• , tkm f/_ V and ({ t1, ... , tn}-{ tk1 , • ·., tkm})

~v

6 . .R'/(lt, ... , tn) ~ 3Xk1 (r'(tk1 = Xk1)A·· ·A3xkm (r'(tkm = Xkm)A R'/(xt, · · ·, Xn)) · · ·),

where tkn· .. , tkm fj. V and ({tt, ... , tn}- {tkn·. ·, tkm}) ~ V

As with T, this definition of r' for atomic expressions is extended to a (A, •, (3x)xev}

homomorphism. Note that r' is partial since r'(x1 = x2) is not defined. Let PCit be

the domain of r'.

LEMMA 6 Let I and I' be similar interpretations of PCS and PC!, respectively, over

universe V. Let g E vv and tf; E PCI1 • Then I' f= tf;[g] iff If= r'(.,P)[g].

proof: The proof is a straightforward induction on the structure of t/J.

Therefore, PCS and PCI1 are equivalent in expressiveness, and any deficit in expres

siveness of PCS is restricted to the difference PCI- PCI1 • More precisely, any deficit

in expressiveness of PCS is restricted to those wffs of PCI- PCI1 containing nonelim

inable occurrences of atomic expressions of the form x1 = x 2 • Occurrences of atomic

expressions of the form x1 = x2 in a wff tf; are eliminable iff there exists a wff tf;' such

16

that for any interpretation I of PCI, IF .,P' iff I F .,P. Let PCh be the set of wffs

containing noneliminable occurrences of expressions of the form Xt = x2. That PCI2

is not empty is shown next.

Consider the unary predicate m E PCI and let .,p = 3xtVx2(m(x2) +-+ (x2 = Xt)).

Then in any interpretation I'= (V,Q} of PCI, I' F .,P only if card(Q(m)) = 1. The

next lemma shows that PCS is indifferent to this property.

LEMMA 7 There is no closed wff <P E PCS such that for every interpretation I =

(V, 9} of PCS, I F <P only if card(Q(m)) = 1.

proof: Let <P E PCS and let n E w such that if SJ occurs in <P then j < n. Let

It = {w, 9t} and I 2 = {w, Y2} be interpretations of PCS, where Yt and 92 are defined

as follows. 9t(m) = { (n}} and 9 2(Rf,) = {(n}, {m}} for n < m, and for all other

predicates R} of PCS, 9t(R}) = 92(R}) = 0. For all singular predicates SJ of PCS,

9t(Sj) = 92(Sj) = {{it, ... , iz-t,j} :it, ... , iz-t E w }.

It suffices to show the following. If <Pis any rectified wff of PCS with free variables

Xt, •.. , xz, then 3it, ... , iz E w: It F </J[it, ... , iz] iff 3jt, ... ,jz E w: I2 F <P[it, ... ,jz].

The proof is by induction on the structure of </J.

For the basis, let <P = P1(x 17 ••• , xz) where P1 is an ordinary or singular predicate

of PCS. First suppose that It F P 1[i1, ... , iz]. Define bi1 , ••• , bi, as follows. For

1 ~ k < I, if i~c =f:. m then jk = i~c and if i~c = m then jk = m + 1. It follows from

the definitions of 9 1 and Q2 that I 2 F P1[j17 ••• ,jz]. For the converse, suppose that

17

I 2 I= P1[it, ... ,j1]. Define it, ... , iz as follows. For 1 < k :5 l, if ik =f. m then i~e = j~e

and if jk = m then i~e = n. Again it follows from the definitions of 9t and Q2 that

It I= P1[i17 ••• , iz]. Hence It I= P1 [i~, ... , iz] iff I2 I= P1[it, ... ,jz].

The induction step is straightforward.

It remains to show that the deficit in expressiveness of PCS relative to PCI is exactly

PCI2.

THEOREM 8 Let I' and I be similar interpretations of POI and POS, respectively,

and .,P be a wff of POI. There exists a wff ¢> of POS such that {I' I= .,P[g] iff I I= tf>[g)}

iff '1/J ¢ P0/2.

proof: The 'if' direction is an immediate corollary of Lemma 6. For the 'only if'

direction, suppose ¢>is a wff of PCS such that I' I= .,P[g] iff I I= tf>[g]. By Lemma 5,

I' I= T(t/>)[g] iff I I= tf>[g]. By definition, T(t/>) has no occurrences of atomic expressions

of the form Xt = x2. Therefore, .,P ¢ PCI2.

While the meaning ofthe wff 3xt Vx2(.m(x2) +-+ (x2 = Xt)) of PCI cannot be expressed

by a wff of PCS, the meaning can be expressed by a schema of PCS. Indeed an identity

relation can be defined by the schema I:

THEOREM 9 Let I= (V, Q} be a POS model of schema I. Then Q(_m) is the diagonal

relation on V' ={dE V: It= S[d], where Sis a singular expression}.

18

proof: Let d~, d2 E 1J such that I f= S1[d1] and I f= S2[d2]. Then I f= R6[d~, d2]

iff I F 3xl(Sl(xl) A 3x2(S2(x2) A m(xt,x2))) (definition of satisfaction) iff I F

3x(S1(x) A S2(x)) (schema 1.) iff 3!d E 1J: (If= St[d]) A (I f= S2[d]) (definition of

satisfaction and Lemma 1) iff d1 = d2 •

1J' is the set of named elements of the universe 'D. It follows from the theorem that for

any set of axiom schemas in PCI there exists a semantically equivalent set of axiom

schemas in PCS.

19

5 Conclusion Sommers' position on identity has not received the attention it

deserves. Part of the reason is perhaps that his argument was presented in the context

of the Calculus of Terms ([6]), running counter to the prevailing bias that only MPL

can be taken seriously. Further, his argument appears to be incomplete, dealing only

with individual constants.

This paper gives a full answer to Sommers' question, 'Do We Need Identity?'. The

argument is couched in MPL, modified only as much as necessary to eliminate the

distinction between concept and object. The answer given here essentially supports

Sommers' position.

20

References

[1] Barnes, Donald W. and John M. Mack An Algebraic Introduction to Mathemat

ical Logic, Springer-Verlag, New York 1975.

[2] Englebretsen, George The New Syllogistic, Peter Lang, New York 1987.

[3] Purdy, William C. A Logic of Singular Predicates, Report SU-CIS-91-32. School

of Computer and Information Science, Syracuse University, 1991.

[4] Sommers, Fred "Do We Need Identity?," Journal of Philosophy 66, 1969.

[5] Sommers, Fred The Logic of Natural Language, Clarendon Press, Oxford 1982.

[6) Sommers, Fred "The Calculus of Terms," in [2), pp. 11-56.

21

	On the Question ‘Do We Need Identity?’
	Recommended Citation

	SU-CIS-91-33_001c
	SU-CIS-91-33_002c
	SU-CIS-91-33_003c
	SU-CIS-91-33_004c
	SU-CIS-91-33_005c
	SU-CIS-91-33_006c
	SU-CIS-91-33_007c
	SU-CIS-91-33_008c
	SU-CIS-91-33_009c
	SU-CIS-91-33_010c
	SU-CIS-91-33_011c
	SU-CIS-91-33_012c
	SU-CIS-91-33_013c
	SU-CIS-91-33_014c
	SU-CIS-91-33_015c
	SU-CIS-91-33_016c
	SU-CIS-91-33_017c
	SU-CIS-91-33_018c
	SU-CIS-91-33_019c
	SU-CIS-91-33_020c
	SU-CIS-91-33_021c
	SU-CIS-91-33_022c

