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Abstract

Taxonomic reasoning is used in many applications, including many-sorted
logic, knowledge bases, document retrieval, and natural language processing.
These various applications have been dealt with independently. Because they
have so much in common, a general approach to taxonomic reasoning would
seem to be justified.

This paper presents a theory of lexical semantics as an example of such a
general approach. The theory defines a representation and an algebra for that
representation. The operations of the algebra are inherently parallel, making
them well matched to the capabilities of modern computer systems.
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1. Introduction

This paper presents a theory of lexical semantics as an example of a general approach

to taxonomic reasoning. Since lexical semantics subsumes many other varieties of

taxonomic systems, these results are readily adapted to other applications.

Taxonomic systems occur in diverse guises in computational systems. Some examples

are the following.

· Sorts in automated reasoning systems using many-sorted logic

· Types used to denote classes of entities in knowledge bases

· Indexes or key words in document retrieval systems

· Properties in property inheritance systems

· Lexical components or markers in natural language processing systems

Because the applications are quite distinct, these systems have been dealt with inde­

pendently. However viewed abstractly, they are quite similar; therefore it would seem

useful also to consider them as varieties of the same abstract structure.

In the broadest sense, a taxonomic system is any subdivision of a set of entities that

conveys information about those entities. The subdivisions are related by inclusion,

exclusion, and overlap. To minimize the quantity of data, an entity is listed as a

member only of the smallest subdivisions which contain it. Similarly, only immediate

inclusion is given explicitly. Therefore, although not explicit, membership in a given

subdivision may entail membership or nonmembership in other subdivisions. The

process of inferring what is entailed by the taxonomic system is called taxonomic

reason'tng.

Construction of a taxonomic system for a given population consists of two parts.
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1. (a) Identification of relevant or diagnostic features and specification of their

Boolean relationships (inclusion, exclusion, overlap)

(b) Boolean description of each member of the population in terms of the

features

2. (a) Construction, using the features, of a structure that will facilitate taxo-
. .

nomIC reasonIng

(b) Definition of a mapping from population members into the structure

The first part is application specific. For example, in the case of lexical semantics, it

requires an empirical linguistic analysis. Methods are assumed to exist for carrying

out this part. The paper will not deal with it further. The second part is general to

all the examples enumerated above. In the following sections, a theory is developed

for this part of the construction.

The theory defines a representation in which lexical expressions are modeled as sub­

sets or subspaces of a multi-dimensional semantic space. A unique representation

or normal form is defined which may be viewed as a code for the subspaces of the

semantic space. A Boolean algebra of normal forms is developed, in which lexical en­

tailment is Boolean inclusion. A property of the representation makes the algebraic

operations inherently parallel.

The presentation in the body of the paper is informal, making use of examples to

illustrate the theory and to indicate the range of applicability. Formal definitions and

proofs in support of the presentation are given in the Appendix.
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2. A Model of Lexical Semantics

The theory is introduced by an example from a traditional domain: English words for

kinship. The kinship vocabulary and its definition, shown in Figure 1, are taken from

Nida [6]. The elements of the vocabulary are listed at the top of the table. Lexical

features that distinguish between the elements of the vocabulary appear along the left

side of the table. The body of the table indicates those features that characterize each

vocabulary element. This example is restricted to consanguineal kinship (c-kinship).

However, partial consanguineal relations will be added in Section 5 to further illustrate

the theory.

Restricting consideration to nominal domains does not indicate a limitation of the

theory. Rather the domains are chosen to make the general approach to taxonomic

systems easily understandable. Other domains, such as verbs and determiners, can

be dealt with similarly [7].

C-kinship can be modeled by a relational structure. For example, the denotation of

father is defined by the expressionl father(x, y) +-+ male(x) /\prec(x, y)/\ LO(x, y) where

prec(x, y) asserts that x is of the generation preceding that of y and LO (x, y) asserts a

direct lineal relation between x and y. If male is modified so that male(x, y) is taken to

assert that x is male, and application is defined to distribute over Boolean operations,

the above can be written more compactly father(x,y) +-+ (male/\ prec/\ lO)(x,y). If

all expressions are so treated, the variable symbols are no longer needed. That is,

father +-+ male /\ prec 1\ LO conveys the same information.2

A relation Rl is said to be contained by or included in a relation R2 if for all pairs

(x,y), R1(x,y) --+ R2(x,y), or in variable-free form, R1 ~ R2 • To illustrate this,

c-kinship can be extended to include the lexical items self, parent, child, sibling

1Denotations are written in sans serif type.
2The modification of male is called homogenization by Quine. In terms of Quine's functors, male

has been replaced by inv Pad male. Further discussion of homogenization and its role in elimination
of variables can be found in [8], pp. 283-288.
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and immediate family, defined as follows:

self r+ same /\ La

parent r+ prec /\ La

child ~ suee /\ La

sibling r+ same /\ Ll

immediate family +-+ La V(same/\ Ll)

From the definitions of these new lexical items it can be inferred for example that

sister --+ sibling, i.e., sister is included in sibling. Similarly, it can be inferred that

sibling --+ immediate family, i.e., sibling is included in immediate family.

This suggests a way to model entailment between lexical items. Using componential

analysis [6] or semantic field analysis [4] one can identify lexical features that dis­

tinguish between members of a set of related lexical items (a "semantic domain" or

"semantic field"). C-kinship is an example. The derived relational structure can then

model the semantic domain, providing denotations for the lexical features and the

lexical items.

The Boolean model cannot express some assertions that can be expressed in first-order

logic. For example, using first-order logic one can assert that the parent relation is

the converse of the child relation:

V'xV'y[parent(x,y) ~ child(y, x)]

Or, it can be asserted that the uncle relation entails a brother relation:

VxVy[uncle(x,y) --+ 3z[brother(x,z)]]

But the Boolean model has the advantage of simplicity: entailment is simply set

inclusion.

Specifically, let H be a set of individuals. The power set 2HxH represents the set of

all binary relations on H. Let S ~ H x H be a subset of consanguineal pairs such
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that {prec,same,succ} partitions S. That is,

1. prec U same U suee = S

2. pree n (same U suec) = 0, same n suee = 0

3. prec =I 0, same =I 0, suec # 0

Let {LO,Ll,L2} and {male,female} also partition S.

S can be diagrammed as in Figure 2a or, to suggest a multidimensional space, as in

Figure 2b. In this multidimensional space, subspaces or subsets are denotations of

c-kinship relations. For example, the subspace parent = prec n LO is the denotation of

parent. When the denotation of a lexical item includes several cells (e.g., cousin=L2),

this is indicated by labeling each of the cells with that lexical item. Some examples

of subspaces are given in Figure 3.

Thus a subspace can be viewed as the extension or meaning of the associated lexi­

cal item. Moreover, relations between subspaces can be viewed as relations between

meanings. Let R 1 and R 2 be any c-kinship lexical items, and R1 and R2 their re­

spective denotations (subspaces). Then R 1 entails R 2 if and only if R1 ~ R2 • That

is, subspace inclusion can be viewed as entailment or meaning inclusion. Similarly,

subspace exclusion (disjointness) can be viewed as contradiction. The intersection of

two subspaces can be viewed as the meaning common to the corresponding lexical

items. In the multidimensional space, inclusion, exclusion, intersection and the like

can be determined quite directly. The examples of Figure 4 illustrate this.

The partitions that subdivide the multidimensional space in the preceding example

have an important property that was not made explicit. Residence in any given

block of the partition {prec,same,succ} does not restrict residence in any block of the

partition {LO,Ll,L2}. A similar assertion holds for any subset of the three partitions.

