
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

5-1990

Arrays and the Lambda Calculus Arrays and the Lambda Calculus

Klaus Berkling

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Berkling, Klaus, "Arrays and the Lambda Calculus" (1990). Electrical Engineering and Computer Science -
Technical Reports. 93.
https://surface.syr.edu/eecs_techreports/93

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Syracuse University Research Facility and Collaborative Environment

https://core.ac.uk/display/215674027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/93?utm_source=surface.syr.edu%2Feecs_techreports%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-22

Arrays and the Lambda Calculus

Klaus Berkling

May 1990

School of Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology
Syracuse, New York 13244-4100

ARRAYS AND THE
LAMBDA CALCULUS

Klaus Berkling
CASE Center

and
School of Computer and Information Science

Syracuse University
Syracuse, NY 13244-1190

May 1990

Keywords: Array processing, functional programming, lambda cal
culus, reduction machines.

INTRODUCTION

Why do functional languages have more difficulties with arrays than
procedural languages? The problems arising in the designing offunc
tionallanguages with arrays and in their implementations are man
ifold. They can be classified according to 1) first principles, 2) se
mantics, 3) pragmatics, and 4) performance. This paper attempts
to give an outline of the issues in this area, and their relation to
the lambda calculus. The lambda calculus is a formal system and as
such seemingly remote from practical applications. However, specific
representations and implementations of that system may be utilized
to realize arrays such that progress is made towards a compromise
of 1) adhering to first principles, 2) clear semantics, 3) obvious prag
matics, and 4) high performance. To be more specific, a form of the
lambda calculus which uses a particular representation of variables,
namely De Bruijn indices, may be a vehicle to represent arrays and
the functions to manipulate them.

PROBLEM

Serious computational problems come almost al\vays in terms of ar
rays .. Nothing seems to be more appropriate to array processing than
the von Neumann Computer Architecture. Its linear memory struc
ture, its addressing methods (absolute address +offset + index, base
registers, offset registers, index registers), and its instruction set ob
viously constitute a perfect base to implement arrays. Together with

language features originating from FORTRAN, the system indeed
fills basic needs in all four categories stated above. Why \vould or
should one try to improve on it? Because only very basic needs are
filled.

For the sake of efficiency, the higher level concepts of program
ming languages had to be compromised. Real problems are dealing
with very large matrices and/or very frequently used matrices, for ex
ample for pointwise transformations in image processing. There is no
time (or space!) for costly procedure or function entries (prologues)
and exits (epilogues), for scoping of variables and blockstructures,
but there is a tendency for rather flat programs and code. This be
comes manifest in terms of complicated nests of DO-loop constructs
and difficult to follow GOTO's. A premium is on the removal of
code from more frequently executed innermost DO-loops to less fre
quently executed outer DO-loops or initialization pieces by program
transformations.

The combination of flat code, flat name space, static memory lay
out, and the assignment statement as basic programming tool causes
very unpleasant properties. Since index variables are usually con
sidered first class citizens, occurrences of, for example, A[I, I(] may

refer to different matrix elements depending on the code executed be
tween these occurrences. Assignments to I and Ie may destroy the
referential transparency. The scope structure is intricately mapped
onto sequencing. As a consequence, variables can be easily confused,
alterations become a costly, error prone, and time consuming enter
prise.

It is particularly difficult to transform such flat programs into
"parallel" programs, which make inherent concurrency explicit. Ob
viously, scoping cannot be expelled without penalty. If it is not part
of the language, the compiler must symbolically execute the code to
reconstruct dependencies.

Many of the problems to produce efficient and accurate code
without the base of higher level concepts arise from the utilization of
memory locations. The conventional viewpoint of a memory location
is best described as a "box-variable," as opposed to a "place-holder
variable," which is the viewpoint taken by functional languages. This
difference makes it difficult for functional languages to adopt easily
array features from conventional languages. Four operations are as
sociated to box variables: allocate (a name to refer to the box is
created), deallocate, fill the box, read the contents of the box. In

contrast to this, place holder variables are either attached to an ex
pression by function application, or an occurrence of the place holder
variable is replaced by the attached expression. After this replace
ment, neither the place nor the expression is any longer accessible
through the variable name. Replacements of several variable occur
rences by atomic expressions are not difficult to implement. However,
a compound expression has to be shared among several occurrences
of the place holder variables, each of which is replaced by a pointer
rather than by a copy of the expression. The complexity of copying
just cannot be afforded.

