
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

10-1990

Optimal Parallel Solutions to the Neighbor Localization Problem Optimal Parallel Solutions to the Neighbor Localization Problem

and Integer Sorting: A Fine Grained Approach and Integer Sorting: A Fine Grained Approach

Ramachandran Vaidyanathan

Carlos R.P. Hartmann
Syracuse University, chartman@syr.edu

Pramod K. Varshney
Syracuse University, varshney@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vaidyanathan, Ramachandran; Hartmann, Carlos R.P.; and Varshney, Pramod K., "Optimal Parallel
Solutions to the Neighbor Localization Problem and Integer Sorting: A Fine Grained Approach" (1990).
Electrical Engineering and Computer Science - Technical Reports. 61.
https://surface.syr.edu/eecs_techreports/61

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/61?utm_source=surface.syr.edu%2Feecs_techreports%2F61&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-89-11

Optimal Parallel Solutions to the Neighbor Localization
Problem and Integer Sorting: A Fine Grained Approach

Ramachandran Vaidyanathan, Carlos R.P. Hartmann, and Pramod K. Varshney

Revised October 1990

School of Computer and Information Science
Suite 4-116

Center for Science and Technology
Syracuse, New York 13244-4100

(315) 443-2368

SU·CIS·89·11

Optimal Parallel Solutions to the Neighbor
Localization Problem and Integer Sorting:

A Fine-Grained Approach

Ramachandran Vaidyanathan, Carlos R.P. Hannann, and Pramod K. Varshney

October 1989*

School ofComputer and Information Science
Syracuse University

Suite 4-116
Center for Science and Technology

Syracuse, NY 13244-4100

(315) 443-2368

*Revised October 1990

CIS 89-11
October 1989

Optimal Parallel Solutions to the Neighbor
Localization Problem and Integer Sorting:

A Fine-Grained Approach 1

(Revised Version)

Ramachandran Vaidyanathan2

Carlos R. P. Hartmann3

Pramod K. Varshney4

lThis work was partially supported by The Northeast Parallel Architectures Center (NPAC) at
Syracuse University, Syracuse, NY 13244 and The Rome Air Development Center, under contract
F30602-88-D-0027.

2R. Vaidyanathan was with the Electrical & Computer Engineering Department of Syracuse
University and is currently with the Electrical & Computer Engineering Department of Louisiana
State University, Baton Rouge, LA 70803-5901. e-mail: vaidy@max.ee.lsu.edu

3C. R. P. Hartmann is with the School of Computer & Information Science at Syracuse University,
Syracuse, NY 13244-4100. e-mail: hartmann@top.cis.syr.edu

4p. K. Varshney is with the Electrical & Computer Engineering Department of Syracuse Univer
sity, Syracuse, NY 13244-1240.e-mail: varshney@sunrise.acs.syr.edu

Abstract

In this report, a fine-grained decomposition approach is used to obtain an optimal
parallel solution to the Neighbor Localization Problem, which in turn is re used to sort
n 8(logn)-bit numbers optimally on an EREW model. The model of computation
used is the EREW Reconfigurable PRAM (R-PRAM) that permits the use of "very
small" processors. The main result of this report is a parallel EREW R-PRAM
algorithm that sorts n 0(log n)-bit numbers in 8(log n) time with 8(n log n) "work".
The proposed algorithm is asymptotically optimal in time and efficiency. If a weaker
variant of the R-PRAM (called the ISR-PRAM) is used, the efficiency suffers only a
slight degradation.

Keywords: Integer Sorting, ISR-PRAM, Model of Computation, PRAM, Parallel
Processing, R-PRAM, Sorting.

Contents

1 Introduction

2 Fine-Grained Problem Decomposition

3 The Model of Computation

4 Preliminaries
4.1 The Neighbor Localization Problem
4.2 Hagerup's Integer Sorting Algorithm

5 The Proposed Algorithm
5.1 Optimal Solution to the Neighbor Localization Problem
5.2 An Optimal Solution to Integer Sorting .

1

2

4

5
6
6

7
7

16

6 Integer Sorting and Fine-Grained Decomposition 17

7 Concluding Remarks 19

Acknowledgment 20

References 21

A Pseudo Code for the Neighbor Localization Problem 22

B An Illustration of the Neighbor Localization Problem Algorithm 26

11

List of Figures

1
2

The Fan-in tree for the Example.
Fan-in tree for the example in Table 1

III

8
14

List of Tables

1 An illustration of the Neighbor Localization Problem
2 Step 1; Initialization .
3 Step 1, Iteration 0; Variables .
4 Step 1, Iteration 0; Fanin-Array after initialization
5 Step 1, Iteration 0; Fanin-Array after marking
6 Step 1, Iteration 0; Fanin_Array after resetting marks ..
7 Step 1, Iteration 1; Variables .
8 Step 1, Iteration l;Fan_in-Array after initialization ..
9 Step 1, Iteration I;Fan_in-Array after marking
10 Step 1, Iteration l;Fan_in-Array after resetting marks
11 Step 1, Iteration 2; Variables .
12 Step 1, Iteration 2;Fan_in-Array after initialization ..
13 Step 1, Iteration 2;Fan_in-Array after marking
14 Step 1, Iteration 2;Fan_in-Array after resetting marks
15 Step 1; Setting Flag and Level
16 Step 2; Initialization .
17 Step 2, Iteration 1; Variables .
18 Step 2, Iteration 1; Fanjn_Array after initialization
19 Step 2, Iteration 1; Fanjn-Array after marking
20 Step 2, Iteration 0; Variables
21 Step 2, Iteration 0; Fanjn_Array after initialization
22 Step 2, Iteration 0; Fanin_Array after marking ..
23 Step 3; Variables .

IV

10
26
26
27
27
28
28
28
29
29
29
30
30
30
31
31
31
32
32
32
33
33
33

1 Introduction

It is well known that n numbers (keys) can be sorted sequentially in 8(n log n) time,
where each unit of time is the time required to compare two keys. Considerable work
has been done towards solving this problem in parallel. The AKS sorting network [2]
and a parallel merge sorting algorithm due to Cole [6J, sort n keys in S(log n) time
with 8(n) processors. Azar and Vishkin [4] have proved that the optimal processor
time product of 8(n log n) for comparison-based sorting of n keys cannot be achieved
with a time that is a lower order than 8(log n). Thus, the AKS network and Cole's
algorithm are optimal.

The above results are for the general sorting problem where no assumption is made
about the length of the keys to be sorted. In particular, if the keys are restricted to
assume values from {O,ne(l)}, the n keys can be sorted sequentially in 8(n) time
[9]. This restricted sorting problem is generally referred to as the Integer Sorting
Problem. Since the n keys in the above problem are drawn from {a, ... ,ne(l)}, their
length is at most 8(log n) bits. In this report, we consider unsigned binary numbers
that are 8(Iog n) bits long. Considering that the input to this problem consists of
8(nlogn) bits, one could say that the total work, expressed at the bit level, (from
no\v on referred to as Gate-Time Product (GTP); the GTP has been discussed in § 2)
needed to solve the Integer Sorting Problem of size n is lower bounded by e(n log n).

This lower bound on GTP has not been achieved with a time of 0(log n), except
in the case of a sorting network [2, 10]. The best known deterministic Integer Sorting
algorithm that sorts n log n-bit keys in 8(log n) time is due to Bhatt et al [5], and it
needs 8(1 WE;) time and a GTP of 8(nlognloglogn) on an ARBIT CRCW
PRAMS.

For any CREW model it has been proved [7] that n I-bit numbers (and hence
n 8(logn)-bit numbers) need at least 8(logn) time to be sorted. Furthermore,
since the input to the Integer Sorting Problem consists of 8(n log n) bits, the GTP
of any solution to it is lower bounded by 8(n log n). A logical question therefore
is "can Integer Sorting be solved in 8(log n) time and a GTP of 8(n log n) on a
CREW model ?" We conjecture that this cannot be done if a lower order than E>(n)
processors are used. If our conjecture is correct, one can hope to solve the Integer
Sorting Problem in 8(logn) time and a GTP of 8(nlogn) only if "processors of
size 8(1) bits" are used. In order to achieve the above bounds on time and GTP,
we use in this report a new model of computation called the Reconfigurable PRAM
(R-PRAM), which permits the use of small processors. More details of the R-PRAM
appear in § 3 and in [13].

In this report, we present a deterministic EREW R-PRAM algorithm that solves
tIle Integer Sorting Problem optimally in 8(logn) time with a GTP of 8(nlogn).

