
Syracuse University Syracuse University 

SURFACE SURFACE 

Electrical Engineering and Computer Science - 
Technical Reports College of Engineering and Computer Science 

7-1990 

Load Redistribution on Hypercubes in the Presence of Faults Load Redistribution on Hypercubes in the Presence of Faults 

Sanjay Ranka 
Syracuse University 

Jhy-Chun Wang 
Syracuse University, School of Computer and Information Science 

Follow this and additional works at: https://surface.syr.edu/eecs_techreports 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ranka, Sanjay and Wang, Jhy-Chun, "Load Redistribution on Hypercubes in the Presence of Faults" (1990). 
Electrical Engineering and Computer Science - Technical Reports. 92. 
https://surface.syr.edu/eecs_techreports/92 

This Report is brought to you for free and open access by the College of Engineering and Computer Science at 
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by 
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/92?utm_source=surface.syr.edu%2Feecs_techreports%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


Load Redistribution on Hypercubes
in the Presence of Faults

Sanjay Ranka and Jhychun Wang

July 1990

School o!Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse J NY 13244-4100

(315) 443-2368

SU-CIS-90-23



Load Redistribution on Hypercubes in the

Presence of Faults

Sanjay Ranka and Jhychun Wang

Syracuse University

July 31, 1990



Abstract

In this paper, we present load redistribution algorithms for hypercubes in the presence

of faults. OUf algorithms complete in low-order polynomial of the number of faulty

nodes and exhibit excellent experimental performance. These algorithms are topology

independent and can be applied to a wide variety of networks.

Keywords and Phrases

max-flow, fault tolerant, hypercube, reconfiguration.



1 Introduction

Massively parallel systems are becoming popular for addressing the pr~cessing needs

of computationally intensive areas like image processing, computer vldion, computa

tional geometry, robotics, VLSI etc. However with the increase the number of pro

cessors, the probability of at least one processor being faulty increases dramatically.

Most algorithms. are designed assumillg no faults are present. In this paper we present

strategies to reconfigure the algorithm (,ria software) in presence of faults.

Conventional fault tolerant schemes concentrate on the hardware approach. Spare

processors and communication linkages are embedded in the architecture. Whenever

a faulty node is detected and isolated, spare processors take over faulty node's com

putation role in order to decrease the impact of the faulty node in the whole s~ystem.

In these approaches, extra cost is associated with the spare hardware.

If we assume that no spare processors are available and no hardware modifications

are allowed, a software approacll must be employed to achieve fault tolerance. Dutt

and Hayes [DUTT88] 11ave proposed a software approach under such a constraint.

Their strategy is to identify the maximum size of fault-free subcube in the hypercube

and rearrange computation on that smaller subcuhe. Ho\vever, this might result in

a large performance degradation with a lot of wasted resources. In the presence of

even one fault the performance will degrade by up to 50%.

Under the assumption that the original workload is equally balanced among all

processors, if tIle whole workload of the faulty processor is distributed to one of

its neighbors, the workload on the neighboring processor will be double. For most

hypercube applications that are synchronous, the other processors would hav"e to

\vait for the slowest processor to finish its computations. Thus, the overall sj~stem

performance ,viII be degraded by 50%. Clearly it would be desirable to split up

the workload of the faulty nodes into several parts and allocate each part to a set

of fault-free processors. Ollf algorithm is based on the notion of multiple virttlal

processes on a single physical processor and performing load balancing using these

virtual processes. Hence, the workload of every node can be distributed among many

processors. The reconfiguration algorithm is centralized and static in nature and

1



requires tIle knowledge of all the faulty nodes in the system. After distribution of

faulty nodes' workload to other processors, there is a nonlinal computational o\rerhead

on eacll node. This CatlSes small performance degradat; ;,.

A similar reconfigllration strategy was presented by Banerjee [BANE89]. Assum

ing a N = 2P system witll f faulty nodes, eacll faulty node's workload is reallocated to

n of fault-free nodes and each fault-free node only allowed to receive extra ,vorkload

from t,vo of faulty nodes. This algorithm uses an integer programming approach to

find an optimal solution. The time complexity of the algorithm is O(2f ·(N-f»). It is

computationally infeasible even for small values of f (say 2) and N = 64.

In this paper, we present an efficient algorithm to dispatch faulty nodes' workload

to other fault free nodes. Let n be the number of nodes, f be the number of faults

and w be the fraction of extra workload that can be assigned to each processor.

Our experimental results suggest that our algorithm completes in O( fl:gn
) amount

of time. Tllese results are applicable for large value of n (512 nodes and higher),

practical value of w (2% to 20%), and reasonable value of f (lIp to 10% faulty nodes).

Thollgll we present our result Oilly for h)'percubes, our algorithm is general and can

be applied to a wide variety of interconnection networks.