The computational problems are rarely such that matrices and
vectors can be treated as conceptual units only without ever ac
cessing single elements explicitly. The worst case to consider is the
change of one element. While a straight forward functional approach
would create a copy of the old matrix with one element changed, the
conventional solution simply stores a new value into the appropriate
location treating it as a box variable. Conceptually the old place
holder variable has been replaced by a new one, altllOUgh there is
still the same identifier and the same pointer to the same memory
area. Because of sharing as explained above, however, the change
may be more globally effective tllan planned. The scope of variables
has been mapped onto the time scale.

One m.ight take the position to create always new matrices in new
memory areas because it is compatible with place holder variables,
conceptually clean, and there is enough memory. But the challenge
remains to overwrite matrices wllich are not accessed anymore. It
just seems more re\varding to solve problems requiring larger matrices
\vhen larger memories become available.

The problems of embedding consistent and elegant array process
ing into a functional language do not preclude pragmatic solutions.
LISP and LISP-like programming languages already incorporate as
signment statements and the program feature. One needs only to
extend tllese concepts by functions and "pseudo" functions to make
an array, to set a selected element of an array, and to reference a se
lected element. All arguments may be expressions in accordance with
functional language concepts. This is a rather conventionallo,v-Ievel
add-on.

The language which really constitutes an advance is APL. Arrays
are treated as conceptual entities, functions are modified by operators
and extended over the array elements. Thus tIle po\ver of higher order

functions is obtained and the access to array elements is delegated
to the system, if possible.

There is another system originating from physics, which excels in
omitting unnecessary detail, like tIle indication of dimension, sum
mation signs, and bindings. We have the "Einstein" convention that
equal indices indicate summation. The "inner" product of two vec
tors ak and bi, where i and k assume all index values 0 ... n - 1
or 1 ... n, is tllen simply denoted by ajbj. There is no free index,
thus the result is a scalar. In the same spirit, aikbkj denotes the
matrix product Cij, summation over k produces the inner products
of rows i and columns j. The identity matrix is denoted by Oik, the
J<ronecker symboL (bik = 1 if i = k, = 0 otherwise). There are
so-called €-tensors, which produce "outer products" fikak = bi, such
that ajbj = O. In general we have fijk •.• = +1 for an even per
mutation, and fijk ... = -I for an odd permutation of indices, and
fijk .•. = 0 for all other cases.

For n = 2 we have ajbj = ajfjkak = ala2 - a2al = o. This means
bj is orthogonal to ai. For n = 3 we have Ci = fijkajbk, which denotes
a vector Ci orthogonal to aj and bk because the index i is free. Its
first component is:

Cl = a2b3 - a3b2

Finally, the determinant of a matrix aik is denoted by :

Since there is no free index, a scalar is denoted. While the nec
essary index sets are well defined, very little is given in details how
to produce them. Common to APL and the above scheme is the
existence of an algebra. The computation of an atomic value from
an arithmetic statement can be substantially improved in terms of
the number of needed steps and intermediate storage requirements
by prior algebraic transformations.

TIle same approach using matrix algebra will yield savings in
terms of intermediate storage, too. But the computation is still ex
pressed in terms of matrices as conceptual units. Whole matrices
would have to be stored intermediately, and the challenge to reuse
this space by overwriting is also there.

However, by rearranging the sequence of computation in terms of
of single elements, it is possible to allocate space only for the input

array and the output array. Then, if the elements of the output array
are denoted by an expression in terms of elements of the input array,
intermediate storage is needed only for a number of single elements.
Moreover, the expression denoting an output element is invariant
except for index values. This concept has numerous desirable prop
erties. The input array is only used in read-only mode, the output
array is only used in write-only mode. Only the set of intermediate
single element cells is used in both modes. Tllis arrangement is very
suitable to concurrent processing: Suppose a copy of the input ar
ray as well as the skeleton of the expression exists in a multitude of
processors. Then each of the processors can concurrently compute a
subset of elements of the output array free of interference. What is
different from process(or) to process(or) is the set of index values ..