This property is called "independence."
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More precisely, let B = {Pili E I} be a set of partitions of a set S, where Pi = {PI Ii E

Ji}. Then B will be said to be independent if and only if for any selection of ii E Ji,

for each i E I, niEI P{i is nonempty.3

Independence means that the set of partitions contains no redundancy. Each parti­

tion contributes information in every case. If one visualizes the atomic cells of the

multidimensional space, independence implies that some individuals occupy every

cell. Put another way, no cell represents a logically impossible condition. This is not

to be confused with "lexical gaps," which are breaks in a pattern of related lexical

items [4, 5]. It may be that a particular cell is the denotation of no lexical item; but

it is the denotation of some expression or paraphrase. Thus independence does not

imply no lexical gaps; rather it implies no "logical gaps."

An independent set of partitions of a set S will he called a basis of S. The partitions

of a basis of S define dimensions of S. Their blocks correspond to the coordinate

values. Thus each partition can be viewed as a dimension of meaning. The blocks

can be viewed as mutually antonymous "primitive" meanings.

Geometrically each block can be thought of as a hyperplane orthogonal to a coordinate

axis. These hyperplanes are the simplest subspaces. Next in order of simplicity are

those subspaces that can be expressed as the intersection of such hyperplanes, one or

the union of several from each dimension.

In the c-kinship space defined previously, prec corresponds to a plane orthogonal

to the "generation" axis. The intersection of prec, LO (a plane orthogonal to the

"lineality" axis) and male U female (union of planes orthogonal to the "gender" axis)

is the subspace previously identified as the extension of parent. Such subspaces

will be called "elementary subsets." They are analogous to convex subspaces because

they can have no "inside corners." But they are not exactly convex subspaces because

3To simplify the present discussion it is assumed that all partitions as well as all sets of partitions
are finite. This assumption is not necessary and is not made in the Appendix.
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they need not be connected. Equivalently, a subspace x is an elementary subset if and

only if for some reordering of the blocks of each partition, x becomes a rectangular

polyhedron. Thus parent and cousin are elementary subsets. So is precUsucc, although

not connected. But immediate family is not an elementary subset. It has inside corners

and so cannot be formed by intersecting sets of planes orthogonal to the coordinate

axes.

More precisely, if B = {Pili E I} is a basis of S where Pi = {PIli E Ji}, then an

elementary subset of S relative to the basis B is a subspace x that can be represented

x = neI UjeJf Pi where J; ~ Ji. This representation is called the standard form for

x. The conjunct UjeJf Pi is called the i-th component of x.

Thus the i-th component of an elementary subset is formed by taking the union of

some of the planes orthogonal to the i-th coordinate. The elementary subset is the

intersection of its components.

An equivalent representation is x = niEI% UjEJ~Pi where i E IX if and only if Jix # Ji •
•

For example, the expression LO represents the same elementary subset that (prec U

sameU succ) n LO n (maleU female) does. This is called the abbreviated standard form

for x.

It is shown in the Appendix that the standard form for elementary subset x is unique.

It follows that the abbreviated standard form is also unique.

The smallest nonempty elementary subsets are the intersections of hyperplanes where

exactly one hyperplane is orthogonal to each coordinate axis. These elementary

subsets are called atoms. For example, father = prec n LO n male is an atom.
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male
female

prec.gen.
same gen.
succ.gen.

dir.lin.
once rem.

twice rem.
consang.

affinal

father mother uncle aunt brother sister son daughter nephew niece cousin
x X X X X X

X X X X X X
X X X X X

X X X
X X X X X

X X X X
X X X X X X

X
X X X X X X X X X X X

X X X X

Figure 1: Definition of Kinship Relations (from Nida)
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male female

LO

Ll

L2

father self son mother self daughter

uncle brother nephew aunt sister niece

cousin cousin cousin cousin cousin cousin

prec same succ prec same succ

LO

Ll

L2

(a) Planar Representation

female

male

prec same suec

(b) Spatial Representation

Figure 2: C-Kinship as a Multidimensional Space

11



(a) parent

(b) immediate family

Figure 3: Subspaces of the C-Kinship Semantic Space
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Example 1. Father entails parent

(1) father ~ prec n LO n male

(2) parent r-+ prec n LO

(3) prec n LO n male ~ prec n LO

Example 2. Child entails immediate family

(1) child J-+ succ n LO

(2) immediate family r-+ LO U same n Ll
(3) suec n LO ~ LO ~ LO U same n Ll

Example 3. Uncle entails..., immediate family

(1) uncle 1--+ prec n Ll n male

(2) immediate family 1--+ LO U same n Ll
(3) (prec n Ll n male) n (LO U same n Ll)

= (prec n LO n Ll n male) U (prec nsame n II n male)
=0

Figure 4: Entailment as inclusion
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3. A Normal Form

An arbitrary subspace is a union of elementary subsets. Clearly, any subspace is a

union of atoms. But in general, there are many distinct sets of elementary subsets

each having as its union the same subspace. For example, {preen LO, samen LO, succn

LO,samenLl}, {(precUsucc)nLO,samen(LOULl)}, {LO,samenLl}, and {LO,samen

(LO U Ll)} are each a set of elementary subsets whose union is immediate family. The

last set is special however in that each of its members is maximal.

If x is an arbitrary subspace and y is an elementary subset contained in x, then y is

maximal in x if no other elementary subset z in x properly contains y. That is, if for

every elementary subset z ~ x, y ~ z ~ x implies z = y, then y is maximal in x.4

It is shown in the Appendix that if x is an arbitrary subspace the set of elementary

subsets that are maximal in x is unique. Thus any subspace is the union of a unique

set of maximal elementary subsets, each of which has a unique standard form. The

set of maximal elementary subsets of a subspace therefore constitutes a unique repre­

sentation or normal form for that subspace. Consequently each extension or meaning

has a normal form.

Continuing the c-kinship example, immediate family has the normal form {LO, samen(LO

ULl)}. Notice that no elementary subset in immediate family properly contains either

of the elementary subsets in the normal form. Moreover, every elementary subset in

immediate family is contained in one of the elementary subsets in the normal form.

The normal form of a subspace x will be denoted N(x).

Having defined a normal form for subspaces of the multidimensional space of lexical

meaning, the next task is to identify useful operations under which the set of normal

forms is closed. This will be done by first defining intersection and complement for

4It may be helpful for readers familiar with switching theory to think of "maximum elementary
subset" as a generalization of "prime implicant."
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elementary subsets. Then these operations are generalized to arbitrary subspaces.

Finally a union operation is defined. The presentation will continue to be informal.

However, the results obtained as well as all subsequent results leading to a Boolean

algebra of normal forms are proved in the Appendix.

In the simple case of elementary subsets, geometric intuition may be invoked. Let

x and y be elementary subsets with standard forms niEI UjEJf pj and niEI UjEJY pj

respectively. One is easily convinced by geometric considerations that x n y is also

an elementary subset and moreover that its standard form is niE! UJ'EJ~nJ~pt. (See
t &

Figure 5 for an example.) That is, intersection of elementary subsets is computed

componentwise. For the simple case where x and yare elementary subsets, define

N(x)/\N(y) = {x}/\{y} = {x n y}.

Now consider the elementary subset Zi = UjE(J,-Jf) pt. This is the union of hy­

perplanes, orthogonal to the i-th coordinate axis, that do not intersect the elemen­

tary subset x. It is obvious from geometric considerations that x n Zi = 0 (the

null subspace). This also follows from the previous result, since for each i E I:

Jix n (Ji - JiX) = 0. The distributive law holds for the multidimensional space,

and therefore x n (UiEI Zi) = 0 as well. Further, x U (UiEI Zi) = 1 (the unit sub­

space, i.e., the denotation of the entire semantic domain under consideration). Thus,

UiE! Zi is the complement of subspace x. (See Figure 6 for an example.) The com­

plement will be written -x. Of course, -x is not in general an elementary subset.

