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Abstract. This tutorial discusses Householder reduction of n linear equations to 
a triangular form which can be solved by back substitution. The main strengths of the 
method are its numerical stability and suitability for parallel computing. \Ve explain 
how Householder reduction can be derived from elementary matrix algebra. The 
method is illustrated by a numerical example and a Pascal algorithm. vVe assume 
that the reader has a general knowledge of vector and matrix algebra but is less 
familiar with linear transformation of a vector space. 

Key words. Linear systems, Householder reduction. 

AMS (MOS) subject classifications. 65F05 (direct methods for linear sys­
tems, Householder reduction). 

Introduction. The solution of linear equations is important in many areas of sci­
ence and engineering (Kreyszig [1988]). This tutorial discusses Householder reduction 
of n linear equations to a triangular form which can be solved by back substitution 
(Householder [1958], Press (1989]). The main strengths of the method are its nu­
merical stability and suitability for parallel computing (Ortega [1988], Brinch Hansen 
[1990]). Text books on numerical analysis often produce Householder reduction like 
a rabbit from a magician's top hat. vVe will explain how the method can be derived 
from elementary matrix algebra. The method is illustrated by a numerical example 
and a Pascal algorithm. 

We assume that the reader has a general knowledge of vector and matrix algebra 
but is less familiar with linear transformation of a vector space. 

We begin by looking at the problems of Gaussian elimination. 

1Copyright@l990 Per Brinch Hansen 
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1. Gaussian elimination. The classical method for solving a system of linear 
equations is Gaussian elimination. Suppose we have three linear equations with three 
unknowns xll Xz, x3: 

4x3 - 18 
2x3 - 1 

+ 3x3 - 14 

First we eliminate x1 from the second equation by subtracting 1/2 of the first equation 
from the second one. Then we eliminate Xt from the third equation by subtracting 
3/2 of the first equation from the third one. We now have three equations in which 
x1 occurs in the first equation only 

2xt + 2xz + 4x3 - 18 
2xz 4x3 - -8 
2xz 3x3 - -13 

Finally we eliminate x 2 from the third equation by adding the second equation to the 
third one. The equations have now been reduced to a triangular form which has the 
same solution as the original equations but is easier to solve 

2x1 + 2xz + 4x3 - 18 
2xz 4x3 - -8 

7x3 - -21 

The triangular equations are solved by back substitution. From the third equation 
we immediately have x3 = 3. By substituting this value in the second equation, we 
find x 2 = 2. Substituting these two values in the first equation we obtain x1 = 1. 

In general we haven linear equations with n unknowns 

(1.1) 
auXt + a12xz + 
az1X1 + azzXz + 

+ a1nXn = b1 

+ aznXn = b2 

The a's and b's are known real numbers. The x's are the unknowns we must find. 
The equation system (1.1) can be expressed as a vector equation 

(1.2) Ax = b 

where A is an n X n matrix, while x and bare n-dimensional column vectors 

au a12 a1n Xt bl 
a21 a22 a2n X2 b2 

A= x= b= 

Xn bn 
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The equation system has a unique solution only if the matrix A is non-singular as 
defined in the appendix. 

Gaussian elimination reduces Eq. (1.2) to an equivalent form 

Ux = c 

where U is an n x n upper triangular matrix 

Un U12 Utn 

0 U22 U2n 

U= 

0 0 

with all zeros below the main diagonal, while cis an n-dimensional column vector. 
Gaussian elimination requires O(n3 ) operations. 
The scaling of equations is a source of numerical errors in Gaussian elimination. 

To eliminate the ith unknown from the Ph equation we subtract the ith equation 
multiplied by aid aii from the Ph equation. If the pivot element aii is very small, the 
scaling factor becomes very large and we may end up subtracting very large reals from 
very small ones. This makes the results highly inaccurate. The numerical instability 
of Gaussian elimination can be reduced by pivoting, a rearrangement of the rows and 
columns which makes the pivot element as large as possible. 

On a parallel computer pivoting complicates the elimination algorithm (Fox [1988]). 
In the following we describe an alternative method which is numerically stable and 
does not require pivoting. 

