
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

8-23-1989

Two-Dimensional Pattern Matching with k Mismatches Two-Dimensional Pattern Matching with k Mismatches

Sanjay Ranka
Syracuse University

Todd Heywood

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ranka, Sanjay and Heywood, Todd, "Two-Dimensional Pattern Matching with k Mismatches" (1989).
Electrical Engineering and Computer Science - Technical Reports. 62.
https://surface.syr.edu/eecs_techreports/62

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/62?utm_source=surface.syr.edu%2Feecs_techreports%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

TWO-DIMENSIONAL PATTERN MATCffiNG

WITH k MISMATCHES

Sanjay Ranka

Todd Heywood

School Of Computer and Infortnation Science

Syracuse University

Syracuse, NY 13244-4100

(315)-443-4457

ranka@top.cis.syr.edu

heywood@top.cis.syr.edu

August 23, 1989

Two-Dimensional
with k

Sanjay Ranka

SU-CIS-89-12

Pattern Matching
Mismatches

Todd Heywood

August 1989

School of Computer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse, New York 13244-4100

Abstract

\Ve give an algorithm which finds all occurrences of an ml x m2 pattern array embedded

as subarrays in an nl x n2 array of text, where at most k mismatches are allo\yed per

occurrence. The algorithm runs in time O((k +a)(b log b+ nln2)), where a = min(ml' m2)

and b = max(ml' m2). This improves upon the previously best known algorithm~ and is

asymptotically optimal for k ~ a.

1 Introduction

Two-dimensional pattern matching with k mismatches consists of taking two rectangular

arrays, an ml X m2 pattern array and an nl X n2 text array, and finding all occurrences

of the pattern embedded as subarrays in the text, where k mismatches of symbols are

allowed per occurrence. The problem is important in the object recognition domain of

computer vision, where the text is equivalent to a pixel representation of a scene, and

the text alphabet is the range of values a pixel can have. Similarly, the pattern is a pixel

representation (using the same alphabet) of an object which we want to recognize in the

scene. Since errors ("noise") are likely to be present in the scene, or slight differences in

perspective bet,veen a stored pattern and a scene object to exist, it is important to allo\v

a measure of error to occur in pattern matching, thus the k aIlo\ved mismatches bet\veen

symbols (pixels) of the pattern and the text [1,5].

Krithi,'asan and Sitalakshmi [2] have given the only previous algorithm for t\VO

dimensional pattern matching with k mismatches. Their algorithm has complexity

O(kmlm210gm2 + mim2 + kmlnln2). The mim2 factor stems from taking adyantage

of the fact that t\VO ro,vs of the pattern may be identical or almost identical; Krithivasan

and Sitalakshmi state that, in practice, this reduces the total time. Since \ve do not an

alyze the pattern for this information in our algorithm, and in order to give an accurate

comparison of the running time of our algorithm with theirs, \ve remove this factor. In this

case, the complexity of their method will be O(kml (m210g m2 + nln2)). The complexity

of our algorithm is O((k +ml)(m2 10g m2+nln2)), an improvement of O(k"ml/(k +md)

over that of [2]. Our algorithm requires O(k(m2 +n2)) space, also an improvement over

the O(ml (km2 + kn2 + ml max(m2, k))) space requirement of [2] (ignoring the O(ml m2)

and O(nln2) space required by both algorithms to store the pattern and text arrays).

Between ml and m2, ml has the greater affect on the time complexity of our algorithm,

and that of [2], because of its nln2 factor. We could compensate for this by transposing

the pattern and text arrays prior to pattern matching whenever ml > m2 (guaranteeing

that ml always corresponds to the smaller pattern dimension), resulting in a change to

the above complexities by substituting min(mI, m2) for ml and max(mI, m2) for m2. \Ve

return to this in the concluding section of the paper.

Landau and Vishkin [3,4] have considered the one-dimensional case of string matching

in the presence of errors. In [3J, they give algorithms for two problems: string matching

1

with k mismatches, and string matching with k differences. The k-differences problem

allows three types of errors to occur: a mismatch betv-·een a pattern symbol and a text

symbol, a pattern symbol pattern corresponding to no text symbol, and a text sy'mbol

corresponding to no pattern symbol. In [4], an efficient and elegant algorithm is presented

for finding all occurrences of an m-length pattern in an n-Iength text string~ ,vith k

mismatches allo,ved per occurrence. The algorithm runs in O(k(m log m + n)) time.

In this paper, we restrict ourselves to the k-mismatches problem, since the pattern is

a strictly rectangular array occurring as an ml x m2 subarray of the text. \Ve extend the

techniques of [4] to two dimensions.

Our algorithm consists of a pattern analysis stage and a text analysis stage. The

output of the pattern analysis is used in the text analysis. Since the pattern anaI)·sis is

a variation of the text analysis, we present the text analysis first, in Section 2. Section 3

contains the pattern analy'sis, and Section 4 concludes the paper. For claritj-, ,ve have

organized the presentation similarly to that of [4].