But notice that the Zi for i E IX are maximal in -x and are irredunclant. There­

fore, {zili E IX} = N(-x). For the special case where x is an elementary sub­

set, define", N(x) = {UjE(J,-Jnpj1i E P:}. Then if x is an elementary subset,

N( -x) =r-.J N(x).

At this point, an intersection operation, /\, and a complement operation, r-.J, have

been defined for elementary subsets.
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Next consider arbitrary subspaces x and y with N(x) = {Xl, X2, ... , x m } and N(y) =

{YI' Y2, • •. , Yl}. Since by definition X = Xl U X2 U · · · U X m and Y = YI U Y2 U · · · U Yl,

it follows by distributivity that x n Y = UI:5r:5m,l:5q:51 X r n Yq. Each of the X r n Yq is

an elementary subset. Moreover, the set {xr n Yqll ::; r ::; m, 1 ~ q 5 I} contains

all the maximal elementary subsets in x n y. It does not, however, contain only the

maximal elementary subsets. (For an example, see Figure 7.) Therefore, letting irr

be the operation that removes subsumed elements, N(x n y) = irr{xr n Yqll ::; r ~

m,l ::; q ~ I}. Define N(x)I\N(y) = irr{xr nYqll ::; r::; m,l ::; q ~ I}. Then the

set of normal forms is closed under /\ and N(x n y) = N(x)/\N(y).

By De Morgan's law, -x = -Xl n -X2 n· · ·n -Xm , where each -Xr is the complement

of an elementary subset, viz., x r • Applying the result for intersection of normal forms,

N( -x) = N( -Xl)/\·· ·/\N(-xm ) or rev N(x) =rev N(Xl)/\·· ./\ ~ N(xm ). Thus ~ is

defined for arbitrary subspaces as well as elementary subsets.

Thus the set of normal forms is closed under a complement operation ~ and an

intersection operation /\. Next a union operation for normal forms is defined in

terms of these operations. Since x U Y = -(-x n -y) by De Morgan's law, N(x u

y) =~ (~N(x)/\ ~ N(y)). Therefore a union operation for normal forms is defined

N(x)vN(y) = "-J (~N(x)/\ ~ N(y)).

These results may be summarized as follows. Given a multidimensional space of

lexical meaning defined by some basis, the set of normal forms along with operations

/\, V and "-J form a Boolean algebra.

Inclusion between normal forms can be defined: N(x) ~ N(y) if and only ifN(x)AN(y)

=N(x). Thus N(x) ::; N(y) is equivalent to x ~ y.

Two examples based on c-kinship will illustrate these operations. (See Figure 7.)

Each demonstrates computation of a union of subspaces. In both cases the resulting

subspace is immediate family.
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(a) Elementary Subset x

J~

Ji

(b) Elementary Subset y

Jfn Jf

(c) Intersection of x and y

Figure 5: Example of Intersection of Elementary Subsets
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(a) Elementary Subset x

(d)-X=Zl UZ2

Figure 6: Example of Complement of Elementary Subset
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Example 1.

Let N(x) = {LO} and N(y) = {samen ll}
Then rv N(x u y) = {Ll U L2}I\{prec U succ, lO U l2}

= irr{L2, (precU succ) n (ll U l2)}
Hence N(x u y) = {LO U LI}A{LO, same}

= irr{LO,samen (LO U LI)}
= {LO,samen (LO U LI)}

The result is the set of maximal elementary subsets of the subspace
immediate family.

Example 2.

Let N(x) = {(precU same) n LO,samen (LO U ll)} and N(y) = {succn LO}
Then ,-..; N(x U y) = {suec, II U l2}/\ {pree U succ, l2}A {pree U same, Ll U L2}

= irr{L2, (prec U same) n l2, (pree U suee) n (ll U l2),
prec n (ll U l2), suee n L2, suec n (ll U L2)}

= {l2, (prec U suee) n (ll U l2)}
Hence N(x u y) = {LO U LI}A {same, lO}

= irr{lO,samen (lO U ll)}
= {LO, same n (LO U ll)}

Again the result is the normal form of subspace immediate family.

Figure 7: Boolean Operations on Normal Forms
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4. The Lexicon

Given a set of lexical items, such as the words denoting c-kinship, distinguishing lex­

ical features can be determined by linguistic analysis. These lexical features can then

be organized into sets whose denotations partition the universe modeling the lexical

items. It is possible to select a subset of these partitions that has the property of inde­

pendence. Such a set is a basis. It structures the universe to yield a multidimensional

space. Subspaces of the multidimensional space are uniquely represented by normal

forms, for which a Boolean algebra can be defined. The multidimensional space so

formed will be called a semantic space. A general algorithm for basis construction is

presented in the Appendix.

The structure of a semantic space can be encoded using the index sets {Jili E I}.

For example, the standard form (or abbreviated standard form) for an elementary

subset x can be encoded as a sequence of binary strings, the i-th string representing

Jix. The normal form for an arbitrary subspace y can be encoded as the sequence of

codes for its maximal elementary subsets in lexical order.

Linguistic analysis provides definitions of the lexical items in terms of (specifically,

as Boolean functions of) the lexical features. These definitions can be used to define

a mapping from lexical items to normal forms (or codes for the normal forms) of the

semantic space. This mapping will be called a lexicon for the vocabulary of lexical

items.

Let the mapping be denoted v. Then the following definitions can be made. Relative

to the basis that defines the semantic space, lexical items x and yare synonymous

if and only if v(x) = v(y); x and yare contradictory if and only if v(x)l\v(y) = 0;

x entails y if and only if v(x) ::s; v(y), that is, if and only if v(x)l\v(y) = v(x) or

equivalently, v(x)1\ 'V v(y) = o.

v can be extended to Boolean expressions over lexical items (of the same type) by

20



defining vex or y) = v(x)Vv(y), vex and y) = v(x)Av(y), and v(not x) =rv vex).

Definition of a lexicon for c-kinship is given in Figure 8.

It is to be noted that the basis selected for the semantic space will determine the

precision of the meanings associated with the lexical items. Therefore, meaning

equivalence and meaning inclusion are understood relative the basis. Equivalence

or inclusion relative to a given basis may not hold relative to a refinement of that

basis. Thus a notion of learning or development is inherent in this theory.

While this approach to lexical semantics seems to have a desirable simplicity, its

expressiveness is limited relative to that of first-order logic. For example, logic permits

assertions such as parent(x,y) +-+' child(y,x) and uncle(x,y) --+ 3z[brother(x,z)]. A

semantic space cannot explicitly represent such knowledge. However, as the next

definition of c-kinship demonstrates, it is sometimes possible to implicitly represent

such. knowledge.

Consider a set S ~ H x H comprising three generations of blood kin. For i = 1,2,3,

define:

Li = {(x, y) E 8)the join of x and y in the family tree is a distance i from x}

Ri = {(x, Y) E S Ithe join of x and y in the family tree is a distance i from y}

It will be assumed that S is partitioned by PI = {LO t Ll t L2}, P2 = {RO,Rl,R3} and

P3 = {male,female}. As a consequence, B = {PI, P2 , P3 } is a basis of S. The semantic

space is shown in Figure 9.