The value of L. Mullin '5 mathematics of arrays [5] is based on the
ability to transform the computation of array expressions by formal
algebraic methods.. The objective of these transformations is the
optimal use of resources. The effect of these transformations is that
elements of the result array are denoted in terms of elements of the
input array. Intermediate structures are not explicitly generated.

Is there any overlap of mathematics of arrays and the lambda
calculus? At first sight, the ans\ver might be: none.. But, there
is certaillly one application, namely, the correct implementation of
scope structure for array names (and index variables?) ..

In the following sections we will consider other possibilities which
are worth exploring.. We assume familiarity with the lambda calculus ..
The experimental system used in the discussion is based on [3].

FIRST PRINCIPLES

The denotation of an array element like A[II(] has similarity with
the denotation of a function value, but only if it appears on the
right side of an assignment statement .. If it appears on the left side,
however, it denotes a location. The denotation of a function value
is compatible with the notion of a function represented by a table of
ordered tuples.. In terms of first principles, the occurrence of such
a denotation on the left side of an assignment statement implies a
resetting of a table entry, which is a function changing operation,
that is, the assignment statement implies a higher order function in
this context! This does not seem appropriate. Let us consider it as
a datastructure .. So, the question is no\v: What is a data structure?

Datastructures are generally input and output of programs. One
may consider datastrnctures as code which does not require execution
anymore, because there is nothing left to be done. This wording has
been deliberately chosen to relate it to reduction and the lambda
calculus. Reduction is a first principle and means the substitution
of symbols by symbols which are equivalent with respect to a set of
rules.

The result of reducing a lambda calculus expression consists of
nested head normal forms. A head normal form (HNF) is an expres
sion starting with a number of bindings, followed by a number of
application nodes, and terminating with a variable. An example of
a HNF is shown in tree form:

AaAbAc.- @ - ...
@_ •..

@_ •.•

b

Redices, which are instances of possible rule applications, are not
visible. If there are any, they would be in the argument expressions
(...) of the application nodes. Thus, further processing does not alter
the HNF once it is constructed. This conclusion applies recursively
to all lower level arguments and HNFs until a HNF degenerates to a
constant or variable.

We have now recognized the result of a lambda calculus com
putation, or better reduction, to be a datastructure represented as
nested HNFs. Can such a datastructure be the argument of a lambda
expression? This does make sense only if all substructures of the
datastructure can be selected once it is substituted into this lambda
expression. A selector in terms of the lambda calculus is a degener
ated HNF without application nodes, for example:

,xa >"b AC >..d. b

The name "selector" is justified, because the expression above
selects from 4 arguments the third one, or when counting starts at 0,
the second one. Note that we count from left to right, or top down,
respectively.

@-Ao
@-At
@-A2

@-A3

>"a)"bAcAd.b

The identifiers denoting variables do not carry any information.
De Bruijn indices count the lambdas between variable occurrence
and its binding. Thus, the information of the selector is completely
given by

or even more concisely by

;\4.2

which is in terms of array accessing a pair of range and index values.
In order to make the selector actually "select," it has to be substi
tuted in place of the head variable of a datastructure. The sequence
of reductions is shown here:

@ -;\4.2

>1
AI. -@ - Ao

@ -AI
@-A2

@-A3

o
The beta-redex (~) places the selector first into the head posi

tion. Then a sequence of beta-reductions accomplishes the selection
of tile argument A2 :

@-Ao @-Ao @-Ao @-Ao A2

@ -At @-A1 @-AI I
@-A2 @-A2 I Al.A2

@-A3 I ;\2.A2

I '\3.2
~4.2

This metllod of applying a datastructure to a selector \vas dis
covered very early by W. Burge [4]. He coined the term "functional"

datastrncture. But, one can emulate the application of the selector
to the datastructure by using the combinator R and write:

R ;\4.2 < datastructure >

If a datastructure consists of nested HNFs, the need for a com
pound selector arises. It is, of course, a HNF with simple selectors
as arguments, for example:

;\1.- @ - '\5.4
@ - ;\6.1
@ - ;\4.2
o

The application of this compound selector to a nested datastruc
ture causes the latter first to appear in its head position. Then a
selection takes place in the toplevel HNF using '\4.2. The next lower
level HNF now forms a beta-redex with ;\6.1.