2 Text Analysis

The input to the text analysis stage consists of:

1. The pattern array Pi,i' 1 ~ i :5 mI, 1 :5 i :5 m2

2. The text array titi, 1 :5 i ~ nl, 1 :S j :5 n2

3. The output of the pattern analysis, which consists of a pair of two-dimensional

PATTERN-MISMATCH (PM) arrays

(a) PM-I[1, ,m2-1;1, ,2k+1]

(b) PM-J[1, ,m2-1;1, ,2k+l]

Output from the text analysis consists of a pair of two-dimensional TEXT-~IIS~IATCH

(TM) arrays

1. TM-I[O, ... ,n2- m 2;1, ... ,k+l]

2. TM-J[O, ... ,n2- m 2;1, ... ,k+l]

2

In the following, we use the notation PM-(IJ) and TM-(IJ) to refer to the pairs

of PATTERN-MIS~1ATCHand TEXT-MISMATCH arrays. These arrays store i and j in

dices of positions in the two-dimensional pattern and text arrays. PM-I[x, y] and P1tI

J[x, y] (TM-I[x, y] and TM-J[x, y]) together record an i, j position in the pattern (text);

PM-(IJ)[x, y] (TM-(IJ)[x, y]) is just abbreviated notation for this.

In the output of the pattern analysis, ro\v j of the P~I-(IJ) arrays contains tJle i and

j indices of the first 2k + 1 locations in which the following two symbol sequences (of

equal length) have different symbols:

In other words, PM-I[j, v]=f and PM-JU, v]=g means that P/,i+g f; Pft9 and this is

the vth mismatch from top down, left to right (column-major order) bet\veen the t\VO

subpatterns. If there are only c < 2k + 1 mismatches then the default 'values ml + 1

and m2 + 1 have been stored in PM-Ifj;c+ 1, . .. ,2k+ 1] and PM-Jfj;c+ 1, ... ,2k+ 1]
respectively.

The boxes in the above sequences delimit different columns of symbols in the pattern

array. Let * denote the sequence 1,2, ... , ml· Then column x of the pattern may be

denoted by P*,z, and we may say that row j of PlvI-(IJ) contains the first 2k+ 1 locations

in which P.ti+l,P-.j+2,· · · ,P.tm2 has different symbols than P.,l,P.,2, ... ,P.tm2-j. It should

be clear that PM-(IJ) as a whole records the first 2k +1 mismatches bet,veen t\VO copies

of the pattern over all (m2 - 1) horizontal offsets possible betvteen the copies.

The text analysis algorithm consists of nl - ml + 1 iterations. In each iteration v,re

find all occurrences of the pattern in a different ml x n2 subarray of the text. This section

of the text is analyzed into the TM-(IJ) arrays. After iteration i, 0 :5 i :5 nl - ml, ro\v

j of the TM-(IJ) arrays contains the i and j indices of the first k + 1 locations in which

the following two sequences have different symbols:

Pltl, P2,1, · · • , Pml'!'

After iteration i, TM-Ifj, v]=f and TM-Jfj, v]=g means that ti+J.i+g I- PIg and this is the

vth mismatch from top down, left to right (column-major order) between the pattern and

3

the text subarray with upper left corner i +1,j +1 and lower right corner i +ml.j + m2
a

If there are only' c < k +1 mismatches then v.le enter the default values ml +1 and m2 + 1

in TM-I[j; c + 1, ... , k + 1] and TM-J[j; c +1, ... , k + 1] respecti'lely.

As with the pattem, thQ boxes in the above sequences delimit different columns of

symbols in ml contiguous rows of the text array. Recall that we have defined * to denote

the sequence 1,2, ... , mI- Thus we may say that, after,~!teration i of the text .c.nal)rsis,

row i of TM-(IJ) contains the first k +1 locations in which ti+-J+l, ti+*.i+2, - _., ti+-,i+m2

has different s:)tmbols than P.,l, P-,2, · - - ,p*.m2 ·

Note that the end of every i-iteration, we have found all occurrences of the pattern

in rows i + 1 throuagh i + ml of the text array, since TM-I[j, k + l]=ml + 1 and T11

J[j, k + 1]=m2 +1 (0 :5 j ::; n2 - m2) means that there is an occurrence of the pattern

in the text (ha'\ling at most k mismatches) with upper left corner i + 1, j + 1 and lo,ver

right corner i +ml,j +m2- At the end of e\'ery i-iteration we report (output) all pattern

occurrences by examining the value in column k +1 of every row of the T?vl-(IJ) arrays,

since the TNI-(IJ) arrays are reused in the next i-iteration (alternatively, v;e could use

three-dimensional T:Nl-(IJ) array's, using the i variable as the additional index~ and only

report the pattern occurrences at the end of the algorithm).

The procedure ""·e use within an i-iteration is a direct adoption of the string matching

algorithm of [4]. The pattern is treated as an ml x m2 length string and the text as an

ml X n2 length string by follo\ving column-major ordering through these t,vo-dimensional

arrays. We now give our two-dimensional text analysis algorithm, and then explain it in

the follo,ving discussion.