This basis defines a space that is better than the first one in several ways. First, the

meanings are grouped more simply: cousin occupies just two atoms; immediate family

is now an elementary subset, viz., (LO U Ll) n (RO URI). Second, Li n Rj is converse

to Lj n Ri .. For example, Ll n R2 is the extension of uncle or aunt. The converse

c-kinship relation is nephew or niece which has the extension L2n Rl. Thus knowl-
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edge about converse c-kinship relations is implicit in this semantic space. Third,

Li n Rj where i =f 0 =f j implies the existence of a sibling relation.

The basis defining this space and the underlying linguistic analysis seem to more fully

represent the meanings of c-kinship relations. It is likely that a similar circumstance

will obtain in most semantic domains. Therefore, the selection of lexical features

underlying construction of a lexicon would appear to require experience and good

judgment.
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B = {Pt ,P2 ,P3 }

P t = {pree, same, suee}
P2 = {LO, Ll, L2}
P3 = {male, female}

v: father 1--+ prec n LO n male
mother J-+ pree n LO n female
uncle 1--+ prec n Ll n male
aunt 1--+ pree n Ll n female
brother 1--+ same n Ll n male
sister 1--+ same n Ll n female
son 1--+ suee n LO n male
daughter 1--+ suee n LO n female
nephew 1--+ suee n Ll n male
niece t--+ suee n Ll n female
cousin 1--+ L2
self 1--+ same n LO
parent t--+ pree n LO
child t--+ suee n LO
sibling ~ same n Ll
immediate family t--+ LO U same n Ll

Figure 8: Lexicon for C-Kinship
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male female

LO

Ll

L2

self father gfather self mother gmother

son brother uncle daughter sister aunt

grandson nephew cousin gdaughter niece cousin

RO Rl R2 RO Rl R2

Figure 9: A Second Basis for C-Kinship
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5. Extended Bases

Each of the bases considered thus far consists of a single set of partitions. In the

general case, a basis consists of several sets of partitions. The former are called

simple, the latter extended bases. In this section, the way in which extended bases

arise and their structure will be shown with the help of an extension of consanguineal

kinship to include partial consanguineal relations.

The bases considered thus far cannot represent half blood relationships, for example,

half-brother. The extension of c-kinship to include new lexical items denoting half

blood relationships will be referred to as extended consanguineal kinship or ec-kinship.

New features must be defined sufficient to differentiate between half and full blood

relationships. This will be accomplished by specifying not only the length of the path

from individual x to a nearest common ancestor of individuals x and y, but also the

kinds of ancestors on that path. For example,

LMP = {(x, y) E Sithe path from x to a nearest common ancestor of x and y contains

x, the mother of x and the maternal grandfather of x; and there is no other path of

length 2}

LMB = {(x, Y) E S Ithe paths from x to nearest common ancestors of x and y contains

x, the mother of x and both maternal grandparents of x}

LP = {(x,y) E Sithe path from x to a nearest common ancestor of x and y contains

x and the father of x; and there is no other path of length I}

L = {(x,y) E Sithejoin of x and y is x}

These features form a partition Pt = {L,LM,LP,LB,LMM,LMP,LMB,LPM,LPP,LPB}.

A partition P2 = {R,RM,RP,RB,RMM,RMP,RMB,RPM,RPP,RPB} is defined analo­

gously for the right member y. A third partition is P3 = {male,female}. The subdi­

vision of S produced by these partitions is shown in Figure 10.

It is apparent from the figure that these partitions are not independent since many
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L

LM

LP

LB

LMM

LMP

LMB

LPM

LPP

LPB

male

self 0 father 0 0 matern 0 0 patern 0
gfather gfather

son half 0 0 half 0 0 half 0 0
brother uncle uncle

son 0 half 0 0 half 0 0 half 0
brother uncle uncle

0 0 0 brother 0 0 uncle 0 0 uncle

gson half 0 0 half 0 0 half 0 0
oephew cousin cousin

gson 0 half 0 0 half 0 0 half 0
nephew cousin cousin

0 0 0 nephew 0 0 cousin 0 0 cousin

gson half 0 0 half 0 0 half 0 0
nephew cousin cousin

gson 0 half 0 0 half 0 0 half 0
nephew cousin cousin

0 0 0 nephew 0 0 cousin 0 0 cousin

female

R RM RP RB RMM RMP RMB RPM RPP RPB

Figure 10: Partitions of the Ec-Kinship Universe
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of the cells are empty. Therefore they do not form a basis of S. PI and P3 are

independent, but neither Pt and P2 nor Pt, P2 and P3 are. The result is that distinct

standard forms do not represent distinct elementary subsets. For example, father =
Ln RP n male = (L U LM) n RP n male = (L U LM) n (RP U RB) n male = ·· ..

To remedy this, a basis is formed from Pt and P3. B = {PI, P3} will be called the

first level basis. Next each subdivision defined by B is examined. These subdivisions

are called the atoms defined by B. Consider the atom a7 = LB n male. Blocks of P2

that have nonempty intersection with this atom are RB, RMB and RPB. Moreover,

{RB,RMB,RPB} partitions a1. B r = {{RB,RMB,RPB}} will be called a second level

basis. Each of the atoms defined by B may have a basis. In the present example

the second level bases are denoted B1 , B2 , ••• ,B20• There are only two levels. The

subdivision produced by this system of bases is shown in Figure 11.

The collection {B, B 1 , B 2 , ••• , B 20 } will be referred to as an extended basis of S. An

extended basis can be indexed by a tree domain. That is, the bases may be viewed

as labels on the nodes of a tree whose root has the first level basis as its label.

Such an embedding of semantic spaces is typical. A simple example is the following.

The domain of physical entities might be partitioned by PI = {a nimaI,vegeta ble, minera I}

and again by P2 = {count,mass}. Assuming that every combination is possible,

{PI, P2 } is a first level basis of the domain, defining six atoms: animal n count,

animal n mass, ..., mineral n mass. Each atom is itself a domain and can be par­

titioned by attributes appropriate to it. Hence each atom has a (in general distinct)

basis. This subdivision can continue through a number of levels. Even the simple

taxonomy of Schubert's Steamroller [10] contains at least two levels.

While the extended basis shown in Figure 11 does indeed yield a multidimensional

space, it does not structure the subspaces neatly. For example,

half-cousin = [(LMM n (maleUfemale)) n (RMM U RPM)] U [(LMP n (maleUfemale)) n
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male female

L

LM

LP

LB

LMM

LMP

LMB

LPM

LPP

LPB

R RP RMP RPP R RM RMM RPM

self father matern patern self mother matern patern
gfather gfather smother gmother

R RM RMM RPM R RM RMM RPM

son half half half daughter half half half
brother uncle uncle sister aunt aunt

R RP RMP RPP R RP RMP RPP

son half half half ~aughter half half half
brother uncle uncle sister aunt aunt

RB RMB RPB RB RMB RPB

brother uncle uncle sister aunt aunt

R RM RMM RPM R RM RMM RPM

gson half half half gdau'ter half half half
nephew cousin cousin niece cousin cousin

R RP RMP RPP R RP RMP RPP

gson half half half gdau'ter half half half
nephew cousin cousin niece cousin cousin

RB RMB RPB RB RMB RPB

nephew cousin cousin niece cousin cousin

R RM RMM RPM R RM RMM RPM

gson half half half gdau'ter half half half
nephew cousin cousin niece cousin cousin

R RP RMP RPP R RP RMP RPP

gson half half half gdau'ter half half half
nephew cousin cousin niece cousin cousin

RB RMB RPB RB RMB RPB

nephew cousin cousin niece cousin cousin

Figure 11: Ec-Kinship as a Multidimensional Space
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(RMP URPP)] U [(LPM n (maleUfemale)) n (RMM URPM)] U [(LPpn (maleUfemale)) n

(RMP U RPP)].

