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ABSTRACT 

A static analysis tool for detecting deadlocks and potential race conditions on shared 

variables in concurrent programs is presented. It is based on Petri Net modeling and 

reachability analysis, where a concurrent program is modeled as an augmented Petri net and a 

reachability graph is then derived and analyzed for desired information. Place-Transition 

subnets representing programming language constructs are described. Transitions in these 

subnets are augmented with sets of shared variables that occur in sections of the program, 

called concurrency zones, related to the transitions. The tool consists of four modules. The 

modeling module employs the augmented subnets as building blocks in translating only the 

synchronization-related statements of a concurrent program and connects the subnets to yield 

the total model. The second module produces an augmented reachability graph for the 

augmented Petri net. The analyzer module searches the augmented reachability graph for 

deadlocks, race conditions and other useful analysis information requested by the user about 

the underlying program. The user interface is provided by an X-window based module. Ada 

is used as a representative of concurrent languages that adopt the rendezvous model of 

interprocess communication and synchronization. The validation of the tool, its applicability 

and limitations are also discussed. 

Index terms: Ada tasking, concurrent programs, deadlock detection, Petri net 

applications, race conditions, software testing, software tools, static 

analysis. 



1. INTRODUCTION AND BACKGROUND 

Software testing is a nonformal validation method that aims at gaining confidence in the 

correctness of a program. It is costly and difficult for sequential as well as concurrent 

software [Hausen 84, Tai 89b]. Testing concurrent software is more difficult than sequential 

software mainly because in a concurrent program a number of processes are considered. They 

communicate and synchronize with each other in order to produce a total solution. In such a 

concurrent processing environment, a number of factors contribute to the complexity of 

testing software. The main factors are different processor speed, unpredictable scheduling of 

multiple processes and nondeterministic language constructs, in addition to different 

processor speeds. These factors can lead to nondeterministic sequences of execution and 

cause the reproducibility or replay problem [Tai 85, 89a, 89b], where different executions of 

the program may yield different results. Moreover, concurrent processes may enter a race 

condition, if shared variables are allowed in the programming language. 

In addition to the usual computational and domain errors, concurrent programs may 

include synchronization and concurrency errors and anomalies. The most important types are 

deadlocks and data-usage anomalies, namely potential race conditions on shared global 

variables. The term, deadlock, is used in this paper and in most of the testing literature to 

represent all kinds of inf"mite wait or blockage of processes which prevent a program from 

normal termination. A race condition occurs when two or more processes 

nondeterministically access shared data and at least one process is updating the data. Other 

anomalies which can be detected by static analysis of concurrent programs have been 

discussed in [Bristow 79]. 

The approaches for testing cocnurrent programs can be divided into static analysis and 

dynamic analysis. In static analysis, the program code is often transformed into a model and 

the model is then analyzed for detecting specific error states. Static analysis has the 

advantage that it is independent of the characteristics of the target machine and can be 
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performed in inexpensive and conveneint environments. However, it suffers from a lack of 

program semantics that may lead to spurious error reports. In dynamic analysis, the program 

is executed with selected input test data, and its behavior and output are examined. The 

insertion of debugging statements may alter the program behavior in dynamic analysis. This 

is referred to as the probe effect [Gait 86]. Static and dynamic analyses may be integrated to 

exploit the complementarities in both approaches [Osterweil84]. 

Several approaches have been proposed for testing concurrent software. Most of the 

dynamic testing work has been based on deterministic execution testing (DET) [Tai 89a, 89b, 

86]. The DET approach is geared towards solving the reproducibility problem. An input test 

case in DET consists of data and a synchronization sequence, S. A control task is added to 

the program to force its execution according to S. Hence, results can be reporduced and their 

validity can be checked. In [Taylor 86], structural testing is proposed based on a concurrency 

state graph, which is derived by static analysis of the program. The use of a controllable 

scheduler to force the execution of a path is suggested. 

The frrst static analysis approach appeared in [Taylor 83a]. This approach is based on 

flowgrapn models of concurrent processes or tasks. A directed graph of concurrency states is 

then derived from the flowgraphs where a state represents the control state of the concurrent 

tasks, including synchronization information. Deadlock errors are detected by searching the 

concurrency state graph for terminal states occurring while some tasks are still active. With 

some post-processing, the anomaly of concurrent updating of shared variables may be 

revealed. A similar analysis approach to that of Taylor's appears in [Shatz 88a, 89] but within 

the Petri net framework. In [Shatz 88a], a procedure and its implementation are described for 

translating a concurrent Ada program to a Petri net model. A separate 'general-purpose' tool 

[Morgan 87] is then employed to derive the reachability graph, which represents all possible 

synchronization sequences for the Petri net. This tool is also used for analyzing the 

reachability graph. The analysis results include information about deadlock states and the 

synchronization behavior of the program. Within the Petri net framework, [Murata 89a] 
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presents algorithms based on place and transition invariants to guide a selective generation of 

the reachability graph. A task interaction graph (TIG) is proposed in [Long 89] as a model for 

tasks or processes. A TIG represents a task as a set of regions and a set of interactions 

between regions. A task interaction concurrency graph (TICG) is then derived from the TIGs 

of tasks, where a vertex represents a state and an edge represents the start and end of a 

synchronization event. Deadlock is detected if a task is unable to complete a synchronization 

activity. [McDowell 89] derives a reduced state concurrency history graph (CHG) from the 

control flowgraphs of the program, where some states represent merged sets of states. 

