
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

11-1990

Hypercube Algorithms for Operations on Quadtrees Hypercube Algorithms for Operations on Quadtrees

Ravi V. Shankar
Syracuse University

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shankar, Ravi V. and Ranka, Sanjay, "Hypercube Algorithms for Operations on Quadtrees" (1990). Electrical
Engineering and Computer Science - Technical Reports. 83.
https://surface.syr.edu/eecs_techreports/83

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/83?utm_source=surface.syr.edu%2Feecs_techreports%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-34

Hypercube Algorithms for Operations
on Quadtrees

Ravi V. Shankar and Sanjay Ranka

November 1990

School of CompUJer and Itiformation Science
Syracuse University

Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Hypercube Algorithms for Operations
on Quadtrees

Ravi V. Shankar and Sanjay Ranka

November 1990

School of Computer and Information Science
Syracuse University

Suite4-116
Center for Science and Technology

Syracuse, NY 13244-4100

(315) 443-2368

SU-CIS-90-34

Hypercube Algorithms for Operations on
Quad trees

Ravi V Shankar and Sanjay Ranka *
School of Computer and Information Science

Syracuse University
Syracuse, NY 13244-4100

2 November 1990

Abstract: This paper describes parallel algorithms for the following oper­
ations on qua.dtrees- boolean operations (union, intersection, complement),
collapsing a quadtree, and neighbor finding in an image represented by a
quadtree. The architecture assumed in this paper is a. hypercube with one
processing element (PE) per hypercube node. We assume that the architec­
ture is SIMD, i.e., all PEs work under the control of a single control unit.

[(eywords: Qua.dtrees, Hypercube algorithms, Image processing

1 Introduction

A quadtree[l] is a. tree representation of a. sparse image (in general, a.ny 2D
array). The root of the qua.dtree represents the entire image. If the portion
of the image represented by any node does not have the same gray value,
the node is assigned four children. Each child represents one of the four
quadrants of the image portion represented by its parent. This continues
recursively until all the leaf nodes represent portions of the image with the
same gray value.

Throughout this work we assume that the input image is binary. The
algorithms can be extended to deal with gray-level/color images.

1

1.1 Definitions

The level of a quad tree node is its distance (in terms of number of links) from
the root. The height of a quadtree is the greatest of the distances between
the nodes of the quadtree and the root. The term node actually indicates a
collection of pixels. A node at level 1 in a quadtree of height h represents a
collection of 4(h-l) pixels.

Every non-leaf node in the quadtree has exactly four children. Every leaf
node is either filled (i.e., has a value of 1) or empty (i.e., has a value of 0).

Nodes representing single pixels have the same index as the shuffled row­
major index of the pixel they represent. The index of nodes representing a
collection of pixels is the smallest of the indices of the pixels represented.
Shuffled row-major indexing for an 8x8 image is shown in figure la.

A node X in tree Tl is said to cover a node Yin tree T2 if (i) there exists
a node Z in T2 such that Z is an ancestor of Y and index(Z) and level(Z) are
equal to index(X) and level (X) respectively, or (ii) X is identical to Y.

1.2 Representation of the quadtree

There are many ways in which a quadtree can be stored. The most expensive
method is to store the actual tree including the values and the pointers at each
node. A better way would be to store only the leaves of the quadtree along
with the corresponding indices and values. Even this contains redundant
information since information about empty leaves can be obtained given the
information about filled leaves alone. We represent the quadtree using its
only its filled leaves. Given a quad tree with N filled nodes, either r N I Pl or
L N / P J are stored in each PE (P = number of PEs). The index, and level of
each filled leaf are stored in the index and level registers. A additional value
register is needed for gray level/ color images.

Figures l(b) and lD(c) shows a binary image, a quadtree for the same
image, and the lD representation of the quadtree. The lD representation of
quadtrees is referred to as "linear quadtrees" in the literature.

The quadtree representation in a lD array of PEs is said to be in standard
form when (i) only filled leaf nodes are represented (ii) the filled leaf nodes
are arranged with their indices in increasing order, and (iii) every PE to the
left of a PE having a filled leaf node has a filled leaf node of its own. All
algorithms in this paper assume that the input is in standard form. The

2

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

Figure la Shuffled Row-Major Indexing for
an 8x8 Image

Index: 12 26 27 40 41 48
Level: 2 3 3 3 3 1

Figure lb A Binary Image and Its lD
Representaion

Figure lc A Quadtree for figure la

output of all algorithms is also in standard form.