The rest of this paper is organized as following. In section 2, \ve present the

hypercube architecture and max flow algorithm. The max flow algorithm forms a

backbone for our later algorithms. In section 3, we describe the reconfiguration

algorithm. In section 4, we analyze the time complexity of our algorithm. In section

5, we present simulation results and compare them ,vith the theoretical conlplexity.

2 Preliminaries

2.1 Hypercube MulticolIlputer

The topology of a 16-node hypercube interconnection network is shown in Figllre 1.

A p-dimensional hypercube network connects 2P PEs. Let i p- t i p - 2 ••• io be the binary

representation of the PE index i. Let Zk be the complement of bit i k • A ll)lpercube

net,vork directly connects pairs of processors whose indices differ in exactl)! one bit;

2



I
I
I
I,
I
I
1
I
I
I
I
I

Figure 1: A 16-Node Hypercube (Dimension =4)

i.e., processor i p - 1i p - 2 ••• io is connected to processors i p - 1 .... Zk ..... io, 0 S k :::; p - 1.

We use the notation i(b) to represent the number that differs from i in exactly bit b.

2.2 Max-flow- Algorithm

The maxiIDum flow problem involves a commodity network graph. Figure 2 shows

the graph of such a network. There is a source node (8) and a sink node (T).
There are several interior nodes linked by weighted branches. Source node represents

a production center tllat is theoretically capable of producing an infinite amount

of commodity. Sillk node represents a demand center wllicll can absorb an illfiIlite

amount of commodity. The brallclles represellt commodity transport liIlkages, ,vi tIl

the weight of a branch indicating tIle capacity of the corresponding link.

A commodity flow in tllis network is represellted by weighted directed arrows along

tIle branches of tIle network, witll the weight of tIle arrow illdicating the amOtlllt of

the flow on tllat brancll and the direction of the arro\v indicating the direction of

3



Figure 2: Original Commodity Flow Network

Figure 3: Feasible Commodity Flo\v Network

4



the commodity flow. Figure 3 sllows a commodity flow for the graph in Figure 2.

Each arro\v ifl Figure 3 carries a pair of numbers, the first of which is the capacity

of that branc~J and the second of which is the actual flow on that branch. A feasible

commodity flow in this network is a commodity flow originating from the source node

and ending at the sink node such tha.t: 1) at each intermediate node, the sum of the

flows into the node is equal to the sum of the flows out of the node; 2) at each sink

node tile net flow into the node is nonnegative, and at the source node the net flow

directed out of the node is nonnegative; and 3) the net flow in any branch in the

network does not exceed the capacity of that branch. Note that the flow in Figllre 3

is a feasible flow according to the above definition.

The value of a commodity flow is the sum of the net flows out of the source node

of the network and it is equal to the sum of the net flows into the sink node. A

maximum flow is a feasible flow whose value is maximum among all feasible flo\vs.

The maximum flow in commodity network is related to a cutset of the net\vork.

A cutset of a commodity network is a set of edges which when removed disconnects

the source nodes from the sink nodes. The weight of a cutset is equal to the sum

of the capacity of the branches in the cutset. The following theorem categorizes the

relationship bet\veen max-flow and min-cut.

Max-flow Min-cut Tlleorem[FORD62]: The value of a maximum flo\v in a

commodity network is equal to tIle weight of a minimum weight cutset of that net\vork.

3 Reconfiguration Algorithm

Otlr algorithm is designed to reconfigure the task allocation when faulty node(s) occur

in a hypercube multiprocessor system~ 'Ve assume that the task graph has initially

been mapped into system graph by the algorithm presented by [I{ERN70], [Si\DA88]

or [STON77]. It is clear that every mapping strategy will try to keep eacl1 processor's

workload balanced and minimize the system's interprocessor communication cost.

When a processor fails, its workload must be dispatched to other processors~ Accord

ing to our assumption, the workload of every node can be distributed among many

5



processors. Distributed memory machines assume that only processors that are con

nected by links can communicate directly with each other. Processors without direct

l~nks communicate via intermediate processors using store-and-forward techniques.

~l'hus, the cost of sending a message from one processor to another is proportional to

the product of the size of the message and number of links the message has to travel.

The following are the parameters for the time spent in communication from one node

to the otller.

~ is the start up time,

T is the cost of setting up a circuit between two adjacent processors,

i is number of links traveled,

k is length of the message.

The time needed to send a message from a node to another node is e+ i · (T + k).
Recently, novel techniques have been proposed for distributed memory machines with

circuit switched communication [BOKH90], [DALL87], [DECE89]. To send a mes

sage in these architectures, first a physical path between source and destination is

established and then the complete message is transmitted. Thus the message trans

mission tiine is linearly proportional on the number of links traveled and the size of

the message. The time required to send a message from one node to another node

(via a path A of length i) is e+ i .. T + i + k - 1. For the case of Intel iPSC-860, a

circuit switched hypercube, this equation is true only if no other path is sharing any

edges \vith path A. In case of congestion (i.e. other path are sharing edges \vith path

A) the communication time may increase considerably [BOKH90].

