
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

9-1990

A Colored Petri Net-Based Approach for Automated Deadlock A Colored Petri Net-Based Approach for Automated Deadlock

Detection in Parallel Programs Detection in Parallel Programs

N. Mansouri
Syracuse University, Department of Engineering and Computer Science, namansou@ecs.syr.edu

Amrit L. Goel
Syracuse University, algoel@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Mansouri, N. and Goel, Amrit L., "A Colored Petri Net-Based Approach for Automated Deadlock Detection
in Parallel Programs" (1990). Electrical Engineering and Computer Science - Technical Reports. 88.
https://surface.syr.edu/eecs_techreports/88

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/88?utm_source=surface.syr.edu%2Feecs_techreports%2F88&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-29

A Colored Petri Net-Based Approach for
Automated Deadlock Detection

in Parallel Programs

Nashat Mansour and Amrit L. Goel

September 1990

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

A COLORED PETRI NET-BASED APPROACH FOR

AUTOMA11m DEADLOCK DETECfION IN PARALLEL PROGRAMS

by

~ashat~ansour*
Amrit L. Goel**

September 1990

* N. Mansour is with the School of Computer and Information Science, Syracuse University,
Syracuse, NY 13244.

** Amrit L. Goo! is with the Department of Electrical and Computer Engineering and the
School of Computer and Infonnation Science, Syracuse University, Sryacuse, NY 13244.

ABSTRACT

A static analysis approach is proposed for automated detection of deadlocks in a

common class of parallel programs, referred to as Single Code Multiple Data (SCMD)

programs. It is based on colored Petri net (CP-net) modeling and reachability analysis, where

colors correspond to parallel processes. An SCMD program is frrst translated. into a CP-net

and a reachability tree is then derived and analyzed for deadlock information. CP-subnets

representing basic programming language constructs are described. These subnets are

employed as building blocks by an algorithm that translates synchronization-related

statements of a process in an SCMD program and connects the resulting subnets. The

connection technique makes use of the characteristics of SCMD programs to produce a

unified and folded CP-net model. These charateristics are also used to introduce a notion,

referred to as poset-eovering, that leads to a reduced reachability tree for the CP-net. The

usual algorithm for generating and analyzing reachability trees of CP-nets is modified by

including poset-covering and excluding notions that are irrelevant to our application. The

compactness of the CP-net model and the reachability tree makes the proposed approach

appealing for practical implementation.

INDEX TERMS:

Colored Petri nets, deadlock detection, parallel programs, static analysis.

I. INTRODUCTION

Testing is a complex and expensive phase in the software development lifecycle. For

parallel software, the complexity of testing is further increased due to concurrency,

communication and synchronization among processes. Research in this field is still in its

infancy, but as parallel computing proliferates, there is an increasing need for testing

approaches that reduce the complexity and effort involved. Specifically, there is a need for

practical approaches, which can be supported by automated tools.

In general, a pamllel program may include synchronization errors as well as the usual

errors found in sequential programs. The most important synchronization error is deadlock.

In this paper and in most of the testing literature, deadlock refers to all kinds of infinite

blockages. Current approaches for testing parallel programs can be divided into two

categories; static and dynamic. In static analysis, the program code is transformed into a

model which is then analyzed for detecting specific error states. Static analysis approaches

have been based on flow-graph [18] or Petri net [16], [6] models of parallel processes. For

both models a state space is derived, which is a concurrency state graph for the fonner and a

reachability graph for the latter, and then searched for deadlock states and other information.

In dynamic analysis, the program is executed with selected input data, and its behavior and

output are examined. Most of the dynamic analysis work has been based on deterministic

execution testing [17] aiming at solving the reproducibility problem.

These approaches result in a large state space whose generation and analysis is

expensive in terms of time and space. Other static analysis approaches have been proposed to

reduce the size of the state space. For example, place and transition invariants of a Petri net

model have been employed to guide a selective generation of reachability graph paths [15].

Task interaction graphs, which divide a process according to interactions not control flow,

have led to a smaller state space [13]. An algorithm has been suggested for analyzing shared

memory multiprocessor programs in which parallelism is a result of executing multiple copies

1

of the same task in some sections of the program [14]. In this approach, a reduction in the

search space is achieved by merging sets of states. In [10] and [11], colored Petri nets (CP

nets) are proposed as models for concurrent algorithms which offer a compact and folded

representation. CP-nets are analyzed for deadlocks by place invariants or reachability

analysis. Invariant analysis is difficult particularly for automation. Reachability analysis in

[11] and [8] has used the notions of marking equivalence and w-covering to produce a

reduced-size reachability tree. The class of concurrent algorithms for which this approach has

been applied are system management algorithms, such as dining philosophers, readers-writers

and database management In the same spirit, CP-nets have been employed for modeling

Lamport's mutual exclusion algorithm and net invariants have been used for the deadlock

analysis.

The approach presented in this paper for automated testing of parallel programs is based

on static analysis. A large class of parallel programs, referred to as single code multiple data

(SCMD) programs, is considered. A program of this class is frrst translated into a folded ep

net model and a reduced-size reachability tree is then derived and employed as an analysis

vehicle for deadlock detection. The class of SCMD parallel programs considered here

consists of Multiple Instruction Multiple Data (MIMD) programs that are copies of a single

program or process, where each process may have its own input data subdomain. The model

of interprocess communication considered here is the message-passing rendezvous type. The

testing approach will be concerned with the synchronization behaviour of these programs,

specifically for deadlock detection. Therefore, only synchronization-related program

statements are considered by the translation algorithm. In the sequel, it is assumed that testing

for sequential errors has been carried out separately by appropriate techniques. The

translation algorithm considers the code of a process and produces a unified and compact CP

net model that represents the synchronization behavior of all processes of an SCMD program.