2. Scalar products. Householder reduction of an n x n real matrix has a 
simple geometric interpretation: The matrix columns are regarded as vectors in an 
n-dimensional space. Each vector is replaced by its mirror image on the other side 
of a particular plane. This plane reflects the first column onto the first axis of the 
coordinate system to produce a new column with all zeros after the first element. 

Householder's method requires the computation of scalar products and vector 
reflections. The following is a brief explanation of these basic operations. The ap­
pendix defines the elementary laws of vector and matrix algebra, which we will take 
for granted. 

Let a and b be two n-dimensional column vectors 

al bl 

a2 b2 
a= b= 

an bn 

The transpose of a and b are the row vectors 

aT = [at a2 ... an] bT = [bt b2 ... bn] 
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The scalar product of a and b is 

(2.1) 

A scalar product is obviously symmetric 

(2.2) 

The Euclidean norm 

(2.3) 

is the length of an n-dimensional vector a. 
From Eqs. (2.1) and (2.3) we obtain an equivalent definition of the norm 

(2.4) 

3. Reflection. Figure 1 shows a unit vector v in 3-dimensional space. The 
dotted line represents a plane P which is perpendicular to v through the origin 0. 
For an arbitrary vector a we wish to find another vector b, which is the reflection of 
a on the other side of the plane P. 

v 

fv (P) 

Fig. 1 Reflection. 

The concept of reflection is defined by three equations: 

The reflection plane P is determined by a vector v of length 1 

(3.1) llvll = 1 

Reflection preserves the norm of a vector 

(3.2) llall = llbll 
The difference between a vector a and its reflection b is a vector fv which is a 

multiple of v 

(3.3) fv - a- b 
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The (unknown) scalar f is the distance between the vector and its reflection. 
We must find the reflection of an arbitrary vector a through a plane P defined by 

a given unit vector v. 

by (3.2) 

(a- fv)T(a- fv) by (2.4), (3.3) 

by (2.2), (2.4), (3.1) 

This equality determines the distance f between vector a and its image b 

(3.4) 

The reflection of b into a displaces b by the same distance f in the opposite 
direction. So we can also express the distance as 

(3.5) 

Finally we define b in terms of a and v 

b =a- vf by (3.3) 

by (3.4) 

where I is then x n identity matrix defined in the appendix. 
In other words, the reflection of a vector a is the vector 

(3.6) b = Ha 

obtained by multiplying a by then x n reflection matrix 

(3.7) H = I- 2vvT 

His also called a Householder matrix. This is the rabbit that is often pulled out of 
the hat without any explanation of why it has this particular form. 

Figure 1 is a geometric definition of reflection in 3-dimensional space. However, the 
algebraic equations derived from this figure make no assumptions about the dimension 
of space. In the following, we will simply say that Eqs. (3.6) and (3. 7) define a 
transformation of ann-dimensional vector. By analogy we will call this transformation 
a "reflection" through an (n- I)-dimensional plane. The essential property is that 
reflection of an n-dimensional vector preserves the norm 

(3.8) IIHall = llall 
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This follows from Eqs. (3.2) and (3.6). 
If we reflect a vector twice through the same plane, we get the same vector again 

H(Ha) = a 

In other words, two reflections are equivalent to an identity transformation 

HH =I 

Consequently H is a non-singular matrix which is its own inverse 

s-1 = H 

(see the appendix). 

4. Householder reduction. We are looking for an algorithm that reduces 
an n x n real matrix A to triangular form without increasing the magnitude of the 
elements significantly. 

An element of a column can never exceed the total length of the column vector. 
That is 

iaiil ~ lladl for i,j = 1, 2, ... , n 

In other words, the norm of a column vector is an upper bound on the magnitude of 
its elements. 

A method that changes the elements of a matrix A without changing the norms 
of its columns will obviously limit the magnitude of the matrix elements. This can 
be achieved by multiplying A by a Householder matrix H. 