4

Algorithm 2D-TEXT-ANALYSIS

for i = 0 to nl - ml do

{text being acted on in this iteration is ti+-,i, 1 < * :5 ml' 1 ~ j ~ n2}
{Initialize TM-(IJ) arrays and auxiliary variables}

TIvI-I[O, ,n2 - m2;1, ,k+ 1] +- ml + 1

TM-J[O, ,"2 - m2; 1, , k + 1] +- m2 + 1

r i')'" +- 0, ,
for j = 0 to n2 - m2 do

b+-O

if J- < j' or (j =)-' and i < i') then

MERGE(i,j ,r,i',j',b)

end if-then

if b < k + 1 then

r+-)

EXT EN D(i,j ,i',j' ,b)

end if-then

end for-do

{report matches for ti+_,j, 1 ~ * ~ ml, 1 ~ i ~ n2}
end for-do

In each j-iteration (inner for-do loop), 20-TEXT-ANALYSIS checks whether there are

> k mismatches between the pattern and the subarray of the text with upper left corner

i+l,j+l and lower right corner i+mllj+mz, i.e. between the sequences P-,I,P-,2,'" ,P-,m2

and ti+-J+l, ti+_,j+2, · · · , ti+-,j+m2' Thus this loop slides the pattern to the right one

column, or ml text symbols, at a time. The variables i' and j' record the ro\v and

column, respectively, of the rightmost, lowermost text symbol that we ha\~e scanned in

previous j-iterations (this is the rightmost symbol scanned when thinking of the text as a

string obtained by following the ml X n2 subarray in column-major order). The variable

r records the iteration in which we arrived at this position. Procedure MERGE finds

mismatches between ti+IJ+h' .. , ti1jl and Pl,h'" ,Pi'-i,j'-j, again following column-major

ordering through the text subarray ti+*J (1 ~ * ~ mh 1 ~ j ~ n2) and the pattern

5

array. MERGE reports in b the number of mismatches found. IT b < k +1, then procedure

EXTEND is called to process the text from location i' + l,j' +Ion. EXTEND operates bj~

scanning the text symbols and comparing them to the corresponding pattern symbols. It

continues until it finds the (k + l)th mismatch of this j-iteration (in which case it resets.
i' and jf to the text position of this mismatch) or until it arrives at ti+mtJ+m2 (in which

case if and j' are reset to i + ml and j + m2 respectively). In the latter situation, if

the comparison vlith the corresponding pattern symbol does not result in the (k + 1)th

mismatch, we have found an occurrence of the pattern in the text with upper left corner

i+1,j+l and lo,ver right corner i+ml,j+m2 which has at most k mismatches. Note that

the current iteration number j is saved in r whenever EXTEND is called, since EXTEND

al\vays resets i' and j'.

We no\v discuss and present the MERGE procedure. Follo\ving this, we give the EX

TEN D procedure and then conclude the section with the analysis of the complexity of

2D-TEXT-ANALYSIS.

In outer iteration i, inner iteration j, MERGE records the mismatches it finds in T?vI

(IJ)(j; 1, ... , b] (b ::; k + 1) by using the following information computed in previous

j-iterations of this i-iteration:

1. Mismatches occurring from a previous match attempt of the pattern on the text

subarray with upper left corner i +1, r + 1, which occurred in iteration r. Ho\vever,

mismatches which occurred in this iteration which were in text locations < i+1, j +1

in column-major order are irrelevant when checking for an occurrence of the pattern

starting at (~) location i + 1,.i + 1 in the text (as \ve are doing in the present

iteration). Thus, letting q be the smallest integer satisfying TM-J[r, q] > j - r,

MERGE uses the information in TM-(IJ)(r; q, ... , k + 1]. This is illustrated in

Figure 1.

2. Mismatches occurring between two copies of the pattern offset horizontally by j - r

columns. Let s be the the largest integer (:5 2k + 1) satisfying both p~r-I[j

r,s] ~ i' - i and PM-J[j - r,s] :5 j' - j. Then MERGE uses the information in

PM-(IJ)[j - ri 1, ... , s]. This is illustrated in Figure 2.

Figure 3 shows the relationship between the information in TM- (IJ) [r; q, ... , k +1] (Fig

ure 1) and PM-(IJ)[j - r; 1, ... ,5] (Figure 2), and how MERGE uses it to compute

TM-(IJ)[}; 1, ... , b]. It also illustrates the scope of EXTEND.

6

r-----r- ----..,..---~--~--- - -r ---r
, P-,l I· .. •.• I P IL- ..J__ _ ,_.:'~~J

•-----__.......... ::"·-1

---T------r--~---T----,---..,.-.----
J t i+*,r+l:· - ·___-L- - - - - - - ~-_-.-.I.--~i-----"""'" _

I
ti',jl .•• I""""---.......-- --...0._.......-.- ~

Figure 1: TM-(IJ)[r; q, . .. ,k + 1] gives all the mismatches bet"-een these sequences.