The algorithm uses CP-subnet models of basic language constructs as templates and devises a

technique for connecting them appropriately. The total CP-net model is executed to produce a

2

reachability tree from which information about deadlocks can be inferred. A notion, referred

to as poset-covering, based on the characteristics of SCMD programs is introduced and used

in the algorithm that generates and analyzes the reachability tree. This results in a reduced

size tree. The modeling and analysis algorithms presented here are suitable for automation.

Our approach shares common objectives with previous work in [11], [8], [1] and [14] in the

sense that it leads to compact models and economic analysis. However, our contributions lie

in considering the rendezvous model of interprocess communication in the SCMD class of

parallel programs, the procedure for translating SCMD programs into a unified and compact

CP-net model, and in the generation and analysis of reduced-size reachability tree based on

poset-covering.

The paper is organized as follows. Section IT provides a description of the SCMD class

of programs and their characteristics. An overview of CP-nets is given in Section ill. In

Section IV, the translation of SCMD programs into CP-nets is described. The reachability

analysis for deadlock detection is given in Section V. illustrative example's are also included

in Sections IV and V. Conclusions are presented in Section VI.

3

II. PROBLEM DESCRIPTION

As mentioned above, in this paper we are concerned with deadlock detection by static

analysis of parallel programs for message-passing MIMD multiprocessors. The class of

programs dealt with, i.e. Single Code Multiple Data (SCMD) programs, refers to programs

that are formed of copies of a single process. For this class of programs, the input data

domain is partitioned into subdomains and the same algorithm is applied to each one. That is,

parallel processes, although asynchronous, behave the same way in terms of computation and

communication on different data. Often, these processes repeat a sequence of computation

and communication/synchronization statements until certain criteria are met. Inter-process

communication is usually performed only with the nearest neighbors and the sequence of

communication/synchronization statements is exactly the same in all processes except in the

boundary processes. Depending upon the algorithm used, the communication structure of

SCMD programs can be represented as either a one-dimensional chain, a two-dimensional

four-nearest-neighbor array or an eight-nearest-neighbor array. This style of programming is

applicable to a broad class of problems such as the solution of discretized partial differential

equations and solution of linear equations by direct or iterative techniques [2], [5].

The linear chain model is used here for illustrating the CP-net approach. This one

dimensional array structure covers a large number of important parallel algorithms, as

emphasized in [12] and [9]. The two-dimensional array model is suggested in Section VI as

an extension within the same approach. For the linear array model, the program can be

viewed as a chain of N processes, each with unique identification number (ill). The sequence

of ill's can be 1, 2, ..., N from left to right, as depicted in Figure 1. Each inner process

communicates and synchronizes with its left and right neighboring processes whose ill's

differ by 1. Boundary processes, with ill's 1 and N, communicate with only one neighbor.

The message-passing mechanism is assumed to be blocking. That is, a send statement

blocks the sending process until a corresponding receive statement is executed in the

receiving process. At this time, the message is passed and the sending and receiving

4

processes continue execution independently. SimilarlYt a receive statement blocks a process

until a corresponding send statement is executed. In such a model t inter-process

communication is associated with synchronization and the entire activity will be henceforth

refened to as rendezvous. For example, Ada [3] and CSP [7] follow this model of

synchronization. It is sometimes referred to as loose synchronization [5].

With the rendezvous model of message-passing, synchronization among processes in

the linear chain occurs in a certain order. For example, if all the replicated processes execute

a send-right statement, the rightmost process in the chain (with ID=N) is the frrst that can

accept the rendezvous and proceed, then the second rightmost process (with ID=N-l), then

process N-2, ..., etc. This natural sequence of rendezvous activity will be captured and

exploited by the CP-net model and the analysis procedure.

5

I-----

1 2 3
.............. -

N

Fig. 1 A linear array model of an SCMD program with N processes.

6

III. OVERVIEW OF COLORED PETRI NETS

A colored Petri net (CP-net) is a 6-tuple CPN =(P, T, C, 1_, 1+, Mo) [11], where P is a

set of places, T is a set of transitions, C is a color function that associates a set of possible

token-colors with each place and a set of possible occurrence-colors with each transition, l_

and 1+ are the negative and positive incidence (linear) functions defmed for all (p, t) £, PxT

such that I_(p, t), I+(p, t) £ [BAG(C(t» --> BAG(C(p»], and Mo is an initial marking function,

defined on P such that Mo(P) £, BAG (C(P».

Graphically, a CP-net is represented as disjoint sets of places and transitions with

directed arcs connecting them. A set of token-colors is associated with each place and a set of

occurrence-eolors is associated with each transition. Arcs are annotated with incidence

functions. A function on an arc from a place to a transition determines what token-colors will

be removed from the input place upon fIring the transition. A function on an arc from a

transition to a place determines what token-colors will be deposited into the output place upon

fIring the transition. An example of a CP-net is shown in Figure 2 [10].

Enabling Condition: Informally, a transition t with occurrence-color Vt £ C(t) is enabled at

marking M if token-colors vp £ C(Pi) are available at this marking in all input places Pi of t

such that INFi(Vt) = Vpi for all Pi, where INFi is the function on the arc from Pi to t.

EiringRulc.: Informally, when a transition t with occurrence-colorvt is enabled, it removes token

colors INFi(VJ from input places Pi and deposits token-colors OUTFi(VJ into output places,

where OUTFi is the function on the arc from t to an output place.

Both, the enabling condition and the firing rule, assume that the color sets attached to

the output places of a transition include the token-color to be deposited in these places after

fIring the transition.