If we multiply a system of linear equations 

Ax = b 

by a non-singular matrix H, we obtain an equation 

(HA)x = Hb 

that has the same solution as the original system. 
The first step in Householder reduction produces a matrix H A that has all zeros 

below the first element of the first column. 
The reflection must transform column 

(4.1) 

into a column of the form 

(4.2) (du 0 ... O]T 
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where the diagonal element is 

(4.3) 

The choice of sign will be made later. 
Equations ( 4.1 )-( 4.3) define the computation of the first column of the matrix 

HA. 
The difference between column a1 and its reflection H a1 is the column vector 

by (3.3) 

by (3.6) 

Combining this with Eqs. (4.1) and (4.2) we find 

(4.4) 

where the first element is 

(4.5) Wn = an - dn 

The distance between a1 and its image H a1 is f 1 where 

In short 

(4.6) 

fi(-2vTHal) 

- -2(fivfHal 

= -2wn dn 

by (3.5), (3.6) 

by (2.1), (4.2), (4.4) 

The unit vector v which determines the appropriate Householder matrix is 

or by Eq. ( 4.4) 

(4.7) 

After the transformation of the first column a1, each remaining column ai is also 
replaced by its reflection through the same plane defined by Eqs. (3.3), (3.4), and 
(3.6). 

(4.8) 



HOUSEHOLDER REDUCTION 8 

(4.9) fi = 2vT ai 

The reflection of a column is obtained by subtracting a multiple of the unit vector v. 

5. Numerical stability. vVe still need to decide which sign to use for the 
diagonal element du in Eq. (4.3). 

If du = au, the scalars wu and /1 are zero by Eqs. (4.5) and (4.6), and the 
division by / 1 in Eq. (4.7) causes overflow. We can avoid this problem by selecting 
the sign which makes dn =f=. an. 

The overflow problem occurs when a1 is a multiple of the unit vector 

el = [1 0 ... of 
For a = au e1 there are four cases to consider 

au> 0: 

au< 0: 

du = + lla1ll = au (overflow) 
du = - lla1ll = -an (no overflow) 

du = + lla1ll = 
dn =- lla1ll = 

-au 
au 

(no overflow) 
(overflow) 

If a1 is close to a multiple of et, serious rounding errors may occur if / 1 is very small. 
This insight leads to the following rule 

(5.1) 

6. Computational rules. We are now ready to summarize the rules for com­
puting the matrix HAas defined by Eqs. (2.1), (4.2), (4.5)-(4.9), and (5.1): 

lla1ll 

dn 

wn 

(6.1) /I 
Ha1 

v 

/i 
Hai 

#. 
if au > 0 then -lla111 else lla1ll 

au- du 

..j-2wudu 

[du 0 ... of 
- [wu a21 ... anl]T //1 

2vT ai for 1 < i ~ n 

- ai- fiv 

Householder's algorithm reduces a system of linear equations to upper triangular 
form in n - 1 steps: 

The first step reduces A to a matrix H A with all zeros below the diagonal element 
in the first column. At the same time, b is transformed into a vector Hb. This 
computation, defined by Eq. (6.1), is called a Householder transformation. 
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HA Hb 

* * ... * * 
0 

I i ~ I 
* 

0 * 

0 * 
The second step reduces the (n- 1) X (n -1) submatrix of HA shown above by 

Householder transformation. We now obtain a matrix with zeros below the diagonal 
elements in the first two columns. The same transformation is applied to the ( n-1) x 1 
subvector of Hb shown above. 

By a series of Householder transformations, applied to smaller and smaller sub­
matrices and subvectors, the equation system is reduced, one column at a time, to 
upper triangular form. 

7. A numerical example. We now return to the previous example of three 
equations with three unknowns. For convenience we combine the matrix A and the 
vector b into a single 3 x 4 matrix 

[ 
2 2 4 18] 

AO = 1 3 -2 1 
3 1 3 14 

First we reduce AO to a matrix A1 with all zeros below the diagonal element in the 
first column. This is done column by column using Eq. (6.1). The numbers shown 
below were produced by a computer and rounded to four decimal places. 