A similar deficiency was found in the first basis for c-kinship:

{{prec,same,succ}, {LO,Ll,L2}, {male,female}}.

The alternative basis

{{LO,Ll,L2}, {RO,Rl,R2}, {male,female}}

yielded a neater structure. This latter basis can be taken as a first level basis and

refined by second level bases to distinguish between half and full blood relationships.

The resulting extended basis for ec-kinship is:

B = {{LO,Ll,L2}, {RO,Rl,R2}, {male,female}}

B3 = {{RMP,RPP}}

B s = {{LM,LP,LB}}

B6 = {{LM,LP,LB}, {RMX,RPX}}

Bs = {{LMM,LMP,LMB,LPM,LPP,LPB}}

B g = {{LMM,LMP,LMB,LPM,LPP,LPB}, {RMX,RPX}}

where RMX = RM M U RM P U RM B and similarly for RPX. The modified multidimen­

sional space is shown in Figure 12.

Relative to this basis,

half-cousin = (L2 n R2 n (male U female)) n (LMM U LMP U lPM U LPP).

It should be pointed out that all the results stated earlier for a simple basis hold as

well for an extended basis. Each subspace has a normal form. The Boolean operations

(suitably extended to observe the embedded structure of the multidimensional space)

and the set of normal forms yield a Boolean algebra. See the Appendix for definitions

and proofs.
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LO

Ll

L2

male

RMP RPP

self father matern patern
gfather gfather

RMX RPX

LM half fLM half half
brother uncle uncle

son LP half LP half half
brother uncle uncle

LB brother LB uncle uncle

LMM half LMM R~~f Rh~f
neDhew cousin cousin

LMP
half lMP half half

neDhew cousin cousin

LMB nephew 1MB cousin cousin
gson

halfLPM LPM half half
neohew cousin cousin

LPP half LPP half half
L

cousin cousin

LPB nephew LPB cousin cousin

female

RO Rl R2

Figure 12: Another Basis for Ec-Kinship
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6. Discussion

The theory developed in the preceding sections can be adapted readily to applica­

tions other than lexical semantics. In general, this simply involves restriction of the

theory. For example, sorts are interpreted as a subsets of the model universe. They

therefore correspond to the nominal domains used to illustrate lexical semantics. In

the simplest systems sorts are constrained to form a hierarchy [11]. In more complex

systems sorts form partially ordered sets or complete lattices [2]. The subsort relation

corresponds to meaning inclusion. The most general common subsort or meet of two

sorts corresponds to the conjunction of lexical items. Construction of a sort semantic

space and a sort lexicon proceeds exactly as in the case of lexical semantics.

The advantage enjoyed by many-sorted logic has been demonstrated with problems

such as "Schubert's Steamroller" [10} which, although challenging to single-sorted

theorem provers, are nonetheless relatively small. With small problems, the sort

computations are not burdensome no matter how performed. Typically it is adequate

to make the taxonomy part of the problem statement. Consequently the usefulness

of the approach presented here is not apparent. However with much larger real-world

problems this solution is no longer feasible. Occurring as part of the "inner loop,"

sort computations will constitute a significant computational burden.

What is needed is an encapsulated subsystem or "black box" dedicated to reasoning

about the particular taxonomy. Subsystems of this kind have been suggested by

Stickel under the heading of theory resolution [9]. The design of such subsystems is

precisely the concern of this paper.

An important consideration is the complexity of the structures and operations in­

volved. It follows immediately from Appendix A3 that construction of a basis for a

semantic domain is NP-hard since the Boolean Satisfiability Problem (SAT) reduces to

the problem of basis construction. In this regard, semantic spaces as representations
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for taxonomies fare no worse than logic or semantic nets. By the same reasoning, com­

putation of the normal form of an arbitrary expression is also NP-hard. Nonetheless,

some useful computations are of polynomial complexity. In particular, determination

of subsumption (subsort, meaning inclusion) involves checking that each component

of the code for the subsumed taxon is a subset of the corresponding component of

the code for the subsuming taxon. Therefore this computation is of order n, where

n is the dimension of the semantic space. Similarly, computation of the code for the

meet of two taxa involves componentwise intersection of their codes, also of order n.

The conclusion with regard to basis construction can be ameliorated by two further

observations. First, exponentially complex computations are infeasible only if the

size of the input is large. Indeed an exponential computation may be more efficient

than a polynomial computation on small inputs. This is the case with many human

capabilities. Perhaps because many applications of taxonomic reasoning are related to

human activities, the individual bases and associated semantic subspaces that arise in

these applications tend to be small. Second, the construction of a basis is performed

only once.

The situation is similar to compiling a program written in a higher level language.

Compilation is in general more complex than interpretive execution of the program.

But execution of the compiled image is much less complex than the interpretive

execution. Therefore a somewhat higher one-time cost is accepted in exchange for a

significantly lower recurring cost.

Another important consideration is parallelization of the operations. This consider­

ation differentiates semantic spaces from most other representations. The indepen­

dence of the dimensions of a semantic space makes the operations inherently parallel.

As a result, this approach to taxonomic reasoning is well matched to the resources of

advanced computer systems. The decomposition of the operations resulting from the

independence property also closely relates semantic spaces to connectionist theory
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and design.
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Appendix

This appendix formalizes the definitions given in the body of the paper, and gives

proofs for the claims made there. The first section deals with the semantic space

as a model for lexical domains. The second section defines the normal form of sub­

spaces and develops a Boolean algebra of normal forms. The third section shows how

extended bases can be constructed.

AI. Semantic Space

Let S be a nonempty set and Su be the power set of S. Su is viewed as the set of

properties of the members of S.

DEFINITION 1 Let {pilj E J} be a subset of Su and P be a function from 2J into Su

such that for any JI ~ J, P(JI) := U{pilj E J/}.5 If j E J, P({j}) is written P(j).

P is called a partition of S if it satisfies:

(i) P(J) = S

(ii) P(JI) = 0 iff JI = 0

(iii) VJI, JII E 2J : P(JI) n P(JII) = P(JI n JII)

This definition is equivalent to the one used in the body of the paper. It is introduced

here because it results in more succinct expressions. However, where convenient the

usual notation P = {pi Ij E J} will also be used.

DEFINITION 2 Let B = {Pili E IB} be a set of partitions of S. A subset x of S is

called an elementary subset of S defined by B if it can be written x = niEIBPi(Jf)

where IE ~ IB is finite.

5The notation "X := Y" means that X is defined to be equal to Y; "X :¢} Y" means that X is
defined to be logically equivalent to Y; etc.
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called the standard form for x relative to B. The former form is called the abbreviated

standard form for x relative to B. The conjunct Pi(JiX) is called the ith component

of x. The set of all elementary subsets defined by B is denoted EsB .

LEMMA 3 Let B = {Pili E IB} be a set of partitions of S and x = niEIB Pi(JiX),

Y = niEIB Pi(Jr) be elementary subsets of S defined by B. Then xny is an elementary

subset and x n y = niEIB Pi (Jf n J1).

proof: xny = (niEIB Pi(Jt))n (niEIB Pi(JY)) = niEIB(Pi(Jl:)nPi(JiY)) = niEIB Pi (Jix

nJl) by Definition 1. 0

Thus intersection of elementary subsets is computed componentwise. Since ESB is

closed under set intersection, it forms a meet semilattice, ordered by set inclusion,

denoted ESB. It has the zero element 0 and the unit element S, denoted 0 and 1

respectively.