The state of a CP-net is defined by the marking of all places. A marking refers to the

number of tokens and their colors. Figure 3 shows an example of the state of the CP-net of

Figure 2 before and after frring a transition.

7

F

Fig.. 2 Part of a CP-net for the dining philosophers system..

8

(a) Before

F

(b) After

Fig. 3 A CP-net before and after firing a transition

(with occUlTence-color 2) .

9

IV. MODELING SCMD PROGRAMS BY CP-NETS

The strategy for modeling an SCMD program by a CP-net is based upon the translation

of relevant programming language constructs into CP-subnets and the use of appropriate

techniques for connecting the subnets. The CP-subnets are the building blocks of the model.

They correspond to communication/synchronization statements, referred to as rendezvous

statements, and to control statements that may affect the synchronization behavior of the

program. Both types of statements will be referred to as synchronization-related statements.

The techniques used for connecting the subnets and, thus, for composing the program's CP

net model have a significant impact on the adequacy of the model and its subsequent analysis.

These techniques depend upon the type and sequence of the program statements and are

derived from the characteristics of SCMD programs. Since an SCMD program consists of

multiple copies of processes, the modeling procedure considers the code of a typical process

for translation into a CP-net. However, the CP-net model represents the synchronization

behavior of all processes by its folded nature. Each color in the folded model represents a

process and the techniques for connecting rendezvous subnets ensures that folding does not

mask the requirements for synchronization between distinct processes. This results in a

unified and compact representation of SCMD programs. In this section, CP-subnets

corresponding to the synchronization-related statements are described and a technique for

connecting these subnets to represent an SCMD program is discussed. A translation

procedure is then given and illustrated by an example.

A. Model Building Blocks

The language constructs, considered as synchronization-related, are send message or

rendezvous-request, receive message or rendezvous-accept, nondeterministic select (i.e. poll)

and if-then-else. Since in SCMD programs rendezvous between processes occur in a certain

order in the chain, as explained in Section II, the direction in which a rendezvous-request is

made or from which such a request is received needs to be reflected in the model. This is

10

accomplished by including direction information in the CP-subnets of the rendezvous

statements as depicted in Figure 4. The labels of the places reflect the direction of the

rendezvous, that is whether it is made with the left or the right neighboring process in the

chain. The direction also detennines the incidence functions that appear as arc labels. The

rationale and explanation of the CP-subnets in Figure 4 is given below.

The labels of transitions in the CP-subnets correspond to the statements being modeled.

They are Send-Message-Right (SMR) and Receive-Left-AcknowIedgement (RLA) for

sending a message to the right neighboring process, SML and RRA as the reciprocal of SMR

and RLA respectively, Receive-Message-Left (RML) and Send-Left-Acknowledgement

(SLA) for receiving a message from the left process. and RMR and SRA as the reciprocal of

RML and SLA respectively. Places in the CP-subnets can be divided into rendezvous-places

and sequential-places. Rendezvous-places refer to synchronization with neighboring

processes. Place labels denote place semantics associated with tokens that may exist in the

place. Place semantics will be made use of in the analysis of the CP-net model in Section V.

As shown in Figure 4 for the four types of rendezvous statements, labels of rendezvous-places

can be Entry-Right (ER) for sending a message to the right or receiving from the left, Left

Acknowledgement (LA) for rendezvous acknowledgement after sending to the right or

receiving from the left, and EL and RA which are the reciprocal of ER and LA respectively.

Labels of sequential-places can be active or waiting. 'Waiting' labels refer to output places of

send-message transitions to express waiting for rendezvous acknowledgement.

The elements of the color sets associated with places and transitions in the CP-subnets

are the ill numbers of the processes in the chain representing an SCMD program. To express

the natuml sequence of rendezvous in the chain model, which has been explained in Section

II, a partial order relation "less than" is defined on the elements of token-color sets and

occurrence-eolor sets. The partially (totally in this case) ordered sets, or simply posets, shown

in Figure 4 are LCP = {1, 2, ..., N-1} and RCP = {2, 3, ..., N}, where N is the total number of

processes in an SCMD program. Other pasets, which will be used in the composed CP-net

11

model of the program, are LMCP = {I} and RMCP = {N} corresponding to boundary

processes, CP = {I, 2, ... , N} corresponding to the whole chain and INCP = (2, 3, ..., N-I)

corresponding to inner processes. The definition of the partial order relation on color sets is

central in the analysis of the model as will be explained in Section V.

Arc labels of the CP-subnets are incidence functions. They detennine what token

colors are removed from the input places upon fIring a transition with a specific occurrence

color, and what token-colors are deposited into the output places. As shown in Figure 4, the

functions are idr, idl and id. idr is the label of arcs from SMR and SRA transitions to output

rendezvous-places and is defmed as idr: LCP --> Rep such that idr(lO) = lO + 1. That is,

when a send-right transition fires with an occurrence-color corresponding to process lO, the

token-color deposited in the rendezvous place is meant to contribute to the enabling condition

of the receive transition of the next process in the chain, on the right-hand side, whose number

is (ID + 1). Similarly, idl: RCP --> LCP such that idl(ID) = lO - 1. The function id labels

other arcs and is given by id(lO) =lO.

Figure 5 shows CP-subnets for the control statement if-then-else and for a

nondeterministic select command. These statements will be included in the program model

only when they include rendezvous statements in their direct scope of control. All the places

in these subnets are labeled as active, all arcs are annotated with function lO, and posets for

the token-colors and the occurrence-colors are determined by those of the joining subnets, as

described below in the translation algorithm. Loops do not affect the synchronization

behavior of an SCMD program. In such programs, all processes traverse loops the same

number of times and execute exactly the same loop body. Therefore, the number of

rendezvous occUITing within loops is consistent in neighboring processes. The consistency in

type and sequence can be analyzed by traversing the loop body only once. As a result,

looping can be ignored in the representation model.