The above algorithm is based on a method due to Hagerup [8], which uses a
PRIORITY CRCW PRAM with n ::; on processors, ea h of word siz log n bits, to

5The result presented in [5] is more general than what is stated here

1

sort n 8(log n)-bit numbers in 8(log n) time. The bottleneck of Hagerup's algorithm
is the Neighbor Localization Problem, to solve which in 8(logn) time, a PRIORITY
CRCW PRAM with n processors, each of word-size log n bits, is required. We show
here that the Neighbor Localization Problem can be solved deterministically on an
EREW model in 8(logn) time with a GTP of 8(nlogn). We use the above result
with Hagerup's algorithm to show that n 8(logn)-bit unsigned binary numbers can
be sorted optimally on an EREW model in 8(logn) time with a GTP of 8(nlogn).

Before we proceed, we would like to explain some of the notation used in this
report. Let f(n) and g(n) be two non-decreasing functions of a variable n. We say

- f(n) is 8(g(n)) iff f(n) and g(n) have the same order of complexity.
- f(n) is O(g{n)) iff the complexity of f(n) is the same as or lower than

that of g(n).
- f(n) is f2(g(n)) iff g(n) is O(f(n)).
- f(n) is o(g(n)) iff f(n) is O(g(n)) and f(n) is not 8(g(n)).
- f{n) is w{g(n)) iff g(n) is o(f(n)).
Barring the "w" notation, the rest of the above complexity notation is commonly

used in the literature. For any real number r, rr1denotes the smallest integer i such
that i ~ r. All logarithms used are to the base 2.

In the next section we briefly describe the idea of a fine-grained problem decom
position which is necessary before we describe our model of computation in § 3. In
§ 4 we outline the Neighbor Localization Problem, and Hagerup's algorithm. In § 5,
we discuss our solution to the Neighbor Localization Problem and explain how it can
be used to solve the Integer Sorting Problem. In § 6 we explain the basis for our
conjecture that n 8(log n)-bit numbers cannot be sorted by any "oblivious" CREW
algorithm in 8(logn) time and a GTP of 8{nlogn), unless a fine-grained decompo
sition is used. Finally, in § 7 we summarize our results and make some concluding
remarks.

2 Fine-Grained Problem Decomposition

Any computational problem can be viewed as a computable function f : A ----+ B
where A and B are the sets representing the input and the output domains. If nothing
more is specified about sets A and B, one has to work at a level of abstraction in
which any input a E A and f(a) E B are treated as atomic entities and one cannot
say much about how the computation is performed. Usually, the input and the output
are assumed to consist of several smaller entities and A and B may be expressed as
At X A 2 x·· · X AN and Bt X B2 x·· · X BM , respectively. A slightly lower level of
abstraction views the input and output as Nand M atomic entities, respectively. At
this level of abstraction, one could conceivably parallelize the problem, as there is
more than one entity to manipulate. Proceeding in a similar fashion one could view
the input as a sequence of n bits and the output as a sequence of m bits, each of
which can be processed individually. At this level of abstraction the problem may

2

be highly parallelizable. Any level of abstraction that views the input and output
as entities that are smaller than the elements of AI, A2 , ••• ,AN and B I , B2 , • • • ,EM,
will be referred to as a fine level of abstraction. A problem decomposition at a fine
level of abstraction is called a fine-grained decomposition. The granularity of the
decomposition is intimately associated with the size of the objects that a processor
considers atomic, i.e. the "word-size" of the processor. For many problems, a fine
grained decomposition could result in better solutions. More details appear in [13].
Before we outline the R-PRAM, a few relevant details are discussed below.

Any computable function f : {a, l}n --+ {O,l}m can be computed trivially in
8(1) time using a look-up table with 2n m-bit entries. The address decoding time
has been ignored as is the case for the rest of the discussion in this report. We will
therefore assume that the memory used to solve a computational problem of size n
is O(ne(l») bits; i.e. memory is polynomially upper-bounded in the size of the input.
Similarly, we will also assume that the total number of processors used and their
word-size are O(nB(I)) bits.

For most non-trivial computational problems of size n, each processor used in
its solution has an address space that is S1(n) bits (and O(n6 (1))) bits as discussed
earlier). Therefore, the length of an address is 8(logn) bits. This makes it necessary
for the processors to be of size S1(log n) bits, if memory addressing is not ignored and
is required to take 8(1) time. This lower-bounds the size of the processors and hence
limits the granularity of the problem decomposition.

The R-PRAM is a variant of the PRAM. Like the PRAM, the model will abstract
the solution to a problem from the communication and synchronization details. It
is also generally assumed that the PRAM can execute any instruction from its in
struction set in 0(1) time. To make this assumption reasonable, the instruction set
is restricted to include only "simple" operations. One such restricted class of instruc
tions (called the minimal instruction set in [11]) includes data movement, addition,
subtraction, and shifting by one bit. One could also include comparison and bitwise
and global logical operations in this instruction set. Consider an instruction chosen
from this class that uses a b-bit operand. It is clear that data movement, I-bit shift
ing, and bitwise logical operations can be done in constant time using a "processor
of size b bits." (The notion of a processor of size b bits is defined later). Address
generation is assumed to require no time here. Consider now the addition of two b-bit
numbers using a processor of size b bits. If we assume that the internal gates of the
processors have constant fan-in and fan-out, the above addition cannot be done in
time independent of b, unless a table look-up is used. The same holds for comparison
and global logical operations. Since each of the above instructions need at most two
b-bit operands, and the instruction set contains a constant number of instructions,
the total size of the look-up tables for each processor is 8(2e (l)b) b-bit words. By our
earlier assumption 8(2B(I)b) is O(ne(l)). Thus, b is O(log n). In fact, if b is O(log n),
then any instruction that requires x operands, each of size 8(y) bits such that xy is
O(b), can be executed in 8(1) time by a "processor of size b bits." Therefore any

3

step in a computation may be viewed as a set of concurrent memory accesses. This
motivates the following definition.

Definition: A processor is said to be of size b bits iff the largest number of
contiguous memory bits that it can access in unit time is b, where unit time is defined
to be the time required by a processor of any size to access a single bit of the memory_

In the above definition it is assumed that no other processor is making an access
and that the address for the memory access is known. These assumptions are only
for the purpose of a precise definition and do not reflect on the capabilities of the
model. More details appear in [13]. The above definition is consistent with the
assumption that the instructions from the instruction set of a processor of size b bits
(b is O(log n)) can be executed in constant time. We also note that since the size of a
processor has been defined in terms of its memory accessing capability and to access
b bits of memory in constant time one needs 8(b) bits of hardware (not counting
the memory, the memory port etc.), we will say that a processor of size b bits has
8(b) bits of computing hardware. Conversely, 8(b) bits of computing hardware is
sufficient to construct p ~ b processors, each of size 8(;) bits. We do not count
other hardware necessary in a practical processor, like the memory and its ports, as
computing hardware.

If p processors Co, Cl, ... ,Cp-l, with processor Ci of size Si bits, are used to solve a
problem of size n in time T(n), then under the assumptions made earlier we say that

(

P-l)
the problem can be solved in time T(n) with t; Si bits of computing hardware.

We measure the efficiency of this solution by the quantity Gate Time Product (GTP)
which is the product of the bits of computing hardware used and the time taken.
The GTP is a measure of computational efficiency, analogous to the commonly used
processor time product.

3 The Model of Computation

As mentioned earlier, the model used in this report is the Reconfigurable Parallel
Random Access machine (R-PRAM). This model captures the idea of a fine-grained
problem decomposition and like the PRAM, abstracts the solution from details of
communication and address decoding. In addition, the R-PRAM also abstracts the
solution from details of address generation and loop management. More details of
these issues appear in (13].

The R-PRAM consists of 1i bits of computing hardware that may be configured
as 8(p) processors, each of size B(11) bits, for any p that is S1(1), such that Ii is a non-
d · f · p pecreasIng unctIon. For each value of p we have a different processor configuration
of the 1i bits of computing hardware. The reconfiguration is static; i.e. it can be

4

decided a priori, which configuration the R-PRAM will assume at any point in the
execution of the algorithm. Like the PRAM, the R-PRAM has M bits of global
memory that could be accessed by all the processors in a given configuration. If a
configuration has 8(~) processors, each of size b bits, then each processor views the
global memory as 8(~) words, each of which consists of b contiguous bits. We note
here that a processor of size bbits can only access one b-bit memory word at a time. If
a processor of size b-bits accesses f contiguous bits of the memory, then it is assumed
to require 8(r~l) time. In this report, we use two configurations for the R-PRAM.
The first one has 8(1-i) processors, each of size 8(1) bits and the second one has
E>(lo~n) processors, each of size E>(logn) bits. In order to ensure that at least E>(1)
processors, each of size 8(log n) bits is available, we will assume 1-i to be O(log n).
This is similar to assuming that a PRAM used for the solution has at least 8(1)
processors.