@ - A'\5.4
@ - A'\6.1

>1
'\1. - @ - •••

This sequence of events repeats itself recursively until the primi
tive selectors are used up.

The dual nature of what is left subtree (operator) and what is
right subtree (operand) of an application node becomes even more
evident, if we look now at the construction of compound selectors.
The combinator R applied to a simple selector yields an operator on
datastructures:

(RAm.n) ==> Al.- @ - Am.n
o

The operation of functional composition makes a compound se
lector from a set of simple ones. The combinator B does it for t,vo,

Bfg==> fog

The generalization to n - 1 functions is the set of combinators

Bn = An.- @ - • •• @ - 0
n -1 1

such that

Bnln- 1 ~ ~ ~ 11 arg = !n-l (~ ~ ~ (11 arg))

For more on sets of parameterized combinators see ABDALI [O]~

The compound selector given as an example above can be constructed
from the three simple ones using B4 :

B4 (Al.O A5.4) (Al~O ;\6.1) (A1.0 ;\4.2)

This expression reduces to:

.Al.- @ - ;\5.4
@ - ;\6.1
@ - ;\4.2

o
which is what we expected. Dual to the "functional" composition
combinators B n , which arrange a sequence of arguments in successive
operator positions, there are also "data" composition combinators
Tn, which make HNFs, that is, arguments are arranged in successive
operand positions. The general pattern is:

Tn = An.- @-1
@-2

@-n-1
o

The dual nature of datastructures and function makes

B < datastructurel >< datastructure2 >

meaningful, too. However, there is a peculiar twist in the represen
tation of expressions. The tree representation is related to the linear
representation by preorder traversal. On the other hand, arguments
are numbered top down in trees, because this makes it compatible
with the sequence De Bruijn indices referring to them. Thus, el
ements of a datastrncture are numbered from left to right in the
linear representation.

Suppose a n X n matrix is given as a column of rows, which is a
datastr-ucture of n elements, where each element is a datastructure
of n elements representing a row. Since this is not a very convenient

way of storing a matrix for accessing and a row major order vector
representation is preferable, we would like to transform the structure.

- - Al.- @ - all

@ - al2

@ - al3

o
- - '\1.- @ - a21

@ - a22

@ - a23

o
@ - a31

@ - a32

@ - a33

o

m = '\1.- @ - - - --

I
@----

I
@ - '\1~-

I
o

Applying this matrix representation to B4 would place row 3 on
top of the tree. To reverse the order we introduce combinators ERn
which reverse the order of their arguments:

B Rn = An.- @- @- @ - • • • - @ - 0
1 2 3 n-l

Now (m BRn) reduces to (in linear representation, application
nodes @ suppressed) which has tIle correct sequence:

The Bn and BRn act as concatenators. The sequence of argu
ments is essential. Mathematicians use fog to indicate that 9 has to
be applied first, and f • 9 to indicate that f has to be applied first.

The methods of using special lambda expression to represent and
manipulate arrays are general and apply also to lists. If datastrnc
tures are restricted to two elements we get the "cons" construct,
the selectors A2.1 and '\2.0 correspond to "car" ("head") and "cdr"
("tail"). Compound selectors correspond to list selectors of the type
"caaddar .."