Merging is possible when concurrency in the program is a result of parallel execution of 

multiple copies of the same task. In this approach, deadlocks and the anomaly of parallel 

update of shared variables can be detected. In [Dillon 88], symbolic execution is used in the 

formal verification of Ada tasking programs. 

The above approaches to concurrent software testing exhibit the complexity of the 

testing problem. Based on some of these approaches, tools have been reported for dynamic 

testing [Tai 89a] and static analysis [Shatz 89, McDowell 89]. This small number of tools and 

the limited experiences reported do not provide sufficient confidence in the feasibility of 

automatable testing methodologies. Further, each tool has limited applicability as pointed out 

in these studies. 

The work presented in this paper is a contribution to the testing research, which aims at 

demonstrating the feasibility, although limited, of automatable approaches for testing 

concurrent programs. The approach is based upon static analysis using a Petri net model. It is 

concerned with the concurrency and synchronization behavior of concurrent programs, 

namely with the detection of deadlocks and potential race conditions. Like other static 

analysis approaches, this work assumes that the sequential behavior of individual processes is 

tested by other relevant means independent of testing the concurrency features. The model of 

synchronization considered here is the rendezvous type. Shared global variables are also 

allowed. Ada is chosen as a representative of the class of programming language notations 
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that adopt this model of synchronization and concurrency. However, other languages in this 

class can be easily incorporated in the implementation. 

Our approach is based upon Petri net modeling and reachability analysis, which has 

been previously adopted for deadlock detection in [Shatz 89, Murata 89a]. In this work, both 

modeling and analysis capabilities of Petri nets are offered in a unified and coherent 

framework within which a tool has been developed. Furthermore, detection of race conditions 

on shared variables has been incorporated in a coherent way, without post-processing, by 

augmenting the Petri net model with shared variables. The tool consists of four modules: A 

modeling module that translates a concurrent program into a Petri net model augmented with 

sets of shared variables, a module that generates the reachability graph of the Petri net, 

augmented with shared variables, a module that performs analysis on the reachability graph, 

and a user interface module that presents the analysis results and allows user choices in a 

user-friendly fashion using X-window display facilities. The complexity of the tool, its 

validation and applicability are also discussed in this paper. 

This paper is organized as follows. In the next section, preliminary concepts are 

presented. The augmented Petri net-based approach is described in Section 3. The tool 

design is presented in Section 4, and its validation and applicability are discussed in Section 5. 

A discussion of the work presented here as well as some suggestions for extending this work 

are presented in Section 6. 
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2. PRELIMINARIES 

In this section, we describe some relevant concepts utilized throughout this paper. 

These include Petri nets, the rendezvous model of synchronization and selected Ada 

programming constructs. 

2.1 PETRI NETS 

A system can be modeled by a Petri net (PN), which becomes its mathematical 

representation [Murata 89a, Peterson 81]. Analysis of the Petri net, then, yields information 

about the structure and the behavior of the system. The type of Petri nets employed 

throughout this paper is the Place-Transition (PT) type, which is defined below. Description 

of their analysis is integrated with other material in subsection 3.3. 

Definition: APT net is a 5-tuple, PN = (P, T, I, 0, Mo), where Pis a finite set of places, Tis 

a fmite set of transitions, I is a set of transition input arcs, 0 is a set of transition output arcs 

and Mo is the initial marking. 

For purposes of this paper, it is assumed that the weight on every arc is 1 and that the 

maximum capacity of a place is 1. Graphically, a PN is a directed bipartite graph with bars 

representing transitions and circles representing places (see Figure 2.1). 

Enablin& Conditions: A transition ti is enabled if each of its input places contain a token. 

Transition Firing Rules: When a transition ti fires, tokens are removed from input places and 

placed in output places. 

Figure 2.1, shows an example of a PN before and after firing a transition. The state of a 

PN is given by the marking of the places, M, which changes by firing enabled transitions. 
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2.2 THE RENDEZVOUS MODEL OF SYNCHRONIZATION AND ADA 

The rendezvous is a message-passing mechanism for interprocess communication and 

synchronization. Two processes are engaged in a rendezvous when one process makes a 

rendezvous request and the other accepts the rendezvous. If one of the two processes arrives 

at its rendezvous activity first, it is suspended until the other process performs the matching 

activity. Mter rendezvous-ing, the two processes may proceed concurrently. 

Ada [DoD 81] adopts the rendezvous model and it is used in this work as a 

representative concurrent programming language, as is the case in most of the literature on 

concurrent program testing. In Ada, tasks are equivalent to processes and the 

communication/synchronization among tasks is referred to as the tasking behavior. The Ada 

constructs for rendezvous request and accept are illustrated in a simple example in Figure 2.2. 

Moreover, the Ada language includes a nondeterministic select statement. this 

statement provides a mechanism for a called task to select among alternative entry calls. It 

should also be noted that in Ada, concurrent tasks are allowed to access shared global 

variables in addition to communication by rendezvous. 
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3. PETRI NET-BASED TESTING APPROACH 

The testing approach presented here is of the static analysis type, aimed at revealing 

deadlock errors and race condition anomalies. It is based on Petri net modeling of concurrent 

programs that use rendezvous for interprocess communication and synchronization. The 

concurrent program to be tested is translated into a Petri net model augmented with sets of 

shared variables. From this augmented Petri net (APN), an augmented reachability graph 

(ARG) is derived which is used for detecting deadlock errors and potential race conditions. 