1.3 Earlier work

Sequential algorithms for processing pointer-less quadtrees are described in
[2] and [3]. Parallel quadtree algorithms for various architectures can be
found in the literature. Mei and Liu[4] consider quadtree algorithms for 2D
shuffle exchange network. The paper also assumes a static allocation of all im­
age pixels (empty and filled) to processors, which in the case of sparse images
would result in a lot of idle processors. Martinet al [5] describe algorithms for
a horizontally reconfigurable architecture. Hung and Rosenfeld[6] consider
a mesh connected computer. It appears that their intersection/union algo­
rithm assumes the availability of both empty as well as filled leaves, which
represents redundant input. Our collapse algorithm is based on one of their
quadtree building algorithms, while our neighbor finding algorithm is a mod­
ified version of their algorithm for the hypercube. Nandy et al [7] describe
linear quadtree algorithms for neighbor finding and boundary following on
an MIMD hypercube. Their work does not give complexity analysis for the
complete embedding of the quadtree.

2 Hypercube Primitives

2.1 Concentrate

In the Concentrate algorithm we start with a subset of the processing ele­
ments, each containing data in register D, and the PE's rank (that is, the
number of selected PEs with lower index than self) in register R. The objec­
tive is to move the data in register D such that D(i) goes to the PE with index
R(i). This primitive is used to bring the lD representation of a quadtree into
standard form.

The Concentrate algorithm is described in [8]. Figure 2(a) illustrates the
concentrate operation. The time complexity of the algorithm is O((N/ P) log P)
where N is the size of the given input and P is the no of PEs.

3

2.2 Merge

Merging of two sorted arrays can be done on the hypercube using the bitonic
merge algorithm. The hypercube algorithm is described in [9]. The merge
algorithm takes time 0((N / P) log P). The merge primitive is used in the
quadtree intersection/union algorithm.

2.3 Generalize

In the Generalize algorithm we start with data in register D in the first
k PEs. A detination PE index is available in register R and is such that
R(i - 1) < R(i) for 0 <= i <= k. For convenience, assume R(-1) = 0. The
objective is to move the data in register D such that D(i) goes to all the PEs
with index k satsifying < R(i) and >= R(i- 1). This primitive is used to
obtain the complement of a quadtree.

The Generalize algorithm is described in [8]. Figure 2(b) illustrates the
generalize primi~ive. The time complexity of the algorithm is 0 ((N / P) log P).

2.4 Segmented Scans

In the segmented prefix scan algorithm a 1-bit registerS is used to indicate
the start of a new segment when set to 1. Data is available in register D.
A binary associative operator ffi is specified. The objective is to obtain in
PE i the quantity D(j) ffi D(j+1) ffi ... D(i) where j satisfies the following
properties (i) j <= i (ii) S(j) = 1 and (iii) for all k satisfying j < k <= i
and S{k)=O. Segmented scans are used in the quadtree union/intersection,
collapse and in the neighbor finding algorithms.

The segmented scan algorithm is a modified form of the prefix scan algo­
rithm presented in [8]. Figure 2(c) illustrates the scan primitive. The time
complexity of the algorithm is O((N/P) + logP).

2.5 Sort

Bitonic sort can be used to sort an array on the hypercube. The sorting al­
gorithm is described in [9]. The bitonic sort algorithm takes time O(log2 N)
when P=N. A faster deterministic sorting algorithm that runs in nearly log­
arithmic time is presented in [10]. The complexity of this sorting algorithm is

4

D
R
D(after Concentrate)

D
R
D(after Generalize)

D
D(after +-scan)

s

di - <4 ds ~
a 0 a a 1 2 3 a
di <4 ds ~

(a) Concentrate

do dl d2 d3
2 3 6 7 a a a a

do do do dl d2 d2 d2 d3

(b) Generalize

7 9 4 6 8 2 1 5
7 16 20 26 34 36 37 42

1 0 0 1 0 0 1 0
D(after segmented +-scan) 7 16 20 6 14 16 1 6

(c) Non-segmented I Segmented Prefix Scan

Figure 2. Hypercube primitives

O(logN(loglogN)2) when P=N. Sort(N,P) is used throughout this paper
to indicate the time taken to sort N elements on a hypercube with P PEs.
The Sort primitive is used in the neighbor finding algorithm.