First column: 
al (2 1 3jT 
v [0.8759 0.1526 0.4577JT 
fl 6.5549 
Ha1 [-3.7417 o o]r 

Second column: 
a2 (2 3 1]T 

h 5.3344 
Ha2 - [-2.6726 2.1862 -1.4414]T 

Third column: 
a3 (4 -2 3)T 

h - 9.1433 
Ha3 - [-4.0089 -3.3949 -1.1846)T 

Fourth column: 
a4 - (18 1 14)T 

!4 - 44.6536 
Ha4 - [-21.1136 -5.8123 -6.4368jT 
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We now have the matrix 

[ 
-3.7417 

Al = 0 
0 

-2.6726 -4.0089 -21.1136] 
2.1862 -3.3949 -5.8123 

-1.4414 -1.1846 -6.4368 

The next step of the algorithm reduces the 2 x 2 submatrix 

Al' = [ 2.1862 -3.3949 -5.8123] 
-1.4414 -1.1846 -6.4368 

A2, = [ -20.6186 2.1822 1.3093] 
-2.8577 -8.5732 

The final triangular matrix 

[ 
-3.7417 

A2 = 0 
0 

-2.6726 -4.0089 -21.1136] 
-2.6186 2.1822 1.3093 

0 -2.8577 -8.5732 

consists of the first row and column of AI and the submatrix A2'. 
The triangular equation system is solved by back substitution to obtain 

x = [Loooo 2.oooo 3.oooof 

10 

8. Pascal algorithm. The following Pascal algorithm assumes that the matrix 
A is stored by columns, that is, a[i) denotes the ith column of A. For each submatrix of 
A, the eliminate operation is applied to the first column, and the transform operation 
is applied to each remaining column (including b). 

type 
column = array [l..n) of real; 
matrix= array [l..n] of column; 

procedure reduce (var a: matrix; 
var b: column); 

var vi: column; i, j: integer; 

function product(i: integer; 
var a, b: column): real; 

{ the scalar product of 
elements i .. n of a and b } 

var ab: real; k: integer; 
begin 

ab := 0.0; 
fork:= ito n do 

ab := ab + a[k]*b[k]; 
product := ab 

end; 
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procedure eliminate(i: integer; 
var ai, vi: column); 

var anorm, dii, fi, wii: real; 
k: integer; 

begin 
anorm := 

sqrt(product(i, ai, ai)); 
if ai[i] > 0.0 

then dii := -anorm 
else dii := anorm; 

wii := ai[i] - dii; 
fi := sqrt( -2.0*wii*dii); 
vi[i] := wii/fi; 
ai[i] := dii; 
for k := i + 1 to n do 
begin 

vi[k] := ai[k] /fi ; 
ai[k] := 0.0 

end 
end; 

procedure transform(i: integer; 
var aj, vi: column); 

var fi: real; k: integer; 
begin 

fi := 2.0*product(i, vi, aj); 
for k := i to n do 

end; 

begin 

aj[k] := aj[k] - fi*vi[k] 

for i := 1 to n - 1 do 
begin 

eliminate (i, a[i], vi); 
for j := i + 1 to n do 

transform(i, a[j], vi); 
transform(i, b, vi); 

end 
end 

The execution time of the algorithm is O(n3 ). 

11 

Final remarks. We have explained Householder's method for reducing a matrix 
to triangular form. The main advantage of the method is that it achieves numerical 
stability without pivoting. We have illustrated the computation by an example and a 
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Pascal algorithm. Householder reduction is an interesting example of a fundamental 
computation with a subtle theory and a short algorithm. 

Acknowledgements. To Fred Schlereth for bringing Householder's method to 
my attention, Nawal Copty for explaining it to me, and to Jonathan Greenfield and 
Erik Hemmingsen for advice on how to improve the presentation. 
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APPENDIX: MATRIX ALGEBRA 

In the algebraic laws, A, B, and C denote matrices, while k is a scalar. 
The identity matrix is 

1 0 0 0 
0 1 0 0 

I= 
0 0 1 0 
0 0 0 1 

The transpose AT is the matrix obtained by exchanging the rows and columns of 
the matrix A. 
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The inverse of a matrix A is a matrix A -l such that 

If A -I exists then A is called a non-singular matrix. 
The laws also apply to vectors since they are n X 1 (or 1 x n) matrices. 

Identity Law: 

Symmetry Law: 

Associative Laws: 

Distributive Laws: 

Transposition Laws: 

Scaling Laws: 

IA AI = A 

A+B 

A ± (B ± C) 

A(BC) 

A(B ± C) 

(A ± B)C 

(AT)T 

(A± B)Y 

(AB)T 

B+A 

(A ± B) ± C 

(AB)C 

AB ± AC 

AC ± BC 

I 

A 

kA = Ak 

k(AB) = (kA)B = A(kB) 

kAT = (kA? 

13 
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