Like the PRAM, the R-PRAM can be EREW, CREW or CRCW. In this report,
we mainly use the EREW R-PRAM.

As mentioned earlier, the R-PRAM could assume a configuration that consists
of processors of size o(log n) bits. Since the address of the memory is 8(log n) bits
long, the address generation mechanism of the R-PRAM needs further elaboration.
For this purpose, it is convenient to divide the variables into two broad classes; local
variables and shared variables. As the name indicates, the local variables are local to
a processor. Since there are a constant number of them, they may be addressed by
a processor of size 8(1) bits in constant time. On the other hand, a shared variable
in general could have the form Array(xl)(X2) · · · (xc), where c is a constant. These
variables are addressed with an additional level of indirection. The indices Xl, X2, • • • Xc

of the array are treated as the contents of the index registers R1 , R2 ,· • • Rc • These
index registers themselves could be treated as local variables. Addressing the above
array involves first accessing the index registers and setting their values appropriately
and the using these values as the address of the array. Thus the above address
generation takes as much time as is needed to set the index registers.

The R-PRAM has a weaker variant called the Iteration Sensitive R-PRAM (also
called the ISR-PRAM). As mentioned earlier, the R-PRAM assumes that a processor
of size b bits can access £ contiguous bits of the memory in 8(r~l) time. In other
words, the processor executes 8(r~1) iterations, accessing 8(b) bits at a time. The
overheads in managing the above iterations are ignored (i.e. incrementing the loop
variable and deciding when to exit the loop). The ISR-PRAM accounts for all these
overheads. More details appear in [13].

4 Preliminaries

We give in § 4.1 a description of the Neighbor Localization Problem that is somewhat
different from the description given in [8]. Since the essential idea of the problem is
the same we will continue to use the term "Neighbor Localization Problem" in this

5

report. In §\ 4.2 we describe Hagerup's Integer Sorting algorithm.

4.1 The Neighbor Localization Probletn

Our version of the Neighbor Localization Problem may be described formally as fol
lows. As mentioned earlier, we use the solution to the Neighbor Localization Problem
to solve the Integer Sorting Problem.
Let ko, k1 , ..• ,kn - 1 be n unsigned binary numbers whose values are drawn from the
set {O, 1, ... ,n - I}. Let p(ki) denote the value of ki ; 0 ::; i < n. The solution to
the Neighbor Localization Problem is to determine for each number ki ; °::; i < n,
the index j; i < j < n such that p(ki) = p(kj) and for all indices j'; i < j' < j,
p(ki) =I p(kj l). The number kj is said to be the neighbor of ki . The solution is
represented as a set of pointers. The pointer of ki is set to its neighbor. If ki has no
neighbor, then its pointer is set to a value not in {O, 1, ... , n - I}, which we denote by
NIL. It should be mentioned here that a pointer is a variable that can assume values
from N(n) U {NIL}. It is represented by rlognl +1 bits. The rlognl bits represent
the value of the pointer (if it is not NIL); the extra tag bit is used to ascertain whether
the pointer is NIL or not. It should be noted that a pointer can be tested for a NIL
value by examining just one bit.

4.2 Hagerup's Integer Sorting Algorithm

Hagerup's Integer Sorting algorithm for sorting n log n-bit numbers may be described
by the following four-step procedure.

Step A: Find the neighbor of each number (if the neighbor exists).

Step B: Concatenate the lists formed in Step A in the order imposed by the
function p. It is assumed that for each of the lists in Step A the beginning and
end may be accessed in constant time, using a processor of size log n bits. Since
list concatenation is an associative operation, it is not difficult to see that Step
B can be carried out in 8(log n) time with lo;n processors, each of size log n
bits by fanning in the lists in a binary tree fashion.

Step C: Rank the elements of the list generated in Step B. This can be done in
E>(1og n) time on an EREW PRAM with lo;n processors, each of size log n bits
[3] .

Step D: The rank generated in Step C is used to relocate the n log n-bit numbers.
The lo;n processors, each of size log n bits can achieve this in 8(log n) time.

We show in the next section that the Neighbor Localization Problem can be solved
in 8(logn) time on an EREW R-PRAM with 8(n) bits of computing hardware.

6

5 The Proposed Algorithm

This section is divided into two parts. In the first part, we present an algorithm that
solves the Neighbor Localization Problem on an EREW R-PRAM with 8(n) bits of
computing hardware in 8(log n) time. In § 5.2 we explain how this algorithm may
be used to sort n 8(logn)-bit unsigned binary numbers optimally in 8(logn) time
using an EREW R-PRAM with 8(n) bits of computing hardware.

5.1 Optilllal Solution to the Neighbor Localization ProbleIll

Before we proceed, we remark that the input to the Neighbor Localization Problem
i

is a set of n unsigned binary numbers whose values are from the set {O, ... , n - I}.
In other words, the input is of size (n log n) bits and hence the GTP of any solution
to the Neighbor Localization Problem is f!(nlogn). Also as mentioned earlier, n
numbers cannot be sorted on any CREW model in o(log n) time [7]. This implies
that the Neighbor Localization Problem cannot be solved on any CREW model in
o(log n) time. Thus, a parallel solution that uses 8(n) bits of computing hardware
and takes 8 (log n) time (so that the GTP is 8(n log n)) is indeed optimal. We present
such a solution in this section.

A naive EREW approach for the Neighbor Localization Problem would fan-in the
indices of the processors in a binary tree fashion. This would require n processors,
each of size 8(log n) bits to achieve a time of 8(log n), as the processor indices (and
hence the result pointers) are of length 8(log n), and the GTP is 8(n log2 n). It
should be pointed out that if o(n) processors, each of size log n bits are used, the
(worst case) time becomes w(log n) and the GTP is still 8(n log2 n). One way of
reducing the GTP is by decreasing the number of data bits in each step of the fan
in. In our method we fan-in the information about the presence (or absence) of the
neighbor of a given number. This implies the fanning-in of 8(1)-bit information in
a binary tree, which we will call the fan-in tree. Thus, n processors, each of size
8(1) bits can perform the fan-in in 8(log n) time. However, we cannot determine the
neighbor of a given number by this method; only a subtree of the fan-in tree in which
the neighbor lies can be identified. Subsequently, this subtree will be systematically
searched for the neighbors. We note that the nodes of the fan-in tree correspond to a
set of processors. At the leaves these sets are singleton sets and could also be taken
to represent the n numbers (keys).

Definition: Let k i be a number whose neighbor is kj ; 0 ~ i < j < n. The neighbor
tree of i, denoted by 7i, is the smallest subtree of the fan-in tree that has both ki

and its neighbor kj as leaves. For numbers that have no neighbors, the neighbor tree
is undefined.

7

Level

3

2

1

o

(OJ (I) (2) {3] {4} (5) (6) (7) (8) (9) (IO) (II) (12) (13) (14) (IS)

k O k1 k2 k3 k4 kS k6 k7 kg k9 k1 0 k1 1 k1 2 ~ 3 k1 4 k1 5

Figure 1: The Fan-in tree for the Example

As mentioned earlier, our fan-in step identifies the numbers that have a neighbor
and for each such number kj , 7i (0 ~ i < n) is determined. We use this information
to search 7i in 8 (log n) time using n processors, each of size 8(1) bits. The following
example illustrates our approach.

Example: Consider 16 unsigned binary numbers in which the neighbor of k1

is k6 • The Fan-in tree is illustrated in Fig. 1 with the nodes represented as sets of
processor indices. Also shown are the levels of the non-leaf nodes of the fan-in tree.
For brevity, we will refer to a non-leaf node by the highest processor index in its
representative set and its level. For instance, the node labeled {a, 1, ... , 7} in Fig. 1
is represented as < 7, 2 >. A leaf node will be referred to by the processor (element)
index associated with it. As an example, the leaf node labeled {I} in Fig. 1 is referred
to simply as node 1.