Thus \ve assume that task pairs with heavy communication \vere allocated to same

processor or Ilear neighbors to minimize on the total interprocessor communication

time. This kind of mapping is preferable even in models with circuit s,vitched commu

nication. In order to keep this property after reconfiguration, lve will reallocate fa.ulty

nodes' tasks to their neighbors (of a. faulty node) as close as possible. In case the

adjacent neighbors can't absorb the whole workload, we will look for their 2-distance

neighbors and so on until we complete the reallocation.

~1allY algorithms are designed with perfect hypercubes as the underl~ying archi

tecture. In the presence of faults, these algorithms have to be reconfigllred. Dtlring

6



the recollfiguration process, ho'v far each task being moved to other node has a major

effect on commullication time (and hence the total execution time) .. In order to mea

sure the efficiency of our reconfiguration algorithm, we define a perform. '. 1ce variable,

average distance D, which is used to represent the average passes we need to complete

the reconfiguration.. Tllis variable D is calculated by the following expression:

D = (Wl * 1 + W2 * 2 + W3 * 3 +...... +wp *p) jW

wllere Wi represents tIle total ,vorkload being dispatched to nodes at a distance i from

the original node and lV represents the total workload of faulty nodes. The basic

principle in our algorithm is to try to minimize D such that the load is balanced

among the nodes.

In order to use tIle maximum flow algorithm in our problem, we'map the system

graph into the commodity network by following steps:

1.. Separate the processes into two subsets, U and V, representing the faulty nodes

and fault-free nodes, respectively.

2.. Add nodes labeled Sand T that represent unique source node and unique sink

node, respecti\rely..

3.. For each node in U, add a branch from that node to S. The weight of the

branch carries the workload of that node.

4 .. From each node in V, add a branch from that node to T .. The weigllt of the

branch carries the maximum extra workload can be accepted by that node ..

5 .. From each pair of nodes (u, v), add a branch bet,veen them if there is a path

in processors graph.. The weight of the branch must be much larger than the

weigllt assigned in step 3 and 4 in order to prevent it from being part of min-cut

set.. We set this weight to AilAX which is larger than the total weight assigned

ill step 3 alld 4..

After constrtlcting the commodity network, we use max-flow min-cut theorem to

decide the min-cut set.. There are three possible ways \vhich the min-cut set may

present:

7



1. In Figure 4, the min-cut set goes through branches \vhich connect source node S
and nodes Ui. The "veight carried by these branches represent the faulty nodes'

workload, \vhich in turn equal to the maximum flo\v =n this network. According

to Ford-Full\:erson algorithm we can carry out the a.ctual flow in each branch,

tllen calculate the extra workload accepted by each fault-free node.

2. III Figure 5, the min-cut set goes through the branches between nodes Vj and

sink node T. The weight carried by these branches represent the maximum

extra \vorkload can be accepted by fault-free nodes. In this case, the maximum

flow in the network will be equal to the sum of the maximum extra workload

received by fault-free nodes.

3. In Figure 6, the min-cut set goes through part of branches < S, Ui > and

< Vj, T >. In this case, these nodes Ui in the cutset can transfer all of their

workload to fault-free nodes and these nodes Vj in the cutset will receive the

maximum amount of extra workload which they are allowed to accepted.

The following defines the variables used in the reconfiguration algorithm.

U: represent the set of faulty nodes.

V: represent the set of fault-free nodes.

workload[ui]: represent the amount of workload at node Ui.

capacity[eij]: represent the maximum capacity of branch eij.

weight[eij]: represent the amount of actual flow in branch eij.

extraw[vj): represent the extra workload received by node Vj.

!(: represent the value of maximum extra ,vorkload can be accepted by each fault-free

node.

DIST: represent tIle distance bet\veen nodes in U and V.

iYfAX: value which is mucll larger than ]( and workload[ui].

OUf reconfiguration algorithm assumes that the load at every node is initially

the saille (i.e. it is load balanced). Hence the maximum load accepted by any fault

free node is the same. This algorithm can be easily transformed to be applicable to

case \Vllen the nodes arc not exactly balances and value of ]( is different for different

8



Figure 4: Min-cut set (1)

Figure 5: Min-cut set (2)

9



Figure 6: Min-cut set (3)

nodes. A high level description of the reconfiguration algorithm is given in Figure 7.

In this algoritllm, value ]( will dominate the execution time of the reconfiguration

algorithm. If]( is large enough, we can always complete the reconfiguration job in

the first pass (DIST = 1). Thus tIle workload will be dispatched to faulty nodes'

adjacent nodes. However, the new workload balance may be poor. When the value!(

goes down, more steps are needed and the reconfiguration execution time will grow

up.