12

(a)Send-Message-Right : Process[i+1]!Message

(b)Send-Message-Left: Process[i-I]!Message

Fig. 4

13

RCP

RCP

(c)Receive-Message-from Left: Process[i-l]?m

LCP

LCP

(d)Receive-Message-from Right: Process[i+1]?m

Fig. 4 CP-subnet models of rendezvous statements.

14

then else

endif

(a) if-then-else-endif

(b) select rendezvous 1
or rendezvous 2
or .

endselect

Fig. 5 CP-subnets for decision and select statements.
(All arcs are annotated with function id)

15

B. Subnet Connection and the Translation Procedure

In translating an SCMD program into a CP-net, the CP-subnets depicted in Figures 4

and 5 are used as building blocks, or templates, and only the synchronization-related

statements of the program are considered. All templates have places as terminal components,

which are either sequential-places or rendezvous-places. Connecting these templates to

compose the total CP-net model is an interesting part of the procedure that translates an

SCMD program. Specifically, merging rendezvous-places of CP-subnets is a salient feature

of the translation. The subnets may correspond to an arbitrary sequence of rendezvous of a

process with neighboring processes. The composed model must reflect the synchronization

behavior of individual processes as well as that of the whole chain, while retaining the

advantage of offering a compact folded representation. Furthennore, the unified model must

take into account the idiosyncrasy of the boundary processes which communicate only in one

direction.

The direction of a rendezvous, which detennines the participant processes, is accounted

for by choosing appropriate occurrence-color posets and assigning them to transitions in the

CP-subnets of rendezvous and relevant control statements. For example, LCP poset (i.e. {I,

2, ..., N~I}) is assigned to transitions in a send-right CP-subnet to express the restriction that

the rightmost boundary process (ID = N) in the chain does not take part in such a rendezvous.

The representation of the synchronization behavior of the chain of processes in the

folded model is achieved by merging compatible rendezvous-places. Merging rendezvous

places is based upon self-enabling, which is a condition derived from the characteristics of

SCMD programs and is explained in the following. In SCMD programs, a rendezvous

activity in one direction must match a rendezvous in the opposite direction. For example, a

send-right matches a receive-left. Such a matching is henceforth referred to as reciprocal

rendezvous activity and a pair of statements (subnets) representing reciprocal rendezvous

activities is referred to as a rendezvous pair of statements (subnets). Also, in SCMD

16

programs, rendezvous usually occur only between adjacent processes whose IDs differ by a

known distance, referred to as the adjacency distance, in the direction of communication. For

example, the adjacency distance is 1 in the chain model of SCMD programs. It is positive in

the right direction and negative in the left direction. These characteristics of SCMD programs

allow merging of compatible rendezvous-places in rendezvous pairs of subnets to produce

self-enabling conditions in the folded CP-net. Self-enabling refers to the case where a process

enables a transition in a subnet that belongs to another process while both processes are being

represented by the same collection of subnets in the folded model. Self-enabling is

accomplished by the use of appropriate incidence functions on the arcs as shown in Figures 4

and 5. These functions ensure that appropriate token-colors are deposited in the rendezvous

places of the subnet representing the reciprocal rendezvous activity. They simply increment

or decrement the integers representing token-colors by the adjacency distance. For example, a

transition in a subnet representing a send-left communication has an output arc annotated with

function idl that decrements token-colors by 1. This contributes to the enabling of a receive

statement in the left neighboring process, although represented by the same folded model. As

a result, self-enabling conditions can be realized by merging the compatible rendezvous

places of rendezvous pairs of subnets in the folded model. for example, the ER place of a

Send-Right subnet should be merged with the ER place of the Receive-from Left subnet in the

rendezvous pair. In the translation procedure, merging of compatible places is accomplished

by using send and receive First-In-First-Out (FIFO) queues, so that places of a rendezvous

subnet in the jth location in a queue are merged with compatible places of the reciprocal

rendezvous subnet in the same location in the reciprocal queue. The procedure is outlined in

Figure 6, in which the following acronyms are used: pid for process ID, TC for Token-Color,

OC for Occurrence-Color, seq-place for sequential place, ren-place for rendezvous-place, SR

for Send-Right, SL for Send-Left, RL for Receive-Left, RR for Receive-Right, ER for Entry

Right, LA for Left-Acknowledgement, EL for Entry-Left, RA for Right-Acknowledgement

and Q for Queue.

17

Phase I: Scan the entire program to determine initial information and prepare for phase TI.

1. Determine the total number of processes N.
2. Determine the numbering scheme for the configuration of interconnected processes, that

is 1, 2, ..., N for a chain.
3. Determine the color posets CP, Lep, RCP, LMCP, RMCP and INCP.
4. Filter out irrelevant statements and retain only begin, end and synchronization-related

statements in "SR.program".

Phase n: Translate synchronization-related statements and connect subnets.
While not end of "SR.program" repeat steps 5 and 6:
5. Read a statement, look up the table of CP-subnets (Figures 4.1 and 4.2) and fetch the

corresponding subnet.
6. If a statement is any of the following types, perform the specified action:

(a) Begin statement: Assign CP to input place, transition and output place.
(b) End-type statement: Assign CP to transition and output place. Merged input place

takes TCposet of preceding output place.
(c) Control Statement whose condition does not involve pid:

• Merge compatible input seq-place of current subnet with output seq-place of
preceding subnet. Also assign TCposet of preceding output place to the merged
place and to current output place.

• Assign OCposet = TCposet (of merged place) to transitions.
(d) Control statement whose condition involves pid:

• Merge input and output places of current and preceding subnets respectively. Also
assign TCposet of preceding output place to the merged place.