8

It is clear that 71 is rooted at the node < 7, 2 > (the node at level 2 with 7 as the
highest index in its representative set). We know from this that the subtree rooted
at node < 7, 1 > has the neighbor of k1 . The processor 1 therefore searches the node
< 5, 0 > for the presence of its neighbor. Since its neighbor is not a leaf of the subtree
rooted at < 5,0 >, processor 1 does not detect it and decides to search < 7,0 >, the
right child of < 7,1 >. At the next and final step, processor 1 searches first the left
child (node 6) of < 7,0 > and finds its neighbor. Otherwise, node 7 (right child of
< 7, 0 » would have been its neighbor.

In our algorithm we use n processors, each of size 8(1) bits, indexed 0 to n - 1
and we assign processor i to the number ki . We assume that n is an integer power
of 2. This is purely for convenience and will in no way affect the complexity of our
algorithm. The variables used in the algorithm will be termed parallel variables. A
parallel variable has n components, one for each processor. For example, a parallel
variable named "List" will have a component List(i) corresponding to each processor
i; 0 :::; i < n. The component List(i) will be referred to as the ith component of List.
A parallel variable V whose i th component is accessed only by the processor i may
be treated as a local variable. All other parallel variables are accessed indirectly as
discussed in § 3. Each component of a parallel variable could be a bit or even an array.
For brevity, when we talk of information stored in the ith component of some parallel
variable, we will say that the information is in processor i. Also, the processor i and
the number ki assigned to it will be used interchangeably where there is no danger of
ambiguity. We now describe our algorithm as a 3-step procedure.

Step 1: For each number ki we set a flag "Flag(i)" which is 1 if and only if ki has
a neighbor. For the number ki that has Flag(i) = 1, we also determine 7;, it's
neighbor tree. We note here that 7; can be uniquely specified by the level of
its root. For instance, 71 in our example, can be specified as simply 2, knowing
that only the node < 7,2 > or {O, 1,2,3,4,5,6, 7} can have k1 as its leaf. We
represent the level information in the component Level(i) of a parallel variable
Level. Level(i) is a log n-bit vector, each bit of which denotes a level of the
fan-in tree. The least significant bit is numbered 0 and the most significant bit
is numbered log n - 1. If 7i is rooted at a node at level h of the fan-in tree;
o~ h < log n, then bits 0 to h of Level(i) are set to 1; the remaining bits are
set to O. In our example, Level(i) is a 4-bit vector and Level(l) = 0111. For
the numbers that have Flag set to 0, Level does not matter.

Step 2: We use Level(i) to search 7i, as was illustrated by our example. The
output of this step is the parallel variable Link. If Flag(i) = 1, then Link(i)
points to the neighbor of ki . If Flag(i) = 0 then Link(i) has a "don't-care"
value. The search in this step is performed only for those numbers ki that have
Flag(i) = 1.

Step 3: For each number ki we set the pointer Nbr(i) to point to its neighbor. If
ki has no neighbor, then Nbr(i) is set to NIL.

9

Inputs Outputs
z p(i) Level(i) Flag(i) Link(i) Nbr(i)
0 5 011 1 2 2
1 2 111 1 7 7
2 5 001 1 3 3
3 5 111 0 - NIL
4 4 011 1 6 6
5 7 111 0 - NIL
6 4 111 0 - NIL
7 2 111 0 - NIL

Table 1: An illustration of the Neighbor Localization Problem

All of the above three steps will need 8(logn) time on an EREW R-PRAM with n
bits of computing hardware. Table 1 shows the values of the relevant parallel variables
for a small example of eight numbers. For instance, consider element o. The value of
ko is 5 and the smallest index i > 0 so that p(i) = 5, is 2. Thus, k2 is the neighbor
of ko and Nbr(O) = 2. At the first iteration of Step 1 of our algorithm, processor a
searches the index 1 for a neighbor. Since p(O) :f p(l), a neighbor is not detected. In
the next iteration, processor 0 searches the indices 2 and 3 and detects a neighbor.
For the remainder of Step 1 processor need not look for a neighbor. This is reflected
by Level(i), which is 1 (starting from the Isb) till a processor i detects the neighbor
of ki - For processor 0, Level(O) = 011 as the neighbor is detected in the second
iteration. Flag(O) = 1 as ko has a neighbor. In contrast ks has no neighbor and
Flag(5) = 1 and Level(5) = 111. The output of Step 2 is Link(i) which points to
the neighbor of ki (if the neighbor exists); otherwise Link(i) has a don't care value,
shown as "-" in Table 1. The only difference between Link{i) and Nbr(i) is that the
don't care values in Link(i) are replaced by NIL in Nbr(i).

Steps 1 and 2 use a parallel variable called the Fan-in-.Array. The component
Fan_in-.Array(i) is itself an array of n bits, one for each possible value of a number.
We use the Fan_in-.Array to fan-in the neighbor information in Step 1 and to search
the subtrees in Step 2. The basic operation of Step 1 is a merge of the neighbor
information. For some value of it and 0 ~ h < log n, let Sf = {it +j : 0 ~ j < 2h }

and Sr = {it + 2h +j : 0:::; j < 2h
}, be subsets of N(n) = {O,l, ... ,n -I}. The

elements of these sets are to be taken as indices of the processors or the numbers
(keys).

10

Definitions: Consider a number ki with i E S ~ N(n). If ki has a neighbor whose
index is in S, then k i is said to be known with respect to S or simply a known
element of S; Otherwise ki is said to be an unknown element of S. If the neighbors
of all the known elements of S have been detected, then S is said to be solved. The
unknown elements of S are called the last elements of S. An element of S that is
not a neighbor of any other element of S is called a first element of S.

The non-leaf nodes of the fan-in tree are called merge steps. For a merge step, the
input is the sets Sf and Sr, which are assumed to be solved. The output is the solved
set Sf U Sr .~ N(n). When Sf U Sr = N(n), Step 1 has been completed. The sets
Sl and Sr are called the Left and Right Sets of the merge step, respectively. Each
element of Sf (or Sr) has a common destination index D(SI.) (or D(Sr)) associated
with it. In fact, D(Sf) (or D(Sr)) is the largest index in SI. (or Sr). The non-leaf nodes
of the Fan-in tree of Fig.. 1 represent the merge steps and the sets used to represent
them are the sets Sl U Sr resulting from the merge step. In fact, if S ~ N(n) and
if <maxJndex, level> represents the node (merge step), then maxindex = D(S).
During a merge step we use Fan_in~rray(D(Sr)) to check if any of the unknown
elements of Sf have neighbors in Sr" This is done as follows.

Each last element (unknown element) i of Sf initializes Fan_in~rray(D(Sr))(p(i)).
Next, each first element j of Sr marks Fan_in~rray(D(ST))(p(j)) with a 1. Finally,
each last element i of SI. checks Fan_in~rray(D(Sr))(p(i)) for a mark. If a mark
is found, then the existence of a neighbor of the last element in Sr is established.
At the end of the merge D(SI. U Sr) = D(Sr). We use the parallel variable Dst to
represent the destination index of a processor. At the beginning of Step 1 the left
sets are {i}; 0::; i < nand i is even, and the right sets are {i}; 0::; i < nand i is
odd; D({i}) = i. The parallel variables Fan_in~rray and Dst are used for similar
purposes in Step 2, as is illustrated later. We provide below a simple algorithmic
description of the above steps. A detailed pseudo-code is given in the Appendix A.

In the following description, processor i will be called Ci; 0 ::::; i < n; and will be
assumed to be associated with ki the i th input number. Where there is no ambiguity,
we will use Ci and ki interchangeably. The following algorithm is executed by each
processor Ci.

Step 1

Initialize ki to be both a first and a last element of {i}. Initialize Level(i) to 00 ... 0;
i.e. set each bit of Level(i) to 0;

for h f-- 0 to log n - 1 do

Compute Dst(i) the address of the buffer area (component of Fan-.in_Array)
through which Ci will exchange information;

11

/* Initialize Step: This ensures that garbage values are not read in the subse
quent Check Step */

If ki is a last element and part of a Left Set then

Ci initializes Fan_in-Array(Dst(i))(p(i)) to 0;

/* Set Step: Here the first elements of each Right Set declare their presence
(for the last elements of the corresponding Left Sets) */

If ki is a first element and part of a Right Set then

Ci sets Fan_in-Array{Dst{i))(p{i)) to 1;

/* Check Step */
If ki is a last element and part of a Left Set then

Ci checks Fanin_Array(Dst(i))(p(i));
If the value checked is a 1 then the existence of a neighbor of ki in a

subtree rooted at level h has been established;

If ki has a neighbor in a subtree rooted at level h then

Level(i) and Last(i) are appropriately adjusted. Last(i) is a flag which
is 1 iff ki is a last element;

First(i) is adjusted if necessary. First(i) is a flag which is 1 iff ki is a first
element;

end

If ki did not find a neighbor then set Flag(i) to 0; otherwise set it to 1;

Step 2

CST(i) = ii; /* CST(i) is the current search tree of Ci; this is initialized to ii,
the fan-in tree of ki , that was obtained in Step 1 */

for h +-- log n - 2 down to a do

if Flag(i) = 1 and Level(i) + 1 = 1 then

Search the left subtree of CST(i) for the neighbor of ki ;

If a neighbor is detected then

CST(i) = left subtree of CST(i);

else

CST(i) = right subtree of CST(i);

end

12

At this point CST(i) is rooted at a leaf, which is the neighbor of ki .