The value of Ii also determines the load balancillg performed by the reconfigura

tion algorithm. If we assume that the initial configuration is perfectly load balanced

,vitll a load of L on eaell node. TIle maximunl load /. minimum load after the

reconfiguration is

J( +L (1 _ 1) = (1 + J( )(1 - 1)
L L

wllere f represents the fraction of faulty nodes. Thus smaller value of ](/ L will lead

to better load balancing. Ho\vever DIST will be higller and hence communication

10



Recollfigurat10n Algoritllm:

1~ DIST f- 1;

2~ for each node Ui in U, create a branch from Ui to node Vj in V Wllich is D I ST

distance away from node Ui in processors grapll~, create a branch from Ui~

3~ for each branch eij created ill step 2, capacity[eij] f- J\tlAX ~

4~ add two nodes Sand T ~ S is the unique source node and T is the unique sink

node~

5~ for each node Ui in U, add a branch from Ui to S. The weight of this branch is

equal to workload[ui].

6. for each node Vj in V, add a branch from Vj to T. The weight of this branch is

equal to !( - extraw[vj].

7~ use ?vlax-flow Min-cut algorithm to calculate the values of weight[eij].

8. for each i, reduces weight[eij]s' from workload[ui]. If workload[uil is equal to

0, remove Ui from set U.

9. for each j, add weight[eij]s' to extraw[vj).

10. If U = {}, then EXIT. The values extroaw[vj] in each fatIlt-free node is the

amount of extra \vorkload received by that node"

ll~ If U =I {}, then DIST +- DIST +1; goto step 2.

Figure 7: Reconfiguration algorithm

11



time may increase and may lead to higher execution time. Thus the value of ]( should

be chosen appropriately.

4 Theoretical time complexity

The most expensive step in our reconfiguration algorithm is step 7. In this paper,

we employ the max-flow algorithm developed by Malhotra et ale [MALH78]. Several

other algorithms for the max-flow problem are available [SLEA80] [TARJ86]. However

we decided to choose the MPM algorithm due to ease of implementation and good

performance. The time complexity of MPM algorithm is O(n3
), where n = IVI. OUf

processors grapll is a p-cube, Let nU. and nv present the number of faulty nodes and

the number of fault free nodes at a distance of d respectively. The time complexity

for d = DIST = 1 is analyzed as follows.

number of vertices n = lSI + lUI + IV) +ITI

= 1 + nu + n v + 1, where nv :::s: nu * ( ~ )

:::s: 2 + n u + nu * ( ~ )
= 2 + n u '* (1 +p)

The time complexity of the first pass of the algorithm is O(n~p3). If \ve apply the

O(nmlogn) algoritllffi of [SLEA80], the time complexity will be O(n~p2Iog(nup)).

The complexity of the kth pass (2 ~ k < l~J, \ve will assume this restriction for our

analysis) is O(n~(l +nk)3) using the MPM algorithm, and O(n~(l + nk)21og(n u (1 +

nk))) using the algorithm by Sleator and Tarjan, where nk = ~ :::s: ( ~ ). Better

bounds on nk can be achieved, but is beyond the discussion of this paper.

The number of passes can be approximated by the following:

Smallest k such that 2:7=1 ( ~ ) ~ ~

12



\vhere w is the fraction of maximum permissible load. This inequality assumes that

tIle worl(load of every faulty node can be distributed independently of the otller faulty

nodes. Further the nl-Imber of faults are small compared to the total numbe'r ')f nodes.

Thus assuming that w :::; ~, one pass will be sufficient most of the LImes. If

we assume that w :::; p12 , two passes will be sufficient most of the times. The worst

coml)lexity of the IVIalhotra algorithm for the first two passes are O(n~p3) and O(n~p6),

respectively.

If the reconfiguration algorithm goes through k passes, then the worst case time

complexity can be represented as:

k

O(n~p3) + O(n~p6) +.. ·= L O(n~(pi)3)
i=l

According to the above analysis, the reconfiguration algorithm may see unpracti

cal. III the next section we demonstrate that our algorithm performs extremely well

in practice.

5 Experimental Results

In the case the number of faulty nodes are much less than the total number of nodes,

tIle neighbors of the faulty nodes will be disjoint for most cases. Thus the max-flow

algorithm will be applied (in the first pass) to a graph similar to the one shown in

Figure 8. In tllis case the application of max-flow algorithm to the whole graph is

similar to the application of max-flow algorithm to each subgraph. For each subgraph

lUI == 1 and Illi == logn (for the first pass). In the worst case, time complexity for

the max-flow algoritlln1 for such a sllbgraph is O(log3 n). Ho\vever, we expect it to

complete in O(log n) time in most cases. Thus the expected complexity of the first

pass (in practical cases) is ~ O(f log 1'1.).