3 Boolean Operations

3.1 Intersection/Union

The intersection/union of two quadtrees T1 and T2 is a quadtree T such
that the image represented by T is the intersection/union of the images
represented by T1 and T2•

The intersection/union algorithm is outlined in figure 3.
Figure 4 illustrates the intersection/union algorithm through an example.

The Index, Level, and Tree-no registers are set by merging the given quad trees
as mentioned in step 1 of the algorithm. Initially the Cov register is set as
described in step 2 - a '1' indicates a covering node, '0' a covered node, '9'
stands for a node to be deleted, '8' for a node that will definitely appear
in the resulting tree, and '7' for a node that hasn't been labeled yet. The
contents of the Cov register are modified after determination of 'leaders'.
The label '4' indicates that a node is covered by its leader and '5' indicates
that it is not. The resulting tree after the intersection and union operations
are obtained as described in step 5. These are available in registers Inter and
Union.

For the intersection/union algorithm to work correctly we only need to
correctly mark all the filled leaves in the given trees as 'covering', 'covered by
a filled leaf' or 'covered by an empty node'. This is because we can retain all
nodes covered by an empty leaf and remove those covered by a filled leaf for
quadtree union. For intersection, we can retain all nodes covered by a filled
leaf while removing the filled cover of those nodes and also remove nodes
covered by an empty leaf.

The correctness of the union/intersection algorithm can be proved as
follows. In step 2, cases a,b, and c mark the covering nodes in the input
quad tree correctly. Steps 3,4, and 5 mark the quadtree nodes that are covered
by a filled leaf. We claim that the nodes in the given quadtrees that haven't
been marked so far are all covered by a.n empty leaf. This is true since all
nodes covered by a.ny leaf X appear as a continuous run of nodes after X in

5

1. Merge trees T1 and T2 such that the merged tree is sorted by
<index,level, tree-no>
2. Let each node P examine its immediate successor X. The following cases
may arise:

a index(P) = index(X), level(P) = level(X), tree-no(P) < tree-no(X)

b index(P) = index(X), level(P) < level(X)

c index(P) < index(X)

Case a P covers X and X covers P. Mark one of the nodes (say P) as 'covering'
and mark the other for deletion.

Case b tree-no(P).must be different from tree-no(X) since no two filled leaves
from the same tree will have identical indices. P covers X. Mark P as
'covering' and X as 'covered'.

Case c If index(X) < index(P) + size(P), then P covers X. Mark P as 'covering'
as X as 'covered'.

3. Split the nodes into segments with the covering nodes determined so far
marking the start of new segments.
4. The index and level of the covering nodes (we will call these 'leaders') are
copied onto each node in the segment.
5. Each node in the segment checks whether it is covered by its leader. If
yes, leave as such for intersection and invalidate the leader. For union remove
these. If not, it is covered by an empty node. Remove these for intersection.
Leave as such for union.
6. Concentrate to remove all nodes that were invalidated or marked for
deletion.

Figure 3 Algorithm for the intersection/union of two quadtrees

6

IIIII

Ill Ill
Ill Ill

Index: 2 3 4 8 10 12 14

Level: 2 2 1 2 2 2 2

(a) Tree T1

Index: 0 1 2 3 4
Level: 2 2 2 2 1
Tree-no: 1 1 0 0 0
Cover]: 7 7 7 7 1
Cov: 5 5 5 5 1
Inter: 0 0 0 0 0
Union: 1 1 1 1 1

4 6
2 2
1 1
0 0
4 4
1 1
0 0

Ill
IIIII Ill
IIIII

Index 0 1 4 6 10 11 12

wei 2 2 2 2 2 2 1

(b) Tree T2

8 10 10 11 12 12 14
2 2 2 2 1 2 2
0 0 1 1 1 0 0
7 7 9 7 1 0 7
5 9 8 5 1 4 4
0 0 1 0 0 1 1
1 0 1 1 1 0 0

(c) Steps in the Union/Intersection Algorithm.