This approach is further explained in this section and details about its implementation are 

presented in Section 4. 

The correspondence between a concurrent program and its PN model is not one-to-one. 

Yet, such a model is a suitable representation of the static structure of the concurrent program. 

The argument about the correctness of the PN model within this framework is supported by 

the validation results of the implementation, presented in Section 5. This modeling technique 

has previously been used to demonstrate the equivalence of Petri nets and Turing machine in 

terms of computational power [Petersen 81]. However, it should be noted that the PN model 

is syntax-based and ignores predicates in decision statements and conditional loops. This 

leads to shortcomings and limitations, which will be discussed in Section 6. 

Although, Ada programming constructs are used in the implementation, the approach is 

not language-dependent. It is applicable to all design notations that employ the rendezvous 

model for synchronization and communication, such as CSP [Hoare 78] and its variants. 

3.1 PETRI NET MODELING OF CONCURRENT PROGRAMS 

A concurrent program can be transformed to a Petri net (PN) model by translating its 

statements into PN subnets and then connecting them together. The statements of interest are 

the rendezvous (synchronization or tasking) statements and the control statements that affect 

the tasking behavior. Both types of statements determine the structure of the corresponding 

PN model and directly detennine the movement of tokens in the PN. They are henceforth 
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referred to as tasking-related (TR) statements. Statements which do not influence the tasking 

behavior do not contribute to the PN mdoel. Specifically, the TR statements to be translated 

into PN subnets are rendezvous statements (entry call, accept), nondetemrlnistic select 

statements and control statements (if, loop) in which rendezvous statements occur within their 

direct scope of control. These PN subnet models are defined in a semi-formal way in Figure 

3.1. The terminal components of all subnets, as seen in Figure 3.1, must be places. All places 

within a task are called sequential places. Places extending to other tasks, in rendezvous 

statements, are called synchronization places. Compatible terminal places in subnets are 

merged to form a total PN model for the tasking behavior of the program being analyzed as 

described in Section 4. It should be noted that in the total PN, subnets may be nested or 

combined in any way that reflects the structure of the program. 

A Petri net model for the program of Figure 2.2 is shown in Figure 3.2. The 

augmenting extensions shown here are explained in the next subsection. This PN shows the 

TR statements, in addition to task-begin and task-end, being modeled by the corresponding 

subnets defined in Figure 3.1. Also, note that places p 11 and p 12 are synchronization places, 

whereas all others are sequential places. 

Now we examine some properties of the PN model of a concurrent program obtained as 

above. Such a model is finite since it is constructed by components (subnets) equivalent to 

finite TR statements in the program. Thus, the size of the model is linearly proportional to the 

number of TR statements. Further, the PN model of each task is connected because 

consecutive subnets will always be connected by merging terminal sequential places. Finally, 

the PN model is safe ] since the weight of each arc is one, the place capacity is one token, and 

none of the subnet structures allows an accumulation of tokens that exceed the capacity of the 

places. 
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3.2 AUGMENTING THE PN MODEL WITH USAGE OF SHARED VARIABLES 

The PN model is augmented with the usage of global variables so that its analysis will 

also reveal anomalies of conflicting access of shared variables by more than one task. The 

resulting model is henceforth referred to as the augmented Petri net (APN). 

A transition in the net is augmented with a Read set and a Write set of global variables 

in the transition's concurrency zone, which is defined as follows. A concurrency zone of a 

transition is a sequence of program statements that includes and follows the statement 

corresponding to the transition. The last statement in the zone is that preceding the statement 

corresponding to the next transition in the net. 

A Read set (RS) contains the global variables that occur on the right hand side of 

assignment statements in the concurrency zone. A Write set (WS) consists of the global 

variables that are updated. 

Each task is divided into concurrency zones. Zones in one task succeed each other. 

Concurrency zones in different tasks may or may not be concurrent depending upon their 

position with respect to the rendezvous (synchronizaiton) points in the respective tasks. 

Zones in different tasks are said to be concurrent if the statements lying in these zones can be 

excuted concurrently. For example, if two tasks, Tl and 1'2, communicate and synchronize at 

point S 1 (referring to the two matching rendezvous statements), a zone in T1 before S 1 cannot 

be concurrent with a zone in T2 after S 1. For illustration, a concurrent program may be 

represented by a graph. The nodes of the graph represent zones, vertical edges refer to the 

sequencing relationship between two contiguous successive zones in one task and horizontal 

edges refer to potential concurrency between two zones in different tasks. An example of 

such a graph is given in Figure 3.3, which shows the concurrency zones of the program in 

Figure 2.2. Note, for example, that since task SENDER is suspended at statement 5 until task 

RECEIVER executes statement 13 (acknowledging end of rendezvous), zones 5-6 and 11-12 

are not concurrent and hence no horizontal edge is shown in the graph between them. The 
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sets of variables shown in Figure 3.3 next to the graph nodes are RS and WS sets in the 

respective concrurency zones. These RS and WS sets are shown in Figure 3.2 augmenting the 

PN's transitions that correspond to the zones. To express the augmentation of the PN, the 

following is added to the fuing rules: 

When a transition ti fires, the shared variables in ti' s concurrency zone are accessed 

(read or written) and hence the sets RS and WS are formed. The definition of a state of an 

APN at an instant will also include the sets RS and WS of all tasks at that instant. 