The assumption tllat the graph will be decomposed for the later passes ma)T not

hold true. Further, many of the source nodes (faulty nodes) get deleted in every pass.

TIlliS it is 11ard to predict the complexity of future passes. However, our experimental

13



Figure 8: Graph configuration for the max-flow algorithm for small

number of faults (as compared to the total number of nodes).

14



results suggest that for practical values of n, w, and j, the number of passes are close

to 1. Thus the complexity in these cases will be determined by the first pass.

There is Olle key factor which will affect t he execution time: the extra load ]{

that each fault free node can accept. If we bet a small value for !{, we ,viII need

more nonfaulty nodes to absorb whole faulty nodes' ,vorkload. This will cause the

reconfiguration process to go through several passes before it completes, and the

tilne required by the algorithm will increase substantially. On the other hand, if we

select a large value !{, \ve may be able to complete the redispatching process at first

pass, so the execution time \vill be much less than the previous one. We present

our experimental results in Table 1 to 5. They represent average distance D and

execution time T under different number of faulty nodes and different values of extra

load !(. For each case, we took 50 random instances of the problem. Figure 9 and 10

give the values of D, Figure 11 and 12 give the values of T.

While achieving a !(/L within 5%, the average distance the load at a particular

node was moved to a distance of 1,,5 to 1.6 for a hypercube of size 210 (diameter =
10). The same amount ,vas reduced to 1.3 and 1.03 for balance fraction with 10% and

20%, respectively. Further this distance (for the same number of faulty nodes) seems

to decrease as the number of nodes in graph increases (Figure 9 and 10). Thus with

larger number of nodes and the same number of faulty nodes, the average distance

moved is going to be quite small.. We also note that a 5% increase in the load of every

node represent that final load balancing is within 1.05· (1- f), where f is the fraction

of faulty nodes. Thus a 5% increase in load represents a load balancing \vithin 2% in

case of 32 faulty nodes in 1024 nodes system.

From Figure 11 and 12, we claim tllat for a fixed number of nodes and extra

load, tIle algorithm has a execution time linear or near linear in the number of faults.

The rest of analysis is based most on our experimental results for n = 512 and

n = 1024. For a fixed percentage of faulty nodes and extra load, the algorithm seems

to behave asymptotically along O(n log n). This is sho,vn in Figure 13 to 16. Thus

tIle complexity 6f our algorithm is proportional to flog n for a fixed reasonable v"alue

of !(.

By Figllre 17 alld 18, we conclude that for a fixed value of flog n the algorithm

15



completes in time proportional to ~. Thus we conjecture that our algorithm performs

in O( Il~n) for large value of n, practical values of w (2% to 20%) and reasonable

value of f (up to 10% faulty nodps).

6 Conclusion

In this pa!)er, we presented a new load redistribution algorithm on hypercube archi

tecture. TIle experimental complexity of our algorithm is O( /l:gn). Altllough we use

hypercube as our system architecture, we can use this algorithm to solve redistribtltion

problem in any system architecture \vithout much modification. One needs to con

struct the commodity flow network G by faulty nodes and their i-distance neighbors

(i == 1, 2, ...), then calculate the actual flow in this graph, continuing this process un

til the redispatching is completed. However, the time required by the reconfiguration

algorithm will depend on the architecture.

OUf experimental results are based on the max-flow algorithm of Malhotra. Tarjan

has developed a more efficient algorithm [TARJ86] which presented a O(nm log(n21m))
time complexity on an n-vertex m-edge graph. Implementing Tarjan's approach in

our reconfiguration algorithm will potentially improve the total execution time.

Software reconfiguration strategy does have some potential disadvantages. The

strategy assumes division of workload (and hence virtual processes). Thus to get an

improved load balancing the granularity of the problem should be small. This will

lead to increased cost of context switching. Further the complexity of communication

routines become more complex as the number of virtual processes increases. We have

assumed tllat the max-flow algorithm al\vays give integer solutions. In case the flows

are not integers, solutions can always be truncated to integers. This may lead to more

passes as the flow fron1 faulty nodes to other nodes in a particular pass may not be

maximized.

It n1ay so happen that the topology may get disconnected due to the presence of

faulty nodes. These checks need to be performed and appropriate actions need to be

taken. We ha\re not addressed this problem in this paper. The algorithm discussed

16



in this paper is centralized. We are currently investigating parallel and distributed

approaches to solve tllis problem.