Figure 2: PM-(IJ)[j-r; 1, .. -, s] gives al12k+l first mismatches between these sequences.

7

I
I
I

...------T--~-- I _

P..,l I .. · IP-.;,-Jp",i'-i+1D P..,m~
I
I
I
I
I,----\--

i P-,l I··"L- _ --I--~-~--,"'--_---Irt....

~

/
/'

/
/

/
/

.- - - - r - - - .., - - r-------:"I---,..---r2---"""-T--~--_i_ - - - -
I ti+_,r+l ' · · · ti+-,;+l · .. ·____ --' -.L _ - 1----~_..:...---7---......;,e..~--..;.-.....J....---a...-..;;..-........;._:...

I
~---------------.l- - - --t

/
/

/
,/

/,,

1!-__M_ER_G_E__t E_XT_E_N_D f
1 2_D_-_TE_x_T_-_A_N_A_l_YS_'s I

Figure 3: MERGE uses information from Figures 1 and 2 to compute TM-(IJ)[j; 1, ... , k+

1J. If MERGE is unable to complete the job, then EXTEND completes it.

8

As in [4], case analysis is employed in order to explain how MERGE uses the previously

computed information. First, we define two conditions on any location x, y (i+1 :5 x :5 i',

i +1 :5 Y ~ j') in the text:

Condition 1 A mismatch occurred at x, y in previous iteration T. This means that

t:.r
t
ll i Pz-i,y-r and for some d, q ~ d < k + 1, x - i=TM-I(r, d] and y - r=TM

J[r, d]. In Figure 3, this corresponds to a mismatch bet\veen t.he bottom line and

the middle line.

Condition 2 Consider laying one copy of the pattern starting at (upper left corner at)

ti+l,T+l and another copy starting at ti+l,i+l- The condition is: A mismatch occurred

at x, y in the text between the t\\·o copies of the pattern which layover this position.

This means that Pz-i,y-r i P:r-i,lI-j and for some I, 1 ~ f ~ s, x - i=P:WI-I[j - T, f]
and y - j=PM-JU - r, f). In Figure 3, this corresponds to a mismatch bet,veen the

middle and upper lines.

Location x, y may satisfy one of these conditions, both of them, or neither. Thus we have

three possible cases.

Using the kno\vledge (acquired from T1\1-(IJ)[r, d] and Prvl-(IJ)Li - r, J]) of ,vhich

conditions IDeation x, y (i +1 :5 x :5 i', j +1 :5 y ::5 j ') satisfies, ,ve can apply ease analysis

to x, y to address the question of whether t z ,lI matches P:.r-i,f/-j:

Case 0 Location x, y does not satisfy Condition 1 or Condition 2. In this case, the text

symbol at location x, y matches the symbol at location x-i, Y-i of the pattern, since

tx,y = Pz-i,31-r (Condition 1 is not satisfied) and Pz-i,y-r = Pz-i,~-j (Condition 2 is

not satisfied). Thus we do Dot need to scan and compare t x ,!! and Pz-i,J/-j.

Case 1 Location x, y satisfies one condition but not the other. In this case, we have a

mismatch between tr,y and Pr-i,y-j, since if tr,tI i P:-i,lI-r (Condition 1 is satisfied)

and P:z:-i,y-r = Pr-i,y-j (Condition 2 is not satisfied) then tz,y i Pr-i,J/-j, and if

t:r,y = Pz-i,lI-r (Condition 1 is Dot satisfied) and Pz-i,y-r i Pz-i,J/-j (Condition 2 is

satisfied) then also tr,y i Pr-i,y-j· Here we also do not scan and compare tr,y and

Pz-i,y-j, but we do increment the mismatch count variable b and set TM-(IJ)[j, b).

Case 2 Location x, y satisfies both conditions. Here we cannot make any conclusion as

to whether tz ,1I and pz-ity-j match or not, and thus have to scan and compare the

9

symbols. If the comparison results in a mismatch, we have to increment b and set

TM-(IJ)[j, b].

Procedure MERGE and its proof of correctness follow:

Procedure MERGE(i,j, T, i',j', b)

{Input: T1tI-(IJ)[r;q, ... ,k+l] and PM-(IJ)[j-r;l, ... ,s]}

{Initialize variables d and f; d is used in TM-(IJ)[r, d] and f in P1\1-(IJ)[j - r, f] }

d..-q

f+-I

while not (Case A or Case B or Case C) do

{Case A: b = k + 1, in which case k +1 mismatches have been found

Case B: d = k + 2, in which case vte have passed location i',j' in the text.

By the method that d is incremented, when it has been assigned the

value k + 1 then in the middle line of Figure 3 we are directly

over location i',j' of the bottom line.