At the end of Step 2, Flag(i) == 1 iff ki has a neighbor and for those elements
that have F lag(i) = 1, a parallel variable called Link is set to point to the neighbor.
Step 3 sets Nbr(i) to point to the neighbor of ki , if ki has a neighbor. Otherwise,
Nbr(i) is set to NIL.

Step 3

if Flag(i) == 1 then

Nbr(i) r- Link(i)

else Nbr(i) +-- NIL

Each of steps 1,2 and 3 need 8(logn) time. The memory used is 8(n2
) bits (for

Fanjn-Array).
We now illustrate our solution to the Neighbor Localization Problem with a more

detailed explanation for the instance in Fig. 1. The fan-in tree for this example is
shown in Fig. 2. The nodes of the fan-in tree are numbered 0 to 14 with the leaves
corresponding to the indices of the input numbers. The values of the numbers are
also shown in Fig 2. In the following description processor i is denoted by Ci and is
assumed to be associated with the input ki . The neighbor tree of ki is denoted by
7i and T(j) represents the subtree of the fan-in tree rooted at node j. For instance,
7(14) denotes the entire fan-in tree. We will also assume that each node j that is
searched by a processor Ci has all the information about the leaves of 7j.

Step 1: This step has log n iterations (3 for the example).

Iteration 0

- Processors Co, C2, C4 and C6 search 7(1),7(3),7(5) and 7(7) respectively.

- Only C2 finds a match; 12 = 7(9).

Iteration 1

- Co and Cl search 7(9); C4 and Cs search 7(11).

- Co and C4 find matches; TO = 7(12) and 14 == 7(13).

Iteration 2

- Cl and C3 search 7(13).

13

o
5

1

2

2

5

3

5

14

4

4

5

7

6

4

7

2 P(i)

Figure 2: Fan-in tree for the example in Table 1

- Co and C2 do not participate in the search as the neighbors of leo and k2 have been
detected.

- Cl detects a neighbor while C3 doesn't; 7i = 7(14).

At the end of Step 1, Flag(O) = Flag(l) = Flag(2) = Flag(4) = 1 as the
neighbors of ko, k1 , k2 and k4 have been detected. The remaining elements i (that
have Flag(i) = 0) do not participate in the search in Step 2.

Step 2: This step has (log n) - 1 iterations (2 for the example).

Iteration 1

- The neighbor tree of k1 is 7(14). From this it is obvious that the neighbor of k1

is a leaf of 7(13). Cl therefore searches 7(10) the left subtree of 7(13). After
having failed to detect the neighbor in 7(10), Cl decides to search 7(11), the
right subtree of 7(13).

14

Iteration 0

- Cl now searches 7(6) the left subtree of 7(11) and having failed to detect the
neighbor deduces that 7(7) == node 7 is the neighbor.

- Co and C4 join in the search during this iteration. Co searches T(2) and finds the
neighbor. C4 searches 7(6) and finds the neighbor.

- It should be noted that C2 does not participate in Step 2 as it can directly deduce
that T(3) = node 3 is the neighbor.

Step 3: For each index i, Nbr(i) is set to the value of Link(i) (obtained in Step 2),
if F lag(i) = 1; otherwise Nbr(i) is set to NIL.

In Appendix A we provide pseudo code for Step 1 and Step 2 of the Neighbor
Localization Problem algorithm~ An explicit illustration of Steps 1-3 appears in
Appendix B~ It is clear from Procedure Step_1 (Appendix A) that Level(i) and
Flag(i) are appropriately set~ It is not difficult to show that the reads and writes
on Fan-in_Array(Dst(i))(p(i)) are exclusive~ This is because for any given values of
Dst(i) and p(i) there is no more than one processor (the one corresponding to the last
element of value p(i) in the Left Set) that initializes the above location, checks it for a
mark and resets the mark~ Similarly, the only processor that marks this location and
checks for a reset mark is the one corresponding to the first element of value p(i) in the
Right Set~ Again, for Procedure Step_2 (Appendix A) it is evident that the search is
performed as illustrated in the earlier examples~ The reason for using Hall-Level(i)
is that the search really begins at the level of the subtrees of 7i~ For searching a
subtree rooted at a node x, the unknown elements of the set (corresponding to the
node x in Step 1) are used to reconstruct Fan_in-Array. Thus, all reads and writes
can be proved to be exclusive in Step 2, by virtue of the fact that Level(i) and hence
Half-Level(i) are based on the access pattern seen in Step 1~ An important point to
note is that the parallel variables Dst and Link are set 1 bit at a time.

We note here that the only shared variable used in our algorithm is Fan_in-Array~

When processor i accesses a component of the above parallel variable, the address has
the form Fan-in-Array(x)(p(i)), where x is either Dst(i) or Link(i), both of which
are local variables. As mentioned earlier, x and p(i) are to be treated as contents
of index registers and the time required to access Fan_in-Array(x)(p(i)) is the time
required to generate the values of x and p(i). The value of p(i) can be generated
once at the start of the algorithm as a part of the initialization procedure~ This value
does not change subsequently. Since the above value can be generated in 8(log n)
time by a processor of size 8(1) bits, it does not affect the time complexity of the
algorithm. The variables Dst(i) and Link(i) are either changed outside the loops or
are changed only one bit at a time (inside the loops) ~ Hence they too do not affect

15

the time complexity of the algorithm. In other words, the effective access time for
Fan_in-Array is 8(1).
We summarize the results of this section in the following lemma.

Lemma 1 The Neighbor Localization Problem for n elements can be solved on an
EREW R-PRAM with 8(n) bits of computing hardware in 8(logn) time and 8(n2

)

bits of space.

5.2 An Optimal Solution to Integer Sorting

As mentioned earlier, our Integer Sorting Algorithm is based on Hagerup's method.
We replace Step A of Hagerup's algorithm by our Neighbor Localization Problem
algorithm (see § 4.2). This makes Step A optimal and requiring a EREW model.
For Step B of Hagerup's algorithm requires that the beginning and end of each list
generated by Step A be available for access by a processor of size log n bits in constant
time. This can be done as shown in Appendix A.

Step C requires 8(log n), log n-bit addition steps. As mentioned in § 2, each
addition step requires a non-constant time, unless a look-up table is used.. The size
of the look-up table for each of the 8(lo;n) processors used in this step is 8(n2 log n).
Thus unless a CREW model is used, each processor needs a look-up table and the
total size of the look-up tables is 8(n3). If a CREW R-PRAM is used the memory
requirement is 8(n2 Iogn) bits.

So far, we have considered only n log n-bit unsigned binary numbers. If the
unsigned binary numbers (keys) are (clogn)-bits long, where c is any constant, the
sorting can be done with an additional time factor of rcl, as follows. 6 Divide the
(c log n) bits into rc1 sections of contiguous bits, each at most log n bits long. We
proceed in rc1 steps over the sections (starting from the least significant section),
Integer Sorting the current section in 8(log n) time. This sorting is used to reorder
the keys for the next iteration. This method is very similar to the lexicographic
sorting in [1]. If an ISR-PRAM (a weaker variant of the R-PRAM) is used there is a
slight degradation of the GTP caused by the overheads of managing a loop of 8(log n)
iterations. The speed of the algorithm is not affected. OUf results are summarized in
the following theorems.

Theorem 1 Given n B(log n)-bit unsigned binary numbers) they can be sorted
stably in 8(logn) time on an EREW R-PRAM with n bits of computing hardware)
and with 8(n3

) bits of space.
The space requirement can be reduced to 8(n 2 10g n) bits if a CREW R-PRAM is used.

We note here that the time and GTP of the above algorithm are optimal.

6It should be noted that the sorting method discussed so far is stable [9].