Let SUB be the closure of ESB under finite set union. Then SUB forms a lattice, de­

noted SUB. Since it is a sublattice of the subset lattice formed by Su, it is distributive.

ESB is embedded as a meet semilattice in SUB.

DEFINITION 4 Let B = {Pili E IB } be a set of partitions of S. B is called a basis of

S ifVx = niEIBPi(Jf) E ESB : x = 0 iff3i E IB: Jf = 0.

LEMMA 5 Let B be a basis of S and x = niEIB Pi ( Jf) be a nonzero elementary subset.

Let q E 1B and r E Jq. Then Pq(r) n x =I 0 iffr E J:.

proof: Since B is a basis, x =I 0 iff Vi E IB Jf =I 0. Then Pq(r) n x f:. 0 iff

{r} n J: =I 0, ie., iff r E J:. 0
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THEOREM 6 Let B be a basis of S and x = niEIB Pi ( JiX) be a nonzero elementary

subset. Then the standard form for x relative to B is unique. It follows that the

abbreviated standard form for x is unique as well.

proof: Suppose that niEIB P(Jl) and niEIB P(Jl) are standard forms for x. Let

q E IB and r E (J; EB J;). By Lemma 5, r E J: iff Pq ( r) n x =f 0 iff r E J;. Therefore

J; EB J; = 0 and the two standard forms are identical. 0

LEMMA 7 Let B be a basis of S and x = nieIB Pi(Jf), y = nieIB Pi(Jr) be nonzero

elementary subsets of S defined by B. Then x ~ y iffVi E IB : Jf ~ Ji
Y

• Equivalently,

x C y ilT IY C IX 1\ Vi E jY : J~ C J,!,.- '.UB-B B 1-1

proof: x ~ y iff x n y = x. x n y = niEIB Pi(Jix n Jr) by Lemma 3. Since the

standard form is unique (Theorem 6), Vi E IB : Jix n Jr = Jix. I.e., Jix ~ Jf. 0

EXAMPLE. Let S = N, the non-negative integers. Let PI = {{iii = 0, mod4} ,

{iii = 1,mod4}, {iii = 2,mod4}, {iii = 3,mod4}} and P2 = {{ilis-prime(i)}, {il....,is­

prime(i)}}. Then PI and P2 are partitions of S. But note that pl n p~ = 0 since the

conjunction i = 0, mod4 1\ is-prime( i) is logically impossible. Thus, while PI and P2

are partitions of S, {PI, P2} is not a basis of S.

EXAMPLE. Let S = N+, the positive integers, and let 1ri denote the ith prime. Let

B = {Pili E IE}, where IB = N+. Let Pi = {Pili E Ji } where Ji = N. Let Pi = {n E

Sfdivides(1rl,n) 1\ -,divides(7rl+l ,n)} for j =f 0, and p? = {n E SI-,divides(1ri,n)}~

Then B is a basis of S.

If x and yare elements of Esa, y covers x, written x -< y, iff \/z E ESB : x < z ~ y

implies z = y~ x is an atom iff 0 -< x.

It is not necessary that atoms exist in ESB. In the second example above, ESB has

no atoms.
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Let P be a partition of Y ~ S and let X ~ Y. Define the restriction of P to X:

Pix (Jl) := P(Jl) n X. Note that Pix may fail to be a partition of X because

it does not satisfy the conditions of Definition 1. Let B = {Pili E IB } be a basis of

Y. Define the restriction of B to X: B ix:= {Pi ix Ii E IB }. B ix may fail to be

a basis of X because some Pi i X is not a partition of X or because the condition of

Definition 4 is not satisfied.

Let ESB be the set of elementary subsets defined by basis B and at, a2 be atoms of

ESB. Let B' be a basis of X ~ S such that B' n B = 0. Suppose that B' i at is a

basis of at but B' i a2 is not a basis of a2. It may be that B' defines properties that

are relevant to members of at but inconsistent with members of a2. For example,

properties peculiar to animate entities would be inconsistent if applied to inanimate

entities.

Let B' i at = Bt . Bt determines a semilattice of elementary subsets, ESB!, with unit

element at. Band B' together determine a combined semilattice EsB , where ESB is

embedded in the interval [0,1] and ESB! is embedded in the interval [0, al] such that

the covering relation is preserved for all nonzero elements.

EXAMPLE. Let B = {Pt ,P2 }, Pt = {NT,T}, P2 = {NP,P}. Suppose that B' =
{Qt,Q2}, where Ql = {SL,PH} and Q2 = {NTT,TT}, and that B'ia3 and B'ta4

are bases of a3 and a4, respectively. Suppose further that B' i at and B' i a2 are not

bases. The resulting partitions of S form three bases: one first level basis and two

second level bases. They can be diagrammed as shown in Figure 13.6

This situation is generalized as follows. Let T be a tree indexing defined in the usual

way: (i) T C N~, where N+ denotes the positive integers and * denotes the Kleene

closure; (ii) 0:, {3 E N+ and a.(3 E T implies a E T; (iii) a E Nt., b E N+ and a.b E T

6This example is part of an example in [6] dealing with a taxonomy of rigid fasteners. The
distinguishing properties are: not threaded (NT), threaded (T), not pointed (NP), pointed (P), slot
drive (8L), Phillips drive (PH), not threaded to top (NTT) and threaded to top (TT).
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implies \lc E N+: c < b => a.c E T.

Let B = {Bala E T} be a system of bases such that B = Bf. is a basis of S (€ denotes

the empty string) and B a .b is a basis of aa.b, an atom of ESB
Q

• B is called an extended

basis of S.

Define ESB := UaETEsBQ. Set intersection is gIven as follows. Let a,!3 E T,

x = niEIB
a

PaAJ:',i) and y = niEIB,B P{3,i(Jli). Then

xny:=

niEIBQ Pa,i( J~,i n J~,i) if a = (3
x if a = (3.b., and y n a{3.b = a{3.b

y if (3 = a.b., and x n aa.b = aa.b° otherwise

Thus ESB forms a meet semilattice, denoted ESG. As before, ESBa is embedded in

[0, aa] such that the covering relation is preserved for all nonzero elements. af. = a is

taken to be 1; thus ESB is embedded in [0,1].

Let SUB be the closure of ES B under finite set union. Then SUB is a distributive

lattice. The (possibly empty) set A of atoms of SUB consists of atoms defined by

bases in B and not further decomposed. That is, an atom aa.b defined by basis

Ba E B is an atom of SUB just in case a is maximal in T (i.e., a.l ¢ T).

SUB can be visualized as a space of dimension equal to the cardinality of lB. The Pi(j)

are coordinate values that define hyperplanes in this space. Each Pi E B is regarded as

a "dimension of meaning". The Pi(j) are mutually antonymous "primitive meanings."

Elementary subsets are the elementary concepts, defined by these primitive meanings,

from which arbitrarily complex (finite) concepts can be constructed.
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A2. Normal Form

In this section a unique representation, or normal form, for elements of SUB is defined.

Then an algebra of normal forms is defined.

An elementary subset x is maximal in y E SUB iff x ~ y and for any elementary

subset z, x ~ z ~ y implies z = x. The properties of maximal elementary subsets

will be developed in a lattice (the ideal lattice) in which the elementary subsets are

distinguished elements.

DEFINITION 8 Let X ~ EsB • The order ideal generated by X is defined I(X) :=

{y E ESB - {O}ly ~ x for some x E X}. If X = {x} then I(X) is principal and is

written I(x). If X is finite then I(X) is finitely generated.