Case C: (j+PM-J[j - r, f] > j' or

(j+PM-J[j - T, f] = j' and i+PM-I(j - T, f] > j')) and

TM-I[r, d] = ml + 1 and TM-J[r, d] =m2 + 1

The first conjunct means that in the top line of Figure 3 we

have already passed location i',j' of the bottom line. The

second and third canjuncts mean that there is an occurrence

of the pattern at ti+l,i+l with d - 1 mismatches and in the

middle line of Figure 3 we have also passed location i', j' of

the bottom line. }

if j+PM-J[j - T, f) > r+TM-J[r, d] or

(j+PM-J[j - r,!l = r+TM-J[r,d] and i+PM-Ifj - r,!] > i+TM-I[r,d]) then

{Case 1: Condition 1 is satisfied: next mismatch is recorded in TM-(IJ);

there is no mismatch recorded for this location x, y in PM-(IJ).

Thus t:r,y =F Pz-i,y-r and P:r-i,y-r = Pz-i,y-i·}

10

b+-b+l

TM-I[j, b] +- TM-I[r, d)

TM-J[j, b] +- TM-J[r, d) - (j - r)

d+-d+l

else

if i+PM-J[j - T, f) < r+TM-J[r, a1 or

(i+PM-J[j - T, f) = r+TM-J[r, d) and i+PM-I[j - T, fl < i+TM-I[r, d]) then

{Case 1: Condition 2 is satisfied: next mismatch is recorded in PM-(IJ);

there is no mismatch recorded for this location z, y in TM-(IJ). Thus

tz,y = Pr-i,y-r and Pz-i,y-r # Px-i,v-j.}

b+-b+l

TM-I[j, b] +- PM-I[j - r, f]

TM-J[j, b] +- TM-J[j - r, f]

1+-/+1
else

{Case 2: next mismatch is recorded in both TIvI-(IJ) and P11-(IJ).

Thus for this location x, y, tz,y # Pz-i,y-r and Pz-i,y-r =F Pr-i,JI-j,

and we have to scan and compare symbols.}

if 1'PM-I{j-r,JJ,PM-J[j-r,J] # ti+PM-IU-r,!l,i+Pf\.I-J[j-r,!] then
b+-b+l

TM-I(j, b] +- PM-ILf - r, f]

TM-J[j, b] +- PM-J[j - r, f]
end if-then

1+-1+1
d4-d+l

end if-then-else

end if-then-else

end while-do

In order to correctly perform its function, MERGE must find all mismatches, up to a

maximum of k+ 1, that occur between ti+IJ+h ... ,ti'j' and Pl,l, ... ,Pi'-iJ'-j. Consider

11

the invocation of MERGE in outer iteration i, inner iteration j of the text analysis.

Theorem 1 If there are > k +1 mismatches in locations ~ i + l,j + 1 and:5 i',j' (in

column-major order), then MERGE finds the first k + 1 of them. If there are < k + 1

mismatches, then MERGE finds all of them.

Proof: Condition 1 holds for :5 k +1 locations which are 2: i +1,j +1 and < i',j'. Let

z be the number of locations > i + 1,j + 1 and :5 i',j' for which Condition 2 holds. \\'e

know nothing about z. Suppose PM-(IJ)[j - T; 1, ... ,z] records all of the mismatches

occurring between the two copies of the pattern which are offset horizontally from each

other by j - r columns. Then by the case analysis, MERGE finds all of the mismatches

in locations i + l,j + 1 through i',j', since mismatches can onI)· occur when Condition 1

or Condition 2 or both hold, all (~ k + 1) mismatches occurring under Condition 1 are

recorded in TM-(IJ), and all z mismatches under Condition 2 are recorded in PJ\I-(IJ).

But PM-(IJ)[j - r; 1, ... ,2k + 1] contains no more than 2k + 1 mismatches, i.e. for

MERGE to find all mismatches (::; k + 1) in the range i + 1,j + 1 through i',j', \ve must

have z :::; 2k + 1. Thus, ","e no\\' need to show that we never need more than 2k + 1.

If

PM-J[j - r,2k + 1] > j' - j or

(PM-J[j - r,2k + 1] = jf - j and PM-I[j - r,2k + 1] ~ if - i)

then PM-(IJ) records all mismatches under Condition 2 between the two copies of the

pattern offset by j - r columns which occur in locations ~ i',jl, and the Theorem follo,vs.

Otherwise, we have

PM-J[j - r, 2k + 1] < j' - j or

(PM-J[j - T, 2k + 1] = jf - j and PM-I(j - r, 2k + I} < if - i),

which means that there are 2k+ 1 locations ~ i+1,j+1 and < i',j' for which Condition 2

holds. Condition 1 holds for :5 k locations in this range since, by the way variable d is

incremented in MERGE, when d = k +1 then in the middle line of Figure 3 we are directly

over location if, j' of the bottom line. This means that we are left with (2k +1- (=5 k) =)

~ k + 1 locations, which are > i + 1,j + 1 and < if,j', where Condition 2 holds and

Condition 1 does not, i.e. at least twice as many as the number of mismatches we are

looking for. Thus we can satisfy Case 1 with :5 k + 1 mismatches recorded in TM-(IJ)