16

It has been shown in [13] that a loop whose loop variable goes from 0 to Y - 1
has an overhead of 8 (log log Y) in the bits of computing hardware needed, when
executed on an ISR-PRAM. There is no overhead in time for the above loop. Since
the loops for our Neighbor Localization Problem algorithm have 8(logn) iterations,
the correspqnding overheads in the bits of computing hardware, when an ISR-PRAM
is used, is 8(log log log n). Thus we have,

Theorem 2 Given n 8(log n)-bit unsigned binary numbers, they can be sorted
stably in 8(log n) time on an EREW ISR-PRAM with n log log log n bits of computing
hardware, and with 8(n 3

) bits of space.
The space requirement can be reduced to 8(n 2 10g n) bits if a CREW ISR-PRAM is
used..

Though the GTP of the ISR-PRAM solution is suboptimal, the degradation in the
GTP is by a very small order. In any case, this GTP is an improvement over the
conventional EREW PRAM algorithm that has a GTP of 8(n log2 n).

6 Integer Sorting and Fine-Grained Decomposi
tion

In this section we address the issue of how important fine-grained problem decompo
sition is for Integer Sorting. Before we can attempt to discuss this let us examine the
Matching Value Problem that is described below.

Consider a function f : {O, 1, ... ,n -l}n~ {a, l}n for which f(a1, (}:2,. · · ,an-1)

=< f31,f32,~ .. ,(3n-1 >, where (3i = 1 iff3j E {O,l, ... ,n-l} - {i} 3 Qi = aj; 0 ~
i < n. Computing the above function is the solution to the Matching Value Problem.

For this section we consider a special case of the Matching Value Problem in
which at most 2 of the n input elements have the same value. We call this the
Restricted Matching Value Problem. Before we proceed any further, a few definitions
and observations are useful.

An algorithm is said to be oblivious if it is possible to choose an input for which
the performance of the algorithm is the worst possible.

Consider now an oblivious CREW algorithm for the Restricted Matching Value
Problem. It is easy to see that even if only f30 need be computed, the above algorithm
would need 8(log n) time. Thus, a lower bound on time needed to solve the Matching
Value Problem is 8(log n). A lower bound on the GTP needed to solve the Restricted
Matching Value Problem (and hence the Matching Value Problem) is 8(nlogn), the
number of bits in the input. If n processors, each of size log n bits is used, it is easy
to design a CREW algorithm that achieves the above lower bound on time. However
the GTP is w(n log n). We now pose the following question. Is is possible to design an

17

oblivious CREW algorithm that uses o(n) processors to solve the Restricted Matching
Value Problem in 8(log n) time and a GTP of 8(n log n) ?

Before we address this question, the following observations about the Restricted
Matching Value Problem are important.

- If any processor finds a matching pair of values the the Restricted Matching Value
Problem is solved.

- Till a pair of matching values is found (or the algorithm terminates with (3i = 0,
for all i E {a, 1, ... , n - I}), none of the inputs elements may be ignored. If
any input element is ignored, an input to the problem may be chosen so that
the ignored input has a matching value. This would make the algorithm slow
or worse still, incorrect.

Consider now an oblivious CREW algorithm for the Restricted Matching Value
Problem that uses p processors, each of size 8(njp) bits, where p is o(n). The size
of the processors is therefore w(l). Since there are n input elements to be considered
by these processors, each processor has nip (which is w(l)) input elements associated
with it. One way of representing the information in the input elements is by their
values. Each value is 8(log n) bits long. Since no input element may be ignored, each
step in the algorithm actually needs OUnnH :y;)time (in the wor case), which

is w(l). Since there are !1(log n) steps in any CREW algorithm for the Restricted
Matching Value Problem, the time taken is w(log n), if o(n) processors, each of size
8(n/p) bits are used.

We conjecture that no representation of the information in the nIp arbitrary input
elements assigned to each processor would lead to an oblivious CREW algorithm for
the Restricted Matching Value Problem that uses o(n) processors and achieves a time
of 8(logn) and a GTP of 8(nlogn).

Lemma 2 lfthe Restricted Matching Value Problem cannot be solved by an oblivious
CREW algorithm that uses o(n) processors and achieves a time of8(log n) and a GTP
of 8(n log n), then n log n-bit numbers cannot be sorted by an oblivious CREW
algorithm that uses o(n) processors and achieves a time of 8(log n) and a GTP of
0(n log n).

Proof: Suppose there is an oblivious CREW algorithm A that sorts n log n-bit
numbers in 8(logn) time and with a GTP of 8(nlogn), using o(n) processors. We
now show how the above oblivious CREW algorithm A can be used to solve the
Matching Value Problem (and hence the Restricted Matching Value Problem) using
o(n) processors, in 8(logn) time and with a GTP of 8(nlogn).

First the input numbers ao, al, . .. ,an-l are sorted using A to form the sorted
list ,0, 11, · · · "n-I. Let K(i) be the position of the input Cti in the sorted list (i.e.
Cti = IK(i)). The index K(i) can be obtained for each i; (0 ~ i < n) in 8(logn) time.
Also let Pi denote the value of Ct:i. The output bit (3i can now be set as follows:

18

f3i = 1 iff PK.(i) = PK.(i)-1 or PK(i) = PK.(i)+1

We define I-I = In = NIL, a value not in {a, 1, ... , n - I}. Therefore the algorithm
A can be used to solve the Matching Value Problem in 8(log n) time and a GTP of
El(n log n) with o(n) processors.

D

Thus, if our conjecture about the Restricted Matching Value Problem is true,
Integer Sorting of n 8(log n)-bit numbers cannot be done by an oblivious CREW
algorithm in 8(logn) time and with a GTP of 8(nlogn), without a fine-grained
decomposition. OUf Integer Sorting algorithm proves that Integer Sorting can be
solved in 8(log n) time and with a GTP of 8(n log n) with fine-grained decomposition,
on an EREW model.

7 Concluding Remarks

We have shown in this report that by using a fine-grained decomposition, the Neighbor
Localization Problem can be solved very efficiently. As a consequence of this result we
find that n 8(log n)-bit unsigned binary numbers can be sorted optimally in 8(log n)
time and a GTP of 8(nlogn) on an EREW R-PRAM. If a weaker variant of the
R-PRAM called the ISR-PRAM [13] is used, the degradation in the efficiency (GTP)
is very small (a factor of e(log log log n)). The speed of the algorithm is unchanged.
It should be noted that the ISR-PRAM accounts for all overheads. Though our
algorithm, when run on an ISR-PRAM, results in a sub-optimal GTP, it is a big
improvement over the GTP bf conventional EREW PRAM algorithms.

Our algorithm illustrates the power of a fine-grained problem decomposition in
solving the Integer Sorting Problem very efficiently. We have conjectured that such an
efficient (and fast) solution is not possible unless a fine-grained problem decomposition
is used. We have outlined our reasons for making this conjecture.

We would like to mention that the memory requirement of 8(n 2
) does not really

affect the complexities of our algorithm, as all initializations have been accounted
for. Also this memory requirement is reasonable as is evident from the following
discussion. Suppose there is a CREW PRAM algorithm for integer sorting that uses
8(lo;n) processors, each of size 8(logn) bits to achieve a time of 8(logn). This

algorithm cannot be a comparison-based algorithm as its GTP is o(nlog2 n) (it has
been shown in [12] that the GTP of a comparison-based sorting algorithm used to
sort n m-bit numbers is O(mn log n)). Hence, it would in all probability require some
operation like log n-bit addition that needs a look-up table. From the discussion in
§ 5.2, it is clear that the memory required for this algorithm is !1(n 2

). In other words,
for our model of computation, it is the ranking step and not the Neighbor Localization
Problem that decides the space complexity of our algorithm. Thus our Integer Sorting

19

algorithm is not only optimal in time and GTP, but also has a reasonable memory
requirement.

Acknowledgment

The authors would like to thank Elaine Weinman for her invaluable help in the prepa
ration of this manuscript. Thanks are also due to Prof. Sanjay Ranka and Prof.
Tarben Hagerup for their useful suggestions.

20

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, "The Design and Analysis
of Computer Algorithms", Addison-Wesley Publishing Company, 1974, pp.
76-80.

[2] M. Ajtai, J. Kom16s and E. Szemeredi, "An O(nlogn) Sorting Network",
Proc. 15th ACM Symp. on Theory of Computation, 1983, pp. 1-9.
"Sorting in clog n parallel steps", Combinatorica 3(1), 1983, pp. 1-19.

[3] R. J. Anderson and G. L. Miller, "Deterministic Parallel List Ranking",
Proc. 3rd Aegean Workshop on Computing, Springer Verlag Lecture Notes
in Computer Science, Vol. 319, 1988, pp. 81-90.