• Assign a consistent pair of DCposets to transitions in alternative paths, i.e. (LMCP
and Rep) if condition is (pid> 1) or (LCP and RMCP) if condition is (pid < N).

• Assign TCposet = DCposet (of input transition) to output places, except for the last
output place which is assigned TCposet of the fIrSt input place.

(e) Request rendezvous statement:
• Merge input seq-place with output seq-place of preceding subnet, and assign to the

merged place the TCposet of preceding output place.
• Assign OCposets to transitions and TCposets to ren-places, and annotate arcs by

functions as specified in the subnet.
• Assign TCposet = OCposet (of input transition) to the output seq-place.
• Add ren-places to send FIFO queues, i.e. ER place (EL) to SRERQ (SLELQ) and

LA Place (RA) to SRLAQ (SLRAQ).
• If receive FIFO queues are not empty, merge places as follows (deleting places

from queues after merging):
Front(SRERQ) with front(RLERQ), front(SRLAQ) with front(RLLAQ),
front(SLELQ) with front(RRELQ) and front(SLRAQ) with front(RRRAQ)

(1) Receive rendezvous statement:
• First 3 steps are the same as 6(e).
• Add ren-places to receive FIFO queues, i.e.,

ER place (EL) to RLERQ (RRELQ) and LA place (RA) to RLLAQ (RRRAQ).
• If send FIFO queues are not empty then merge (then delete) places as in step 6(e).

end {phase II}

Fig. 6 Translation procedure.

18

Example: A simple SCMD pseudocode program is given in Figure 7. It uses Jacobi's

iterative method to solve partial differential euqations. The program employs one

dimensional strip-partitioning of the data domain and allocates adjacent subdomains to

processes whose indices are consecutive in the chain of processes. The processes repeat

Jacobi computations until convergence is reached. In each iteration, every process

communicates with its nearest-neighbors for updating boundary data of subdomains and for

exchanging information about convergence status.

The CP-net model of a part of the program, obtained by using the translation procedure

is shown in Figure 8. Missing function labels of arcs are considered as id and missing color

pasets are considered as CP.

c. Remarks on the translation procedure and the CP-net model

Clearly, the complexity of the translation procedure is of the order of the number of

synchronization-related statements. A CP-net model of an SCMD program will be connected

since all subnets have beginning and ending sequential places and such places of successive

subnets are always merged by the algorithm. However, the CP-net model suffers from a lack

of program semantics information just as do all models produced by static analysis

approaches. Its correctness, up to symbolic execution, in terms of its representation of the

synchronization behavior of the underlying SCMD program will be dealt with in Section V.

19

Declaration P[pid:l .. l0] /*10 copies ofprocess*/
Process P [pid] is
begin

initialize solution:=O; convergence_flag:=false
determine data subdomain according to pid
while not(convergence_flag) do begin

perform Jacobi computations in subdomain
if pid < N then {send right}

P[pid + 1] ! boundary_data
P[pid + 1] ! convergence_flag

endif
ifpid> 1 then {receive from left}

P[pid - 1] ?boundary_data
P[pid - 1] ? convergence_flag

endif
ifpid > 1 then {send left}

P[pid - 1] ! boundary_data
P[pid - 1] ! convergence_flag

endif
ifpid > N then {receive from right)

P[pid + 1] ? boundary_data
P[pid + 1] ? convergence_flag

endif
endwhile
Output partial solution

end process

Fig. 7 An SCMD program.

20

LCP

idl ~~loo.....I

CP~Pendif

RMCP,,-__

Fig. 8 CP-net model of a part of the program in Fig. 7.

21

V. DEADLOCK DETECTION

In our approach, deadlock is detected by reachability analysis. An algorithm is described

in this section to produce a compact reachability tree by executing the CP-net model and to

examine the nodes of the tree for detecting the presence of deadlocks in the underlying

program. The tree generation and anlysis algorithm is similar to that in [8] and [11] but is

modified here to suit the distinctive features of CP-net models of SCMD programs.

Specifically, the considerable reduction in the size of the reachability tree is achieved by using

a notion, referred to as p-covering, instead of the notion of equivalence of markings.

The reachability tree is generated by ftring all possible enabled transitions in the CP-net

in a certain marking. Firing transitions creates new markings which are then explored further.

A marking is represented by a node in the tree and refers to a program state. Such a marking or

a state is determined by the number of tokens and their associated colors. In this paper, for the

application considered, the number of tokens with a specific color in a place is either 1 or O. In

the analysis, some transitions, such as SLA and SRA, and some places, such as output seq

place of SLA, playa distinctive role. Thus, their identities are assumed to be known as a result

of the translation algorithm presented in Section 4. Also certain token-colors, namely the least

and greatest of posets, have an important expressive role in the generation and analysis of the

reachability tree.

A. Poset-Covering and Reachability Analysis

The movement of token-colors is expected to reflect the natural sequence, which is

explained in Section 2, in which rendezvous events take place in the chain configuration of

SCMD programs. For example, when a send-right communication is performed by processes,

token-color N will be the first to reach the end place of a rendezvous pair of subnets followed

by token-eolor N-l, N-2, , 1. More precisely, in the CP-net of the chain configuration of an

SCMD program, transitions in rendezvous subnets with occurrence-colors corresponding to the

boundary process will be enabled flfSt in a rendezvous activity. That is, occurrence-colors N or

22

1, depending upon the direction of communication, will fIre frrst then its immediate predecessor

(or successor) in the poset of occurrence-colors, and so OD. The occurrence-color of the

immediate predecessor (or successor) of the rightmost (or the leftmost) boundary process is the

greatest (or least) in the poset INCP of inner processes. Since boundary and inner processes in

the chain differ in that boundary processes communicate only in one direction, the analysis

should consider the synchronization behavior of both types of processes. However, all inner

processes behave exactly the same way and their behavior can be analyzed in a unified way.