12

(Condition 1), and::; 2k +1 mismatches recorded in PM-(IJ) (Condition 2)_ Thus, all of

these locations, plus those that satisfy Case 2 (where mismatches are found by scanning

and comparing), suffice to establish that there is no occurrence of the pattern \\-ith :5 k

mismatches and the Theorem follo\vs. 0

Procedure EXTEND finds mismatches between (column-major ordered) sequences

or the sequences

This is done by explicitly' scanning and comparing corresponding pattern and text s)·m..

boIs. EXTEN D finishes once it finds the (k+ 1)th mismatch, or when it arrives at ti+mlJ+m2

(and compares it with the corresponding pattern symbol), in which case there is an oc

currence of the pattern \vith at most k mismatches starting at ti+1,i+l (if the comparison

does not result in the (k + l)th mismatch). The procedure follows; its correctness is

straightforward.

Procedure EXTEND(i.j.i'.j'.b)

while b < k + 1 and j' - j < m2 do

if i' - i = ml then

j' +- j' + 1

i' +- i

end if-then

while b.< k + 1 and i' - i < ml do

i' .- i' +1

if ti'J' # Pi'-i,j'-j then

b+-b+l

TM-I[j, b] +- i' - i

TM-J[j, b] +- j' - j

end if-then

end while-do

end while-do

13

We are no\v ready to determine the complexity of2D-TEXT-ANALYSIS. We concentrate

on a single i-iteration. The initialization of the TM-(IJ) arrays takes time O(kn2) and

the time to report the mismatches is O(n2) {recall that we do this by examining TlvI

(IJ)[O, ... ,~2 - m2; k + 1]). Within- each j-ite~a-tio& of tte for-do loop, the operations

excluding MER,GE and EXTEND require 0(1) time. MERGE operates on the 2k+l entries

in PM- (IJ)[j - r; 1, ... , 2k+ 1) and the ~~+1 entries in TM-(IJ)[T; 1, ... , k+ 1]. As stated

in [4], each of the operations of MERGE can be charged to one of these 3k + 2 entries

(actually 6k + 4 in our case, since PM-(IJ) and TM-(IJ) are both really t,-;o arrays) in

such a way that each entry is charged with 0(1) operations. Thus, MERGE takes time

O(k) per j-iteration, which means that it requires O(kn2) o\"er the course of the for-do

loop, i.e. per i-iteration. Since EXTEND scans each symbol in an ml x n2 subarra)" of the

text at most once over the course of the for-do loop, it takes time O(mln2) per i-iteration.

Therefore, a single i-iteration has complexity O(kn2+n2 +kn2 +mln2) = O(n2(k +md),

and the complexity of 2D-TEXT-ANALYSIS is O(nln2(k +ml)).

2D-TEXT-ANALYSIS requires O(k(m2+n2)+mlm2+nln2) space, where the first term

arises from the (m2 - 1) x (2k +1) and (n2 - m2 +1) x (k +1) PM-(IJ) and T:d-(IJ)

arrays, respectively, and the second and third terms from the pattern and text arra)rs.

3 Pattern Analysis

The text analysis algorithm requires preprocessed pattern information. In this section ,ve

present the pattern analysis, where PM-(IJ)[l, ... , m2 -1; 1, ... ,2k +1] is computed for

input to 2D-TEXT-ANALYSIS. As before, we extend the techniques of [4] to t,~.to dimen...

Slons.

Recall that rows j of the PM-(IJ) arrays are to contain the i and j indices of the first

2k + 1 locations in which the following two subpatterns have different symbols:

and that PM-I[j, v]=f and PM-J[j, v]=g must mean that PJ,j+g =f:. PJ,g and this is the vth

mismatch from top down, left to right (column-major order) between the two subpatterns.

14

If there are only c < 2k + 1 mismatches then the default values ml + 1 and m2 +1 need

to be stored in PM-I[j; c + 1, ... , 2k + 1] and PM-J[j; c +1, ... , 2k + 1] respectively.

The PM-(IJ) arrays have m2 - 1 rows. Assume (without loss of generalit~·) that m2

is a power of two. The pattern analysis has log m2 stages. In stage 1, 1 :$ I ::5 log m2, ,ve

compute the entries of PM-(IJ)[2Z
-

1
, ,21-1; 1, ,2k +1]. In other words, in stage 1

we compute row 1 of PM-(IJ), in stage 2 we compute rows 2 and 3, in stage 3 ro\vs 4, 5,

6, and 7, , and in stage log m2 we compute rows m2/2, ,m2 - 1.

In each stage of the pattern analysis, we compute the appropriate rows by applying an

adjusted version of a single (outer) i-iteration of the 2D-TEXT·ANALYSIS algorithm. ¥/e

now specify the input, output, and algorithm for stage 1of the pattern analysis, and then

explain the adjustments made to (differences from) the i-iteration of the text anaI)"sis

algorithm.