With these additions to the fuing rules and the definition of APN state, the formation of 

RS and WS sets is incorporated in a coherent way in the program modeling procedure. The 

implementation will be described in Section 4. 

3.3 ANALYSIS OF APN MODEL 

The APN model of a concurrent program is executed to generate a reachability graph 

augmented with sets of shared variables, referred to as augmented reachability graph (ARG). 

The ARG is then analyzed to examine the tasking behavior of the underlying parallel program 

and its usage of shared variables. The concepts involved in the generation and analysis of the 

ARG are briefly presented in this subsection. First, some defmitions are given informally. 

They are simple extensions of the definitions related to PT nets [Peterson 81], adapted here 

for APN. Then, ARG generation and analysis is illustrated. 

An APN state M is defined by a token marking of the net and a collection of pairs of RS 

and WS sets, with one pair for every concurrent task. A fuing sequence FS (subset of T) is an 

ordered sequence of transitions 4, tc:I •••• , tk such that after fuing tb £ FS, a new state of APN is 

reached at which the enabling conditions for the immediate successive transition in FS are 

satisfied. 

By virtue of the addition to the fuing rules in subsection 3.2, firing a transition alters not 

only the marking of the net, but also the sets RS and WS. 

A reachability set RS(M) is the set of all states reachable from state M connected by 
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transitions ti_ £ FS such that if M1 £ RS then M2 £ RS for for some transitions in FS. An 

augmented reachability graph (ARG) is the set of all reachability sets RS(Mo) for all possible 

firing sequences FS, where Mo is the initial state of the net. Graphically, a state node in ARG 

is represented by a token marking augmented with RS and WS sets for all tasks. An arc 

between two nodes is labeled by the corresponding flred transition. 

It should be noted that a path in ARG corresponds to a sequence of synchronization 

events, i.e. rendevzous, in the concurrent program. The procedure for generating an ARG for 

APN is the same as that for the PT nets, with RS and WS sets taken into account. The ARG 

generation procedure starts at an initial state Mo. and repeats a basic step until no more nodes, 

i.e. state nodes, can be generated. The basic step in the generation procedure is the 

determination of all enabled transitions at a given state. The enabled transitions will then be 

flred in all possible permutations. Each time a transition, which belongs to a task subnet, is 

fired a new token marking is reached and a new concUITency zone in the relevant task may be 

entered. A new concUITency zone for a task yields new RS and WS, possibly empty, 

augmenting the generated node. 

The generation procedure terminates and yields a finite ARG because ARG corresponds 

to a fmite APN, the reachability graphs of the component subnets of APN are finite, and loops 

will simply yield a previously generated state so that the same state node is never generated 

more than once. 

A terminal node in ARG corresponds to either a valid termination state or to a deadlock 

state. Valid termination indicates that all tasks have performed their synchronization 

operations and are no longer active. Its determination in terms of net markings is an 

implementation issue. A deadlock state is a terminal state that does not represent valid 

termination. 

The analysis of ARG is carried out by searching all nodes for deadlock states and 

potential race conditions on shared variables. Race conditions are detected when more than 

one task may conflict over the access of shared variables in the same state. 
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An ARG is depicted in Figure 3.4 for the APN of Figure 3.2. It shows that no deadlock 

occurs in the program under consideration. Instead, a valid termination state is reached, 

where tokens reach the end-place p5 and p 11 of the two tasks. The ARG also shows that the 

two tasks may conflict in one of the states in attempting to update the value of the shared 

variable z. 
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4. CONCURRENT PROGRAM STATIC ANALYSIS TOOL 

A Concurrent Program Static Analysis (CPSA) Tool, which implements the approach 

explained in the previous section, is described in this section. The CPSA tool consists of four 

modules which are shown in Figure 4.1. The Modeling (MOD) module produces an APN 

model of the tasking-related program statements whereas the Augmented Reachability Graph 

Generator (ARGG) module constructs its augmented reachability graph (ARG). The 

Reachability Graph Analyzer (RGA) module is composed of various procedures which 

analyze the information offered by the ARG about the underlying concurrent program. The 

User Interface (UI) module uses X-Windows software to facilitate interaction with users. The 

UI module offers a menu-driven user friendly environment, where a user can select one of 

several analysis options by clicking a mouse and can view multiple results simultaneously. 

Such a user interface facilitates and speeds up the process of isolating and locating errors. 

The tool has been developed under UNIX environment running on a SUN 3/50 workstation. 

the MOD, ARGG and RGA modules are written in the C language. The overall size of the 

tool is about 11,000 lines of code. 

The design of the CPSA tool is structured and modular. The UI module has access to 

files and outputs produced by the other three modules to provide error reports and visual 

support for analysis; thus facilitating the debugging of the concurrent program being 

analyzed. 

The modular design makes the tool suitable for several programming languages. 

Language dependency occurs only in a small number of sections of the MOD module and, 

hence, simple substitutions are sufficient to accommodate different languages. In the present 

implementation of the CPSA tool, a subset of the Ada language constructs which is sufficient 

to illustrate the approach is considered. This subset includes the entry call statement, accept

end, if-then-else-end, case-end, loop constructs, select statement and begin-end. Loop 

conditions are ignored, to avoid combinatorial explosion. 

The procedures employed and some implementation considerations for each module of 
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the CPSA tool are described below. Some comments about the complexity of the tool are also 

presented. 