Our approach makes use of this observation and employs the universal bounds of the color

poset, INCP, in analyzing the folded CP-net model. The universal bound, greatest (or least), is

considered representative of the whole poset in a communicate-right (or communicate-left)

activity. That is, the completion of a rendezvous by the greatest (or least) of INCP covers the

behavior of the whole poset. Rendezvous completion is represented by the token-color

reaching an end-place of the second subnet of a rendezvous pair of subnets. The resulting state

or marking is referred to as poset-covering, or simply p-covering. The use of the notion of p

covering in the generation algorithm leads to considerable reduction in the size of the

reachability tree.

In the reachability algorithm, which generates and analyzes the reachability tree of the

CP-net, a p-eovering marking M is given by the presence of appropriate token-colors in the

end-place of rendezvous subnets in M. Appropriate token-colors are those corresponding to a

boundary process and a universal bound (greatest or least) of poset INCP. The end-place of

rendezvous subnets is the output seq-place of the second subnet in a rendezvous pair of subnets.

These places are assumed to be appropriately labeled by the translation algorithm. Upon

detecting a p-covering marking in the tree, the reachability algorithm refrains from generating

markings covered by the p-covering marking on the same path. Instead, it summarizes the final

outcome of the path in a marking created by directly removing all token-colors from seq-places

and ren-places and adding token-colors to the end-place of the rendezvous subnets so that this

place will contain all elements of INCP in addition to a universal bound of CP, for example

23

greatest, that is already there. The only token-color which remains unmoved is that

corresponding to the other universal bound of CP, for example least. But, this color is added to

the output ren-place of the rendezvous subnets to allow the enabling of transitions with

compatible occurrence-color. In this state, the CP-net can be executed by firing enabled

transitions and the corresponding reachability tree nodes are generated. The separate treatment

of boundary processes stems from their distinctive rendezvous activities. If the token-color of

the second universal bound does not deadlock and, hence, reaches the end-place of the

rendezvous subnets, this place will contain all elements of CP. This procedure is both

motivated and required by the sequence in which rendezvous statements occur in SCMD

programs. These statements either occur such that reciprocal statements of a rendezvous pair

directly follow each other, such as send-right followed by receive-left, or as a sequence of

overlapped identical rendezvous pairs, such as send-right; send-right; receive-left; receive-left.

The first type of rendezvous will be referred to as simple and the second one as compound.

Such a sequence of rendezvous implies that the end-place of a rendezvous pair of subnets is, in

the simple case, the temrinal seq-place of the receive subnet and, in the compound case, the

terminal seq-place of the last receive subnet. This end-place may be the begin-place of a

rendezvous in the opposite direction which requires a different sequence of occurrence-color

transition fIring. Therefore, before the second rendezvous can be considered, all token-colors

must be available in its begin-place in order to enable transitions with compatible occurrence

colors. Moreover, this information can be used to reduce the frequency of examining a

marking for p-eovering by performing such examination only after fIring a transition of SLA or

SRA type (see condition in step 2(b) in the algorithm in Figure 9).

A reachability algorithm is presented in Figure 9 and two illustrative examples are given

below. Some properties of this algorithm, the reachability tree and the CP-net are discussed in

the next subsection.

24

1. Place all token-colors of CP in begin-place of the CP-net This yields an initial
marking at the root of the reachability tree. Add this node topte set UNEXPLORED
of frontier nodes. Also, initially, let the set EXPLORED ={fJl.

While more nodes in UNEXPLORED do:

2. (a) Consider a node D (marking M) in UNEXPLORED.

(b) H the transition leading to node D is SLA (or SRA) transition, check for p-covering
and proceed as follows:
• Examine token-colors in the output seq-place of the fIred transition.
• If these token colors are only a universal bound (e.g. greatest) of INCP and a

universal bound (greatest) of CP then this marking is p-cQyerin&.
• If it is a p-covering marking, create the next marking by removing all tokens from

seq-places and ren-places except the other universal bound (least) of CP, and
adding token-colors to those in the output seq-place of fIred transition such that this
place will contain all colors of INCP in addition to the universal bound of CP
(greatest) that is already there. Also the other universal bound token-color of CP
(least) is added to the output ren-place of the fired transition.

3. (a) Determine an enabled transition t with occurrence color c in M (according to
enabling conditions in Section 3).

(b) For (t, c) enabled in M do:
• Fire (t, c) and apply roles in Section 3 for token-colors.
• Add the new nodes (i.e. new markings) to UNEXPLORED.

(c) If there is no enabled transition in M then:
• IfM indicates a valid termination state, END. {algorithm}.
• Otherwise M indicates deadlock. Save infonnation (marking, last transition

fired...) in analysis table.

4. Add D to EXPLORED and delete it from UNEXPLORED.

end while

Fig. 9 Algorithm for reachability tree generation and deadlock detection.

25

Example without deadlocks:

Consider a portion of an SCMD program, which is simply «send-right; receive-left»

with 9 processes (N =9). The CP-net and the reachability tree are shown in Figures 10 and 11

respectively. For clarity of drawing, the tree is simplified by showing simultaneous fIring of

enabled transitions with several occurrence-colors. Note that place P7 is labeled in Figure 10

as the end-place of the rendezvous pair.

Example with deadlocks:

If "receive-left" is missing from the previous example then clearly node 3 in the tree will

be a deadlock state, with color 9 stuck in place P4.