Recall that we have defined * to denote the sequence 1, ... ,mI. The input to stage 1,

1 < 1=5 log m2, of the pattern analysis consists of:

1. The pattern subarray P.,l,P.,2,-·" ,P.,1n2-2
'
- 1 , which plays the role of the pattern in

the pattern analysis (adjusted text analysis) algorithm.

3. If 1> 1, the t\VO (PM-I and PM-J) two-dimensional arrays

which are the output of the previous 1-1 stages of the pattern analysis, and ,vhich

play the role of PM-(IJ). (Accordingly, in stage 1 we do not have any pattern

mismatch information yet, so we will not be able to use MERGE in this stage. This

is no drawback, since we only compute one row of PM-(IJ) in stage 1.)

The output of stage 1consists of the two arrays

PM-(IJ)[21
-

1
, ,2' - 1; 1, ,z]

where z = 2k + 1 when I = logm21 and z = min(21ogm:z-/2k + 1,ml(m2 - 2/)) when

1 :5 1< log m2. These arrays play the role of the TM-(IJ) arrays.

The algorithm for stage 1of the pattern analysis follows. Note that procedures MERG E

and EXTEND in this algorithm will also need adjusting from their text analysis form.

15

These adjustments are straightforward, consisting of compensating for the PM-(IJ) and

TM-(IJ) role-playing and defining z rather than k + 1 to be the number of mismatches

to find, and thus are not given.

Procedure STAGE(l)

{Note: i is constant and = O}

{Initialize arrays and auxiliary variables}

PM-I[21- 1 , ,21 -1;1, ,z] +- ml + 1

PM-J[21- 1 , ,21 - 1; 1, ,z] +- m2 + 1
r i' J.' +- 21- 1, ,
for j = 21- 1 to 21 - 1 do

b+-O

if I > 1 and (j < j' or (j = j' and i < i')) then

MERGE(i,j,T ,i',j',b)

end if-then

if b < z then

r+-J

EXTEN D(i,j ,i' ,j' ,b)

end if-then

end for-do

To explain the pattern analysis, we discuss the differences between STAGE and a single

i-iteration of the text analysis. This also serves as an extension of the proof of correctness

of MERGE in the text analysis to the pattern analysis.

The first difference is that MERGE is not used throughout stage 1. This is because

MERGE uses PM-(IJ) information which in stage 1 has not yet been computed. Thus,

the single row of PM-(lJ) computed in stage 1 must be computed entirely by EXTEND.

The second difference is the number of mismatches that is looked for within a stage.

For stage log m2, we find up to 2k +1 mismatches. For stage I, 1 ::; I < log m2, we find up

to the minimum between 2logm2-'2k + 1 (instead of k + 1) and ml (m2 - 2') (implied by

the the lengths of the pattern copies to be matched against each other in the next stage)

mismatches. In stage 1, the largest pattern copies that are matched Occur in iteration

16

j = 21-\ and have length ml(m2 - 21- 1). In each successive stage, the pattern length in

this iteration gets smaller. Thus, in stage 1- 1, we never need to count more than the

ml (m2 - 2'-
1) mismatches that could occur between the pattern copies in the follo\ving

stage 1. In other words, in stage I, 1 ~ 1 < log m2, we never need to count more than

ml(m2 - 21) mismatches, and this is one term of the min function. The input PM-(IJ)

to stage I never contain more than ml (m2 - 21
-

1) mismatches, and the output never more

than ml(m2 - 21
) mismatches.

The other term of the min function which gives the number of mismatches to find in

stage 1is 2)ogm,-12k+1.. In the text analysis, the correctness proof of MERGE demonstrated

that ,ve need to know the first2k +1 locations for which Condition 2 holds in order to find

the first k + 1 mismatches, i.e. the number of locations for which Condition 2 holds must

be at least twice the number of mismatches we are looking for. In the pattern analy·sis, v;e

are constructing PM-(IJ) to contain the first 2k +1 mismatches bet"'geen pattern copies.

In stage log m2, we find up to 2k +1 mismatches (there is no ml (m2 - 21) bound because

this is the final stage), therefore we need 2 · 2k + 1 locations for which Condition 2 holds

stored in the rows of PM-(IJ) computed in previous stages. This means that, in stage

1, 1 ~ 1~ logm2' we need 2Iogm2-(1-1)2k + 1 locations (up to ml(m2 - 21- 1)) for which

Condition 2 holds, and we look for 21ogm2-12k + 1 mismatches (up to ml(m2 - 21)) for

1 < log m2). Thus for stage log m2 we find up to 2k + 1 mismatches, and for stage 1,

1 < 1< logm2' we find up to min(21ogm2-'2k +1,ml(m2 - 2')) mismatches.

The t,vo-dimensional pattern analysis algorithm simply consists of incrementing 1and

calling STAGE(l) (1 = 1, ... ,logm2). To determine its complexity, we focus on a single

stage 1. vVithin this stage, we further concentrate on a single iteration j, 21- 1 :5 j ::; 21-1.