4.1 MODELING MODULE 

The MOD module translates an Ada source code into an APN model. It also yields 

useful byproducts which are a source program with line numbers, referred to as numbered 

statement list (NSL), and a list of tasking-related statements, referred to as intermediate 

program (IP). Other useful data structures are a table of subnets corresponding to Ada 

language constructs, a table of task names and identification numbers (ID), a table of 

rendezvous information involving all synchronization points, and a table of concurrency 

zones involving shared variables in different sections of the tasks. 

Translation of source code into APN considers only tasking-related statements, that is 

IP. The translation str~tegy consists of using Ada subnets as templates or building blocks and 

connecting these subnets based on either the sequential location of the corresponding 

statement or information derived from the rendezvous tables. The Ada templates have the 

same structure as shown in Figure 3.1. Translation is done by scanning the IP statements in 

sequence, fetching the corresponding templates in a table look-up fashion, labeling the places 

and transitions of the subnets with identification information for later analysis, augmenting 

the subnets with sets of shared variables in respective concurrency zones, connecting the 

subnets by combining compatible sequential and synchronization places, and building 

necessary tables and data structures. 

The MOD module consists of three phases. In phase 1, the source code is scanned and 

filtered to produce an IP. Also NSL is produced for later reference in error reporting. In 

phase 2, IP is scanned to construct tables and data structures needed for the next phase. In 

phase 3, another pass through IP is made to build the APN model of the underlying program. 

An outline of the three phases is given below. 
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Phase 1. While scanning the source code do: 

• Assign line numbers to statements for producing NSL. 

• Identify statements that are tasking-related and construct IP. 

• Identify global variables, by differentiating them from locally declared variables, in each 

task with statement numbers to which they belong and determine whether they occur as 

Read or Write variables. 

Phase 2. While scanning IP do: 

• Create a Task Table, which is a list of all tasks in the program with an assigned unique 

integeriD. 

• Construct a Rendezvous Table, which consists of IDs of tasks requesting rendezvous, IDs of 

tasks accepting rendezvous, entry points in the accept statements and the line numbers of 

these statements. 

• Construct a Concurrency Zones Table. Each row in the table consists of the task ID, the 

start statement number of the zone, the finish statement number of the zone, the Read set of 

global variables in the zone and the Write set of global variables. The number of the start 

statement of a concurrency zone is used as the index of the table. 

Phase 3. While scanning IP do: 

• For each statement, look up the corresponding template subnet. 

• Augment transitions with Read and Write sets of shared variables detennined from the 

corresponding row in the table of concurrency zones. 

• Label synchronization places with the name of the task involved and the synchronization 

status (e.g. entry, accept, end). Also, label transitions with the type and line number of the 

statement it corresponds to (in NSL). The labels are used in connecting subnets and in error 

reporting by UI module. This step uses the rendezvous table. 

• Store in the data structures of places (resp. transitions) unique IDs, the number of input and 
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output transitions (places) and the number of tokens (initially zero). 

• Connect subnets by merging compatible terminal sequential places in consecutive subnets, 

within the same task, and by merging compatible synchronization places of rendezvous 

subnets in different tasks. This step uses the rendezvous table and place labels (to detect 

compatibility). 

• Finally, assign single tokens to the begin-places of all tasks to prepare APN for the 

construction of the reachability graph. 

The program shown in Figure 2.2 with statement numbers is an example of NSL. For 

this program, IP would retain statements 3, 5, 7, 10, 11, 13, and 15. A task table, a 

rendezvous table and a concurrency zone table for this example are given in Figure 4.2. 

Labels attached to synchronization places in phase 3 are useful in error reports and in 

analyzing ARG. Examples of important labels are <<request-called task ID-request statement 

no.>> and <<acknowledge-accepting task ID-request statement no.>>. 

4.2 AUGMENTED REACHABIUTY GRAPH GENERATOR MODULE 

As explained in Section 3.3, an ARG consists of nodes and arcs. A state node 

represents a marking of the net and is augmented with RS and WS of shared variables. An arc 

represents a fired transition which leads to a new state. The ARG generation strategy is based 

upon firing all enabled transitions in all possible permutations at any given state of the APN. 

A breadth-f1I'St generation procedure is presented below. Nodes of the ARG are assigned 

unique node IDs, a level (with respect to the root) number, the IDs of the input and output 

arcs (i.e. APN transitions) and pointers toRS and WS sets for all tasks. Other useful data 

structures are a list of unexplored ARG nodes, UNEXPLORED, and a list of enabled 

transitions, TRENABLED. A valid termination node is determined by the presence of tokens 

in the end-places of all tasks. 
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Procedure 

• The root node of the ARG corresponds to the state resulting from the presence of tokens in 

the begin-places of all tasks and from the augmenting RS and WS sets of the first 

concurrency zone in all tasks. Initially UNEXPLORED contains only the root node. 

• Repeat until no more nodes in UNEXPLORED: 

- Find the fll'St node in the list, UNEXPLORED. 

- For the new state, search in the neighborhood of places with tokens for enabled transitions 

(That is, the entire APN need not be searched). Create TRENABLED; in case of structural 

conflict (if-then-else), add both transitions to TRENABLED. 

-Fire all the enabled transitions in TRENABLED successively, each time starting from the 

same parent state node. 

- Whenever a transition fires, change the number of tokens in the input and output places 

and update RS and WS corresponding to the fired transition in the specified task (by using 

table of concurrency zones with transition ID as index). 