[4] Y. Azar and U. Vishkin, "Tight Bounds on the Complexity of Parallel Sort
ing", 81AM J. Computing, Vol. 16, No.3, June 1987, pp. 458-464.

[5] P. C. P. Bhatt, K. Diks, T. Hagerup, V. C. Prasad, T. Radzik and S.
Saxena, "Improved Deterministic Parallel Integer Sorting", Technical Re
port 15/1989, Fachbereich Informatik, Universitat des Saarlandes, D-6600
Saarbriicken, West Germany.

[6] R. Cole, "Parallel Merge Sort", SIAM J. Computing, Vol. 17, No.4, August
1988, pp. 770-785.

[7J S. Cook, C. Dwork and R. Reischuk, "Upper and Lower Time Bounds for
Parallel Random Access Machines without Simultaneous Writes", SIAM J.
Comput., Vol. 15, No.1, Feb. 1986, pp. 87-97.

[8] T. Hagerup, "Towards Optimal Parallel Bucket Sorting", Information and
Computation, 1987, pp. 39-51.

[9] D. E. Knuth, "The Art of Computer Programming Vol. 3, Sorting and
Searching", Addison-Wesley Publishing Company, 1973.

[10] T. Leighton, "Tight Bounds on the Complexity of Parallel Sorting", IEEE
Trans. on Computers, Vol. C-34, No.4, Apri11985, pp. 344-354.

[11] I. Parberry, "Parallel Complexity Theory", John Wiley and Sons, Inc., New
York, 1987.

[12] R. Vaidyanathan, C. R. P. Hartmann and P. K. Varshney, "Optimal Parallel
Lexicographic Sorting using a Fine-Grained Decomposition", in preparation.

[13] R. Vaidyanathan, C. R. P. Hartmann and P. K. Varshney, "The R-PRAM:
A Fine-Grained PRAM Model" , in preparation.

21

A Pseudo Code for the Neighbor Localization
Problem

In this appendix we give pseudo codes for Steps 1 and 2 of the Neighbor Localization
Problem. We provide comments (enclosed in "/*" and "*/") wherever possible. We
also give an explicit illustration of the algorithm in the Appendix B. We suggest that
this example be read together with the pseudo code.

Procedure Step_l /* Find the Level vectors and set Flag */
/* Executed in parallel by all processors indexed i */
begin

/* Initialization */
Dst(i) +-- i /* The initial Left and Right Sets are {i} */
Fir st(i) +-- 1 /* First(i) = 1 iff ki is a first element of the current set */
Last(i) +-- 1 /* Last(i) = 1 iff ki is a last element of the current set */

/* During a merge step only the last (or first) elements of the Left (or Right)
Sets participate. This ensures exclusive reads and writes. */

/* Initialize the Level vector bits to o. */
for h +-- 0 to log(n) - 1 do

Level(i)lh +-- 0 j* bit h of Level(i) is set to 0 *j
end
/* End Initialization */
/* Fan-in the neighbor information. Each iteration is a merge step */
for h +-- 0 to Iog(n) - 1 do

/* Set LeftSet(i), a Boolean variable which is 1 iff i is a member of a Left
Set of the current merge step */

if Dst(i)lh = 0 then /* Dst(i)lh denotes bit h of Dst(i) */
Le ftS et(i) +-- 1

else Le ftS et(i) +- 0

end
/* Initialize Step:

For elements i of a Left Set, set Dst(i) to the destination of the correspond
-ing Right Set and initialize the appropriate locations of Fan_in-Array(Dst (i)).
This ensures that in the Check Step, garbage values are not read. */

if LeftSet(i) = 1 and Last(i) = 1 then
Dst(i)lh +-- 1

Fan_in-.Array(Dst(i))(p(i)) +-- 0

/* Dst(i) and p(i) may be thought of as index registers that are used to
access Fan-.in_Array(Dst(i))(p(i)). The value of Dst(i) is changed only
one bit at a time and once the value of p(i) is fixed (in 8(logn) time),
it is never changed. */

end

22

j* Set Step: Mark the appropriate locations of Fan_in-Array(Dst(i)) */
if Left..8et(i) = 0 and First(i) = 1 then

Fan_in-.Array(Dst(i))(p(i)) +-- 1

end
/* Check Step: Check Fan_in-Array(Dst(i)) for marks */
if LeftSet(i) = 1 and Last(i) = 1 then

if Fan_in-.Array(Dst(i))(p(i)) = 1 then
/* a mark has been found */
Level(i)lh +-- 1 /* bit h of Level(i) set to 1 */
Last(i) +-- 0 /* ki is no longer a last element */
Fan_in-.Array(Dst(i))(p(i)) +-- 0

/* This reinitialization of Fan_in-Array(Dst(i)) is done so that
the elements of the Right Sets may adjust First(i) */

end
end
/* Adjust First(i). This is done by the first elements ki of the Right Set.

If a last element ki , of the Left Set for which p(ki ,) = p(ki), detects a
neighbor in the Right Set, then ki must be its neighbor. Thus ki is
no longer a first element for the next iteration and First(i) must be
set to 0 */

if Left..8et(i) = 0 and First(i) = 1 then
if Fan_in-.Array(Dst(i))(p(i)) = 0 then

/* A last element of the Left Set has detected a mark. */
Fir st(i) +-- 0

end
end

end
/* End of Iterations */
/* At this point Level(i)lh = 1 iff the root of Ti is at level h. We have to set

Level(i)li to 1 for all j :::; 'h. Also Flag(i) has to be set.
Recall that F lag(i) = 1 iff ki has a neighbor */

Flag (i) +-- 0 /* initialization */
for h +-- 0 to log(n) - 1 do

if Flag(i) = 0 then
if Level(i)lh = 1 then
Flag (i) +-- 1 /* Level(i) is not changed any more */

else
Level(i)lh +-- 1

end
end

end
end /* End of Step 1 */

23

Procedure Step_2 /* Search 1i */
/* Executed in parallel by all processors indexed i */
/* In this procedure each processor i searches 1i for the neighbor of ki */

from the root of 1i */
begin

/* Initialization */
Link(i)~ Dst(i) /* This is the root of the current subtree of the fan-in
tree that is being searched. Initially, it is the root of 1i */
/* Initialize Dst(i) to the destination processor indices at level log n - 2 */
for h +- 0 to log(n) - 2 do

Dst(i)lh +-- 1

end
Dst(i)hogn-l +- i!Iogn-l /* i!Iogn-l denotes the fisb of i */
Half_Level(i) +-- Level(i) shifted right by 1 bit.

/* Half-Level(i), as the name indicates, is Level(i) div 2 and is needed to
determine the levels of the Fan-in tree that processor i searches if necessary.
Level(i) is used to reconstruct the Fanjn_Array for the searches.
The above assignment can be done in 8(log n) time. */

/* End Initialization */
/* Determine the neighbor. Each iteration searches one level of the Fan-in tree */
for h +- log(n) - 2 down to 0 do

if Flag(i) = 1 tIlen
if Half-Level(i)lh == 1 then

/* Halj-Level(i)lh = 1 iff Level(i)lh+l = 1 */
Link(i)lh +-- 0 /* search the left subtree */
/* Initialize Fan_in.Array */
Fan_in_Array(Link(i))(p(i)) +-- 0

end
end
Dst(i)lh +-- ilh
/* Reconstruct Fanin.Array */
if Level(i)lh = 1 then

Fan_in-A'I'ray(Dst(i))(p(i)) +-- 1

end
/* Check Fan_in.Array */
if Flag(i) = 1 then

if Half-Level(i)lh = 1 then
if Fan_in-Array(Link(i))(p(i)) = 0 then

/* Left subtree does not have a neighbor. Therefore we set Link to
the root of the right subtree */

Link(i)lh +-- 1

end

24

end
end
/* End Iterations */

end /* End Step 2 */

As mentioned earlier, Step B of Hagerup's algorithm requires that the beginning
and end of each list generated by Step A be available for access by a processor of
size log n bits in constant time. In our algorithm, the end of each list is given by
the processor that has Nbr(i) set to NIL. To find the beginning we reverse the Nbr
list (i.e. generate a list represented by Revfibr) and look for the processor that has
Revfibr(i) set to NIL. We use two Arrays, the Begin-Array and the End_Array,
each containing n pointer locations to store the above information. The following
pseudo code uses n processors, each of size log n bits and achieves a time of 8(1). It
is straight forward to modify the pseudo code for -1n processors, each of size log n

ogn

bits and a time of 8(logn).