As a last point in this section we will demonstrate the use of the
lambda calculus as a vehicle to implement the APL type functions
of dropping and taking elements from arrays. Although the lambda
calculus serves in this context as a very high level machine language,
functions become more complicated. One might get the impression
that this is due to the use of De Bruijn indices. But not using them
would complicate it even more because of the many variable names
and the constant worry about confusing them. We already used the

notion of a combinator as an abbreviation for a closed lambda ex
pression to hide unnecessary detail. Combinators are parameterized
elements of a set formed according to a common pattern [0]. We in
troduce the notion of parenthetical combinators, which serve to hide
the particular parameter. The value of the parameter is inferred from
the input either at run or compile time.

For example, the B, T, and BR combinators are used with the
following synt~'X:

Bn = (BN fn-l .. . /2 /1 N B)

This expression is illterpreted as a lambda expression with the
appropriate indices filled in which are derived from the number of
expressions occurring between "(BN" and "NB)."

In the next example we use the combinator pair "AT"and "TA"which
denote the "apply-to-all" construct [1]. In contrast to J. Backus'
version, the function to be applied to all expressions is in our case
argument to the construct.

The follo\ving expression takes the last two elements (that is,
drops the first three elements) from a five element structure: Every
element is individually selected and the selectors placed at appropri
ate positions between "(AT"and "TA)." The structure enclosed in
"(T"and "T)"corresponding to Tn is argument to the "apply-to-all"
construct; the whole expression is abstracted from the elements.

A5. (AT(A5.4)(A5~3)T A)(T 4 3 2 lOT) ===? A6.0 5 4

This expression seems involved, but it reduces to (A6.0 5 4) which
is much simpler and less costly to apply. The next expression takes
the first three elements:

AS.(AT(AS.2)(AS.l)('\5.0)TA)(T 4 3 2 lOT) ===? A6.0 3 2 1

These expressions are the base for the implementations of drop
and-take functions which will have an additional parameter to in
dicate the number of elements dropped or taken. To rotate a five
element structure by two we concatenate both selections from above
in reverse order with the combinator B and we obtain:

~5. (~l.B ((AT(~5.4) (~5.3) T A)O)
((AT(~5.2) (~5.1)('\5.0) T A)O»

(T 4 3 2 lOT)

This expression reduces to '\6.0 3 2 1 5 4. The result is not sur
prising, but there are more complicated compositions of APL type
functions, which after reduction yield a lambda expressions which do
not exhibit their operation so clearly. Also, there may be other ways
of expressing the drop function. In general, two compound expres
sions are equivalent, if they reduce to equal normal forms. We can
say equal, because the De Bruijn indices yield a unique representa
tion of lambda expressions. An example shows the point. Through
experience and intuition one might find the follo\ving solution to drop
one element from a datastructure:

B('\l.O a b c)I(

An intermediate step in the reduction sequence is:

'\l.(Al.O a b c)(I(0)

The next beta-reduction step replaces the innermost variable 0
in the expression by (I(0).

At.I(0 abc

But I(0 a reduces to 0 and we finally obtain

'\1.0 b c

The result is again a datastructure and repetition of the (B .. .I()
construct drops a corresponding number of elements. To prove equiv
alence we reduce

,\5.(Al.(B{B 0]()]()(T 4 3 2 lOT)

and obtain '\6.0 3 2 1. This is the same result as obtained above
using the element by element selection for dropping two elements
from the structure.

vVe could now proceed to augment the system by arithmetic.
However, adding arithmetic does not give any more insight in the pos
sibilities of the lambda calculus to decompose and compose program
and datastructures.

SEMANTICS

TIle more difficult aspects of the semantics of the lambda calculus
have not been used. Everything is finite and termination problems
are not expected.

The use of reduction semantics rather than an evaluation scheme
is an important point. The latter would indeed cause a semantics
problem. The main reduction rule is beta-reduction. It is not nec
essary to consider or to refer to an alplla-rule, because there are no
identifiers which could confuse variables. However, during a beta
reduction some De Bruijn indices might change in order to maintain
the binding structure. Since a lalnbda expression is uniquely repre
sented if De Bruijn indices are used, there is only one correct answer.
Beta-reduction could be done by hand, but the mechanical assistance
of an operational lambda calculus system facilitates it. As a matter
of fact, all examples shown above have been verified using such a
system [3].