- Add new child state nodes created by fuing transitions to UNEXPLORED. 

- Delete nodes from UNEXPLORED if all their transitions in TRENABLED have been fired 

or if they enable no transitions. 

end-repeat 

4.3 REACHABILITY GRAPH ANALYZER MODULE 

Analysis in the Reachability Graph Analyzer (RGA) module is done on the ARG which 

is language-independent. It is initiated when requests are made by the user through the UI 

module. Analysis of ARG aims at providing error reports and some performance information, 

which may provide insights into factors such as workload balancing and bottelnecks in the 

concurrent program. The present analysis capabilities of the RGA module are described 

below. Because of the modular design of the CPSA tool, additional analysis capabilities can 

be easily added. 
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Deadlock Detection: Deadlock here refers to any type of blocking or infinite wait 

encountered by a task. A deadlock state is defined as a non-valid termination state from 

which no transition can be enabled. Detection of deadlock is performed by searching the 

ARG for (non-valid-termination) leaf nodes. 

A terminal leaf node in the ARG represents either a deadlock state or a valid termination 

state. A valid termination node represents a marking of the APN where tokens are present in 

the end-places of all tasks. This marking entails that the list of unexplored nodes is empty and 

that no tokens are present in any place other than the task end-places. 

Concurrent Update of.. Shared Variables: This refers to the anomaly called potential race 

condition. It is detected by traversing the nodes of the ARG and performing, for each node, 

pairwise comparisons for all tasks Ti, where i = 1 , 2, ... , n, on all {RSd and {WSd. A race 

condition on shared data may occur if there exist elements in the intersection of { RSi} and 

{WSj} or {WSd and {WSj} fori= 1, 2, ... , n, j = 1, 2, ... , n and i different from j. The 

number of comparisons is not as large as may first seem to be since most of the sets are 

normally empty and comparisons with empty sets can be dispensed with. Moreover, 

comparisons need only be performed between the new RS and WS sets, resulting from firing 

a transition in a task, and the sets for the other tasks. That is, comparisons among unchanged 

RS and WS sets need not be repeated. 

Rendezvous of...a....I.ask: The number of rendezvous a task T makes and the identity of the 

tasks with which rendezvous takes place is determined by searching the ARG nodes for 

markings where tokens appear in synchronization places with labels "acknowledge-T

statement no". This label refers to places acknowledging acceptance by task T for a task 

requesting a rendezvous in statement number SN. The statement numbers SNare reported to 

the user to indicate entry call statements that may result in a rendezvous with task T. 
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Maximum Number of Rendezvous Queued for a Task: The maximum number of rendezvous 

that are queued for a task T is determined by searching the nodes of the ARG. In each node, 

the marking is inspected for tokens that appear in synchronization places with labels "request

T-statement no". The number of rendezvous requests indicated in each node is recorded and 

the maximum over all nodes is determined. 

4.4 USERINTERFACE 

The User Interface (UI) module, in conjunction with the RGA module, indicates to the 

user the location and type of detected errors and anomalies and provides information that may 

be used for debugging or redesigning the program. This module enables the user to request 

analysis information, displays the results produced by the RGA module in a convenient 

format and allows the user to inspect important data structures. All these facilities are 

provided with a button-click style of operation in an X-Window environment, which hides the 

complexity of the tool. The currently implemented facilities are adequate for our objectives. 

However, they can easily be extended and made more user-friendly. 

A typical X-Window screen display is shown in Figure 4.3. Three windows are used in 

addition to a menu of the available functions. As shown in the figure, the source code 

filename has to be specified first. Then a number of facilities and analysis functions become 

available. The first row of functions in the screen display offers general convenient facilities, 

list, save, etc. 

Three windows are used, that allow simultaneous display of different results and the 

display of a fair amount of information in each window by scrolling it up and down. Window 

1 displays status messages, error reports and other analysis information. The status messages 

are messages about current operation of the tool, such as << Generate Petri net>> and << 

Generate reachability graph>>. The error and anomaly reports provide results received from 

the RGA about deadlocks and race conditions on shared variables, if any. Reports about other 
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analysis functions refer to the rendezvous a task can make and the maximum number of 

rendezvous queued for a task. 

Window 2 displays NSL and IP, which can be inspected in association with the error 

and analysis reports in window 1. In window 3, the important data structures produced by the 

tool are displayed (by "list"). These are APN, ARG, rendezvous table and concurrency zones 

table. Viewing these structures simultaneously with error reports and NSL is essential for 

locating errors and anomalies. The list of places of APN includes, for each place, the label, its 

ID, and IDs of input and output transitions. An APN transition is viewed by its label, its ID, 

IDs of input and output places, and RS and WS sets of variables. The ARG is displayed as a 

list of nodes. The concurrency zones list is also displayed as a table. 

4.5 COMPLEXITY OF THE TOOL 

The algorithms employed in different modules have different complexities. The 

complexity of the modeling algorithms is linear in the size of the source code and specifically 

in the number of the tasking-related statements in the concurrent program. The generation 

and analysis of the reachability graph activities are exponential in the number of tasks. This 

complexity tends to set an upper bound on the utility of the tool. However, this complexity 

can be reduced by collecting analysis information, such as the identification of deadlock 

states, during the ARG generation and making this infonnation available on demand to the 

user. The detection of race conditions on shared variables does not add another dimension of 

exponentiality in the number of tasks as it may seem to be, since the comparison of the 

elements of RS and WS sets is perfonned only on updated sets in a node of the ARG. 