Since unions and intersections of order ideals are again order ideals, the set of all

order ideals ordered by set inclusion is a lattice. This lattice is called the ideal lattice

of Es8 . It contains the zero element 0 and unit element ES B - {OJ. The finitely

generated ideals of ESB form a sublattice, denoted H B , of the ideal lattice. Since H B

is a sublattice of 2EsB -{O}, it is a distributive lattice. ESB is embedded as a meet

semilattice in H 8 by the mapping x r-+ I(x).

The next three paragraphs review relevant facts from lattice theory about finite de­

composition [1, 3].

Let L he a lattice. An element x E L is (join) irreducible iffVy, z E L: x = yUz implies

either x = y or x = z. An expression x = Xl U·· ·UXk, where Xl, •.• , Xk are irreducible,

is a (finite) decomposition of x. If no Xk can be eliminated, the decomposition is

irredundant. If x has a decomposition, it has an irredundant decomposition, formed

by deleting superfluous elements.

Now let L be a distributive lattice. If x E L is irreducible and x :::; Xl U · · · U Xk,
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where Xl, ••• ,Xk are arbitrary elements, then x ~ X q for some q, 1 < q ::; k. Since L

is distributive, x = x n (Xl U · · · U Xk) = x n Xl U · · · U x n Xk. Since x is irreducible,

3q : x = x n X q• Thus x S X q •

If x E L has an irredundant decomposition, it is unique. Suppose x has two distinct

irredundant decompositions x = Xl U · · · U Xk = Yl U · · · U yz. Let x q ¢ {Yl,. · ., yz}.

Then x q ~ Yl U · · · u yz implying 3r : x q S Yr· Similarly, Yr S Xl U · · · U Xk which

implies 3t : Yr ~ Xt. Thus x q ~ Yr ::; Xt yielding a contradiction since t = q implies

that x q = Yr and t =I q implies that x q is redundant.

Since H B and SUB are distributive lattices, all the above results apply.

The irreducible elements of H B are precisely the principal ideals, i.e., the images

of elementary subsets. To see this, consider nonzero ideal I(X) E HB where X ~

ESB - {O}. Then z -< I(X) iff z = I(X) - {x} for x E X. Therefore I(X) is

irreducible iff I(X) = I(x) for x E ESB - {OJ, i.e., iff I(X) is principal.

Every element x of H B is a finitely generated ideal. Let x = I({xl, ... ,Xk}). Then

x = I(xl) u ···U I(xk) is a decomposition of x. By the above results, x has a unique

irredundant decomposition. In the sequel it will be assumed that the generators given

for an element of H B are irredundant and therefore unique.

DEFINITION 9 Let x E H B • The pseudocomplement of x is that element x* E H B

such that Vy E H B : y n x = 0 iff y ~ x*. Thus, if it exists, x* := sup{y E HBlx n y =

OJ.

Because of the structure of H B , the pseudocomplement relative to an interval is useful.

DEFINITION 10 Let B be a system of bases with domain T. Let a = f3.b E T, acx be

an atom defined by basis B(3 and x E [0, aa]. Then the pseudocomplement of x in

[0, aa] is defined x~ := sup{y E [0, aa] Ix n Y = O}.
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LEMMA 11 Let a = b1 .b2•••• .bm . Then x* = Uk=l(abl .....bk)bl .....bk_l u x~. (Note that

bo is interpreted as the empty string, fo.)

proof: Let a = f3.b. Then it follows from sup{y E [O,a,a]lx n y = O} = sup{y E

[O,aa]!x n y = O}U sup{y E [O,ap]laa n y = O} that xiJ = (aa)~ U x~. The lemma

follows by induction. 0

It will now be shown that H B is pseudocomplemented.

LEMMA 12 Every irreducible element of H B has a pseudocomplement.

proof: First consider the pseudocomplement in an interval with a single basis B.

Let I(x) be the principal ideal generated by x = niEIsP(Jf) E EsB • Define Zi :=

P(Ji - JIC ) E EsB • Then by Lemma 3, x n Zi = 0 for all i E lB. Moreover, if

y E ESB such that x n y = 0 then ~i E IE : Y ~ Zi • Since ESB is embedded in HB

as a meet semilattice, I(x) n I(zi) = 0 for all i E IB also. By distributivity of HB,

I(x) n [UiEIs I(zi)] = o.

Let I( {Yt, ... ,yz}) E HB be an arbitrary nonzero element such that x n y = O. By

distributivity, I(x) n I(Yr) = 0 for alII < r ~ 1, and hence x n Yr = 0 in ESB.

Then 3i E I B:Yr ~ Zi. ThereforeVr: I(Yr) ~ UiEIB1(Zi), and so I({Yt, ... ,yz}) ~

UiEIBI(zi). Consequently UiEIBI(zi) is the pseudocomplement of I(x).

The general case is similar. Let I(x) be the principal ideal generated by niEIB
a

Pa,i(J~,i)

E EsB, where a = bt .b2•••• .bm • Then by Lemma 11, I(x)* = Uk=t I(abl .....bk)bl .....bk_l U

I(x)~ = Uk=l[UiEIBbv ..bk_l I(Pbl .....bk_l,i(Jbl .....bk_l,i-J~~~~::b·:~1>i))] u [UiEIBa I(Pcx,j(Jcx,i­

J~,i))]. 0

THEOREM 13 H B is a pseudocomplemented lattice.
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proof: Consider an arbitrary x E HB. Let x = Xl U · · · U Xk be its decomposition.

(i) x n (xi n ··· n xk) = (Xl U · · · U Xk) n (xi n ···n xk) = (Xl n xi n ···n xk) U · · · U

(Xk n xi n ··· n xk) = 0

(ii) Let y E H B such that x n y = o. Then Vq : xq n y = 0 which implies Vq : y ~ x;,

ie., y ~ (xi n ··· n x;;). Thus x* = xi n ··· n xi;. 0

EXAMPLE. Let B = {B, B I , B2 }, Bet = {PO't l ' Pett2 } for a E {f, 1, 2}, PO'ti = {P~ti,P~,i}

for i E {1,2} and x = P~ n P~ n P~,l U p~ n p~ n P~,l (see Figure 14).

Then x* = (p~ n p~ n pi,l upi U P~J n (p~ n p~ n P~,l Upi u p~]

= (Pt n p~ n P~,l] U (P~] U (P~ n p~] U (Pt n p~ n P~,l] U (P~ n p~].

LEMMA 14 Every elementary subset of SUB has a complement.

proof: The proof follows that of Lemma 12, with the observation that in SUB, with

x and Zi as defined there, x U UiEIBZi = 1. 0

THEOREM 15 SUB is a Boolean lattice.

proof: A proof similar to that of Theorem 13, using Lemma 14, shows that every

element of SUB has a complement. Since SUB is distributive, complements are unique.

o

DEFINITION 16 u : H B -+ H B is defined a(x) := x:= x**.

That a is a closure operation on H B can be seen as follows. By Definition 9, (i)

x ~ x** and (ii) x ~ y ~ y* ~ x*. From (i), x* ~ x***; from (i) and (ii), x*** ~ x*;

hence x* = x***. Thus x ~ x, x ~ y ~ x ~ y and x = x.

The quotient lattice formed by the closed elements of H s with set inclusion as the

order is denoted HB/u. The meet is x 1\ y = x n y. The join is x V y = (x* n y*)*.
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It will now be shown that H B / (J' ~ SUB.

LEMMA 17 </> : HB ~ SUB defined ¢(I(X)) = UX is a homomorphism of HB onto

SUB. Moreover} ¢(I(X)) = 0 iff I(X) = 0 and ¢(I(X)*) = </>(I(X))'.

proof: (i) If x E SUB then x = UX, where X ~ ESG is finite. But I(X) E H B and

¢(I(X)) = x. Therefore if> is onto.