Index: 4 6 10 12 14 Index: 0 4 8 10 11 12

Level: 2 2 2 2 2 Level: 1 1 2 2 2 1

(d) Tree T1 n T2 (e) Tree T1 u T2

Figure 4. Union/Intersection

1. Each node looks at its immediate sucessor and finds out the number of
empty pixels between between them.
2. The generalize algorithm is used to spread the empty nodes one per PE.
3. A collapse algorithm is run to group empty nodes together and to bring
the result to standard form.

Figure 5 The Complementing algorithm

the sorted ordering described in step 1.
This is because empty covering nodes are not available in our represen­

tation. Further, all nodes covered by P weren't marked as 'covered' in cases
band c.

A node X is covered by its leader Y iff index(Y) = index(X) - index(X)
mod 4 height-level(Y). In step 5, invalidation of the leader can be done by setting
up an invalidation request and finally performing a segmented backward OR
scan to do the actual invalidation.

The merge in step 1 and the concentrate in step 6 take time O((N / P) log P).
The prefix scan in steps 4 and 5 take O((N/P) + logP) time. Steps 2
and 3 take O(N /P) time. Thus the intersection/union algorithm has an
O((N/ P) log P) time complexity.

3.2 Complement

The complement algorithm is outlined in figure 5.
Let N1 be the number of filled leaves in the given quadtree. Step 1 takes

O(Nt/P) time and steps 2 and 3 take O((N/ P) log P) time, where N is
the sum of sizes (in pixels) of the empty leaves in the given quadtree. The
entire complement algorithm has an O((N/P)logP) time complexity. The
algorithm, however, has a high worst-case space complexity.

The number of empty nodes is determined as follows: Let A and B be the
2 leaf nodes between which we wish to find the number of empty nodes. Find
the index i 1 of the rightmost node at the lowest level of the subtree rooted
at A and the index i 2 of the leftmost node at the lowest level of the subtree
rooted at B. (i2 - i 1 - 1) gives the number of empty nodes between A and
B. (Minor modifications can be made for the first and the last leaf nodes).

To reduce the amount of space required the following modification can

7

(a) Tree T3 (b) Complement ofT 3

Index: 4 12 13 22 28 32 48 54
Level: 2 3 3 3 3 1 2 3

(c) lD Repesentation of T3

Index: 4 12 13 22 28 32 48 54
Level: 3 3 3 3 3 1 2 3
Jl: 4 12 13 22 28 32 48 54 (64)
/2: (-1) 7 12 13 22 28 47 51 54
NumEmpty: 4 4 0 8 5 3 0 2 9
I ndOfEmpty: 0 1 2 3 8 9 10 11 14 15 16 17 18 20 21 23

24 25 26 27 29 30 31 52 55 56 57 58 60 61 62 63

(d) Steps in the Complement Algorithm

Index 0 8 14 15 16 20 21 23 24 29 30 31 52 53 55 56 60
Level 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 2 2

(e) lD Representation of complement ofT 3

Figure 6 Complement Algorithm.

be used. Let It and 12 be the levels of nodes A and B. If 12 > 11 find the
index of the ancestor of Bin level It (Call this ancestor C). A notes down the
level number h along with the number of nodes between A and C, and level
h along with the number of nodes to the left of B having C as an ancestor.
If 11 >= 12 let D be the ancestor of A at levell2. Now B notes down level
12 along with the number of nodes between D and B and levell1 along with
number of nodes to the right of A having D as an ancestor. A generalize and
a compact can now be done as in the earlier case. The time complexity is
still O((NI P) log P) although the space required has been reduced.

The first method is illustrated in Figure 6.

3.3 Difference

The difference operation between two trees can be carried out by comple­
menting the second tree, followed by an intersection between the resulting
tree and the first tree. The time taken by difference is O((N I P) log P).

4 Collapsing the tree

A quadtree needs to be collapsed when all the four children of a non-leaf
node have identical values. Such nodes are redundant and can be removed
after the contents of their value register is passed on to their parent node.