B. Properties of the Algorithm, the Reachability Tree and the CP-net

Property 1: There is no loss of deadlock information due to p-covering. That is, greatest (or

least) is representative of the color poset. To support this claim, the following cases are

considered:

(a) If greatest (or least) encounters a deadlock, it will not produce self-enabling conditions for

the predecessors (successors). Hence, they will all obviously deadlock.

(b) If greatest (least) reaches the end-place of a rendezvous pair of subnets of the simple or

compound type, all predecessors (successors) will also successively reach this place. That

is, they will not deadlock as shown in the following argument. If greatest (least) reaches

the end-place of the rendezvous subnets (i.e. terminates) after fIring SLA (SRA), this

would mean that its immediate predecessor (successor) is in LA (RA) place of the second

subnet of the rendezvous pair. This enables RLA (RRA) transition in the frrst subnet of the

rendezvous pair because, if this were not true, then RLA (RRA) would not have fired with

the occurrence-color corresponding to greatest (least) and greatest (least) would not have

been able to terminate. A similar argument applies to all other predecessors (successors) in

26

the color poset.

(c) There is no loss information for a sequence of rendezvous pairs, each can be in any

direction. This claim is based upon the following:

• The property holds true for each individual pair in the sequence by (a) and (b), and

• For the composite synchronization behavior, the property also holds since when greatest

reaches the end-place of a rendezvous pair, p-covering is detected and the new marking is

created. The new marking, which includes all token-colers in the poset, at the interface of

two rendezvous pairs implies that the behavior of the next rendezvous pair, is a problem

of the same form as for individual rendezvous analyzed in (a) and (b) above. This is true

for any two successive rendezvous pairs and hence for the whole CP-net.

Property 2: Large numbers of tokens (known as omega) are not generated by the algorithm in the

reachability tree corresponding to the CP-net model of SCMD programs. This is because the

algorithm starts with single token-colors, one for each process, in the begin-place of the CP-net,

as in step 1, and there is no looping in the net to cause a build up of tokens of the same color.

Therefore, the CP-net model is bounded. In fact, since the weight on all arcs is implicitly

defined as one, the net is safe for each color, or simply color-safe.

Property 3: Since the CP-net is color-safe and involves no looping and since the net is finite,

the token-colors will traverse the net in a fmite number of steps corresponding to the fmite

number of transitions that fire. They end up either in the terminal end-place of the net or will

deadlock in some intermediate place. In both cases, the generated reachability tree will be

fmite and the algorithm will tenninate.

Property 4: The size of the reachability tree generated by executing the folded net of an SCMD

program is reduced considerably due to the use of p-covering. The number of nodes is

somewhat greater than three times that corresponding to a Petri net of a single process, but

considerably smaller than that obtained by executing the CP-net for token-colors corresponding

to all processes in the SCMD chain. The tripled size is caused by accounting for boundary as

well as inner processes in the chain. The significant reduction in tree size is consistent with the

27

results for the applications discussed in [11] and [8].

28

Fig. 10 An example of a CP-net model in an intennediate marking.

29

Node PI P2 P3 P4 P5 P6 P7 P8 P9

1 : 1+..+9,

t (Tl,colors:l+..+S),(17,color 9)

2 ,1+..+8, , 9 ,

t (T2,1+..+S),(T4,9)

3 ,1+..+8, , 9 , ,2+..+9,

t (T5,9)

,2+..+8,4 ,1+..+8, , 9 ,

t (T6,9)

,2+..+8,5 ,1+..+8, 9 8

t (T3,S)

,2+..+8,6 ,1+..+7, 8 , 9

t (T4,S)

7 ,1+..+7, , 8 , 9 ,2+..+8,

t (T5,S)

8 ,1+..+7, 8 9 ,2+..+7,

t (T6,S)

9 ,1+..+7, ,8+9 ,2+..+7, 7

10

t by poset-covering

1 ,2+..+9, 1

t (T3,1)

11 1 ,2+..+9,

12
t (TS,l)

,1+..+9,

Fig. 11 Reachability tree for CP-net in Fig. 10.

30

VI. CONCLUSIONS AND FURTHER WORK

An approach has been presented for deadlock detection in SCMD programs. It is based

on translating such programs into a folded CP-net model that, despite folding, represents the

synchronization behavior of the unified SCMD program. Deadlocks in the underlying program

can be detected by deriving and analyzing a reachability tree for the CP-net. The identical

synchronization behavior of processes has been employed to considerably reduce the size of the

reachability tree. This is accomplished by pruning paths in the reachability tree when a

marking, referred to as poset-covering, is reached.

The proposed CP-net-based approach can also be applied to SCMD programs that can be

represented as 2-dimensional arrays of asynchronous parallel processes. The same concepts

used in the N-process linear chain case can be extended to an M by N array model. The CP-net

will involve MN colors for tokens in places and occurrences in transitions. The numbering

scheme of processes in step 2 of the translation algorithm may proceed, for example, form left

to right and from top to bottom for M rows and N columns, i.e. 1, 2, ..., MN. Since rendezvous

can take place in four directions (left, right, up and down) the adjacency distances are 1 in the

horizontal direction and N in the vertical direction. Twice the number of color posets with

tlless thantl as a relation is needed to represent the behavior of the inner processes in the 2

dimensional model. The difference between immediate seccessors in these posets is equal to

the relevant adjacency distance. The CP-subnets for horizontal rendezvous statements remain

the same as for the chain model, whereas those for vertical rendezvous subnets and are dermed

as idu (10) = ill - N and idd (ill) = ill + N for upward and downward communication,

respectively. The translation procedure retains the same steps with all the requirements of the

vertical direction added. In particular, FIFO queues for merging compatible rendezvous places

in vertical rendezvous subnets are required. The reachability algorithm also retains the same

steps. But the notion of p-covering must be extended to incorporate the inner posets and

boundary colors that arise in the second dimension.