The operations excluding MERGE and EXTEND take 0(1) time. As in the texi analysis,

one invocation of MERGE takes time O("number of mismatches \\"e are looking for"),

which is

O(min(2Iogm2-12k + 1, ml(m2 - 21))) ~ O(2k2Iogm2-1)

Stage I has 2'-1 iterations, thus the total time required by MERGE in the stage is

O(212k2Iogm2-1) or (maximizing 1 to log m 2) O(m2 k). The time required by EXTEND

through all j-iterations of stage 1is O(mlm2). Thus the total time required by STAGE(l)

is O(m2k +mlm2) = O(m2(k +ml)), so the time required ·by the two-dimensional pattern

analysis (logm2 stages) is O((k+ml)m21ogm2)"

17

The pattern analysis requires space O(km2 +mlm2), where the first term arises from

the (m2 - 1) x (2k + 1) PM-(IJ) arrays, and the second from the pattern array'.

4 Conclusions

Our algorithm for two-dimensional pattern matching with k mismatches consists of pat

tern analysis stage followed by a text analysis stage. We have shown that the pattern

analysis takes time O((k + ml)m2 1og m2) and the text analysis time O(nln2(k +ml)).

Therefore the complexity of our algorithm is O((k+ml)(m2 1og m2 +nln2)). Bet\,·een ml

and m2, ml has a greater affect on the complexity because of its nln2 factor. If ml > m2,

we could compensate for this by transposing the pattern and text prior to pattern match

ing, \\·hich changes the complexity of the algorithms of this paper and [2] by substituting

min(ml' m2) for mt and max(ml' m2) for m2 in the analyses.

The complexity of our algorithm improves upon that of the previously best kno\vn

algorithm for this problem ([2]) by a factor of O(kmin(ml,m2)/(k +min(ml,m2))). \Ve

feel justified in claiming that this is not a a small improvement for two reasons. First, the

smallest pattern would likely be 10 x 10 with respect to a 1000 x 1000 text array. Second,

and more importantly, the smallest realistic k would likely be rnin(ml' m2) (i.e. allo\ving

one mismatch per row or column of the pattern would be the minimum in practical cases),

resulting in a factor of improvement of O((rnin(mh m2»)2j(min(mh m2)+min(m}, m2))) =

O(min(ml) m2)). For example, consider the case ml = m2; denote this simply by m.

When k = m, our algorithm takes time O(m(m log m +nln2)) while the one of [2] takes

time O(m2(m log m + nln2)).

Our algorithm also requires less space than that of [2]. Ignoring the O(mlm2) and

O(nln2) space required by both algorithms for storing the pattern and text arrays,

our algorithm uses O(k(m2 + n2» space, while the one of [2] uses O(ml(km2 + kn2 +
ml max(m2' k))).

It is an open question as to whether a better algorithm can be found for two-dimensional

pattern matching with k mismatches. A likely strategy would be employing a MERGE-like

function between outer i-iterations to reduce the number of symbol scans performed by

EXTEND. The best possible result of such a strategy would be an algorithm which scans

each symbol of the text at most once, thus running in time O(k(m2 log m2 +nln2)).

Since O(k(m2log m2 + nln2» is the best complexity one can achieve, our algorithm is

18

asymptotically optimal if k ~ ml, or k ~ min(ml, m2) if pattern and text transposition

is assumed. We feel that in practical cases it will be so that k ~ min(ml,m2) since, as

mentioned above, the smallest realistic number of errors allowed would likely be at least

of the order of the smaller pattern dimension.

References

[1] D.H. Ballard and C.~f. Bro\vn, Computer Vision, Prentice Hall, 1985.

[2] K. Krithivasan and R. Sitalakshmi, Efficient two-dimensional pattern matching in

the presence of errors, Information Sciences 49, 1987, pp. 169-184.

[3] G.M. Landau and U. Vishkin, Efficient string matching in the presence of errors,

Proc. 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 126

136.

[4] G.M. Landau and U. Vishkin, Efficient string matching with k mismatches, Theoret

ical Computer Science 43, 1986, pp. 239-249.

[5] A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press, 1982.

19

	Two-Dimensional Pattern Matching with k Mismatches
	Recommended Citation

	SU-CIS-89-12_001c
	SU-CIS-89-12_002c
	SU-CIS-89-12_003c
	SU-CIS-89-12_004c
	SU-CIS-89-12_005c
	SU-CIS-89-12_006c
	SU-CIS-89-12_007c
	SU-CIS-89-12_008c
	SU-CIS-89-12_009c
	SU-CIS-89-12_010c
	SU-CIS-89-12_011c
	SU-CIS-89-12_012c
	SU-CIS-89-12_013c
	SU-CIS-89-12_014c
	SU-CIS-89-12_015c
	SU-CIS-89-12_016c
	SU-CIS-89-12_017c
	SU-CIS-89-12_018c
	SU-CIS-89-12_019c
	SU-CIS-89-12_020c
	SU-CIS-89-12_021c
	SU-CIS-89-12_022c