Clearly, only one pair of sets is updated per transition from one node to the next in the ARG. 

The use of X-window displays in the UI module does not add significant time delay to the 

total execution time of the tool. It is worth noting that the complexity or the algorithms 

discussed here is comparable to that for typical general static analysis approaches, such as 

[Taylor 83a], [Shatz 88a] and [Dillon 88]. 
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5. EXPERIMENTS WITH THE TOOL 

Several test programs were employed to assess the correctness of the CPSA tool in 

detecting of deadlocks and potential race conditions. These test cases include most of the 

examples that have been used in the literature to illustrate other approaches or to demonstrate 

their validity. 

The test programs for deadlock detection can be broadly classified according to the 

condition that leads to deadlock. Some test programs involve a mismatch in the number of 

rendezvous requests and rendezvous accepts in the communicating tasks. This class includes 

a simple example, which has been employed in [Shatz 88], in which two tasks make entry 

calls to a task that can only accept one entry. A second class of test programs involves 

misordering of entry call and accept statements in rendezvous-ing tasks. For example, task 

Tl may make two entry calls to task T2 with consecutive entry points El then E2, whereas T2 

accepts rendezvous with entry point E2 frrst then El. An example program of the producer

consumer type employed in [Murata 89a] has been included in this class of tests. A third 

class of test programs involves circular deadlocks which are caused by a set of rendezvous 

statements, each in a different task, mutually suspending each other and, thus, blocking their 

respective tasks. A typical example of a circular deadlock is that occurring in the dining 

philosophers system when each philosopher picks up his left fork and no one picks up the 

right fork. In this class of test cases we have included, a consumer-producer program from 

[Murata 89a] and the known gas station problem from [Helmbold 85]. Another set of test 

programs is deadlock-free, such as an example from [Dillon 88a]. 

The tool has been tested with test cases from these four classes of concurrent programs. 

In addition, test cases which include potential race conditions on shared variables have been 

employed, where global variables are inserted in various concurrency zones. The analysis 

results of the tool have been correct for this collection of test programs. That is, the tool 

reports a statically detectable deadlock or a race condition when such anomalies and errors are 

known to be present and does not when they are known to be absent in these specific 
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programs. 

Three example sets are presented below only in enough detail to explain our approach. 

Example set 1 describes deadlock detection. Example set 2 describes detection of potential 

race conditions. The two features are integrated in the tool and are separated in these 

examples only for clarity purposes. Example set 3 is included to point out the limitations of 

this tool as well as of static analysis based approaches for testing concurrent programs. 

Example Sct..l An Ada program, shown in Figure 5.1, is chosen to represent this set. This 

program results in a deadlock because task A is making two rendezvous requests to task B, 

whereas task B is accepting only one rendezvous. The Petri net produced by the modeling 

module is shown in Figure 5.2 and its reachability graph is depicted in Figure 5.3. In both 

figures, the RS and WS sets are omitted since they are empty in this example. A sample user 

display is given in Figure 4.3, where the error report, the numbered program statements (i.e. 

NSL), and parts of the PN list (places and transitions) are shown. 

Example Set 2 The Ada program given in Figure 2.2 is used to represent this set. It involves 

the shared variables w and z. The anomaly of race conditions may occur over the global 

variable z used in the respective concurrency zones of tasks SENDER and RECEIVER. this 

is illustrated in Figures 3.2, 3.3 and 3.4. 

Example .s.ct...3. A number of programs of various sizes and task interaction rates have been 

examined. Programs with more than two tasks require either a large amount of memory 

storage or a long analysis time by the tool. This will be discussed in the next section. 
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6. DISCUSSION AND EXTENSIONS 

A static analysis tool has been described for providing reports about deadlocks and 

potential race conditions on shared variables. It also provides other useful analysis 

information in Ada concurrent programs. In the tool, a concurrent program is first translated 

into an augmented Petri net model. Then, upon user requests, an augmented reachability 

graph is derived and analyzed to yield desired information about the original concurrent 

program. User requests are made through an X-window-based interface. 

Although Ada has been chosen as a rendezvous-based programming notation, the 

approach upon which the tool is based is not language dependent. Simple substitutions in the 

modeling module of the tool can accommodate other rendezvous-based notations, such as 

CSP [Hoare 78] and its variants. 

The utility of the tool is expressed in its ability to report important syntax-based 

deadlocks and anomalies and to provide useful analysis information. Our experience with the 

tool and its validation has shown its usefulness in capturing many deadlock errors and cases 

of race conditions on shared variables. We feel that its use in analyzing concurrent programs 

does enhance our confidence about the correctness of these programs with respect to such 

errors and anomalies. 