31

The compact folded CP-net model and the reduced-size reachability tree makes the

proposed approach suitable for practical implementation. The implementation may follow a

procedure similar to that as in [16] or [6] for the translation of an SCMD program into a CP

net The implementation of the reachability tree generation and analysis may also be done in a

way similar to that for other reachability tools [4]. The implementation of the additional

features is also straightfordward. In particular, the colors associated with tokens and

transitions, the labeling of arcs with functions and the identities of transitions and places can be

encoded in a predetermined way. The code can be added to the data structures representing

transitions and places. This adds a reasonable amount of complexity to the data structures in

return for the advantages of the CP-net-based approach. Work is in progress for implementing

this approach for Ada concurrent programs.

32

REFERENCES
[1] G. Balbo, G. Chiola, S.C. Bruell and P. Chen, "An example of validation and evaluation

of a concurrent program: Lamport's Fast Mutual Exclusion Algorithm," Performance
Evaluation Review, Vol. 17, No.1 (May 1989).

[2] D.P. Bertsekas and J.N. Tsitsildis. Parallel and Distributed Computations. Englewood
Cliffs, NJ, Prentice-Hall (1989).

[3] Departtnent of Defense. The Programming Language Ada: Reference Manual:
Proposed Standard Document, U.S. 000. Berlin, Springer-Verlag (1981).

[4] F. Feldbrugge and K. Jensen, "Petri Net tool overview 1986," in Proc. Advanced Course
on Petri Nets, Springer-Verlag, Bad Honnef, W. Germany (September 1986).

[5] G.C. Fox et al., Solving Problems on Concurrent Processors. Englewood Cliffs, NI,
Prentice-Hall (1988).

[6] A.L. Goel, N. Mansour, S. Zhang and C. Kan, "A concurrent program testing tool,"
Technical Report, Center for Computer Applications and Software Engineering, Syracuse
University (1990).

[7] C.A.R. Hoare, "Communicating Sequential Processes," Comm. of the ACM, 21 (8),
pp. 666-677 (August 1978).

[8] P. Huber, A.M. Jensen, L.O. Jepsen and K. Jensen, "Reachability trees for high-level
Petri nets," Theoretical Computer Science 45, pp. 261-292 (1986).

[9] M.A. Iqbal, I.H. Saltz and S.H. Bokhari, "A comparative analysis of static and dynamic
load balancing strategies," Proc. Int. Conf. Parallel Processing, pp. 1040-1047 (1986).

[10] K. Jensen, "Colored Petri nets and the invariant-method," Theoretical Computer Science,
14, pp. 317-336 (1981).

[11] K. Jensen, "Colored Petri nets," in Proc. Advanced Course on Petri Nets, Springer
Verlag, Bad Honnef, W. Germany (September 1986).

[12] H.T. Kung, "The structure of parallel algorithms," in Advances in Computers, ed. M.C.
Yovits, Academic Press, NY, 19, pp. 65-112 (1980).

[13] D.L. Long and L.A. Clarke, "Task interaction graphs for concurrency analysis," in Proc.
Int. Conf. Software Engineering, pp. 44-52 (May 1989).

[14] C.E. McDowell, "A practical algorithm for static analysis of parallel programs,'1 J. of
Parallel and Distributed Computing 6, pp. 515-536 (1989).

[15] T. Murata, B. Shenker and S. Shatz, "Detection of Ada static deadlocks using Petri net
invariants," IEEE Trans. Software Engineering, Vol. 15, No.3, pp. 314-325 (March 1989).

33

[16] S.M. Shatz, K. Mai, D. Moorthi and J. Woodward, IIA toolkit for automated support of
Ada tasking analysis," in Proc. Int. Conf. Distributed Comptuing Systems, pp. 595-402
(1989).

[17] K.C. Tai and R.H. Carver, "Testing and debugging of conCUlTent software by
deterministic execution," in Proc. 7th Pacific Northwest Software Quality Conf. (1989).

[18] R.N. Taylor, "A general-purpose algorithm for analyzing concurrent programs," Comm.
of the ACM, 26(5), pp. 362-376 (May 1983).

34

	A Colored Petri Net-Based Approach for Automated Deadlock Detection in Parallel Programs
	Recommended Citation

	SU-CIS-90-29_001c
	SU-CIS-90-29_002c
	SU-CIS-90-29_003c
	SU-CIS-90-29_004c
	SU-CIS-90-29_005c
	SU-CIS-90-29_006c
	SU-CIS-90-29_007c
	SU-CIS-90-29_008c
	SU-CIS-90-29_009c
	SU-CIS-90-29_010c
	SU-CIS-90-29_011c
	SU-CIS-90-29_012c
	SU-CIS-90-29_013c
	SU-CIS-90-29_014c
	SU-CIS-90-29_015c
	SU-CIS-90-29_016c
	SU-CIS-90-29_017c
	SU-CIS-90-29_018c
	SU-CIS-90-29_019c
	SU-CIS-90-29_020c
	SU-CIS-90-29_021c
	SU-CIS-90-29_022c
	SU-CIS-90-29_023c
	SU-CIS-90-29_024c
	SU-CIS-90-29_025c
	SU-CIS-90-29_026c
	SU-CIS-90-29_027c
	SU-CIS-90-29_028c
	SU-CIS-90-29_029c
	SU-CIS-90-29_030c
	SU-CIS-90-29_031c
	SU-CIS-90-29_032c
	SU-CIS-90-29_033c
	SU-CIS-90-29_034c
	SU-CIS-90-29_035c
	SU-CIS-90-29_036c
	SU-CIS-90-29_037c