To qualify for the task, a system has to be a full and complete,
strongly normalizing implementation of tIle lambda calculus. A func
tionallanguage implementation will generally not suffice. The system
has to handle relative free variables correctly. The necessity for it
becomes evident from the following argument.

A nest of DO-loops would appear in a functional language or
lambda calculus representation as a nest of recursive functions. The
transformations which move code from high frequency areas to low
frequency areas leave free variables, which have to be used and im
plemented as such. The innermost, high frequency areas cannot be
artificially closed. This would lead to more beta-reductions and the
expected gain in efficiency is lost.

Reduction semantics has to be implemented in such a way that
partial application and higher order functions are naturally available
in the system. The concept of a function either insisting on the
availability of all its arguments, or else generating error messages, is
not very useful in this context. Partial application and higher order
functions are the norm, not the exception, since input and output
are represented as functional datastructures. The system has to be
strongly normalizing, because functions (datastructures) have to be
brought in normal form as output. When parameters are set to
customize certain functions, some simplifying reductions \vithin the
function should be possible.

Equivalence of different procedures to acllieve the same effect on
tIle same input can be established by reducing both to the equal nor
mal forms. TIle normal form is at the same time the most efficient,
minimal representation of the procedure. Thus, the starting point
can be as declarative as necessary to convince the user of its correct
ness. Also, the process of obtaining the normal form corresponds to
a conventional compilation process.

PRAGMATICS

When comparing a bulk of assembly code with a huge lambda expres
sion allegedly accomplishing the same task the question arises: What
has been gained here? The answer is easy: The lambda expression is
based on a very good mathematical theory. But, this answer barely
satisfies. The deeply nested lambda expression, with no functions to
discern and bindings as well as unintelligible De Bruijn indices dis
tributed all over the expression, reveals its meaning in no way faster
or easier thall a bulk of assembly code. And above all, in either case
the problem is, how to obtain it in the first place. A higher level
programming language is a way for assembly code, without really
solving the problem, however. But what is the higher level language
with respect to the lambda calculus, which is in itself a higher level
language? Syntactic sugaring may raise the level of appearance, but
does not necessarily raise the conceptual level.

Some researchers consider combinators to be an alternate system
to implement functional systems. In terms of the lambda calculus
they correspond to very simple, closed lambda expressions, so simple
that there is no need to implement the lambda calculus at all. (There
is, of course, tIle need to compile functional expressions into combi
nator expressions.) Combinators as abbreviations of simple lambda
expressions, however, fill a need to conceptualize general patterns of
usage. They hide De Bruijn indices and other detail, one does not
\vant to know about. The parentlletical combinators llide explicit
parameters, which are inferred. They are more than an abbrevia
tion, they represent a process (not necessarily part of the lambda
calculus!) to create a combinator of a certain class or type.

There is an obvious need to name lambda expressions once they
are created and their internal details are not of interest anymore. But
don't \ve admit assignment statements agaill through the backdoor?
Tllis would certainly violate first principles. First of all, we do not

fill a box variable, we associate a name to an expression so they
become equivalent. (By the way, names are expanded only in head
positions, there is no point to do it everywhere.) Secondly, first
principles may be bent to accommodate pragmatic needs. In this
case, the pragmatic need consists of defining and redefining names.
An easy \vay to accomplish this is to make environment entries from
definitions. These associations remain valid and accessible as long
as the environment is not cut back. Redefinitions are shadowed, but
not overwritten. This method can be characterized as uncompleted
(may be over the life of the system) beta-reductions.

The interactive capabilities of modern computers offer another
pragmatic advantage. The conventional, historic method first creates
a large program structure, the source code, then compiles it into
object code, and then "runs" it. This method is due to hardware
limitations which have been overcome and is not ade.quate anymore.
The best way to construct large, nested structures is interactive and
piecemeal.

The system can guide the user, indicate at each position or state
what are permitted moves, what is correct input, what are allowed
structure changes. Trivial errors are prohibited at the spot. The
problem of parsing can be made to disappear if only atomic tokens are
permitted as input while the expression structure is system driven.