17



n u 1 2 4 8 .-
!( dist timel dist time dist time dist time

2 2.64 31 - - - - - -

5 1.70 12 1.92 62 - - - -
10 1.40 9 1.42 19 1.48 55 - -
15 laID 8 1.16 38 1.23 12 1.38 79

20 1.00 4 1.00 17 1.04 9 1.12 60

Table 1: Simulation results for 64 nodes system

nu 1 2 4 8

!{ dist time dist time dist time dist time

2 2.30 34 2.37 168 - - - -
5 1a65 14 1.66 32 1.70 170 - -

10 1.30 7 1.30 50 1.35 122 1.41 93

15 1.00 6 1.00 4 1.03 78 1.13 45

20 1.00 5 1.00 56 1.00 32 1.00 18

Table 2: Simulation results for 128 nodes system

nu 2 4 8 16

!( dist time dist time dist time dist time

2 2.16 82 2.26 357 - - - -

5 1.62 85 1.62 133 1.63 191 - -

10 1.22 67 1.20 178 1.26 183 1.34 552

15 1.00 35 1.00 66 1.01 120 1.06 360

20 1.00 19 1.00 29 1.00 97 1.00 168

Table 3: Simulation results for 256 nodes system

1: time is in milliseconds

18



n1l. 4 8 16 32
!( dist time dist ti'me dist time dist time

2 2.00 440 2.13 1255 - - - -

5 1.56 157 1.56 500 1.59 1074 - -

10 1.10 286 1.13 499 1.18 873 1.29 1382
15 1.00 86 1.00 167 1.00 258 1.03 1045

20 1.00 170 1.00 187 1.00 249 1.00 468

Table 4: Simulation results for 512 nodes system

nu 8 16 32 64
!( dist time dist time dist time dist time

2 1.87 1459 2.04 3272 - - - -

5 1.51 707 1.54 1654 1.55 3246 - -

10 1.02 377 1.06 927 1.10 2252 1.24 4911
15 1.00 360 1.00 763 1.00 1788 1.01 3252
20 1.00 380 1.00 516 1.00 1084 1.00 2651

Table 5: Simulation results for 1024 nodes system

19



--e-- f= 1
--.- f-2
-a-- '.4
--.- f.8

12001000800400 600
nodes

200

2.4

2.8 .......---------

2.0

2.2

2.6

1.8

1.6 -+-......-..................-,-............,..--,---..---r---r.......--r---r~--r--,-...---1

o
(a)

•CD

•...•>•

•Co)

I:•..
CIt

:a

•Co)

11:•...
UI

:0

•os••>•

2.0 ...........-------------------.

1.9

1.8

1.7

1.6

1.5

--GI- 'a 1
--.- f-2
-a-- '=4
--.- 'sS
--- '.16

12001000800400 600
nodes

200
1.4 ...f-.............-....,....-.--'T'""~__.____r___r~........~__r___r__,.____,.___,---t

o
(b)

--Et- f= 1
--.- f-2
--a-- f=4
--.- 1.8
--- 1-16
----0- 'a32

12001000800400 600
nod••

200

1.6

1.8....-------------------.

1.4

1.2

1.0 ......-......................--.-~ ...........~_.,.._...._....__r____yo_r__r~__.._r__l
a

(c)

•os
:!•>•

Figure 9: Average distance D in reconfiguration algorithm VB number

nodes. (a) Extra load !( = 2. (b) !( = 5. (c) ]( = 10.

20



1.6

1.5
•Co)

I: 1.4 --m-- f = 1II.. --+-- f:: 2
"'0

1.3 ----- f - 4
--+-- f as 8.. 1.2 ---- f:lCl 16C)

~ 1.1 ---0-- f&32
• ----.- f 1::64>• 1.0

0.9
0 200 400 600 800 1000 1200

(a) nodes

1.25
•(J
C

--at- f = 1•.....
1.15 --+-- f- 2

-a ----- f -4

• --+-- f- 8
m ---- f. 32
~ 1.05 ---0-- f- 64•>•

0.95
0 200 400 600 800 1000 1200

(b) nod••

Figure 10: Average distance D in reconfiguration algorithm vs number

of nodes. (a) Extra load !( = 15. (b) !( = 20.

21



2000
:a
r:::
0
u•.,

!
--0-- N -128

1000 ---+-- N -.:256
-a-- N -512

• ---+- N -1024E
i=
:J
D-
O 0

0 2 4 6 8 10
(a) faulty nodes

4000
~
r:::
0
u 3000•eft

g --0-- N = 128
2000 ---+-- N-256

---a-- N =512• ---+-- N .1024E
i= 1000

:J
D-
U 0

0 10 20 30 40
(b) faulty nodes

5000
:a
c
0 4000u•!!

!
3000 --0-- N =128--.-- N=256
2000 ---a--. N =512• N = 1024E ---+-

i=
1000

::t
0.
0 0

0 20 40 60 80
(c) faulty node.

Figure 11: Execution time in reconfiguration algorithm vs number of

faulty nodes. (a) Extra load !( = 2. (b) !( = 5. (c) !( = 10.