The tool suffers from some of the limitations shared by all approaches based on pure 

static analysis and exhaustive search. These limitations can be described as lack of program 

semantics and combinatorial explosion of the reachability graph. The lack of program 

semantics may lead to infeasible paths in the search space which can produce spurious error 

reports. However, such reports can be minimized by adding features that capture the effects 

of decision control statements leading the to pruning of the infeasible paths. The exponential 

growth of the reachability graph can be satisfactorily overcome either by selective generation 

and analysis of the graph or by Petri net reduction. Net reduction techniques have been 

proposed in [Berthelot 86] and [Lee 87]. Based on these techniques, algorithms can be 
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worked out and then incorporated in the CPSA tool. Work is underway to enhance the Petri 

net model for minimizing spurious error reports, and to reduce the search space. 
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(a) Before (b) After 

Figure 2.1 A PT net before and after firing a transition. 
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1 Task body SENDER is 

2 story : integer; 

3 begin 

4 create (story); 

5 RECEIVER. takemessage (story); 

6 z:=story+w, 

7 endSENDER 

8 Task body RECEIVER is 

9 y : integer; 

10 begin 

11 accept takemessage (message : in integer) do 

10 z : =message+ y; 

13 end, 

14 z :=message~ w; 

15 end RECEIVER 

Figure 2.2 An example illustrating Ada constructs for rendezvous. (Variables z and w are 

assumed to be global) 
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entry 
call 

entry 
acknowledged 

(a) Rendezvous request 

0 
ilien t ')- else 

(d) if-then-else 

~pt 
~owledge entry 

(b) Rendezvous accept 

(c) select 
acceptl ... . 

or accept2 ... . 
or accept3 ... . 

end select 

loop-begin 

end-loop 

(e) loop 

Figure 3.1 PN subnets corresponding to TR statements. 

29 



begin 

{w} {z} 

end 

SENDER 

pl 

t1 

t3 
acknowledged 

p4 

t4 

p5 

t5 

RECEIVER 

p6 

begin 

p7 

{ } {z} 

p8 

{w}{z} 

acknowledge 

p9 

t8 end 

plO 

Figure 3.2 Augmented Petri net model for the program in Figure 2.1. 

( Augmenting sets are in the order : RS , WS ) 
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{w} {z} 
{ } {z} 

{w} {z} 

Figure 3.3 Graph of concurrency zones for the program in Fig. 2.1. 

(RS and WS sets are shown next to the relevant nodes) 
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{ }{ }{w}{z} 

{ }{ }{w}{z} 

Figure 3.4 Augmented reachability graph for the APN in Figure 3.2. 
(Augmenting sets are in the following order: 

RS of SENDER, WS of SENDER, RS of RECEIVER, 
WS of RECEIVER ) 
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Translator Augmented Reachability 

Module Reach ability Graph 
SOURCE 

Phase APN Graph ARG Analyzer 
CODE 

Generator Module 
1 2 3 

Module 

Fig. 4.1 Concurrent Program Static Analysis ( CPSA ) Tool System. 
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Calling Task 
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TaskiD 

1 

1 

1 

2 

2 

2 

2 

TaskName lU 

SENDER 1 

RECEIVER 2 

(a) Task Table 

Accepting Task 

2 

Entry Point 

takemessage 

(b) Rendezvous Table 

Stan# Finish# 

3 4 

5 6 

7 7 

10 10 

11 12 

13 14 

15 15 

(c) Concurrency Zone Table 

B.S. 

w 

w 

Figure 4.2 Task table, Rendezvous table and Concurrency zone tables for 

the Program of Figure 2.1 
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enter source filename 

L,_ ____ ___.lldeadloc~ I rendezvous II max entry calls I leone var update! 

Window l 
load "figS .1" 
Generate Petri Net 
Generate Reachability Graph 

Deadlock in state node 13 
after firing transitions: 
entry-16 
accept-24 
tokens in places 10,11,18 
Deadlock in state node 21 
after firing transitions: 
entry-11 
accept-24 

Window 2 

1 task A is 
2endA; 
4 task B is 
5 entryE; 
6endB; 
8 task body A is 
9 begin 
10 if a<b then 
11 B.E; 
12 else 
13 a:= b+l; 
14 endif; 
15 if b<a then 
16 B.E; 
17else 
18 b:=a; 
19 endif; 

Window j 

12: ack-accept-B-16 from 13 to 8 
from 13 to 8 

13: end-20 
from 10 to 

14 : begin-23 
from to 11 

15: accept-24 
from 11 to 12, 13 

16: end 
from 12, 13 to 14-B 

17: end-25 
from 14 to 

Total transitions 15 

0: begin-9 
from 0 to 1 

1: if-10 
from 1 to2 

2: entry-11 
from 2 to3,4 

3 : end-entty-11 
from 5, 3 to 6 

4: else-12 
from 6 to 7 

5: end-if-14 
from 7 to 8 

6: if-15 
from 8 to9 

7: entty-16 
from 9 to 10, 11 

8: end-entty-16 
from 12, 10 to 8 

Fig. 4.3 X-Window screen for CPSA tool. 
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1task A is 8 task body A is 22 task body B is 
2 end A; 9 begin 23 begin 

10 if a <b then 24 accept E; 
4 task B is 11 B.E; 25 endB; 
5 entry E; 12 else 
6 endB; 13 a :=b+ 1; 

14 endif; 
15 ifc<d then 
16 B.E; 
17 else. 
18 b:=a; 
19 endif; 
20endA; 

Figure 5.1 An Ada program that contains a deadlock. 
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t4 

Qp13 

cnd_A 

taskB 
p14 • 

md_B 

accept 

tl3 

Figure 5.2 Petri net model of the program in figure 5 .1. 
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Ill 

(10, 11, 15) 

!113 

(13, 15) 
deadlock 

(8, 18) 

/110 
(13, 18) 
valid 

termination 

(2, 18) 

!IS 
run 

/ \16 
(9, 18) 

! 17 

(10,11,18) 
deadlock 

Figure 5.3 Reachability Graph of the Petri Net in figure 5.2. 
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