Procedure Find-Begin_and_End_of_Lists
/* Executed in parallel by all processors indexed i */
begin

/* Initialize Begin.Array and End-Array */
Begin-Array(i) +-- NIL
End-Array(i)~ NIL
if Nbr(i) = NIL then

End_Array(p(i)) +-- i
end
/* Reverse the Nbr list */
Rev_Nbr (i) +-- NIL /* Initialization */
Rev-Nbr(Nbr(i)) +-- i
/* Set End_Array */
if Rev-Nbr(i) = NIL then

Begin_Array(p(i)) +-- i
end

end

25

B An Illustration of the Neighbor Localization
Problem Algorithm

We now illustrate the steps of the Neighbor Localization Algorithm with an example
where n = 8. The values of the 8 numbers are given below; p(O) = 5, p(l) = 2, p(2) =
5,p(3) = 5,p(4) = 4,p(5) = 7,p(6) = 4 and p(7) = 2. We now give below the values
in the various memory locations at each step of the algorithm. Locations that are
left blank contain garbage (undefined) values. We suggest that this portion be read
with the algorithmic descriptions given in § 5.

z p(i) Dst(i) First(i) Last(i) Level(i)
0 5 0 1 1 000
1 2 1 1 1 000
2 5 2 1 1 000
3 5 3 1 1 000
4 4 4 1 1 000
5 7 5 1 1 000
6 4 6 1 1 000
7 2 7 1 1 000

Table 2: Step 1; Initialization

z p(i) Dst(i) First(i) Last(i) Level(i) Left-Set(i)
1 2 1 1 1 000 0
2 5 3 1 0 001 1
3 5 3 0 1 000 0
4 4 5 1 1 000 1
5 7 5 1 1 000 0
6 4 7 1 1 000 1
7 2 7 1 1 000 0

Table 3: Step 1, Iteration 0; Variables

26

0 1 2 3 4 5 6 7
0
1 0
2
3 a
4
5 0
6
7 0

Table 4: Step 1, Iteration 0; Fanin.-Array after initialization

0 1 2 3 4 5 6 7
0
1 1 0
2
3 1
4
5 0 1
6
7 1 0

Table 5: Step 1, Iteration 0; Fan_in.-Array after marking

27

0 1 2 3 4 5 6 7
0
1 1 0
2
3 0
4
5 0 1
6
7 1 0

Table 6: Step 1, Iteration 0; Fanjn_Array after resetting marks

z p(i) Dst(i) First(i) Last(i) Level(i) Left-Set(i)
0 5 3 1 0 010 1
1 2 3 1 1 000 1
2 5 3 0 0 001 0
3 5 3 0 1 000 0
4 4 7 1 0 010 1
5 7 7 1 1 000 1
6 4 7 0 1 000 0
7 2 7 1 1 000 0

Table 7: Step 1, Iteration 1; Variables

0 1 2 3 4 5 6 7
0
1
2
3 0 0
4
5
6
7 0 0

Table 8: Step 1, Iteration l;Fan_in-Array after initialization

28

a 1 2 3 4 5 6 7
0
1
2
3 0 1
4
5
6
7 1 1 0

Table 9: Step 1, Iteration l;Fan_in-Array after marking

0 1 2 3 4 5 6 7
0
1
2
3 0 0
4
5
6
7 1 0 0

Table 10: Step 1, Iteration I;Fanin-Array after resetting marks

1- p(i) Dst(i) First(i) Last(i) Level(i) LeftSet(i)
0 5 3 1 0 010 1
1 2 7 1 0 100 1
2 5 3 0 0 001 1
3 5 7 0 1 000 1
4 4 7 1 0 010 0
5 7 7 1 1 000 0
6 4 7 0 1 000 0
7 2 7 0 1 000 0

Table 11: Step 1, Iteration 2; Variables

29

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7 a 0

Table 12: Step 1, Iteration 2;Fanjn_Array after initialization

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7 1 1 0 1

Table 13: Step 1, Iteration 2;Fan_in-Array after marking

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7 0 1 0 1

Table 14: Step 1, Iteration 2;Fan.in_Array after resetting marks

30

Initially h==O h==l h=2
z Level Flag Level Flag Level Flag Level Flag

0 010 0 011 0 011 1 011 1
1 100 a 101 0 111 a 111 1
2 001 0 001 1 001 1 001 1
3 o a a 0 a a 1 a 011 0 111 0
4 010 0 011 0 o 1 1 1 011 1
5 000 0 001 0 011 0 111 0
6 000 0 001 0 011 0 111 0
7 000 0 001 0 011 0 111 0

Table 15: Step 1; Setting Flag and Level

'l p(i) Flag(i) Level(i) Dst(i) Link(i) Half.Level(i)
0 5 1 011 3 3 001
1 2 1 111 3 7 011
2 5 1 001 3 3 000
3 5 0 111 3 7 011
4 4 1 011 7 7 001
5 7 0 111 7 7 011
6 4 0 111 7 7 011
7 2 0 111 7 7 011

Table 16: Step 2; Initialization

z p(i) Flag(i) Level(i) Dst(i) Link(i) Half-Level(i)
0 5 1 011 1 3 001
1 2 1 111 1 7 011
2 5 1 001 3 3 000
3 5 0 111 3 7 011
4 4 1 011 5 7 001
5 7 0 111 5 7 o 1 1
6 4 0 111 7 7 011
7 2 0 111 7 7 011

Table 17: Step 2, Iteration 1; Variables

31

0 1 2 3 4 5 6 7
0
1
2
3
4
5 0
6
7

Table 18: Step 2, Iteration 1; Fanjn-Array after initialization

0 1 2 3 4 5 6 7
0
1 1 1
2
3 1
4
5 0 1 1
6
7 1 1

Table 19: Step 2, Iteration 1; Fan_in-Array after marking

z p{i) Flag{i) Level(i) Dst(i) Link(i) Half-Level(i)
0 5 1 011 0 2 001
1 2 1 111 1 7 011
2 5 1 001 2 3 000
3 5 a 111 3 7 011
4 4 1 011 4 6 001
5 7 0 111 5 7 011
6 4 0 111 6 7 011
7 2 0 1 1 1 7 7 011

Table 20: Step 2, Iteration 0; Variables

32

0 1 2 3 4 5 6 7
0
1
2 0
3
4
5
6 0 0
7

Table 21: Step 2, Iteration 0; Fan.in_Array after initialization

0 1 2 3 4 5 6 7
0 1
1 1
2 1
3 1
4 1
5 1
6 0 1
7 1

Table 22: Step 2, Iteration 0; Fan_in-Array after marking

z p(i) Flag(i) Link(i) Nbr(i)
0 5 1 2 2
1 2 1 7 7
2 5 1 3 3
3 5 0 7 NIL
4 4 1 6 6
5 7 0 7 NIL
6 4 0 7 NIL
7 2 0 7 NIL

Table 23: Step 3; Variables

33

	Optimal Parallel Solutions to the Neighbor Localization Problem and Integer Sorting: A Fine Grained Approach
	Recommended Citation

	SU-CIS-89-11_001c
	SU-CIS-89-11_002c
	SU-CIS-89-11_003c
	SU-CIS-89-11_004c
	SU-CIS-89-11_005c
	SU-CIS-89-11_006c
	SU-CIS-89-11_007c
	SU-CIS-89-11_008c
	SU-CIS-89-11_009c
	SU-CIS-89-11_010c
	SU-CIS-89-11_011c
	SU-CIS-89-11_012c
	SU-CIS-89-11_013c
	SU-CIS-89-11_014c
	SU-CIS-89-11_015c
	SU-CIS-89-11_016c
	SU-CIS-89-11_017c
	SU-CIS-89-11_018c
	SU-CIS-89-11_019c
	SU-CIS-89-11_020c
	SU-CIS-89-11_021c
	SU-CIS-89-11_022c
	SU-CIS-89-11_023c
	SU-CIS-89-11_024c
	SU-CIS-89-11_025c
	SU-CIS-89-11_026c
	SU-CIS-89-11_027c
	SU-CIS-89-11_028c
	SU-CIS-89-11_029c
	SU-CIS-89-11_030c
	SU-CIS-89-11_031c
	SU-CIS-89-11_032c
	SU-CIS-89-11_033c
	SU-CIS-89-11_034c
	SU-CIS-89-11_035c
	SU-CIS-89-11_036c
	SU-CIS-89-11_037c
	SU-CIS-89-11_038c
	SU-CIS-89-11_039c
	SU-CIS-89-11_040c