Figure 7 gives the steps in the collapse algorithm.
Steps 1,2,4,5 and 6 of the collapse algorithm take O(NIP) time. Step 3

takes time O((NIP) + logP) and step 7 takes O((NIP)logP) time. Thus,
the collapse algorithm has a worst case time complexity of O((N I P) log P).

Figure 8 illustrates the collapse algorithm.

5 Neighbor Finding

Our standard form for the representation of the quadtree stores the blocks
in the image in Shu:ffied Row Major (SRM) order. We begin with this repre­
sentation and compute the North, South, East, and West neighbors of each
block. Note that any node node looks only for nodes smaller than itself.
The steps in the East neighbor finding algorithm are outlined in figure 9.

8

1. Each node determines the maximum number of pixels (filled or empty) it
can represent. This is stored in register NumPix.
NumPix(i) = 4NTZP(i) where NTZP(i) is the number of trailing zero-pairs
in PE i.
2. The filled leaves of the quadtree are split into segments. A 1-bit register
segment in each PE is used to indicate whether the node in that PE is the
beginning of a segment. Register segment is set to true if the index of the
node in that PE minus the index of the last pixel of the node in the PE
immediately preceding it is greater than 1. The index of the last pixel in any
node= index of node+ size of node- 1 where size of a node= 4(height-level)

3. Each node obtains the number of pixels preceding it in the same segment
and stores it in register position. This is just a segmented sum scan of the
size of the node each PE represents. 1 + the position of the last PE in a
segment gives the segment's length. A segmented backward copy scan makes
this value available to each node in the segment in register length.
4. Each node stores in register follow the number of pixels following it (in­
cluding self) in the same segment. This is just length- position. Follow1 is
set to the largest power of 4 <= the contents of the follow register in the
same PE.
5. The minimum of NumPix and follow in each PE gives the size of the largest
block of filled leaves represented by the node in that PE. This is available
in the register MaxBlkFL. The register Ievell is set based on the contents of
Jl.f axBlkFL.
6. Nodes that are redundant need to be deleted. A node is redundant when
it represents only a subset of the pixels represented by another node. Using
the index and level information each node first finds the number of its sibling
nodes that have higher indices than self and the number of siblings with
lower indices. By comparing this with the contents of the position and follow
registers the node can determine whether it is redundant or not. If it is
redundant it is marked for deletion.
7. Concentrate to remove nodes that were marked for deletion.

Figure 7 Quadtree Collapse algorithm

9

Index: 0 1 2 3 4 8 10 11 12
Level: 1 2 2 2 1 2 2 2 1
Size: 1 1 1 1 4 1 1 1 4
Seg: 1 0 0 0 0 0 1 0 0
Position: 0 1 2 3 4 8 0 1 2
Follow: 9 8 7 6 5 1 6 5 4
MaxBkSz: 4 1 1 1 4 1 1 1 4
Follow]: 4 4 4 4 4 1 4 4 4
Num.Pix: 16 1 1 1 4 4 1 1 4
Levell: 1 2 2 2 1 2 2 2 1
LSib: 0 1 2 3 4 8 2 3 12
Self+RSib: 64 3 2 1 12 8 2 1 4
Redun: 0 1 1 1 0 0 0 0 0

(a) Steps in Collapsing tree T1 u T2 from figure 4.

Index: 0 4 8 10 11 12
Level 1 1 2 2 2 1

(b) 1D Representation of Collapsed Tree T new

Figure 8 Collapsing a Tree

1) Each node computes its Column Major/Row major address from its index
by bit shuffling. These are available in registers CMAdd and RMAdd.
2) The nodes are then rearranged in increasing CM address order (Register
CMAddl). Note that all the East neighbors of any node will now appear as
a continuous run. Each node just needs the Column Major addresses of its
topmost and bottommost East neighbors. These addresses can be used to
select the segment of nodes representing its East neighbors.
3) The row major address of the topmost neighbor of any node X is the
address of the immediate successor of X in Row Major order (This successor
could be a filled or an empty node). This is available in register RMSucc.