22



12000
:0
c: 100000
u
4)

.!! 8000
--e- N =: 128g 6000 ----.-- N =256
--a-- N =512.,

4000 ----.-- N = 1024E
t=
:::t

2000
D-
O 0

0 50 100 150
(a) faulty nodes

8000.,....
-a
c
0
u 6000•...

--til"-- Na: 128
! 4000 -...- N.256---- N.512• --0-- N -1024E
i= 2000

='CL
c.> 0

0 50 100 150
(b) faulty nodes

Figure 12: Execution time in reconfiguration algorithm vs number of

fatuity nodes. (a) Extra load !( = 15. (b) !( = 20.

23



200 400 

200 400 

200 400 

600 
nodes 

600 
nodes 

600 
nodes 

800 1000 

800 1000 

800 1000 

--e-- fin -11512 
-- fin R 11256 
--o-- fin- 11128 
-- fln .. 1164 

1200 

-9-- fin • 11512 
-- fin- 11256 
--o-- fin. 11128 
--..-- fln-1164 
--tt- fin • 1132 

1200 

-111-- fin. 11512 -- fin- 11256 
--o-- fin. 11128 -- fin- 1164 ----- fin • 1132 
-o-- fin .. 1116 

1200 

3: Execution time in reconfiguration algorithm vs number of 

fixed value of f fn. (a) Extra load J( = 2. (b) J( = 5. (c) 

24 



:0 12000c
0
Co)

10000•!!
__at__ Un. 1/512

! 8000 ---.- fin. 1/256
-It-- fin -1/128

• 6000 ---+- fin • 1/64
E ---- fin. 1/32.. 4000 -0- fin -1/16
c ---.-- fin -1/8
.!! 2000
:;
u 0•)(

0 200 400 600 800 1000 1200•
(a) node.

:0 8000c:
0u•It

6000 ------ Un. 11512g ---+-- fin. 1/256
--It- fin -1/128

• 4000 ---+-- fin .1/64
E ---- fin • 1132...

-0- fin 1: 1/16
c 2000 ---.-- fin. 1/8
0
;;
:J
U• 0
)(

0 200 400 600 800 1000 1200•
(b) nodes

Figure 14: Execution time in reconfiguration algorithm vs number of

nodes with fixed value of f In. (a) Extra load !( = 15. (b) J( = 20.

25



4000 ---------------------.,

--m-- n = 1024
--.-- n .512
---a-- n - 256

200100
flog n

o-&--::s.LItIL...---_----..-------,-----I
o
(a)

2000

3000

1000

..
E

c:
~
:;
u
c»
)(

•

:;-
c:
o
u•en

=

--m-- n - 1024
--.-- n .512
---a-- n. 256

400300200
flog n

100
O-l-llw;;...=:~~-......---..--.....---.---..r---.......---I

o
(b)

4000 .......-------------------,

2000

3000

1000

:0-
c
o
u
41).,.

CD
E
;

c
o
:;
u•)(
CJ

--m-- n -1024
---.- n .512
---a-- n m 256

800600400
flog n

200
O"""~;"------'f""--yo-..---,r---r""'-....--.--.,.-.......--.....--4

o
(c)

4000

5000 .........----------------r.r----,

3000

2000

1000c
~
'5
u
c»
)(

•

•E-

=

Figure 15: Execution time in reconfiguration algorithm vs value of

flogn with fixed value of 71. (a) Extra load I( = 2. (b)!( = 5. (c)
]( = 10.

26



:0 12000c
0
u

10000•
~
I 8000

---m-- n I: 1024
• 6000 --.-- n = 512
E ---a-- 0=256;: 4000
c
~ 2000
:;
u

0..
)(

0 500 1000 1500CD

(a) flog n

:c 8000c
0
to)

filii
(I)

6000

:[
---m-- n .1024

41» 4000 --.-- n-512E ---a-- n .256;::

c: 2000
0

'5
0

0•)(

0 500 1000 1500..
(b) flog n

Figure 16: Execution time in reconfiguration algorithm vs value of

flogn with fixed value of n. (a) Extra load [( = 15. (b) !( = 20.

27



:0 15f\Qc
0
0•!!

E 1000- ---e- 1:It: 4

• -.-- 1=8
E --a-- 1=16
= 500 -.-- 1-32
c
~
:;
u 0•)(

0 5 10 15 20 25•
extra lORd (K =wL)

Figure 17: Execution time ill reconfigtlration algorithm vs w with fixed

value of f and n = 512.

:;-
5000c

0
u• 4000."

E 3000 ---e- 1=8-
• -.-- 1=16
E 2000 ----- f=32
::: -+- '=64
c

1000.5!
;
u

0«I»
)(

0 5 10 15 20 25•
extr.load (K =wL)

Figure 18: Execution time ill reconfiguration algoritllffi VB w with fixed

value of f and n = 1024.