There should be means to traverse the structure once it is cre
ated to make changes where necessary. To adhere to first principles in
this pragmatic context means to maintaiiI full "recursiveness." With
other words, what is available and possible at the top of the ex
pression should be possible at every subexpression. Desirable meta
operations on expressions are:

1. Perform a predetermined number of reductions on it. (y')

2. Display it according to a selected fornlat. (y')

3. Transform it into a combinator expression (abstraction). (y')

4. Replace it by another expression. (y')

5. Name it. (y')

6. Save it on secondary storage. ()

7. Expand it. (y')

All these amenities do not belong to the lambda calculus, but
they make it a working system. The checkmarks indicate availability
in our experimental system.

PERFORMANCE

If the lambda calculus is to be used for real computing the question
must be asked, does it provide real performance? The key to the
possibility to reach satisfactory performance is the particular repre
sentation which can be chosen if one uses De Bruijn indices. The
sequence of application nodes in the representation of vectors has to
be implemented in consecutive memory locations. This is as good
as any conventional method. If the sequence of application nodes
becomes arguments of a function, they are now in consecutive en
vironment locations, too. The De Bruijn index is the same as the
array index, and the same as the offset when addressing the memory
with the current environment as base address. Thus, the basics of
hardware use are essential the same as in the conventional method
and no penalty in performance has to he paid.

The issue is not as clear with respect the nests of recursive func
tions into which nested DO-loops get transformed. Although recur
sion benefits from the implementation choices, too, their automatic
transformation into loops is difficult.

Some special non-lambda calculus measures are needed to per
mit environment changes. The environment is a shared, read-only
tree structure containing arrays. Adhering to first principles permits
overwriting environment entries by equivalent values only. To cre
ate a new array with only one element changed, access to the array
in the environment has to be filtered for a selected index by a new
environment. All other accesses are referred to the old array. This
method allows the existence of different arrays, which share common
elements as much as possible.

CONCLUSION

This paper investigates the suitability of the lambda calculus as
a representation for arrays and the functions to manipulate them.
TIle results show that only a full and complete, strongly normalizing
implementation of the lambda calculus will suffice. Reduction se
mantics, De Bruijn indices, performance oriented representation and

implementation techniques based on proven hardware concepts, and
special interactive tools have to be combined. Much further work is
necessary to realize the potential power of the lambda calculus as
a machine language for actual use. Particular attention has to be
given to the scaling-up properties of the methods described.

BIBLIOGRAPHY

[1] Abdali S.K., "An Abstraction Algorithm for Combinatory Logic."
The Journal of Symbolic Logic, Vol. 41, Number 1, March 1976,
pp. 222-224.

[2] Backus, J. "Can Programming be Liberated from the von Neu
mann Style? A Functional Style and Its Algebra of Programs."
CACM, V21, N8, pp613-641, (1978).

[3] Berkling, K.J., "Headorder Reduction: A Graph Reduction Scheme
for the Operational Lambda Calculus," Proceedings of the Los
Alamos Graph Reduction Workshop, Springer Lecture Notes in
Computer Science, Vol 279, (1986).

[4J Burge, W.R. "Recursive Programming Techniques." Addison
"'Tesley, Reading Massachusetts, (1975).

[5] Mullin, L.M.R. "A Mathematics of Arrays." Ph.D. Dissertation,
School of CIS, Syracuse University, (1988).

	Arrays and the Lambda Calculus
	Recommended Citation

	SU-CIS-90-22_001c
	SU-CIS-90-22_002c
	SU-CIS-90-22_003c
	SU-CIS-90-22_004c
	SU-CIS-90-22_005c
	SU-CIS-90-22_006c
	SU-CIS-90-22_007c
	SU-CIS-90-22_008c
	SU-CIS-90-22_009c
	SU-CIS-90-22_010c
	SU-CIS-90-22_011c
	SU-CIS-90-22_012c
	SU-CIS-90-22_013c
	SU-CIS-90-22_014c
	SU-CIS-90-22_015c
	SU-CIS-90-22_016c
	SU-CIS-90-22_017c
	SU-CIS-90-22_018c