(ii) if>(I(X) U I(Y)) = </>(I(X U Y)) = U(X u Y) = Ux uUY = ¢J(I(X)) U </>(I(Y)).

(iii) <j>(I(X) n I(Y)) = ¢;(I(Z)) where Z = irr{x n ylx E X, y E Y} and irr reduces a

set to its irredundant elements. ¢>(I(Z)) = U Z = (UX)n(u Y) = ¢(I(X))n¢>(I(Y)).

(iv) I(X) = 0 implies X = 0 implies UX = 0 implies ¢>(I(X)) = o. On the other

hand, I(X) =1= 0 implies X =1= 0 implies UX =1= 0 implies ¢J(I(X)) # o.
(v) To see that ¢(I(X)*) = ¢>(I(X))', let y E HB such that ¢>(y) = ¢(I(X))'. Then

¢>(I(X) n y) = ¢>(I(X)) n ¢>(y) = o. By (iv), I(X) n y = 0 and therefore y ~ I(X)*,

implying </>(y) ~ ¢(I(X)*). Since </>(I(X)*) n c/>(I(X)) = 0 implies ¢>(I(X)*) ~ ¢(y),

it follows that ¢(I(X)*) = ¢(I(X))'. 0

THEOREM 18 HB/(J' ~ SUB. Moreover, if I(X) E HB/U then X is exactly the set of

elementary subsets maximal in UX E SUB.

proof: Let <Pu denote ¢ restricted to HB/u. cPu is an isomorphism if it is 1:1 and

onto. <Pu is onto since ¢ is, and for any I(X) E H B, ¢>(I(X)**) = </>(I(X))" =
¢>(I(X)). To see that </>(7 is 1:1, suppose 4>(I(X)**) = ¢>(I(Y)**). By Lemma 17,

¢>(I(X)** n I(X)*) = 0 implies ¢>(I(Y)** n I(X)*) = 0 implies I(Y)** n I(X)* = 0

implies I(Y)** ~ I(X)**. A symmetrical argument yields I(X)** ~ I(Y)**. Then

I(X)** = I(Y)**. Thus HB/u ~ SUB.

Now let x = UX E SUB, and I(Z) = I(X)** E HB/(J'. Suppose y E ESB such

that y ~ x. Then y n x' = 0 and therefore ¢>(I(y) n I(X)*) = o. This implies that
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I(y) n I(X)* = 0 and therefore I(y) ~ I(X)**. But then y E I(X)** = I(Z) and

hence 3z E Z : y ~ z. Thus the elements of Z are exactly the maximal elementary

subsets of UZ E SUB. 0

Therefore the set of maximal elementary subsets of any subspace of SUB is exactly

the unique set of irredundant generators of the corresponding closed order ideal of

H B •

EXAMPLE. Let B = {Pili = 1,2}, Pi = {P1lj = 1,2, 3}, x = [Pi n (p~ u p~)] U [(pi U

pi) n p~] U [P~ n (p~ u p~)], y = [P~] U [Pr n (p~ U p~)]. Then x n y = (pi U pi) n p~ and

xU y = [PiJ U [(p~ U pi) n (p~ U p~)] U [P~]. The elementary subsets forming each union

are maximal. Therefore the ideals generated by the elementary subsets in the unions

for x and yare in HB/U. Combining these ideals under the operations 1\ and V, one

can see that the results are the ideals generated by the elementary subsets that are

maximal in x n y and x U y, respectively.

DEFINITION 19 Let x = UX E SUB. Let I(X) = I(xt)U· · ·UI(xk) be the irredundant

decomposition of I(X) E H B into irreducible elements. Then the normal form of x is

defined N(x) := {Xl, ... , Xk}.

Operations on normal forms are defined to parallel operations of H B / u.

DEFINITION 20 Let x, y E SUB with normal forms N(x) = {Xt, ... , Xk} and N(y) =

{Yt, ... ,Yl}. Then N(x)AN(y) := irr{xq n Yrl1 ~ q < k, 1 ~ r ~ I}.

Note that Lemma 7 asserts that the operation irr involves only componentwise

Boolean operations on elementary subsets.

DEFINITION 21 Let x E SUB. The complement of N(x) is defined as follows.

(i) If x = niEIB
a

Pa,i(J:,i) E ES8J where a: = b1.b2.··• .bmJ so that N(x) = {x} then
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'" N(x) := Uk=l[UiEIBbV ..bk_l I(Pbl .....bk_lAJbl .....bk_17i-J:l~~:::b·:~17J)] u [UiEIBa I(PcxAJcx,i

-J~,i))] ·

(ii) [Ix ¢ ESB andN(x) = {Xl, ... ,Xk}, then ''-IN(x):= rvN(Xl)/\···/\ rvN(Xk).

DEFINITION 22 Let x,y E SUB with normalformsN(x) = {Xt, ... ,Xk} andN(y) =
{Yt, ... , yz}. Then N(x) vN(y) := rv (rv N(x)A rv N(y)).

Thus the algebra with universe equal to the set of normal forms of elements of SUB

and signature {V, /\, r'V, 0, I} is a Boolean algebra, the algebra of normal forms.
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A3. Basis Construction

The objective of this section is to show how algorithms for basis construction can be

defined. It is assumed that an appropriate analysis has yielded a set of diagnostic

features, A = {d1 , d2 , • •• ,dn }, for the population of interest, and a set of Boolean

formulas, r, relating these features.

First some notation is defined. Let A = ~U {"-I did E ~}, the set of literals. Let F be

the conjunctive normal form of I\r.7 Then F = I\l~i~m Vl'5.j~li bij where each bii E A.

Hence F = 1\1$i$m "-I 1\1 '5.i '5. Ii "-I bij = Al'5. i '5.m "-I 1\ Bi. Each B i then represents a

constraint on the set of features .6., viz., that 1\ Bi is unsatisfiable.

Let T be the set of nonempty subsets of A. Define T : T --+ T as follows.

1. For each A E T : A ~ T(A)

2. For each constraint Band b E B :rv b E T(B - {b})

Define T* : 1 ---+ 1 recursively as follows.

1. For each A E T : T(A) ~ T*(A)

2. For each B ~ T*(A) : T(B) ~ T*(A)

The significance of T* is that 1\ A ~ AT*(A). Note that if T* is considered a table,

rows such that T*(A) = A are trivial and could be indicated by their absence. More­

over, rows such that for some d E ~, d, "-I d E T*(A) are never accessed and so could

be deleted.

Now given any ordering of Ll, a binary extended basis can be constructed as follows.

It is assumed without loss of generality that none of the features are trivial, i.e., that

no constraint is a singleton.

7For a set X = {Xl, .. . ,Xk}, AX:= Xl/\· - -/\Xk. VX is defined similarly.
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1. The root basis is B = {Po}, where Po = {/\T*({dl}),/\T*({"J dl })}

2. Let aa.j be an arbitrary atom defined by basis BOte Let dk be the first feature not

in aa.j. Then Ba.j = {Pa.j } where Pa.j = {/\ T*(aa.jU{ dk }), {/\ T*(aa.jU{ ""' dk })

In general it is desirable to modify this construction. Usually the application provides

some information about "meaningful" partitions. This information can be added as

a set 3 of assertions of the form X = Xl U·· · (JXk, meaning that {/\ Xl, ... , /\ X k } is

a partition of /\ X. These assertions mandate use of the associated partitions.

Further modification can be based on the observation that if every atom defined by

a basis B cx is partitioned by P, then Bcx may be replaced by Eo U {Pl. Thus the

algorithm can be modified to make each basis of maximum dimension.
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