28



7 Bibliography

fAGGA87 ] S.Y. Lee and J.K. Aggarwal, "A Mapping Strategy for Parallel Process

ing," IEEE Trans. on Computers, vol. C-36, April 1987, pp.433-441.

[BANE89 ] Prithviraj Banerjee "Reconfiguration Strategies for Hypercube Multi

computers," nlanuscript, 1989, University of Illinois at Urbana-Champaign.

[BOKH88 ] S.H. Bokllari, "Partitioning Problems in Parallel, Pipelined, and Dis

tribtlted Computing," IEEE Trans. on Computers, Vol~ 37, Jan. 1988, pp.48

57.

[BOKH90 ] S.H. Bokhari, "Communication overhead on the Intel iPSC-860 Hy
percube," Technical Report 10, leASE, NASA Langley Research Center, May

1990.

[DALL87 ] W.J. Dally and C.L. Seitz, "Deadlock-free Message Routing in Multipro

cessor Interconnection Networks," IEEE Trans. on Computers, Vol. 36, May.

1987, pp.547-553.

[DECE89 ] A~L. DeCegama, The Technology of Parallel Processing, Volume 1 (Par

allel Processing Architectures and VLSI Hardware), Prentice-Hall Inc., 1989.

[DUTT88 ] S. Dutt and J.P. Hayes, "On Allocating Subcubes in a Hypercube Mul

tiprocessor," Proc. 3rd Conf. Hypercube Concurrent Computers and Applica

tions, Pasadena, CA, Jan. 1988.

[FORD62 ] L.R. Ford, Jr~, and D.R. Fulkerson, Flows in Networks, Princeton, NJ:

Princeton Univ. Press, 1962.

[KATS88 ] H~P. I(atseff, "Incomplete Hypercube," IEEE Trans. on Computers, Vol.

37, No.5, May 1988.

[KERN70 ] B.W. I{ernighan and S. Lin, "An Efficient Heuristic Procedure for Par

titiolling Graphs," Bell Syst~ Tech. J., Vol. 49, No.2, 1970, pp~291-308.

29



[MALH78 ] V.M. Malhotra, M. Pramodh Kumar, and S.N. Mahcshwari, "An O(IV3 1)
Algorithm for Finding Maximum Flows in Networks," Inform. Process. Lett.,

7, 1978, pp.277-278.

[SADA87 ] P. Sadayappan and F. Ercal, "Nearest-Neighbor Mapping of Finite Ele

nlent Graphs onto Processor Meshes," IEEE T1~ans. on Computers, Vol. C-36,

Dec. 1987, pp.1408-1424.

[SADA88 ] P. Sadayappan, J. Ramanujam and F. Ercal, "Task Allocation onto

a Hypercube by Recursive Mincut Bipartitioning," Dept. of Computer and

Information Science, The Ohio State University, Columbus, Ohio 43210.

[SLEA80 ] D.D.Sleator, "An O(nm log n) algorithm for Maximum Network Flow,"

Tech. Rep., Computer Science Dept., Stanford University, Stanford, CA, 1980.

[STON77 ] H.S. Stone, "Multiprocessor Scheduling with the Aid of Network Flow

Algorithms," IEEE Trans. Software Eng., Vol. SE-3, No.1, Jan. 1977, pp.85

9:3.

[TARJ86 ] R.E. Tarjan, "A New Approach to The Maximum Flow Problem," Proc.

18th AC!v! Symposium on Theory of Computing, 1986, pp.136-146.

30


	Load Redistribution on Hypercubes in the Presence of Faults
	Recommended Citation

	SU-CIS-90-23_001c
	SU-CIS-90-23_002c
	SU-CIS-90-23_003c
	SU-CIS-90-23_004c
	SU-CIS-90-23_005c
	SU-CIS-90-23_006c
	SU-CIS-90-23_007c
	SU-CIS-90-23_008c
	SU-CIS-90-23_009c
	SU-CIS-90-23_010c
	SU-CIS-90-23_011c
	SU-CIS-90-23_012c
	SU-CIS-90-23_013c
	SU-CIS-90-23_014c
	SU-CIS-90-23_015c
	SU-CIS-90-23_016c
	SU-CIS-90-23_017c
	SU-CIS-90-23_018c
	SU-CIS-90-23_019c
	SU-CIS-90-23_020c
	SU-CIS-90-23_021c
	SU-CIS-90-23_022c
	SU-CIS-90-23_023c
	SU-CIS-90-23_024c
	SU-CIS-90-23_025c
	SU-CIS-90-23_026c
	SU-CIS-90-23_028c
	SU-CIS-90-23_029c
	SU-CIS-90-23_030c
	SU-CIS-90-23_031c
	SU-CIS-90-23_032c
	SU-CIS-90-23_033c