RMSucc(i) = RMAdd(i) + Jsize(X)

4) The row major addresses in RMSucc are coverted into column major
addresses and stored in Begin.
5) The highest possible column major address an East neighbor could have
is computed and stored in End.
6) The computed column major addresses from steps 4 and 5 are sorted,
tagged, and merged with the sorted sequence from step 2. Segmented scans
can now be used to collect information from the data registers of the East
neighbors.

Figure 9 Neighbor finding algorithm

Modifications for North, South, and West neighbor finding should be easy.
The algorithm can also be extended for 8-neighbor finding.

Time complexity of steps 1,3,4 and 5 of the Neighbor finding algorithm
is O(N/ P). Steps 2 and 6 involve sorting and hence the neighbor finding
algorithm takes O((N / P) + Sort(N, P)) time.

The neigbor finding algorithm is illustrated in figure 10.

6 Acknowledgement

The authors would like to thank Ravi Ponnusamy for his help with this work
and for his comments on earlier versions of this paper.

10

Index: 1
Level: 2
Data: 1
CMAdd: 4
CMAddl: 1
Datal: 2
RMSucc 2
Begin: 8
End: 8
Neighb: 4

II 1111
1111

II

2 3 4 8
2 2 2 1
2 3 4 5
1 5 8 2
2 4 5 8
1 5 3 4
5 6 3 10
5 9 12 10
5 9 12 11
3 0 0 14

12 13 14
2 2 2
6 7 8
10 14 11
10 11 14
6 8 7

11 16 15
14 16 15
14 16 15
7 0 0

Figure 10 Steps in the Neighbor Finding Algorithm.

References

[1] Hunter, G.M., and Steiglitz, K., Operations on images using quadtrees,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1,
pp.145-153, 1979.

[2] Gargantini,l., An effective way to represent quadtrees, Communications
of the ACM, 25,pp.905-910.

[3] Gargantini, 1., Translation, rotation, and superimposition of quadtrees,
International Journal of Man-Machine Studies, 18, pp.253-263, 1983

[4] Mei,G.G., and Liu,W., Parallel processing for quadtree problems,
Proceedings International Conference on Parallel Processing, pp.452-
454,1986.

[5] Martin,M., Chiarulli,D.M., and Iyengar,S.S, Parallel processing of
quadtrees on a horizontally recongfigurable architecture computing
system, Proceedings International Conference on Parallel Processing,
pp.895-902,1986.

[6] Hung,Y., and Rosenfeld,A., Parallel processing of linear quadtrees on
a mesh-connected computer, Journal of Parallel and Distributed Com­
puting,1, pp.1-27,1989.

[7] Nandy,S.K., Moona,R., and Rajagopalan,S., Linear Quadtree algo­
rithms on the hypercube, Proceedings International Conference on Pm·­
allel Processing,pp.221 -229,1988.

[8] Nassimi,D., and Sahni,S., Data Broadcasting in SIMD Computers,
IEEE Transactions on Computers,30(2),pp.101-107,1981.

[9] Ranka,S., and Sahni,S., Hypercube algorithms for Image Processing and
Pattern Recognition, Springer-Verlag, 1990.

[10] Plaxton,G., and Cypher,R., 'Deterministic Sorting in nearly loga­
rithmic time', Proc. AGM Sympsium on Theory of Computing, 1990,
pp.193-203.

11

[11) Bestul,T., A general technique for creating SIMD algorithms on parallel
pointer-based quadtrees, Technical Report CS-TR-2181, University of
Maryland, College Park, 1989.

12

	Hypercube Algorithms for Operations on Quadtrees
	Recommended Citation

	SU-CIS-90-34_001c
	SU-CIS-90-34_002c
	SU-CIS-90-34_003c
	SU-CIS-90-34_004c
	SU-CIS-90-34_005c
	SU-CIS-90-34_006c
	SU-CIS-90-34_007c
	SU-CIS-90-34_008c
	SU-CIS-90-34_009c
	SU-CIS-90-34_010c
	SU-CIS-90-34_011c
	SU-CIS-90-34_012c
	SU-CIS-90-34_013c
	SU-CIS-90-34_014c
	SU-CIS-90-34_015c
	SU-CIS-90-34_016c
	SU-CIS-90-34_017c
	SU-CIS-90-34_018c
	SU-CIS-90-34_019c
	SU-CIS-90-34_020c

